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Ross D. Houston1*† and José M. Yáñez2,4*†
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2 Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile, 3 Benchmark Genetics Chile, Puerto
Montt, Chile, 4 Núcleo Milenio INVASAL, Concepción, Chile

Sea lice (Caligus rogercresseyi) are ectoparasitic copepods which have a large negative
economic and welfare impact in Atlantic salmon (Salmo salar) aquaculture, particularly
in Chile. A multi-faceted prevention and control strategy is required to tackle lice, and
selective breeding contributes via cumulative improvement of host resistance to the
parasite. While host resistance has been shown to be heritable, little is yet known
about the individual loci that contribute to this resistance, the potential underlying
genes, and their mechanisms of action. In this study we took a multifaceted approach
to identify and characterize quantitative trait loci (QTL) affecting host resistance in a
population of 2,688 Caligus-challenged Atlantic salmon post-smolts from a commercial
breeding program. We used low and medium density genotyping with imputation to
collect genome-wide SNP marker data for all animals. Moderate heritability estimates
of 0.28 and 0.24 were obtained for lice density (as a measure of host resistance) and
growth during infestation, respectively. Three QTL explaining between 7 and 13% of the
genetic variation in resistance to sea lice (as represented by the traits of lice density)
were detected on chromosomes 3, 18, and 21. Characterisation of these QTL regions
was undertaken using RNA sequencing and pooled whole genome sequencing data.
This resulted in the identification of a shortlist of potential underlying causative genes,
and candidate functional mutations for further study. For example, candidates within
the chromosome 3 QTL include a putative premature stop mutation in TOB1 (an anti-
proliferative transcription factor involved in T cell regulation) and an uncharacterized
protein which showed significant differential allelic expression (implying the existence of
a cis-acting regulatory mutation). While host resistance to sea lice is polygenic in nature,
the results of this study highlight significant QTL regions together explaining between 7
and 13 % of the heritability of the trait. Future investigation of these QTL may enable
improved knowledge of the functional mechanisms of host resistance to sea lice, and
incorporation of functional variants to improve genomic selection accuracy.
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INTRODUCTION

Sea lice are a major concern for salmon aquaculture worldwide, in
particular Lepeophtheirus salmonis in the Northern Hemisphere
and Caligus rogercresseyi in the Southern Hemisphere. These
copepods attach to the skin and feed on the mucus and blood of
several species of salmonid fish. Parasitized fish display reduced
growth rate and increased occurrence of secondary infections
(Jónsdóttir et al., 1992). In addition to a significant negative
impact on salmonid health and welfare, lice prevention and
treatment costs are a large economic burden for salmonid
aquaculture, with global losses of over $430M per year (Costello,
2009). Current control strategies include, for example, feed
supplements, cleaner fish, tailored cage design, or “lice-zapping”
lasers (Aaen et al., 2015), but these multifaceted strategies are only
partially effective. Expensive and potentially environmentally
damaging chemicals and treatments are still frequently required
to control sea lice populations, which are becoming resistant
to common delousing drugs (Bravo et al., 2008; Aaen et al.,
2015). Therefore, despite these extensive control efforts, sea lice
remain a significant threat to salmon welfare and aquaculture
sustainability, and incur in further indirect costs via negative
impact on public opinion of aquaculture (Jackson et al., 2017).

Selective breeding can contribute to sea lice prevention
via harnessing naturally occurring genetic variation within
commercial salmon stocks to identify the most resistant
individuals. The identification of selection candidates can be
enabled either by pedigree or genomic based approaches, the
latter via genomic selection (Meuwissen et al., 2001). Moderate
genetic variation in resistance to sea lice exists in Atlantic
salmon, with heritabilities typically ranging between 0.1 and 0.3
for both the North Atlantic sea louse (Lepeophtheirus salmonis;
Kolstad et al., 2005; Gjerde et al., 2011; Ødegård et al., 2014;
Gharbi et al., 2015; Tsai et al., 2016), and the Pacific sea louse
(Caligus rogercresseyi; Lhorente et al., 2012; Yáñez et al., 2014;
Correa et al., 2017b); and tests of genomic selection approaches
for resistance to both lice species have shown substantially
higher prediction accuracies that “traditional” pedigree-based
approaches (Ødegård et al., 2014; Gharbi et al., 2015; Tsai et al.,
2016; Correa et al., 2017a).

Genomic selection is now routinely applied in Atlantic salmon
breeding programs for the genetic improvement of several traits
(Houston, 2017). While it offers notable benefits in terms of
selection accuracy, it has limitations such as the significant cost
(via the need for high volume genotyping using SNP arrays),
and the limited accuracy when the reference and selection
candidate populations are not closely related (e.g., Daetwyler
et al., 2012; Tsai et al., 2016). Discovering the causative genetic
polymorphisms underlying phenotypic variation in complex
traits is a fundamental goal of genetic research. Further,
identifying these causative variants would also facilitate more
effective genomic selection, potentially via cheaper genoyping
strategies, increased genetic gain each generation, and improved
persistency of prediction accuracy across generations and
populations. Approaches that incorporate biological knowledge
into selection models have shown an increase in genomic
prediction accuracy, specially across distantly related populations

(MacLeod et al., 2016). Further, knowledge of causative
variants offer future possibilities of harnessing genomic editing
approaches, for example simulations have shown that even a
small number of edits per generation can rapidly increase the
frequency of favorable alleles and expedite genetic gain (Jenko
et al., 2015). However, finding causative mutations within QTL
regions is very challenging, with few success stories in farm
animals to date. QTL regions tend to cover large segments of
chromosomes, and typically contain many variants in linkage
disequilibrium that show approximately equal association with
the trait. Functional genome annotation data can be applied to
prioritize variants within these regions, markedly reducing the
number of mutations to investigate by narrowing them to known
transcribed and regulatory regions, and – although largely lacking
for aquaculture species to date – are currently being developed
for Atlantic salmon and other salmonid species (Macqueen
et al., 2017). Further understanding of the function of genetic
variants, for example through expression QTL studies, can also
identify causal associations between genotype and phenotype
(Lappalainen, 2015), as previously shown for example for bovine
milk composition (Littlejohn et al., 2016) or adiposity in chicken
and mice (Roux et al., 2015). While challenging, shortlisting
and identification of causative genes and variants impacting on
disease resistance in salmon would have positive implications for
both selective breeding and fundamental understanding of the
host-pathogen interaction.

In the current study, a large population of farmed Atlantic
salmon of Chilean origin was challenged with sea lice and
high density SNP genotype data was collected. The overall aim
of the study was to detect and annotate QTL affecting host
resistance to sea lice in farmed Atlantic salmon, with a view to
identifying putative causative genes and variants. The specific
objectives were a) estimate genetic variance of sea lice resistance
in our population, b) dissect the genetic architecture of the trait,
and c) explore the genomic basis of the detected QTL using
transcriptomics and whole-genome sequencing data.

MATERIALS AND METHODS

Disease Challenge
2,668 Atlantic salmon (Salmo salar) Passive Integrated
Transponder (PIT)-tagged post-smolts (average weight
122 ± 40 grams, measured for weight and length prior to
the start of the challenge) from 104 families from the breeding
population of AquaInnovo (Salmones Chaicas, Xth Region,
Chile), were experimentally challenged with Caligus rogercresseyi
(chalimus II-III). Animals were distributed in three tanks, with
24 to 27 fish of each family in every tank. Infestation with the
parasite was carried out by depositing 50 copepods per fish in
the tank and stopping the water flow for 6 h during infestation,
thereafter water flow was gradually restored reaching its normal
flow two days after. During this process oxygen saturation was
maintained at 90–110 %, and oxygen and temperature where
constantly monitored. Eight days after the infestation fish were
sedated before being carefully and individually removed from the
tanks. The number of sea lice attached to the fish were counted
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from head to tail. At this stage, each fish was also measured for
weight and length, PIT-tags were read, and fin-clips collected for
DNA extraction. Log-transformed lice density was estimated as
loge

(
LC

/
BWini

2/3
)

, where LC is the number of lice counted on
the fish, BWini is the initial body weight prior to the challenge,
and BWini

2/3 is an approximation of the surface of the skin of
each fish (Ødegård et al., 2014). Both raw sea lice counts and sea
lice density (lice counts normalized for fish size) were used as
proxy of fish resistance to sea lice. Growth during infestation was
calculated as [(BWend – BWini)/BWini) ∗ 100], where BWini and
BWend are the weight of the fish at the start and at the end of the
trial, respectively, the same formulae was used for length.

Genotyping
DNA was extracted from fin-clips from challenged fish using
a commercial kit (Wizard R© Genomic DNA Purification Kit,
Promega), following the manufacturer’s instructions. All samples
where genotyped with a panel of 968 SNPs (Supplementary Table
S1) chosen as a subset of the SNPs from a medium density
SNP array (Yáñez et al., 2016) using Kompetitive Allele Specific
PCR (KASP) assays (LGC Ltd., Teddington United Kingdom).
Different low density panels were tested in fish of the same
population previously genotyped with the medium density SNP
array (Yáñez et al., 2016), and the position of the low density
panel markers was selected to maximize imputation accuracy,
enriching the extremes of the chromosome were linkage
disequilibrium decreases (Yoshida et al., 2018). A population
containing full-siblings of the challenged animals had previously
been genotyped with a SNP panel of 45,819 SNPs (n = 1,056,
Correa et al., 2015; Yáñez et al., 2016), and the experimental
lice-challenged population was imputed to ∼46 K SNPs using
FImpute v.2.2 (Sargolzaei et al., 2014). Imputation accuracy was
estimated by 10-fold cross validation, masking 10% of the 1,056
genotyped full-sibs to the 968 SNP panel, performing imputation,
and then assessing the correlation between the true genotypes and
the imputed genotypes. All imputed SNPs showing imputation
accuracy below 80% were discarded, and the remaining imputed
SNPs had a mean imputation accuracy of 95%. Genotypes were
further filtered and removed according to the following criteria:
SNP call-rate < 0.9, individual call-rate < 0.9, FDR corrected
p-value for high individual heterozygosity < 0.05 (removing
fish with an excess of heterozygote genotypes), identity-by-
state > 0.95 (both individuals removed), Hardy-Weinberg
equilibrium p-value < 10−6, minor allele frequency < 0.01.
After filtering 38,028 markers and 2,345 fish remained for
association analysis.

Estimation of Genetic Parameters
Variance components and heritabilities were estimated by
ASReml 4.1 (Gilmour et al., 2014) fitting the following linear
mixed model:

y = µ+ Xb+ Za+ e (1)

where y is a vector of observed phenotypes (lice number, lice
density, initial weight, initial length and weight and length gain
during infestation), µ is the overall mean of phenotype records,

b is the vector of fixed effects of tank (as factor with 3 levels)
and initial body weight (as a covariate; except when initial weight
or initial length were the observed phenotypes), a is a vector
of random additive genetic effects of the animal, distributed as
∼N (0,Gσ2a) where σ2a is the additive (genetic) variance, G is
the genomic relationship matrix. X and Z are the corresponding
incidence matrices for fixed and additive effects, respectively,
and e is a vector of residuals. The best model was determined
comparing the log-likelihood of models with different fixed
effects and covariates. Phenotypic sex was not significant for any
of the traits. G was calculated using the GenABEL R package
(Aulchenko et al., 2007) to obtain the kinship matrix using
the method of Amin et al. (2007), which was multiplied by a
factor of 2 and inverted using a standard R function. Genetic
correlations were estimated using bivariate analysis implemented
in ASReml 4.1 (Gilmour et al., 2014) fitting the same fixed and
random effects described in the univariate linear mixed model
described above.

Single-SNP Genome-Wide Association
Study
The single-SNP GWAS was performed using the GenABEL
R package (Aulchenko et al., 2007) by applying the mmscore
function (Chen and Abecasis, 2007), which accounts for the
relatedness between individuals applied through the genomic
kinship matrix. Significance thresholds were calculated using
a Bonferroni correction where genome-wide significance was
defined as 0.05 divided by number of SNPs (Duggal et al., 2008)
and suggestive as one false positive per genome scan (1/number
SNPs). The proportion of variance explained by significant SNPs
was calculated as Chi-square / (N-2 + Chi-square), where N is
the sample size and Chi-square is the result of the Chi-square test
of the mmscore function (Chen and Abecasis, 2007).

Regional Heritability Mapping
A regional heritability mapping (RHM) analysis (Nagamine et al.,
2012; Uemoto et al., 2013) was performed where the genome
was divided into overlapping regions of 50 consecutive SNPs
(according to the most recent Atlantic salmon reference genome
assembly GCA_000233375.4) and a step-size of 25 SNPs (two
consecutive SNP windows share 25 SNPs) using Dissect v.1.12.0
(Canela-Xandri et al., 2015). The significance of the regional
heritability for each window was evaluated using a log likelihood
ratio test statistic (LRT) comparing the global model fitting
all markers with the model only fitting SNPs in a specific
genomic region.

Whole-Genome Sequencing
Genomic DNA from a pool of 50 fish with high sea lice counts
(Mean = 66.8± 21.5) and a pool of 50 fish with low sea lice counts
(Mean = 20.4 ± 5.3) were sequenced in five lanes of HiSeq 4000
as 150 bp PE reads. Family structure was similar in both pools,
with 34 different families and a maximum of two fish per family.
The quality of the sequencing output was assessed using FastQC
v.0.11.51. Quality filtering and removal of residual adaptor

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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sequences was conducted on read pairs using Trimmomatic
v.0.32 (Bolger et al., 2004). Specifically, Illumina adaptors were
clipped from the reads, leading and trailing bases with a Phred
score less than 20 were removed, and the read trimmed if the
sliding window average Phred score over four bases was less than
20. Only reads where both pairs were longer than 36 bp post-
filtering were retained. Filtered reads were mapped to the most
recent Atlantic salmon genome assembly (ICSASG_v2; Genbank
accession GCF_000233375.1; Lien et al., 2016) using Burrows-
Wheeler aligner v.0.7.8 BWA-MEM algorithm (Li, 2013). Pileup
files describing the base-pair information at each genomic
position were generated from the alignment files using the
mpileup function of samtools v1.4 (Li et al., 2009), discarding
those aligned reads with a mapping quality < 30 and those bases
with a Phred score < 30. Synchronized files containing read
counts for every allele variant in every position of the genome
were obtained using Popoolation2 v1.201 (Kofler et al., 2011).
A read depth ≥ 10 and a minimum of three reads of the minor
allele were required for SNP calling.

Differential Allelic Expression
Since complex traits can be influenced by causative mutations
in regulatory regions that impact gene expression (Keane et al.,
2011; Albert and Kruglyak, 2015), the sequence data from a
previous RNA-Seq study on the skin of a subset of animals taken
from this sea lice infected population (Robledo et al., 2018a)
were used to investigate allelic specific expression (differential
abundance of the allelic copies of a transcript) to reveal putative
nearby cis-acting regulatory polymorphisms. Alignment files
were produced using STAR v.2.5.2b (Dobin et al., 2013; detailed
protocol can be found in Robledo et al., 2018a) and used for
SNP identification and genotype calling with samtools v1.4 (Li
et al., 2009). Reads with mapping quality < 30 and bases with
phred quality scores < 30 were excluded. A read depth ≥ 10
and ≥ 3 reads for the alternative allele were required to call a
SNP. Read counts were obtained for each allele in heterozygous
loci and a binomial test was performed to assess the significance
of the allelic differences using the R package AllelicImbalance
(Gådin et al., 2015).

RESULTS

Disease Challenge, Genotyping and
Imputation
Eight days after the start of the challenge, the average lice burden
per fish across the challenged population was 38 ± 16. The
average weight prior to the start of the trial was 122 ± 40
grams and 143 ± 49 grams after the challenge. All samples
were genotyped using a low-density SNP panel (968 SNPs).
The average r2 (squared correlation coefficient between alleles
at different loci, Hill and Robertson, 1968) between consecutive
markers in the low density panel was 0.06, and the average
physical distance 438 Kb. 50 samples were genotyped for less
than 90% of the SNPs and therefore removed from subsequent
analyses. The remaining samples were imputed to high-density
from a population of 1,056 salmon that included full siblings of

the challenge population, which had previously been genotyped
for 45K SNPs (subset of Yáñez et al., 2016 selected as described
in Correa et al., 2015). After removing SNPs showing low
imputation accuracy (< 80 %), a total of 39,416 SNPs
remained with an average imputation accuracy (as assessed by
cross-validation) of ∼95 %. After further call rate, minimum
allele frequency, heterozygosity, identity-by-descent and Hardy-
Weinberg filters, 38,028 markers and 2,345 fish remained for
downstream analyses.

Genetic Parameters
Heritabilities and genetic correlations of different traits related
to sea lice load, growth and growth during infestation are
shown in Table 1. The estimated heritability for sea lice load
was 0.29 ± 0.04, and the number of sea lice attached to each
fish showed positive genetic correlation with both initial weight
(0.47 ± 0.07) and initial length (0.42 ± 0.08). However, sea lice
density (h2 = 0.28 ± 0.04) was independent of the size of the
fish which implies that these positive genetic correlations are due
to the fact that larger fish tend to have more lice. Initial weight
and length showed significant heritabilities as expected, and
growth during infestation also presented a moderate heritability,
especially weight (h2 = 0.24 ± 0.04). Surprisingly, weight gain
during infestation showed a positive genetic correlation with sea
lice density and sea lice counts, albeit with a high standard error
(0.25± 0.12 and 0.27± 0.12, respectively).

Genome-Wide Association
The genetic architectures for the traits of sea lice density
(Figure 1) and growth gain during infestation (Supplementary
Figure S1) were studied using two different methods. The
single SNP GWAS for sea lice density revealed three (imputed)
SNPs reaching genome-wide significance in the distal part of
chromosome 3 (Figure 1A), each estimated to explain 3.61–4.14
% of the genetic variation. Additional SNPs showed suggestive
association with sea lice density in chromosome 5, chromosome
9, and chromosome 18. Regional heritability analyses using 50
SNP windows confirmed the QTL in chromosomes 3 and 18, both
estimated to explain ∼7.5 % of the genetic variation in sea lice
density (Figure 1B). The RHM approach detected an additional
QTL not found in the single SNP GWAS, on chromosome 21,
explaining close to 10 % of the genetic variation in sea lice density.
The QTL regions in chromosomes 3, 18, and 21 were further
refined, adding and removing SNPs until the window explaining
the most genetic variation for each QTL was found. These QTL
were narrowed to regions of 3–5 Mb and were each estimated to
explain between 7.8 and 13.4 % of the genetic variation in sea lice
density, accounting in total for almost 30% of the genetic variance
(Table 2) assuming additive effects of the QTL.

QTL Characterization
The three sea lice density QTL regions were then further
interrogated to identify and characterize potential causative genes
and variants. The Atlantic salmon genome annotation (Lien et al.,
2016), the results of a previous RNA-Seq study comparing lice-
attachment sites and healthy skin (Robledo et al., 2018a), and
SNP variants obtained from the WGS of pools of fish with high
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TABLE 1 | Heritabilities and genetic correlations.

Caligus number Caligus density (Ln) Initial weight Weight gain (%) Initial length Length gain (%)

Caligus number 0.29 ± 0.04

Caligus density (Ln) 0.78 ± 0.04 0.28 ± 0.04

Initial weight 0.47 ± 0.07 −0.15 ± 0.09 0.41 ± 0.04

Weight gain (%) 0.27 ± 0.12 0.25 ± 0.12 0.05 ± 0.10 0.24 ± 0.04

Initial length 0.42 ± 0.08 −0.22 ± 0.10 0.99 ± 0.01 0.17 ± 0.11 0.27 ± 0.03

Length gain (%) 0.23 ± 0.15 0.31 ± 0.15 0.09 ± 0.03 0.89 ± 0.05 0.09 ± 0.15 0.12 ± 0.03

Heritabilities are in bold and genetic correlations are in normal font.

FIGURE 1 | Genome-wide association analyses for sea lice density. (A) Single-SNP GWAS results, horizontal bars represent Bonferroni corrected significance (red)
and nominal significance (black). (B) RHM results showing the percentage of additive genetic variance explained by each genomic region, represented by 50
consecutive SNPs.

and low number of lice were combined to obtain a holistic view
of these regions (Figure 2 and Supplementary Figures S1, S2).
The QTL regions were all relatively large, and contained a large
number of SNPs and genes. The whole-genome re-sequencing
data led to the identification of 16K–22K putative SNPs in each of
the QTL regions, but less than a thousand were located in genic
regions in each of them. Surprisingly, the number of mutations
that were predicted to have a moderate or large functional

effect was relatively high, especially in chromosome 3 where a
total of 213 non-synonymous SNPs were detected, along with
5 premature stop, 1 stop lost and 12 start gain mutations. The
equivalent numbers were more modest for chromosomes 18 and
21, with 37 and 13 non-synonymous mutations, respectively,
but still relatively high to single out high priority candidate
causative variants using variant effect prediction data alone. The
three QTL regions had also a relatively high number of genes
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FIGURE 2 | QTL region in chromosome 21. Bars represent the log2 fold change between healthy and sea lice attachment skin for every gene in the QTL region
according to the RNA-Seq. Bar color represents the expression level of the gene (lighter = less expressed), and the annotation of the gene is presented in a label on
the top of the graph. Genic SNPs detected by WGS are shown in between, those with putatively more severe effects are located toward the top of the figure.

TABLE 2 | Details of Sea lice resistance QTL.

Chromosome Start
(Mb)

End
(Mb)

Number of
SNPs

Genetic
variance

explained (%)

3 77.54 82.54 58 7.82

18 14.87 17.56 62 8.34

21 7.96 10.44 52 13.39

Positions and details of the QTL detected by RHM. Chromosome, start and end
boundaries of the QTL region, number of SNPs in the QTL region, and percentage
of genetic variance of sea lice density explained by the QTL are shown.

(83, 36, and 11 genes in the QTL regions of chromosomes
3, 18 and 21, respectively). Therefore, to shortlist candidate
genes and variants, a combination of differential expression
between resistant and susceptible fish, variant effect prediction,
and a literature search relating to the function of the genes
and their potential role in host response to parasitic infection
were used.

The clearest candidate gene in chromosome 3 was arguably
TOB1, where a premature stop mutation was detected.
This transcription factor negatively regulates cell proliferation
(Matsuda et al., 1996), including that of T-cells (Baranzini,
2014). In our study, it was highly expressed in the skin
according to RNA-Seq data, and its expression was significantly
lower in lice attachment regions of the skin (Robledo et al.,
2018a). For chromosome 21, serine / threnonine-protein kinase
17B (STK17B) showed the highest fold change between lice-
attachment and healthy skin and a missense mutation; this
gene has been connected to apoptosis and T-cell regulation, and

T-cells of STK17B deficient mice are hypersensitive to stimulation
(Honey, 2005). Previous studies comparing the immune response
of resistant and susceptible salmonid species have linked Th2-
type responses to sea lice resistance (Braden et al., 2015), which is
consistent with these two genes potentially having a functional
role relating to the resistance QTL. Chromosome 18 does not
contain any clear candidate genes, but from a literature search
alone, the most plausible gene is probably heme binding protein
2 (HEBP2). Reducing iron availability has been suggested as a
possible mechanism of resistance to sea lice (Fast et al., 2007;
Sutherland et al., 2014) and Piscirickettsia salmonis (Pulgar et al.,
2015) in Atlantic salmon.

A differential allelic expression analysis was performed
to screen for potential cis-acting regulatory mutations
affecting genes in the QTL regions. An uncharacterized
gene (XP_014049605.1) showed clear signs of differential allelic
expression (P = 0.00081, Figure 3) in chromosome 3 at 8.1 Mb,
less than 200 Kb away from the significant GWAS SNPs.
This gene is also highly expressed in the skin of lice-infected
salmon (Robledo et al., 2018a), and similar proteins are found
in other salmonid and teleost species (NCBI’s non-redudant
protein database).

DISCUSSION

In the current study we aimed to use a combination of
GWAS, RNA-Seq, whole genome resequencing, and functional
annotation approaches to identify and characterize QTL
influencing host resistance to sea lice. Heritability estimates for
sea lice density were similar or higher than previous studies

Frontiers in Genetics | www.frontiersin.org 6 February 2019 | Volume 10 | Article 56

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00056 February 6, 2019 Time: 23:39 # 7

Robledo et al. Resistance to Lice in Salmon

FIGURE 3 | Differential allelic expression of XP_014049605.1. Gene counts in
heterozygous animals for a SNP showing allelic imbalance in
XP_014049605.1. The p-values of the binomial test comparing the expression
of both alleles are shown for each animal.

on C. rogercresseyi-challenged Atlantic salmon. Lhorente et al.
(2012, 2014) obtained pedigree-estimated heritabilities of 0.17–
0.34, while estimates on a previously related sea lice challenged
population were of 0.10–0.11 with both pedigree and molecular
information (Yáñez et al., 2014; Correa et al., 2017a,b). This
heritability is also in consistent with heritability estimates for
salmon challenged with L. salmonis (0.2–0.3; Kolstad et al.,
2005; Gjerde et al., 2011; Gharbi et al., 2015; Tsai et al., 2016),
and similar to heritabilities for resistance to other ectoparasites
affecting Atlantic salmon such as Gyrodactylus salaris (0.32; Salte
et al., 2010) and Neoparamoeba perurans (Amoebic gill disease;
0.23–0.48; Taylor et al., 2009; Robledo et al., 2018a).

Previous studies on the architecture of resistance to
C. rogercresseyi had revealed just one significant SNP in
chromosome 21 ∼6.5 Mb (Correa et al., 2017b). While no
significant SNPs were found in chromosome 21 in our study
using single SNP GWAS, the regional heritability analysis did
highlight the nearby region between 8 and 10.5 Mb as explaining
over 13% of the genetic variation of the trait. Our RHM analysis
also identified two additional QTL explaining a significant
amount of the genetic variance, but only one of them detected
in our single SNP GWAS. RHM analyses and other similar
approaches use the information of several consecutive SNPs,
increasing the statistical power and reliability of association
mapping (Riggio and Pong-Wong, 2014; Shirali et al., 2016),
which consequently should result in higher repeatability and
concordance between genetic association studies. Accordingly,
in our study the RHM analysis arguably located the previously
detected QTL (Correa et al., 2017b), while the single SNP GWAS
seemingly failed to do so.

Discovering the causal variants underlying QTL is a very
challenging task, and as result very few causative variants have
been identified to date. The first problem lies with the large
regions that have to be investigated, since narrowing the QTL
is extremely difficult due to reduced recombination and high

linkage disequilibrium along large regions of the genome (e.g.,
Tsai et al., 2016). Further, despite the simplicity of identifying
most or all variants within a region using WGS, prioritizing those
variants is challenging with the current status of annotation of the
Atlantic salmon genome, which has 48,775 protein coding genes
and 97,546 mRNAs (Lien et al., 2016). Putative non-synonymous
and even premature stop mutations appear relatively frequently,
probably indicating a significant proportion of pseudogenes, and
therefore hindering our ability to prioritize functional mutations.
Further, in complex traits, a high proportion of causative
mutations are located in regulatory elements (Keane et al.,
2011; Albert and Kruglyak, 2015), which are difficult to evaluate
without comprehensive genome annotation using assays that can
identify such regions. In this sense, the outputs of the Functional
Annotation of All Salmonid Genomes (FAASG; Macqueen et al.,
2017) initiative should contribute to prioritization of intergenic
SNPs through the characterization of functional regulatory
elements in salmonid genomes. Complementary, differential
allelic expression (DAE) and expression QTL (eQTL) can be an
effective route to identify functional candidates (Gamazon et al.,
2018). The caveat of DAE and eQTL is that gene expression is
quite commonly restricted to specific tissues. A GTex-like project
(GTEx Consortium, 2017) in salmonids could also facilitate the
discovery of functional variants underlying QTL.

Despite these limitations, two genes were identified that are
strong candidates for the QTLs in chromosome 3 and 21, TOB1
and STK17B, respectively. Coho salmon, a salmonid species
considered resistant to sea lice, shows pronounced epithelial
hyperplasia and cellular infiltration two days after sea lice
attachment, and wound healing combined with a strong Th2
immune response has been suggested as the mechanism of
resistance (Braden et al., 2015). TOB1 and STK17B have been
previously associated with cell proliferation and T cell regulation.
TOB1 is an antiproliferative protein which is ubiquitously
expressed in several species (Baranzini, 2014), and inhibits T cell
proliferation in humans (Tzachanis et al., 2001). TOB1 down-
regulation in response to sea lice attachment suggests that this
gene plays a relevant role in the Atlantic salmon response to
the parasite, and the detected putative premature stop codon
mutation may be concordant with faster wound healing and
T cell proliferation. STK17B, also known as DRAK2, has also
been connected to T cell function (Honey, 2005; Gatzka et al.,
2009) and to proliferation in cancer (Yang et al., 2012; Lan
et al., 2018). STK17B contains a non-synonymous mutation and
marked up-regulation in response to sea lice in salmon skin. In
addition to these two strong functional candidates, the allelic
differential expression analysis also revealed an uncharacterized
protein regulated by cis-polymorphisms in the QTL region
in chromosome 3. These three genes and their mutations
deserve further attention in follow-up studies aimed to increase
resistance to sea lice in Atlantic salmon. Such follow up studies
could include further functional annotation of QTL regions
using chromatin accessibility assays to identify genomic regions
potentially impacting on the binding of transcription factors or
enhancers. Genome editing approaches (such as CRISPR-Cas9)
could be applied to test hypotheses relating to modification
of gene function or expression caused by coding or putative
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cis-acting regulatory variants in cell culture, or ultimately to
perform targeted perturbation of the QTL regions and assess the
consequences on host resistance to sea lice in vivo.

CONCLUSION

Host resistance to sea lice in this Chilean commercial
population is moderately heritable (h2 = 0.28) and shows
a polygenic architecture, albeit with at least three QTL of
moderate effect on chromosomes 3, 18, and 21 (7.8 to
13.4% of the genetic variation). Growth during infestation
also has a significant genetic component (h2 = 0.24), and
its genetic architecture is clearly polygenic, with QTL of
small effect distributed along many genomic regions. The
three QTL affecting lice density were further investigated
by integrating RNA-Seq and WGS data, together with a
literature search. A putative premature stop codon within
TOB1, an anti-proliferative protein, seems a plausible candidate
to explain the QTL in chromosome 3. Alternatively, an
uncharacterized protein on the same QTL region displayed
differential allelic expression, and which may form a suitable
target for further functional studies. STK17B, functionally
connected to proliferation and T cell function, is a plausible
candidate for the QTL in chromosome 21. It is evident that
even when all variants in a QTL region are discovered, that
shortlisting and prioritizing the potential causative variants
underlying QTL is challenging. However, the impending
availability of more complete functional genome annotation
and eQTL data is likely to assist this process, thereby helping
to elucidate the functional genetic basis of complex traits in
aquaculture species.
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FIGURE S1 | QTL region in chromosome 3. Bars represent the log 2 fold change
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(lighter = less expressed), and the annotation of the gene is presented in a label on
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FIGURE S2 | QTL region in chromosome 18. Bars represent the log2 fold change
between healthy and sea lice attachment skin for every gene in the QTL region
according to the RNA-seq. Bar colour represents the expression level of the gene
(lighter = less expressed), and the annotation of the gene is presented in a label on
the top of the graph. Genic SNPs detected by WGS are shown in between, those
with putatively more severe effects are located towards the top of the
figure.

TABLE S1 | Markers in the low density SNP panel.

TABLE S2 | Phenotypes of the challenged animals.
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