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Abstract 

Background: Cerebral malaria (CM) causes a rapidly developing coma, and remains a major contributor to morbid-
ity and mortality in malaria-endemic regions. This study sought to determine the relationship between cerebrospinal 
fluid (CSF) Plasmodium falciparum histidine rich protein-2 (PfHRP-2) and clinical, laboratory and radiographic features 
in a cohort of children with retinopathy-positive CM.

Methods: Patients included in the study were admitted (2009–2013) to the Pediatric Research Ward (Queen Eliza-
beth Central Hospital, Blantyre, Malawi) meeting World Health Organization criteria for CM with findings of malarial 
retinopathy. Enzyme-linked immunosorbent assay was used to determine plasma and CSF PfHRP-2 levels. Wilcoxon 
rank-sum tests and multivariable logistic regression analysis assessed the association of clinical and radiographic char-
acteristics with the primary outcome of death during hospitalization.

Results: In this cohort of 94 patients, median age was 44 (interquartile range 29–62) months, 53 (56.4%) patients 
were male, 6 (7%) were HIV-infected, and 10 (11%) died during hospitalization. Elevated concentrations of plasma lac-
tate (p = 0.005) and CSF PfHRP-2 (p = 0.04) were significantly associated with death. On multivariable analysis, higher 
PfHRP-2 in the CSF was associated with death (odds ratio 9.00, 95% confidence interval 1.44–56.42) while plasma 
PfHRP-2 was not (odds ratio 2.05, 95% confidence interval 0.45–9.35).

Conclusions: Elevation of CSF, but not plasma PfHRP-2, is associated with death in this paediatric CM cohort. PfHRP-2 
egress into the CSF may represent alteration of blood brain barrier permeability related to the sequestration of para-
sitized erythrocytes in the cerebral microvasculature.
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Background
Despite ongoing efforts to implement existing con-
trol strategies and develop candidate vaccines, severe 
malaria continues to generate a heavy burden of illness 
worldwide. In 2014, there were approximately 212 mil-
lion malaria cases and 429,000 malaria deaths globally, 
70% occurring in children under the age of 5  years liv-
ing in sub-Saharan Africa [1]. Cerebral malaria (CM), 
the deadliest form of the disease, with a mortality rate 
of approximately 15–25%, is defined as a Blantyre Coma 
Score (BCS) of 2 or less, peripheral Plasmodium falcipa-
rum parasitaemia and no other discernible cause of coma 
[2]. Additionally, retinal signs have been found to be over 
95% sensitive and specific for pre-morbid identification 
of children with significant central nervous system (CNS) 
parasite sequestration at autopsy [3–5].

Histopathologically, CM is characterized by sequestra-
tion of mature parasites in the microvasculature of the 
brain [6–8]. Sequestration results from the expression of 
parasite proteins on the surface of the infected erythro-
cyte, which mediates the attachment of the parasitized 
erythrocyte to endothelial cells of the microvasculature. 
At sites of sequestration, parasites continue to mature 
and finally rupture from host erythrocytes to release 
their progeny. Sequestration is thought to cause micro-
vascular obstruction with consequent metabolic and 
inflammatory derangements [9, 10]. Disease progres-
sion and death in some children with CM is likely sec-
ondary to extravascular parenchymal changes driven by 
intravascular pathology. In an autopsy study of paediatric 
patients with CM, diffuse axonal and myelin damage in 
the brain parenchyma was present in cases where there 
was prominent infected erythrocyte sequestration [11]. 
Additional pathological findings include concentrated 
intravascular haemozoin in regions of sequestration, and 
evidence of blood brain barrier (BBB) breakdown, asso-
ciated with perivascular ring haemorrhages distributed 
in the subcortical white matter, corpus callosum, basal 
ganglia and the cerebellum [12]. Neuroimaging studies 
have shown evidence of various patterns of parenchy-
mal damage in CM patients, involving the basal ganglia, 
supratentorial white matter, brainstem and cerebral cor-
tex [13–16]. Brain magnetic resonance imaging (MRI) in 
CM children shows that increased brain volume is asso-
ciated with death [17]. Parasites are not seen within the 
brain parenchyma, and the cause of changes that lead to 
brain swelling, with neurological damage and death in 
some patients, is incompletely understood. Identification 
of Plasmodium-specific biological markers in the cer-
ebrospinal fluid (CSF) may further elucidate mechanisms 
underlying the pathogenesis of CM.

Plasmodium falciparum histidine rich protein-2 
(PfHRP-2), the basis of many rapid diagnostic tests for 

malaria, is a water-soluble parasite-specific protein 
released from parasite-infected erythrocytes. PfHRP-2 
is produced throughout the parasite’s 48-h life cycle, 
with approximately 90% released at the moment of schi-
zont rupture [18]. Quantitative measurement of plasma 
PfHRP-2 is a metric of the recent level of total circulat-
ing rings and sequestered trophozoite parasite biomass, 
related to parasite antigen release throughout the para-
site life cycle, in contrast to quantification of only rings 
on a peripheral blood smear [19]. Semi-quantitative 
assessments of plasma PfHRP-2 concentrations in adults 
show a correlation with disease severity [20]. In African 
children presenting with febrile illness, plasma PfHRP-2 
concentrations on admission predict mortality, and in 
those presenting with uncomplicated malaria, is predic-
tive of progression to severe malaria [21–23]. In a study 
of Tanzanian children with uncomplicated or cerebral 
malaria, plasma PfHRP-2 was associated with malaria 
severity and mortality, though patients with CM were not 
defined by malaria retinopathy status [24]. Other patient 
cohorts have not identified a relationship between 
plasma PfHRP-2 and mortality in CM [21]. PfHRP-2 has 
recently been shown to be an important factor in CM 
pathogenesis. PfHRP-2 acts as a parasite virulence factor 
that activates the host innate immune system through an 
inflammasome-mediated pathway, causing redistribution 
of endothelial junctional proteins and increased BBB per-
meability [25]. Plasma PfHRP-2 does not represent brain 
sequestration in isolation, as sequestration in severe 
malaria involves multiple organ sites [6, 26]. This study 
therefore focuses on the measurement of PfHRP-2 in the 
CSF compartment. PfHRP-2 has previously been quanti-
fied in the CSF of patients with CM, though samples in 
this previous study were obtained without information 
on malaria retinopathy status [27]. Here, the authors 
report quantitative CSF PfHRP-2 levels in a cohort of 
retinopathy-positive CM children to determine whether 
there is a relationship between CSF PfHRP-2 and clinical, 
laboratory and radiographic features of interest.

Methods
Study population
A retrospective study was performed of children with CM 
between the ages of 6 months and 10 years admitted to 
the Queen Elizabeth Central Hospital Pediatric Research 
Ward (Blantyre, Malawi) between 2009 and 2013 meet-
ing the inclusion criteria. Inclusion criteria were patients 
meeting World Health Organization (WHO) criteria 
for CM with findings of malarial retinopathy, who had 
a lumbar puncture (LP) performed on admission, with 
stored CSF and plasma samples available for testing. 
Patients undergoing traumatic taps [defined by CSF red 
blood cells (RBCs) > 10 cells/µL] were excluded from the 
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study to avoid plasma pfHRP-2 contamination of CSF. All 
children received standard of clinical care while on the 
inpatient ward, including appropriate anti-malarial, anti-
pyretic and anticonvulsant medications.

Clinico‑radiographic parameters
Demographic information was collected and human 
immunodeficiency (HIV) testing performed on admis-
sion on all patients whose guardians gave consent. Cases 
were identified as malarial retinopathy-positive based on 
at least one of the following changes in the optic fundus 
on indirect ophthalmoscopy examination, performed 
by an ophthalmologist with expertise in the diagnosis 
of malarial retinopathy: retinal haemorrhages, retinal 
whitening, and/or orange or white vessel discoloration. 
Patients with evidence of papilloedema on admission 
were excluded from the study as they did not undergo LP. 
Venous blood was drawn on admission for subsequent 
PfHRP-2 analysis, and finger-prick samples were ana-
lysed to determine parasite species and density, packed 
cell volume, blood glucose, and lactate concentrations. 
Additional laboratory parameters analysed on admission 
included white blood cell (WBC) count, platelet count, 
quantitative peripheral parasitaemia, CSF WBC count, 
and CSF protein. A sub-set of patients underwent brain 
MRI during their hospital admission. Ninety per cent of 
scans were performed within the first 24 h of hospitali-
zation. Scanning was performed with a General Electric 
Signa Ovation Excite 0.35T Magnet (GE Healthcare, 
Milwaukee, WI, USA). Details of the scanning proto-
cols used for the patients are found elsewhere [14]. Two 
radiologists (a neuroradiologist and a radiologist with 
fellowship training in neuroimaging), masked to the 
other’s readings, patient’s retinopathy status and clinical 
outcome interpreted MRI studies. Independent read-
ings were performed using the NeuroInterp program, a 
searchable database based on a scoring system of brain 
MRI interpretation [28]. Using systems that require cat-
egorical or dichotomous assessments, radiologists grade 
T2 signal or diffusion weighted imaging (DWI) changes 
in various cranial structures, including (but not limited 
to) supratentorial white and grey matter, the posterior 
fossa, corpus callosum, and basal ganglia. Overall brain 
volume was scored based on the appearance of the cer-
ebral hemispheres on axial T2 sequences. A scale from 
1 to 8 was used; 1 and 2 represented some level of atro-
phy, 3 normal volume, 4 and 5 increasingly mild levels 
of increased volume, 6 obvious but moderate levels of 
increased brain volume, 7 significantly increased vol-
ume with diffuse sulcal and cisternal effacement but no 
evidence of herniation, and 8 sulcal and cisternal efface-
ment with evidence of herniation. Volume scores of 7 and 

8 were defined as severely increased brain volume prior 
to data analysis.

The primary clinical outcome of interest was death 
during hospitalization. Co-variables of interest included 
known laboratory markers of poor outcome in severe 
malaria including age, admission lactate, WBC count, 
and severely increased brain volume score on MRI.

PfHRP‑2 determination
Venous blood was drawn and CSF obtained at the time of 
admission. CSF and plasma were both stored at − 80 °C 
until the time of analysis. Aliquots of CSF or plasma were 
thawed and analysed in batches. Plasma or CSF were 
diluted at a ratio of either 1:100 or 1:500 in phosphate-
buffered saline and tested as previously described [23].

Statistical analysis
Patient demographic and clinical characteristics were 
summarized using appropriate descriptive statistics, 
e.g., counts and percentages, means and standard devia-
tions (SDs), and medians and interquartile ranges (IQRs). 
Non-parametric analysis methods were used due to non-
Gaussian distribution of data. Characteristics of patients 
who survived to discharge and those who died dur-
ing hospitalization were compared using Fisher’s exact 
tests or Wilcoxon rank-sum tests. Wilcoxon signed-rank 
tests were used to determine the statistical differences 
between levels of PfHRP-2 in paired CSF and plasma 
samples. Spearman correlation was used to determine 
the relationship between CSF PfHRP-2 levels and MRI 
features of interest. Sensitivity, specificity and exact bino-
mial 95% confidence intervals (CIs) for each variable of 
interest were calculated. Univariable logistic regression 
analysis examined clinical and radiographic characteris-
tics with relationship to the level of PfHRP-2 in plasma, 
CSF or the CSF/plasma ratio. Multivariable logistic 
regression was performed to examine the association 
between potential predictors and the likelihood of death. 
Variables included in the multivariable logistic analy-
sis were those determined a priori based on clinical rel-
evance; age (6 month increments), abnormal WBC count 
on admission (> 10,000 WBC/µL), and abnormal admis-
sion lactate (lactate > 5 mmol/L). Odds ratios (ORs) and 
95% CIs were used to quantify the strength of these asso-
ciations. Analyses were performed using SAS version 9.3 
(SAS Institute, Inc, Cary, NC, USA). All tests were two-
sided and considered significant at p < 0.05.

Results
Patient characteristics
There were 450 CM admissions to the malaria research 
ward during the period of 2009–2013, 349 (77.6%) of 
which had evidence of malarial retinopathy. Forty-nine 
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patients were excluded due to traumatic LPs. LP was 
not performed in 80 individuals, due to papilloedema on 
ophthalmoscopy assessment or if the child was deemed 
too clinically unstable to undergo the procedure. In 126 
patients, CSF samples were not available from patients 
who had an LP performed prior to admission to the 
malaria research ward (either on the paediatric inpatient 
ward or in the emergency department). Paired plasma 
and CSF samples from non-traumatic LPs were avail-
able in 94 retinopathy-positive CM patients (Fig.  1). 
Patients included in the study and those excluded did 
not differ statistically in clinical or laboratory parameters 
(Additional file 1: Table S1). Among the 94 retinopathy-
positive patients, the median age was 44 (IQR 29–62) 
months, 53 patients (56.4%) were male, 6 (7%) were 
HIV infected, and 10 (11%) died during hospitalization 
(Table  1). Twenty-seven (29.3%) patients were hyper-
parasitaemic defined by parasite count > 250,000/µL, 55 
(60%) patients had serum lactate > 5  mmol/L, 2 (2.1%) 
patients had serum glucose < 2.5  mmol/L, and 39 (46%) 
had platelet counts < 50,000/µL. Cellular and biochemical 

450 Total CM admissions to malaria research ward 2009-2013 

Exclusion: (n=255) due to LP not 
performed, performed prior to 
admission, or were traumatic

94 retinopathy-positive CM patients with CSF available for analysis  

Exclusion: (n=101), retinopathy-
negative cases 

349 retinopathy positive CM cases

Fig. 1 Flow-chart of inclusion and exclusion of patients in the study

Table 1 Demographic and clinical characteristics

Results presented are median (IQR) unless otherwise specified
a HIV testing in 85 patients
b n = 92
c n = 87
d n = 85
e n = 93

Characteristic Retinopathy‑positive CM
(n = 94)

Age (months) 44 (29–62)

Male sex, n (%) 53 (56.4)

HIV infected, n (%)a 6 (7)

Glucose (mmol/L) 6.2 (4.6–7.3)

Haematocrit (%)b 20.5 (16.6–25.1)

White blood cell count (× 103 cells/µL)c 8.5 (6.4–14.4)

Platelet count (× 103 cells/µL)d 54 (31–80)

Lactate (mmol/L)e 7.0 (3.2–11.6)

Peripheral parasitaemia (× 103 parasites/
µL)b

83.7 (24.5–284.5)

Brain volume score > 6, n (%)b 13 (14)

In-hospital death, n (%) 10 (11)
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CSF findings were documented in 86 patients on admis-
sion with a median protein of 21 mg/mL with 14 (16%) 
patients having protein levels over 50 mg/mL and median 
CSF WBC of 0/mm with 13 (9%) having values > 5/mm3. 
Laboratory parameters stratified by outcome are shown 
in Table 2.

Radiographic features
Fifty-eight (62%) patients had brain MRIs performed. 
On univariable analysis, severely increased brain vol-
ume, defined by brain volume scores of 7 or 8, was 
associated with death (p = 0.048). Brain volume scores 

of 1–6 were significantly associated with higher CSF 
PfHRP-2 compared to scores of 7–8 (p = 0.01) (Fig.  2). 
CSF PfHRP-2 levels were significantly higher for patients 
with increased signal on diffusion weighted imaging in 
the globus pallidi (p = 0.02) and T2 signal abnormalities 
in the periventricular region (p = 0.03). These differences 
became non-significant with Bonferroni correction for 
multiple testing (Table 3).

Predictors of mortality
On univariable analysis, elevated lactate (p = 0.005) and 
CSF PfHRP-2 (p = 0.04) were significantly associated with 
death while other clinical and-laboratory parameters 
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Fig. 2 Comparison of PfHRP2 levels in a plasma, b CSF, and c the CSF/Plasma ratio in patients with severely increased brain volume scores versus 
those with mild-moderate increased brain volume. Line represents median value, box extends from first quartile to third quartile, whiskers extend to 
5th and 95th percentile, and asterisks represent data points outside this range

Table 2 Clinical and laboratory characteristics by survival

IQR, interquartile range
a p values are from Wilcoxon rank-sum tests

Parameter Survived Died p  valuea

# of patients Median (IQR) # of patients Median (IQR)

Age (months) 84 45 (28.5–61.5) 10 40 (33–66) 0.99

Glucose (mmol/L) 83 6.2 (4.6–7.3) 10 5.9 (4.5–10.1) 0.56

Haematocrit (%) 83 20.4 (16.1–24.6) 9 24.3 (17.7–27.6) 0.34

White blood cell count (× 103 cells/µL) 78 8.3 (6.4–12.9) 9 11.0 (6.8–20.9) 0.17

Platelet count (× 103 cells/µL) 76 54 (33–83) 9 31 (20–66) 0.23

Lactate (mmol/L) 82 5.9 (3.1–10.2) 10 12.6 (8.1–14.9) 0.005

Peripheral parasitaemia (× 103 parasites/µL) 83 95.9 (25.0–283.9) 9 49.6 (22.0–554.2) 0.83

CSF PfHRP-2 (ng/mL) 84 19.6 (4.0–48.0) 10 54.6 (26.3–72.3) 0.04

Plasma PfHRP-2 (ng/mL) 84 9565 (3639–17,890) 10 15,597 (3880–19,172) 0.47
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were not associated with mortality (Fig. 3, Table 2). After 
adjusting for age, abnormal WBC count on admission, 
and abnormal lactate, higher levels of CSF PfHRP-2 (OR 
9.00, 95% CI 1.44–56.42) were associated with increased 
odds of in-hospital death while plasma PfHRP-2 (OR 
2.05, 95% CI 0.45–9.35) and the CSF/plasma PfHRP-2 
ratio (OR 1.67, 95% CI 0.35–7.88) were not associated 
with mortality (Table 4).

Discussion
In this study, assessment of the levels of PfHRP-2 was 
performed in the CSF and plasma in retinopathy-posi-
tive children with paediatric CM to determine whether 
PfHRP-2 is associated with clinical, laboratory and 

radiographic features during acute illness. Peripheral 
blood parasitaemia and plasma PfHRP-2 have often been 
used as a marker for disease severity, although not asso-
ciated with mortality in this study [20–22, 24]. Meas-
urements in the peripheral blood do not reflect CNS 
pathology in isolation, as sequestration occurs in mul-
tiple organs. In contrast, CSF PfHRP2 levels may reflect 
CNS specific sequestration [26]. Previous studies have 
suggested that BBB permeability may play a critical role 
in the underlying pathophysiology of paediatric CM 
[11, 29]. Increased permeability of the BBB may allow 
for pathophysiologic and immunologic communication 
between the blood stream and brain parenchyma, and 
most commonly occurs in parallel with disruption of 
the blood CSF barrier (BCSFB) [30]. Under steady state, 

Table 3 Differences in CSF PfHRP-2 and plasma PfHRP-2 levels by finding for 58 patients with brain magnetic resonance 
imaging

Radiographic finding N (%) positive Plasma PfHRP‑2, median (IQR) CSF PfHRP‑2, median (IQR)

Positive finding Negative finding p  valuea Positive finding Negative finding p  valuea

Frontal–occipital lobe T2 
hyperintensity

6 (10) 37.9 (13.7–65.7) 24.3 (8.5–51.1) 0.72 5782 (2602–21,100) 12,906 (4820–22,569) 0.35

Periventricular T2 hyper-
intensity

25 (43) 15.2 (0.6–36.4) 31.6 (14.8–65.3) 0.03 11,000 (4258–17,510) 15,094 (5573–28,084) 0.17

Periventricular DWI 
abnormality

22 (38) 17.7 (8.8–33.3) 32.6 (8.1–64.8) 0.25 9951 (3631–19,172) 14,226 (5542–26,893) 0.27

Subcortical white matter 
T2 hyperintensity

39 (67) 24.7 (13.5–63.7) 30.1 (2.8–48.1) 0.90 11,000 (5294–21,100) 16,099 (3968–26,906) 0.80

Cortical T2 hyperin-
tensity

47 (81) 27.9 (9.9–48.2) 14.2 (3.8–96.1) 0.77 13,358 (5294–26,879) 10,242 (3595–17,533) 0.20

Cortical DWI abnor-
mality

6 (10) 5.0 (0–27.9) 27.7 (13.6–64.0) 0.06 14,754 (1678–28,084) 11,847 (5403–20,136) 0.69

Caudate T2 hyperin-
tensity

41 (71) 29.1 (13.5–64.3) 15.2 (8.2–43.0) 0.31 13,358 (5862–26,879) 8147 (3968–17,533) 0.13

Caudate DWI abnor-
mality

4 (7) 69.0 (18.5–212.0) 24.3 (8.8–48.2) 0.23 15,390 (11,047–26,981) 11,184 (4274–22,110) 0.51

Globus pallidi T2 hyper-
intensity

43 (74) 30.1 (13.5–65.3) 14.8 (6.2–35.1) 0.11 15,094 (5863–26,906) 5512 (3968–17,533 0.49

Globus pallidi DWI 
abnormality

13 (22) 65.3 (26.3–92.7) 19.2 (8.2–46.3) 0.02 15,094 (11,000–36,540) 10,470 (4258–21,100) 0.09

Putamen T2 hyperin-
tensity

42 (72) 29.6 (13.5–64.3) 15.0 (5.5–39.0) 0.19 14,783 (5662–26,906) 6830 (2830–16,816) 0.04

Putamen DWI abnor-
mality

7 (12) 63.7 (13.7–101.6) 23.8 (8.2–48.1) 0.11 13,358 (10,242–36,540) 11,128 (4258–22,110) 0.28

Thalamus T2 hyperin-
tensity

31 (53) 26.3 (8.8–48.2) 19.2 (8.2–65.7) 0.99 13,358 (3902–26,906) 11,000 (5512–17,732) 0.61

Corpus callosum T2 
hyperintensity

20 (34) 22.4 (13.7–44.6) 29.0 (2.8–64.3) 0.85 13,852 (5434–21,605) 11,847 (4258–26,906) 0.921

Corpus callosum DWI 
abnormality

19 (33) 24.7 (13.7–46.3) 27.9 (2.8–64.3) 0.86 17,462 (5573–23,028) 11,240 (3968–18,048) 0.49

Posterior fossa T2 hyper-
intensity

34 (59) 30.3 (13.5–64.3) 17.2 (4.5–47.9) 0.29 17,486 (5992–28,084) 8442 (4113–16,760) 0.02

Posterior fossa DWI 
abnormality

4 (7) 50.7 (4.4–207.6) 25.5 (9.9–48.2) 0.74 7526 (852–14,226) 11,847 (5294–23,028) 0.14
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horseradish peroxidase, a protein tracer with a similar 
molecular weight (40 kDa) to PfHRP-2 (37 kDa) does not 
cross the intact choroidal epithelium [31, 32]. The pres-
ence of any PfHRP-2 in the CSF is therefore indicative 
that the BCSFB has been compromised. In survivors, it 
is likely that the BCSFB is less leaky and therefore smaller 
amounts of PfHRP-2 are able to diffuse across the cho-
roid plexus. As the BCSFB barrier becomes more perme-
able, PfHRP-2 is able to diffuse through the interepithelial 
tight junctions more easily and, therefore, it is hypoth-
esized that elevated levels of CSF PfHRP-2 are seen in 

more severe cases of CM. Although these findings show 
the ratio of CSF/plasma PfHRP-2 was not associated with 
survival, this finding may be related to the limited ability 
of PfHRP-2 to enter the CSF space when patients develop 
severely increased intracranial pressure. Likewise, the 
decreased levels of CSF PfHRP-2 in patients with severely 
increased brain volume may reflect the hydrodynamics of 
decreased flow across the compromised BCSFB in these 
instances.

The biologic significance of increased PfHRP-2 in the 
CSF remains unclear. Many factors likely contribute to 
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Fig. 3 Comparison of PfHRP2 levels in a plasma, b CSF, and c the CSF/plasma ratio in patients who survived compared to those who died. Line 
represents median value, box extends from first quartile to third quartile, whiskers extend to 5th and 95th percentile, and asterisks represent data 
points outside this range

Table 4 Multivariable logistic regression analysis for  plasma PfHRP-2, CSF PfHRP-2, and  CSF/plasma PfHRP-2 ratio 
and mortality

CI confidence interval, WBC white blood count
a White blood cell count was coded abnormal if ≥ 10,000 cells/μL; lactate was coded abnormal if ≥ 5 mmol/L; PfHRP-2 measures were coded high if in the upper 
quartile (CSF > 65.309 ng/mL, ratio > 0.00945, plasma > 10,242 ng/mL) and low if less than the upper quartile. Similar results were obtained if these measures were 
continuous

Variablea Plasma PfHRP‑2 model CSF PfHRP‑2 model CSF/plasma PfHRP‑2 model

Odds ratio (95% CI) p value Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Age, 6 month increase 1.08 (0.92–1.26) 0.33 1.04 (0.88–1.24) 0.63 1.05 (0.90–1.23) 0.51

Abnormal WBC vs normal 3.29 (0.76–14.17) 0.11 6.61 (1.05–41.73) 0.04 2.94 (0.70–12.26) 0.14

Abnormal lactate vs normal 11.74 (0.76–181.61) 0.08 22.47 (1.07–470.35) 0.04 12.66 (0.82–194.18) 0.07

High plasma PfHRP-2 vs low 2.05 (0.45–9.35) 0.35 – – –

High CSF PfHRP-2 vs low – – 9.00 (1.44–56.42) 0.02 –

High CSF/plasma PfHRP-2 vs low – – – – 1.67 (0.35–7.88) 0.52
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CM pathogenesis; the mechanisms that lead to death are 
incompletely understood. PfHRP-2, which is unique to 
P. falciparum, the most pathogenic of the human Plas-
modium species, has proposed functions which include 
binding zinc and haem, mediating formation of haemo-
zoin as well as immunomodulatory effects and per-
turbations of the coagulation cascade [33–35]. Recent 
studies have shown that the molecule has a direct effect 
on endothelial barrier function, with parasite strains 
lacking in the production of PfHRP-2 unable to lead to 
barrier destruction in the way that PfHRP-2 positive 
strains do. The barrier disruption is able to be recapitu-
lated with either native or recombinant PfHRP-2 protein 
[25]. Further studies should be performed to examine the 
role of PfHRP-2 in vivo and its mechanisms for entry into 
the CSF space.

In this study, comparison of various clinical and radio-
graphic features in relation to plasma and CSF PfHRP-2 
and mortality was also performed. A previous study in 
Nigerian children with CM found that age under 3 years, 
abnormal breathing pattern, hypoglycaemia and leu-
kocytosis were predictive of mortality [36]. In a large, 
multicentre, randomized, control trial, acidosis, cerebral 
involvement, renal impairment, and chronic illness were 
key independent predictors for a poor outcome in Afri-
can children with severe malaria [37]. In this cohort, 
admission lactate was found to be predictive of mortal-
ity although no other clinical or laboratory parameters 
were found to be associated with mortality. Although this 
could be attributable to this study’s relatively small study 
size, it could also be due to inclusion of only retinopathy 
positive patients. This would serve to ‘homogenize’ the 
patients, eliminating retinopathy-negative patients with 
coma aetiology other than severe malaria. This misclas-
sification of retinopathy-negative patients would serve to 
accentuate clinical or laboratory variables that are unique 
to malarial versus non-malarial causes of death. Elevated 
CSF PfHRP-2 was associated with lower brain volume 
score, which is surprising as a prior study in retinopathy-
positive CM cases in Malawi showed that higher brain 
volume score is associated with mortality [17]. The lack 
of relationship of CSF PfHRP2 with higher brain vol-
ume scores is likely related to the significant number of 
patients excluded from this study because they had evi-
dence of papilloedema, and did not undergo LP. There 
were 16 additional children with oedema scores of 7 or 
8 evaluated in the prior study who had evidence of pap-
illoedema, and did not undergo LP. There were several 
radiologic findings that were associated with higher CSF 
PfHRP-2 findings, although the association became non-
significant when adjusting for the number of statistical 

evaluations performed. CM presents with a widely het-
erogeneous radiological pattern [14]. Unlike other neu-
rologic syndromes there is no single radiographic finding 
that will define CM. It is unclear whether this diverse pat-
tern of findings is related to timing of the MRI scan rela-
tive to natural history of the disease, or whether there are 
distinct pathophysiologic mechanisms within the single 
disease classification. Given this variability in MRI find-
ings, as well as the highly variable levels of CSF PfHRP-2 
it is not surprising that correlations have not reached sta-
tistical significance; further studies with greater sample 
size may help to clarify the relationship between damage 
to particular brain regions (as determined by MRI) and 
egress of PfHRP-2 to the CSF space.

There are several strengths of the study. PfHRP-2 was 
tested in a large cohort of paediatric CM patients, with 
extensive clinical, laboratory and radiographic char-
acterization. Examination of retinopathy-positive CM 
cases, which represent a cohort of true CM cases, with 
eye examinations documented by trained ophthal-
mologists was performed. Paired plasma and CSF sam-
ples allowed for direct comparisons of plasma and CSF 
pfHRP-2. Additionally, detailed clinical, laboratory and 
radiographic interpretation was available in a large group 
of paediatric patients, which has not been previously 
described with relation to CSF or plasma biomarkers.

There were several limitations to the study. The sam-
ple excluded subjects with papilloedema, as they did 
not undergo LP. However, even after excluding these 
cases, a relationship between CSF PfHRP-2 and outcome 
was identified. Also, many cases were excluded because 
children had an LP prior to admission to the malaria 
research ward, resulting in the CSF sample being unavail-
able for PfHRP-2 analysis. A selected group who had MRI 
scans was examined and results related to neuroimag-
ing findings may be influenced by the selected patients, 
who were able to undergo neuroimaging. There was no 
evaluation of PfHRP-2 with respect to longitudinal neu-
rological outcome as these data were not available in the 
patient cohort, though this would be valuable to investi-
gate as children with CM often have neurological seque-
lae. There was no evaluation of plasma and CSF PfHRP-2 
in parasitaemic children with no neurological symptoms, 
as doing an LP in that setting would be unethical. Based 
on previous observations though, it may be important to 
quantify CSF PfHRP-2 in those children with less severe 
malaria infection and those with severe, non-cerebral 
malaria, including those who are comatose though do 
not have findings of malarial retinopathy. Additionally, 
the focus here was on CSF PfHRP-2 but examining other 
markers of BCSFB and BBB function would be insightful.
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Conclusion
The study results demonstrate that there is a significant 
relationship between CSF PfHRP-2 and mortality in pae-
diatric cases of retinopathy-positive CM. Previous studies 
have found that plasma PfHRP-2 is associated with mor-
tality in patients with severe malaria [21, 24]. This study 
differs in that this sample was defined by clinical evidence 
of retinal and cerebral neurovascular pathology, rather 
than the broader standard clinical case definition of CM, 
which may include patients in coma with alternate aeti-
ologies from CM in high burden malaria settings. Within 
this cohort of children with CM, plasma PfHRP-2 did not 
show an association with mortality, probably because 
a very select group of patients with brain involvement 
was examined, all of which had markedly raised plasma 
PfHRP-2 levels. The association of CSF levels in the 
absence of a correlation with plasma PfHRP-2 suggests 
that blood–CSF dynamics may be altered in CM and 
may play an important role in CM pathobiology. Fur-
ther studies are needed to define the role of PfHRP-2 in 
CM pathogenesis, and to further elucidate the degree of 
BBB and BCSFB disruption in CM. Additionally, given 
the varied findings on brain MRI in CM, further studies 
are needed to establish whether there is a relationship 
between structural abnormalities seen in CM and disease 
biomarkers.
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