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Abstract

Many aspects of our physical environment are hidden. For example, it is hard to estimate
how heavy an object is from visual observation alone. In this paper we examine how people
actively “experiment” within the physical world to discover such latent properties. In the
first part of the paper, we develop a novel framework for the quantitative analysis of the
information produced by physical interactions. We then describe two experiments that
present participants with moving objects in “microworlds” that operate according to
continuous spatiotemporal dynamics similar to everyday physics (i.e., forces of gravity,
friction, etc...). Participants were asked to interact with objects in the microworlds in order
to identify their masses, or the forces of attraction/repulsion that governed their
movement. Using our modeling framework, we find that learners who freely interacted with
the physical system selectively produced evidence that revealed the physical property
consistent with their inquiry goal. As a result, their inferences were more accurate than for
passive observers and, in some contexts, for yoked participants who watched video replays
of an active learner’s interactions. We characterize active learners’ actions into a range of
micro-experiment strategies and discuss how these might be learned or generalized from
past experience. The technical contribution of this work is the development of a novel
analytic framework and methodology for the study of interactively learning about the
physical world. Its empirical contribution is the demonstration of sophisticated goal
directed human active learning in a naturalistic context.

Keywords: active learning; mental simulation; experimental design; physical
understanding
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Intuitive Experimentation in the Physical World

What makes physics physics is that experiment is intimately connected to
theory. It’s one whole.

— LENE HAU
Much of what we believe about the world, we infer from passive observation and

inductive reasoning. For example, if we see that the ground is wet, we might infer that it
has been raining. However, we also continuously shape our experience by actively
interacting with the world. To determine if a container holds water or sand, we might
shake it and observe the resulting forces and sounds. From a causal learning perspective,
our actions can be seen as interventions (Pearl, 2000) that help reveal how the world
works. As such, our everyday actions can share some of the characteristics of scientific
experiments: comparing the outcomes of different manipulations while controlling for
confounding factors. For example, we might lift two suitcases to judge which is heavier,
perhaps switching sides to control for our hand-dominance; drop a rock, or shout, down a
well to judge how deep it is; or bounce a squash ball to estimate if it is warm enough for
play. A key aspect of such behaviors is that they combine an intuitive understanding of
how the physical world works, with actions that exaggerate, isolate, or bring into sharper
relief a particular physical property of interest. Sometimes we perform these everyday
experiments ourselves, while at other times we learn from observing others performing
similar actions. Often, success in these endeavors is contingent on acting (or watching
someone act) in appropriately “experimental” ways.

In this paper, we investigate how people learn about latent physical properties when
interacting with virtual “microworlds”. The microworlds are simulated environments on a
computer screen. In these worlds, objects’ movements are determined by a physics engine
that approximates real-world physical laws (Ullman, Spelke, Battaglia, & Tenenbaum,
2017). In our experiments, we allow participants to freely grab and move the objects in the
microworld. Our classification and quantification of their action strategies gives new insight
into how people decide to act in the physical work to reveal information. Although it seems
intuitively obvious that people engage in systematic behaviors during learning, it remains
unclear how they decide which strategies to invoke, how complex they are, and how
informative they are compared to other things they could have done. We presume people
are effective because this matches out intuition, but it is an important scientific question to
formally quantify and describe these abilities.

While active inference and physical exploration can be studied in naturalistic settings
(Hoch, Rachwani, & Adolph, in revision; Kretch & Adolph, 2017; Piaget, 1936; Stahl &
Feigenson, 2015), it is difficult to accurately measure and control all aspects of natural
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environments, and to measure participants’ actions at a fine grained level. The current
studies are designed to leverage some of the unique advantages of observing learning
behavior in a virtual environment while also exploring a setting that inherits some of the
complexity and dynamics that make the real world a challenging learning domain. Our
virtual environments allow us to (1) precisely record and reconstruct every aspect of a
learners’ interactions and everything else that occurred during a trial (Rieber, 1996); and
(2) develop formal models to quantify and objectively evaluate the information content of
people’s actions. Using this approach we are able to analyze in detail the types of actions
people decide to use and how much information they generate for a given goal, helping to
better understand the nature of our intuitive physical interactions.

The paper is structured as follows. We first lay out a normative framework for
inference about latent physical properties of dynamically interacting objects, and show how
we can use this framework to assess the informativeness of actions. We then describe two
experiments that compare the inferential accuracy of active learners (who exert control
over the objects in the microworld) with passive learners (who simply watch a movie of the
microworld without interacting) and yoked learners (who watch videos of a previous active
learner’s sessions). In addition, we categorize active participants’ experimental strategies
with the help of our model-based information measures.

To foreshadow, across both experiments we find that active learners use sophisticated
control to create situations that are highly informative about target properties (the
properties they are are incentivised to identify) while minimizing confounding information
about other non-target properties of the worlds. We conclude by discussing the scope of
our findings more broadly. Specifically, we discuss how physical active learning strategies
might be discovered, reinforced across instances, and generalized across contexts; and
discuss the important connections between spatiotemporally extended active learning and
adaptive control (Broadbent, FitzGerald, & Broadbent, 1986; Guez, 2015).

Active learning in discrete versus continuous and dynamic environments

In studies of “active learning”, people shape their learning experience through their
own actions (Gureckis & Markant, 2012). To date, active learning has primarily been
studied in situations in which the learner’s goal is to differentiate between a relatively small
number of discrete hypotheses, such as the Wason card selection task (Oaksford & Chater,
1994; Sperber, Cara, & Girotto, 1995; Wason, 1968), category rule learning (Gureckis &
Markant, 2009) and games like “Guess Who” (Nelson, Divjak, Gudmundsdottir,
Martignon, & Meder, 2014), “Mastermind” (Berghman, Goossens, & Leus, 2009; Best,
1990; Goodrich, 2009; Hofer & Nelson, 2016) or “Battleships”(Gureckis & Markant, 2009;
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Markant & Gureckis, 2014b, 2012). In these scenarios, participants pick from a fixed set of
possible actions or questions in service of a learning goal, usually with each action-outcome
pair contributing independently to a set of evidence they can use to make judgments. A
subset of this research, on “active causal learning”, studies how people infer the underlying
causal structure of simple dynamic systems (Bramley, Dayan, Griffiths, & Lagnado, 2017;
Bramley, Lagnado, & Speekenbrink, 2015; Coenen, Bramley, Ruggeri, & Gureckis, 2017;
Coenen, Rehder, & Gureckis, 2015; Lagnado & Sloman, 2002, 2004, 2006; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003). In a typical setting, participants perform
interventions that manipulate variables within a causal system, and subsequently observe
the consequences of their actions on the other variables (Bramley, Dayan, et al., 2017). For
example, Coenen et al. (2015) had learners test computer chips to identify which of several
possible wiring diagrams correctly described them. They could test them by activating one
of the three components and observing whether either or both of the other two components
activated as a result.

Evidence for the utility of active learning in these studies is mixed. Many studies find
active learners produce more evidence than would be available if they did nothing, or
behaved randomly. But other studies have demonstrated cases where people take
stereotyped, or heuristic actions (Bramley et al., 2015; Coenen et al., 2015), that can be
systematically uninformative (Wason, 1968) or fail to reveal particular kinds of rules
(Markant & Gureckis, 2014a) or structures (Bramley, Dayan, et al., 2017). Active learners
who consider the wrong hypotheses might produce less relevant evidence than would occur
naturally (MacKay, 1992). For example, Markant and Gureckis (2014a) had people learn
about both one and two-dimensional category rules. When learning actively about a two
dimensional category rule, many participants wrongly expected the rule to relate to a
single dimension, and so varied their tests only on that dimension. This resulted in their
gathering less diagnostic information and performing worse at test than those who were
exposed to a random selection of tests.

Yoking participants to the actions of another provides an additional window on active
learning, separating the information that is in principle available, from the process of
coming up with tests and updating beliefs. Active learners often outperform their yoked
counterparts. One explanation for this result is the better match between the hypotheses
active learners have in mind at any given time and the evidence they have to work with
(Markant & Gureckis, 2014a). However, choosing how to act can be cognitively taxing,
potentially overwhelming the advantages of active selection (Huttenlocher, 1962).

The idealized settings that past active learning research have focused on remove
many of the inherent complexities of the real world. The physical world is dynamic,
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continuously changing, and the complex interactions between physical objects can mean
their latent properties are rarely revealed unambiguously. Causal interventions in the real
world extend across time (Bramley, Mayrhofer, Gerstenberg, & Lagnado, 2017) and space
(cf. Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017) in complex ways, and are grounded
in and constrained by physical laws. For instance, the attraction between magnetic objects
depends inversely on their proximity, a dropped rock’s ability reveal the depth of a well
depends on its falling cleanly and making an audible splash, and a medicine’s effects on
health are typically gradual, time lagged, and masked by other ongoing health factors.

As such, real intervention choices are much more unconstrained than those studied
thus far in psychology. That is, the learner must not only choose where (i.e. on which
variable) to intervene, but also, how and when to intervene — i.e. planning how to arrange
and move objects to explore the nature of a magnetic field, or how to launch a rock so it
will fall down a well without hitting the walls, or how much medicine to take and when. It
becomes an interesting topic for psychological science to understand how people solve this
action selection problem. One hypothesis we explore here is that the constraints come from
the information momentarily generated by the interactions with the system. Another
major challenge is having the right expectations about what should happen under different
assumptions about the unobservable properties of the world. How would the learner expect
non-magnetic objects to behave, or those with different magnetic properties? How long
should the duration be before the splash for a particular depth of well? How unwell did you
expect to feel, had you not taken a medicine? Given the mixed empirical results about
human active learning abilities in the simple experimental contexts discussed above, it is an
open and unresolved question to what extent people can act informatively in radically
more complex and naturalistic learning scenarios. Furthermore, given the taxing nature of
naturalistic control and planning (Osman, 2011), another open question is whether active
learners will over or under perform yoked observers who can focus on the evidence without
having to plan or carry out actions themselves.

In the current paper, we explore active learning in a continuously dynamic
environment which reflects the underlying laws of physics that govern the motion and
interactions of objects in the world. From a causal learning perspective, we can think of
physics as a set of rich constraints on the form of a causal model — where relationships
between entities must have functional forms that respect the equations of motion,
conservation of energy and so on. Specifically, we will explore a two dimensional setting, in
which an environment contains a number of colored circular pucks on a surface surrounded
by walls, similar to a billiard or air hockey table (cf. Figure 1). While restricting to two
dimensions makes these scenarios simpler than a three dimensional world simulation, such
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“billiard worlds” (Fragkiadaki, Agrawal, Levine, & Malik, 2015) have proven a useful
setting for exploring intuitive judgments about physics in purely observational settings
(Fragkiadaki et al., 2015; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2012; Smith, de
Peres, Vul, & Tenenbaum, 2017; Smith & Vul, 2014; Ullman, Stuhlmüller, Goodman, &
Tenenbaum, 2014). In general, a two dimensional idealization of physics can readily be
extended to the third because the equations of motion are solved separately for each
dimension (Bottema & Roth, 1979).

While our setting removes some of the complexities of observing and interacting in
the real world, our virtual microworlds are substantially richer than the domains in which
human active learning has been studied quantitatively in the past. Thus, the present
studies take a step toward more ecologically realistic learning settings. In the following
section, we review past work on intuitive understanding of physics and some recent
research that helps motivate the current studies.

Intuitive physics

Early research into intuitive physics highlighted ways in which people’s
understanding of some aspects of physics, such as ballistic and pendulum motion, is
systematically biased (e.g. McCloskey, 1983). For example, when asked to draw the path of
an object falling from a moving plane, many people will erroneously draw a line traveling
straight downward rather than a parabola that correctly combines the initial forward
motion with gravitational acceleration. This work suggests that physical understanding is
often heuristic and context specific. However, more recent research has argued that some of
these biases may be accounted for as resulting from optimal statistical inference assuming
(1) our physical understanding is approximately Newtonian, and (2) we are often
fundamentally uncertain about some important aspects of the physical scene (e.g., the
masses of the objects involved in a collision, Sanborn, Mansinghka, & Griffiths, 2013).1 For
example, Battaglia, Hamrick, and Tenenbaum (2013) have argued that people’s
understanding of physics is best understood in analogy to a physics engine — a program
that simulates physics to produce realistic scenes in movies and computer games (see also
Ullman et al., 2017). Assuming that people have an approximate physics simulator in their
mind helps explain how they can make predictions about what will happen in the future,
reason about what happened in the past (Smith & Vul, 2014), or simulate what would have
happened if aspects of the situation had been different (Chater & Oaksford, 2013;

1This perspective does a better job of accounting for biases relating to ballistic motion than angular
momentum such as the tendency to predict a curved path for a ball exiting a curved tube (Kaiser, McCloskey,
& Proffitt, 1986).
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Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015; Gerstenberg, Peterson, Goodman,
Lagnado, & Tenenbaum, 2017). For our purposes, the statistical inference approach
provides a computational framework for understanding how inference about physical
properties can proceed from observation of physical dynamics.

Learning about Latent Physical Properties

The relevant evidence for learning about physics is not the state of the world at a
particular point in time, but rather how this state changes and evolves across time.
Physical objects are pulled by forces, collide, and slide past one another in ways that
depend on the laws of motion, the objects’ latent properties such as mass and friction, as
well as their susceptibility to forces. Given an understanding of the physical laws, it is
possible to infer the latent properties of the objects involved in a scene from observation of
sufficient dynamics. However, in order for learning to succeed, the right kind of dynamics
have to be experienced. For instance, intuitively, we learn much more about the contents of
a box that falls down a flight of stairs, compared to a box that sits at the back of our
moving car.

Ullman et al. (2014); Ullman, Stuhlmüller, Goodman, and Tenenbaum (to appear)
explored human inference about latent physical parameters from observing physical
dynamics in 2D “microworlds” similar to the one shown in Figure 1a. In their setup, the
worlds were bounded by solid walls and contained a number of colored pucks with differing
masses, surfaces with differing levels of friction, as well as local (magnet-like) forces between
pucks and a global (gravity-like) force pulling all the pucks in a particular direction. The
properties of the worlds (the number and nature of the pucks, friction patches and forces)
were generated from an underlying probabilistic program capable of generating a very large
number of possible worlds. Participants watched and then replayed a five second clip from
each of the generated worlds. In each clip, the pucks bounced around, attracting and
repelling each other, being slowed down by the friction, and being pulled by the global
force. Participants then answered a series of questions about each world’s properties.

Ullman et al.’s (to appear) participants were able to detect different levels of mass
and friction on average, but individual judgments were noisy. They identified the correct
global force around 70% of the time and were much better at detecting local attraction
(82%) than repulsion (53%). Ullman et al. found that this divergence was matched by an
asymmetry in the evidence: pucks that repelled one another would rarely spend long
enough close together to exhibit strong repulsion, while attracting pucks would rapidly
approach one another and stick together offering better evidence of the latent force. Our
experiments extend Ullman et al.’s (to appear) findings to a task in which participants
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B

A

B

A

Figure 1 . Schematic display of “microworlds” used in experiments. a) Four pucks are
moving around colliding and affecting one another with local (magnet-like) forces. b) An
active learner drags the puck labeled “B” (by left-hold-clicking on it and moving the
computer mouse).

interact with the worlds to learn about the latent properties of the objects.

The Present Studies: Active Learning of Latent Physical Properties

Our task is adapted from Ullman et al. (2014, to appear). However, rather than
preselecting scenes to show participants passively, we generated the scenarios dynamically
during our experiments. This allowed us to include active conditions in which participants
exerted control over the scenes that alter how they play out. We allowed active
participants to grab objects by clicking on them and then drag them around using the
mouse (see Figure 1b). We additionally included a passive condition in which participants
merely observed the world (similar to Ullman et al.), and a yoked condition in which
participants passively observed the actions of an active participant (described in more
detail below). In our experiments, we chose to focus on how people learn about two target
properties: local pair-wise forces, and object masses. We chose these properties because
they were challenging for passive learners in Ullman et al’s (2014; to appear) study, and
because we hypothesized that inference about them might benefit from curated control.

Our primary goal is to establish whether people’s actions are generally effective at
reducing uncertainty about the specific parameters of the scene they are asked about. We
are also interested in categorizing and making sense of the kinds of actions participants
perform. In order to explore active learning quantitatively in this setting, we must first
develop a method for inferring the latent properties of physical worlds based on observing
and intervening with the objects in the world.
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An Ideal-Observer approach to quantify inference from physical interactions

Like Ullman et al., we use an Ideal Observer (IO) approach to model inference in our
task. The learner’s goal is to infer the true latent properties of the objects. Essentially, our
model works by predicting how the scene would unfold given different assumptions about
these properties and comparing these predictions against observations. To the extent that
the scene would play out differently depending on the value of some property, then
observing what actually happens provides evidence about that property. For example,
imagine determining what unknown substance is in an opaque box container (cf. Siegel,
Magid, Tenenbaum, & Schulz, 2014). Simply lifting the box slowly might not reveal much
about the contents (and thus be uninformative). Instead, shaking the box or tilting it may
result in kickback from the liquid or sloshing sounds which help better narrow the possible
materials. On the other hand, lifting the box gives good information about the weight or
mass. These examples highlight how our everyday interventions with the physical world
can vary in informativeness for our particular goals, such as determining either weight or
the material content within the box. In the current context, we would expect an object to
react differently to another object passing close by depending on whether they attract or
repel one another and expect lighter objects to be moved more easily by attraction than
heavier ones (cf. Figure 2).

The IO analysis allows us to assess how much evidence about the properties of
interest is produced by the dynamics that a learner observes or brings about themselves. In
particular, we can assess what participants’ interventions reveal about different properties,
and contrast this against the evidence that occurs “naturally” from passively observing
what happens. While we focus on the tasks of identifying the masses of different objects, as
well as their local force relationships (i.e., whether pairs of objects attract or repel each
other), in principle any of the latent physical parameters can be inferred in this way,
potentially even the laws of physics themselves (cf. Goodman, Ullman, & Tenenbaum,
2011; Ullman, Goodman, & Tenenbaum, 2012).

Inference. Given a video sequence of objects moving in the microworld (i.e., the
data d), the IO model uses simulation to infer the likelihood of possible world-settings
w ∈ W that can be used to update a prior belief about the world settings P (W ) to a
posterior P (W |d) (where W is a random variable assigning a probability to all w ∈ W). In
our tasks W , contains a world for all combinations of values of properties that are varied
between different trials. These are the masses of the (labeled) target objects, and local
forces relating the four objects (Figure 1). Our model assumes that people know how to
apply the correct theory of physical dynamics to simulate how the world would unfold but
lack knowledge of some of the parameters needed to fully specify the simulation. We will
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also assume knowledge of a number of parameters that are constant across all the worlds
we consider (friction, elasticity, air resistance).2 These modeling choices render the
inference problem tractable and are reasonable given that (1) our simulator produces
realistic dynamics, (2) participants learn about the invariant properties during the practice
trials, and (3) we include a noise parameter that captures any additional sources of
imprecision in both observations and simulations.

The basic intuition is that world dynamics (i.e., sequences of video frames) that are
similar to the simulated predictions under a particular world setting w suggest that the
true world is w. Divergence between a candidate world setting’s predictions and reality can
be measured throughout periods of observation and interaction. These divergences can be
converted into likelihood scores assigning a probability of observing the actual object
trajectories d given the potential world-setting w ∈ W , the learner’s interventions c, and
some Gaussian perceptual noise. Ullman et al. (to appear) based their inference model on
divergence in absolute x, y positions of the objects. However, Vul, Frank, Tenenbaum, and
Alvarez (2009) found evidence that human motion inferences reflect more sensitivity to
motion information than location information, that is divergence in magnitudes r and
directions θ of the objects’ motion vectors. Thus, in this paper, we follow Vul et al. (2009)
calculating the likelihood of each object’s trajectory as

p(d|w, β; c) =
T∏
t=1

e−
β
2 (st−dt)>Σ−1(st−dt), (1)

where

Σ =
σ2

r 0
0 σ2

θ

 . (2)

dt is the object’s actual [r, θ] motion at time t, while st its simulated motion if w is true.3,4

To ensure that both the divergence in magnitude and direction of velocity affect the
likelihoods to a comparable degree, we set σr and σθ to the empirical standard deviations
of the divergences between a random sample of the simulations and the observations on
these dimensions. Finally, β is a convenience scaling parameter capturing, roughly, a
learner’s presumed imprecision estimating the objects’ actual and simulated magnitudes
and directions. The key property of Equation 1 is that smaller divergences between a

2In Box2d, friction governs how objects slide past one another when in contact and air resistance governs
how they lose energy while moving without touching anything.

3For divergences in angle θ, we always assume the shortest route around the unit circle, i.e. divergences
are always > −π and < π.

4In the Appendix, we examine a range of alternative distance measures based on combinations of both
location and motion information.
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simulation and observation lead to higher likelihoods. Figure 2a provides a visualization of
this procedure.

1

2

3

456

7
8

9

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−0.6 −0.3 0.0 0.3 0.6
∆r

∆θ

Attract

None

Repel

Attract

None

Repel

Attract

None

Repel

i. Same mass iii. A heavierii. B heavier

i. Attract iii. Repelii. No force

a) Calculating likelihoods from dynamics b) Adding control

c) Predictive mass divergence

d) Predictive force divergence

Attract, A heavier

Attract, same mass /
B heavier

No force

Repel, B heavier

Repel, A heavier

A heavier

Same mass
/ B heavier

Same mass /
 B heavier

A heavier

Force

Mass

−2 −1 0 1 2

−3

0

3

−3

0

3

∆r

∆θ

panel i. ii. iii.

e) Aggregated divergence

Figure 2 . a) Calculating likelihoods from observed dynamics. A and B attract one another
and have the same mass. Observed paths originate at “X” and follow thick dotted lines.
Simulated paths for different masses and local forces follow thin dotted lines. The
simulation with the true world settings lies on top of the observed path (attract, same
mass). Likelihoods are based on the divergence between simulated and observed
trajectories (blue arrows). The Likelihoods for the simulated positions of A under w ∈ 1 : 9
(numerical labels) are shown in the plot on the right. b) Example involving active control.
A is dragged to the right by the active learner moving close by B (“+” symbol indicates
final position of cursor). Here, A and B attract each other and A is heavier. Simulations in
which A and B repel each other predict qualitatively different movement for ball B. c)
PDmass contrasts simulations on mass property, averaging over other properties. Here we
aggregate over force: left, middle and right in the example from b). d) Shows the same
contrast for PDforce. e) Visualizes the divergences from c) and d) in terms of in terms of r
and θ. PDmass and PDforce are the grand means of the black divergence lines in the top and
bottom panels respectively.

There are, however, two complicating details. First, the physical dynamics involving
multiple bodies, local forces and collisions are notoriously chaotic (e.g. Bruns, 1887). This
means that simulations are likely to diverge dramatically from observations over time
unless they have exactly the correct parameters and starting conditions (i.e., only the
exactly right simulation will resemble the world over a long time interval). A consequence
of this is that long simulations without correction provide poor signal as to whether one
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setting is closer to the truth than another. We address this issue by focusing on
instantaneous divergence. Concretely, we continually return simulated objects to their
observed trajectories and allow them to start diverging anew. Repeating this throughout a
learning period and integrating across time provides a continuous measure of the likelihood
of world dynamics under any specific world settings.5

The second complicating detail concerns the role that active interventions have on
the physics within the microworld. Our approach incorporates active learning into this
scheme in analogy to the causal Bayesian network treatment of interventions as “graph
surgery” (Pearl, 2000; Spirtes, Glymour, & Scheines, 1993). The idea is that interventions
are actions that affect the dynamics going forward, but that are not themselves caused by
the preceding dynamics. For example, in Figure 1b the participants’ mouse movement
affects “B”s trajectory directly, which has resulting effects on the other objects. Thus,
interventions can be thought of as “acts of God”, or “little miracles” (Lewis, 1973) that
have no causal explanation within the world.6 This means we can condition on the
learners’ actions when interpreting the evidence produced by interactions with the world
(see Figure 2b).

The likelihood of a world given dynamics d1:T and interventions c1:T is assumed to be
the product of the likelihoods of all the divergences measured at every “instant” t ∈ T
throughout a learning period. By computing these likelihood scores for all possible
world-settings and combining with a prior P (W ), we can compute a posterior over worlds
P (W |d, β; c) and associated posterior uncertainty H(W |d, β; c) using standard Shannon
entropy (Shannon, 1951):

H(W |d, β; c) = −
∑
w∈W

P (w|d, β; c) log2 P (w|d, β; c). (3)

H(W |d, β; c) provides a scalar measure of the degree of remaining uncertainty about the
true world’s latent properties at the end of each trial. This measure depends on what
interactions occur during a clip. For example, the trajectories of two objects are only
(strongly) affected by local forces if the distance between the objects is small at some

5Note that in our simulations we hold fixed the size of the time windows over which the instantaneous
divergences are measured at 10 frames and do not fit the noise parameter, always assuming β = 1

50 . Thus,
the resulting measures should be thought of as a guide to the relative rather than absolute evidence available
in a trial. β =∞ corresponds to perfect knowledge of the objects’ locations and velocities, which, combined
with perfect knowledge of the physics engine, rules out all but the true world-settings within a few frames.
β = 0 would assign equal likelihoods for all worlds regardless of the evidence.

6Of course, the learner’s actions are likely to be influenced by the dynamics observed prior to acting
together with the learner’s goals and beliefs. Extended interventions in dynamic systems will also likely
involve motor feedback and corrections. We do not model these complexities but will return to them in the
General Discussion.
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point. And objects need to collide with one another (or be dragged by the mouse) for their
trajectories to be dependent on their masses.

We express the cumulative value of a period of observation and intervention as the
ideal observer’s reduction in uncertainty

∆ H(W |d, β; c) = H(W )− H(W |d, β; c). (4)

Within this framework, we can calculate posteriors over particular parameters of interest
(such as the local force between a pair of objects) by marginalizing over the remaining
parameters. We will use this procedure to assess what evidence participants generated
through their actions, as well how much evidence was present in the passive dynamics of a
clip.

Assessing the informativeness of actions: Predictive divergence. We use
the IO model not only to evaluate the information available in any display over an
extended learning period, but also to determine the quality of specific actions in terms of
how much information they convey about the relevant latent properties. This is related to
the box example above, where different actions reveal more or less information about the
contents of a box.

We created a novel measure called Predictive Divergence (PD). PD captures the
extent to which what happens at a given moment in the scene depends on a particular
property. We calculate PD for a given property by simulating the world forward, then
taking the divergence between simulations that vary on that property and what actually
happened (e.g., whether A attracts, has no effect on, or repels B) while also averaging over
all possible settings of the other properties. The result is a measure of how strongly a
property of interest is revealed at any point throughout a trial (see the Appendix for
details).

As a concrete example, consider Figure 2b–d. All these subplots show the same
action: object A is dragged past object B. Figure 2c visualizes the extent to which the
simulated trajectories depend on the objects’ mass (PDmass). This shows that, regardless of
the force relation, how quickly A is dragged to the right depends a little on its mass. If A is
heavier, it is dragged more slowly compared to when A is lighter. Additionally, if the
objects attract (left panel) or repel each other (right panel), this affects how far B will
travel. Figure 2d visualizes how the objects would move for different local forces. How B
travels differs substantially depending on whether there is an attractive or repulsive force
between A and B and this is true whatever the masses are.7 Figure 2e visualizes the

7One might wonder why the left and center panels of Figure 2d look so similar. Since B is heavier in the
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resultant PDs in terms of differences in r, θ. In both cases PD is the grand mean of the
black divergence lines, showing that this action is more informative about force than mass.8

To a first approximation, generating high PD with respect to a target property is a
good objective for planning interventions. Interventions with high PD correspond to
situations where one can expect very different things to happen depending on the truth
about the target property. In parallel, when an intervention also has low PD for other
properties, these expectations are less confounded by the learners’ current uncertainty
about these other properties. For example, in Figure 2d, the fact that the force effects work
out similarly regardless of the relative mass (panels i., ii., and iii. are similar) means that a
learner can make a strong judgment about the force based on this action even if they are
still very uncertain about the relative masses.

Unlike uncertainty reduction, PD does not depend on the learner’s current prior.
Because we take an unweighted average over possible settings of the other parameters of the
world, the PD is naturally agnostic about what these parameters might be. This is useful
for the current context where we are interested in how informative different actions are in
general, not relative to specific parameters of the aspects of the world. PD also differs from
our calculation of likelihood by being prospective. Likelihood calculation involved a
retrospective comparison of observed against simulated trajectories, whereas PD involves a
prospective comparison between different simulated trajectories (cf. Figures 2). This makes
it a useful measure for planning efficient actions similar to models of information gain in
the optimal experiment design literature (Coenen, Nelson, & Gureckis, submitted).

Overview of Experiments

In our experiments, we focus on how people learn about two target properties: local
pair-wise forces, and object masses. We created scenarios where evidence is frequently
confounded by including two “distractor” pucks along with two “target” pucks (whose
properties participants are asked to infer) and drawing local forces randomly for all pairs of
target and distractor pucks. This means that it is important to isolate the target pucks
from the distractor pucks to get clear information about the target properties.

Both experiments feature between-subject manipulations that contrast active,
passive, and yoked learning (in which a passive learner observes the actions of an active

middle panel, we might expect it to move less. However, the mouse’s influence dominates A’s path because
it increases with distance from the cursor (as if the object is attached to the cursor by an elastic band) while
B’s influence decays with distance (like a magnet’s). Since A’s path is not deflected substantially by B, B
will travel toward or away from A in this situation almost irrespective of its mass, similar to how objects
accelerated toward Earth accelerate at ≈ −9.8 m/s2 no matter how how heavy they are.

8As with the uncertainty calculations, we examine a range of distances for driving the PD calculations
in the Appendix.
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learner). Comparing active to passive learning lets us assess whether learners’ actions
increase or decrease the information about the target properties with their actions or
decrease it, and whether this results in changes in inferential accuracy. Comparing active
learners with yoked learners is common in the active learning literature and offers
additional insight into the learning mechanisms at play (e.g. Markant & Gureckis, 2014a).
In Experiment 1, participants had two inference goals on each trial: to determine 1) the
local force between the target objects, and 2) their relative masses. Comparing passive and
active learners here allows us to identify differences in the evidence produced in either case.
Meanwhile, comparing active against yoked learners equates the evidence that is in
principle available, allowing us to assess differences in judgment that might stem from
whether the learner has control over what happens. In Experiment 2, active learners were
given a single learning goal per trial and we manipulated whether yoked participants had
the same or a different goal. This allows us to assess the extent to which active learners
produce evidence that is specific to their learning goal, and how having a matched or
mismatched learning goal affects the performance of yoked learners.

We identify a range of active learning strategies performed by active participants in
Experiment 1, and use our framework to assess how each strategy helps achieve the
different learning goals. In Experiment 2, we then assess these claims empirically,
contrasting how frequently these strategies are performed dependent on the active learners’
goal.

Predictions. The key hypothesis is that active learners will tailor the information
they produce during a trial to be revealing about the latent properties they are asked to
infer. This should give an advantage to both active and yoked participants (simply because
they have better data than the passive participants who lack control).

Participants and the inference models considered in Ullman et al. (2014, to appear)
had difficulty with identifying repulsion in particular. As mentioned in the introduction,
this is because objects that repel one another rarely pass close enough together to exhibit
this force in naturally occurring dynamics. We expect to replicate this effect in our passive
condition both in terms of information produced and accuracy of inferences. However, we
predict that active learners will show a different pattern, since they can counteract the
information asymmetry by bringing the target pucks closer together and thus produce
strong evidence about repulsion.

It is frequently the case that yoked learners underperform relative to active learners,
possibly reflecting a learning advantage for volitional control (e.g. Markant, Dubrow,
Davachi, & Gureckis, 2014; Markant & Gureckis, 2014a). Given the complex nature of the
control and inference in the current task, we hypothesized that active participants would
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outperform yoked participants. Additionally, in Experiments 2, we expected yoked
participants whose goal was different than their active counterparts’ to perform less
accurately because the active participants were expected to produces little evidence
relevant to the yoked participants’ goal.

Experiment 1

Methods

Participants. Sixty-four participants were recruited from Amazon Mechanical
Turk (39 male, M ± SD age 33.6± 10.2) using psiTurk (Gureckis et al., 2016). The
number of participants was chosen by a heuristic goal of running a minimum of twenty
participants per condition and no statistics were performed until the entire data set was
collected. Participants were paid at a rate of $6 per hour, plus performance-related bonuses
($0.61± 0.17).

Conditions. Participants were pseudo-randomly assigned to one of three treatment
conditions:

1. Passive (N = 24) Participants observed the microworlds unfold without being able
to interact. If, in rare cases, everything came to a standstill, objects’ locations and
initial velocities were reset.

2. Active (N = 20) Participants could grab pucks and drag them around with the
mouse. Grabbed pucks retained their properties (i.e. mass, local forces, location, and
momentum) but became strongly attracted to the position of the mouse, as if attached
by an elastic band. While it is impossible to completely replicate the haptic feedback
inherent to real-world physical actions, this choice allows objects to react to control in
ways that depend on their properties. That is, heavier objects accelerate slightly less
than lighter objects when “pulled” with an equivalent mouse motion, and local forces
compete with attraction to the mouse in determining a controlled object’s trajectory.9

3. Yoked (N = 20) In this condition, each participant was yoked one-to-one with an
active participant, and watched replays of the active participant’s interactions on each
trial. As with the other conditions, they watched each replay once through, without
stopping.

9We opted for strong attraction rather than simply copying the position of the mouse because this allowed
the controlled object to interact reciprocally with the other objects in collisions. Otherwise, controlled object
would have one-sided interactions with the objects with which it collided, behaving as if it was infinitely
heavier than them. This resulted in unrealistic and chaotic interactions when the controlled object was
moved fast or trapped another object against a wall.
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Worlds. Each participant watched or interacted with nine microworlds, consisting
of all combinations of target force in attract, repel and none and target masses in [1, 1]kg,
[1, 2]kg and [2, 1]kg (see Table 1).10 Each world also had up to five additional local forces,
one between the target pucks, and one for every other combination of target and
non-target puck. These were drawn uniformly from the three possibilities for each
participant on each trial and the two distractor objects always weighed 1kg. This results in
an overall set of 2187 possible worlds w ∈ W (e.g. all 37 combinations of target and
distractor local forces and the possible target masses) but a smaller judgment space
containing the nine combinations of target mass and target force. The settings for all other
properties of the objects (elasticity, friction etc.) were the same for all worlds, as detailed
in Table A1 in the Appendix.

Table 1
Experiment Design

World 1 2 3 4 5 6 7 8 9
Target force A A A N N N R R R

Target 1 mass 1 1 2 1 1 2 1 1 2
Target 2 mass 1 2 1 1 2 1 1 2 1
Note: A = attract, N = none, R = repel; masses are in kg.

Materials and Procedure. The experiment was programmed in Javascript using
a port of the Box2D physics game engine. Open source demos of all three conditions and
replays for all participants and trials are available at our online repository
(https://github.com/neilbramley/active_physics). A complete specification of the
settings of the Box2D simulator is available in the Appendix.

On each trial, the initial position of each puck was random but non-overlapping with
initial velocities in the x and y direction drawn at random. If, in the passive condition, all
pucks’ came to a near standstill, the simulation froze and the window went black briefly
before the positions and velocities of the pucks were redrawn.11 Each world was simulated
for 45 seconds at 60 frames per second, leading to 2700 frames of evidence per trial.

The microworlds were displayed in a 600 by 400 pixel frame, with 1m in the world
corresponding to 100 pixels on the screen. Each world was bounded by solid walls with
high elasticity – and contained four pucks of random colors that were different on each
trial.12 The two target pucks were labeled with new letters on each trial (e.g. “A” and “B”

10Local forces scaled with the inverse squared distance between the objects in line with Newton’s universal
law of gravitation. Thus, the current local force L exerted on object o1 by object o2 (and the reverse) was
given by ±3 m1m2

d2 .
11This happened 1.0± 0.83 times per 45 second trial on average.
12To minimize the possibility that participants might group the pucks based on their colors or transfer

https://github.com/neilbramley/active_physics
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on trial one, “C” and “D” on trial two, cf. Figure 1) while the distractor pucks were
unlabeled. This was done to minimize transfer effects and confusion between the objects in
the different trials which had been an issue in Bramley et al.’s (2016) pilot experiment. For
yoked participants, the cursor of the active participant was shown with a “+” symbol
whenever it was within the world, and any objects grabbed by the participant were
indicated as in the active condition with a thick black border (see Figure 1b).

At the end of each trial, our two test questions appeared in counterbalanced order
below the world. The mass question asked “Is A or B heavier?” and participants responded
with “A”, “same”, or “B”. The force question was “What is the relationship between the
pucks marked A and B?” and participants responded “they attract each other”,“none”, or
“they repel each other”. The puck labels in the questions changed between trials as
mentioned above. To ensure that participants were motivated to accurately answer the
questions, we paid a 5¢ bonus for each correct response. Participants also gave a confidence
judgment for each question, indicating “How sure are you that you got this question
right?” using a 100 point slider ranging from “not at all” to “very much”.

Participants first completed instructions relevant to their condition, answered
comprehension check questions, and then completed two practice trials followed by the nine
test trials. Practice trials were always worlds one and five shown in Table 1.13 Practice
trials were indistinguishable from test trials from participants’ perspective and were
excluded from analysis. At the end of the experiment, participants received feedback about
how many of the test questions they got right and the bonus they had earned. The
experiment took 19.0± 7.3 minutes to complete.

Results

We first look at participants’ inferences about the latent properties, before exploring
the information produced by the action in the trials. For judgments, we contrast accuracy
by condition, asking whether active learners outperform passive learners, and whether
yoked learners inherit this advantage. We then contrast judgment patterns for the two
types of test question (mass judgments and force judgments) assessing whether we replicate
the same patterns for passive learners as Ullman et al. (2014; to appear) and crucially,
whether active control affects these accuracy patterns.

Accuracy. Overall accuracy, including both question types, differed significantly by
condition F (2, 61) = 3.8, η2 = .12, p = .03 (see Figure 3). Active participants answered

their properties erroneously across trials, the four pucks’ had hues equally spaced around the HSL color
wheel with a new random starting point on each trial.

13Note that worlds one and five were also presented in the test phase. However, the randomly drawn
distractor forces, puck colors, and labels differed between the practice and test instances.
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Figure 3 . Experiment 1: Performance by condition measured by the accuracy with which
participants’ correctly answered the three-alternative forced-choice questions about the
local forces and object masses. Bars denote condition means. Error bars denote
bootstrapped 95% confidence intervals. Points denoting individual participants are jittered
along the x-axis for visibility. Dashed lines connect active participants with matched yoked
participants. The horizontal line indicates chance performance.

significantly more questions correctly than passive participants, t(42) = 2.5, p = 0.014, and
their yoked counterparts, t(19) = 2.9, p = 0.01, with no difference between passive and
yoked participants, t(42) = 0.2, p = 0.83. Active participants’ performance was predictive
of their yoked counterparts’, r = .49, t(18) = 2.4, p = .03.

Confidence judgments differed by condition, F (2, 61) = 5.3, η2 = .15, p = .007, with
active participants (M ± SD: 78.5± 13.5%) significantly more confident on average than
passive (66.7± 13.9%), t(42) = 2.8, p = .006 and yoked (65.4± 16.1%) participants,
t(38) = 2.9, p = .006, but no difference between passive and yoked t(42) = 0.28, p = 0.78.
Overall, participants were significantly more confident about their correct 73.4± 16.0 than
their incorrect 63.8± 17.2 judgments t(63) = 6.4, p < .001.

Mass versus force. On the mass question, participants answered 46± 29%,
58± 24%, and 45± 20% of questions correctly in the passive, active and yoked conditions
respectively. On the force question, participants answered 61± 22%, 73± 21%, and
63± 21% of questions correctly. Across conditions, participants were worse at inferring
masses than forces t(63) = 4.8, p < .0001 and reported lower confidence in mass judgments
(66± 25%) compared to force judgments (74± 25%) t(63) = 4.2, p < .0001. As predicted,
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Figure 4 . Experiment 1: Confusion matrices for mass question (a) and force question (b).
For example, the mass question in the passive condition, left matrix in a), when A was
heavier than B (top row), participants correctly identified that this was the case 48% of the
time, they falsely judged that B was heavier than A in 18% of the cases, and thought that
both A and B have the same mass in 34% of the cases.

active learners benefited particularly on trials in which the target objects repelled each
other. Passive participants only identified repulsion correctly 53% of the time compared to
90% for active participants (see Figure 4). Force type interacted with treatment condition
in predicting accuracy F (6, 183) = 3.0, p < .0001. Dummy contrasts with “no force” and
“passive” as controls revealed that active participants were significantly better at
identifying repel than passive participants t(42) = 3.2, p < .0001 and there was a marginal
improvement for yoked participants as well t(42) = 1.9, p < .058. There was no significant
relationship between accuracy on the local force question and the number of distractor
forces.

Summary. As predicted, we found that active participants outperformed passive
controls. In particular, they were better at identifying repulsion, consistent with the idea
that they often pushed repulsive target objects close together. Active participants also
outperformed their yoked counterparts. This suggests that volitional control was crucial to
their successful use of the generated evidence. Together, these findings raise questions
about what the active participants were doing, and how their actions helped them identify
the worlds’ properties. In the next section we begin to explore this both quantitatively by
measuring the evidence generated throughout each trial, and qualitatively by categorizing



INTUITIVE PHYSICAL EXPERIMENTATION 22

the different testing strategies that active participants came up with.

Information

We now use our Ideal Observer (IO) model to better understand why active
participants generally outperformed passive participants, and why active participants
found repulsion easier in particular. We simulated each trial under all 2187 possible world
settings and tracked how much they diverged from what actually happened, returning
simulated objects to their actual trajectories every 10 frames (i.e., 6 times per second).14

We assumed learners began each trial with a uniform prior over worlds
P (W ) ∼ Unif(|W |) and computed a posterior P (W |d, β; c) for every trial. We then
calculated posterior uncertainty relative to the target mass and force questions by
marginalization over this posterior. Because the accuracy of our model depends on what
level of imprecision we assume (captured by β), we are not interested in comparing
participants’ and models’ absolute accuracy. Instead, we assess whether the IO model’s
notion of relative evidence lines up with participants’ judgments across questions and
worlds.15

We find that posterior uncertainties over the full space of possible worlds did not
differ on average for passive compared to active participants t(29) = 0.47, p = 0.64.16 Nor
did posterior uncertainty about mass t(29) = 0.45, p = 0.66 (Figure 5a). However, active
participants generated significantly more information on average about the target force
t(29) = 3.8, p < 0.001 (Figure 5b). Mass uncertainty appears somewhat bimodal for active
participants, with over half of participants (7/13) achieving more certainty on average
about mass than all 18 of the recorded Passive participants, but the other half doing a
little worse than those passive participants on average. The probability of answering the
mass question correctly was marginally inversely related to posterior mass entropy across
all trials t(394) = −2.0, p = 0.046 while this did not hold for force information p = 0.11.
Inspecting Figure 5, we also see that mass uncertainty was significantly lower than force
uncertainty, on the order of 0.1 bits compared to 1 bit t(60) = 8.1, p < .001. This means
the Ideal Observer was generally substantially more certain about the mass question, in
contrast to participants who were less accurate at inferring mass.

In sum, while active participants generated about the same amount of evidence
14Like Ullman et al. (2014), we experimented with several “snap back” windows finding no systematic

differences in the results.
15We found no systematic differences in results for different values of β. We chose 1

50 simply to make the
relative differences in posterior uncertainty easy to visualize in Figures 5 and 10.

16Because the objects’ velocities were not recorded for 13 participants, information measures for these
participants could not be computed. The following comparisons are based on the remaining 18 passive and
13 active participants (and the 13 corresponding yoked participants where appropriate).
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Figure 5 . Experiment 1: Mean posterior uncertainty according to ideal observer model
assuming noise parameter β = 10. a) Uncertainty about the true world e.g., H(W |d, β; c).
b) Uncertainty about target masses e.g., H(mass|d, β; c) (i.e., after marginalizing over
other other properties). c) Uncertainty about the target forces H(force|d, β; c). Bars
denote condition means. Points denoting individual participants are jittered along the
x-axis for visibility.

overall as passive participants (about all properties of the worlds) they generated more
evidence about force than passive participants. Furthermore, while they did not generate
systematically more evidence about masses, there was some evidence that the amount they
did produce was consequential to judgment accuracy.

Experimental strategies

To get a better sense for what actions participants performed, we viewed the active
participants’ replays from Experiment 1 and identified a number of strategies. We describe
these in Table 2. We also provide replays from the experiments that exemplify the different
strategies in the online repository (https://github.com/neilbramley/active_physics).

To what extent did participants make use of the different strategies? Some of these
proposed strategies have easy-to-measure hallmarks. For instance, in line with the shaking
strategy (Figure 2d), participants who moved the controlled object around faster did better
on the mass question β = 25, F (1, 18) = 15, η2 = .45, p < 0.001, but this had no
relationship with accuracy on the force question p = .67. Conversely, in line with
encroaching (Table 2e), we see evidence that participants in the active condition identified
the local forces by bringing the two target pucks close to each other. The lower the average
distance between two target objects for an active participant, the better they did on the
force question β = −.3, F (1, 18) = 8.0, η2 = .3, p = .001 but this had no relationship with
accuracy on the mass question p = .87. In Experiment 2 and the subsequent analyses we
will explicitly link these strategies to our information measures.

https://github.com/neilbramley/active_physics
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Table 2
Strategies observed in Experiment 1.

Strategy Schematic Description Profile

a) Launching B

A

B

B

Grabbing one of the tar-
get pucks and “throwing
it” against the other target
puck.

PD

Baseline
Mass
Force

O
ns

et

Time (s)0 4
0

0.2

b) Knocking
B BA

Grabbing one of the tar-
get pucks and knocking it
against the other (without
letting it go) Time

PD

c) Throwing
B

A

A

BB Grabbing a target puck and
throwing it, avoiding colli-
sion with any of the other
pucks. Time

PD

d) Shaking B B

A A

Grabbing a target puck and
rapidly shaking it from side
to side.

Time

PD
e) Encroaching

B

B

A
Grabbing one target puck
and moving it close to the
other.

Time

PD

f) Deconfounding
B

A Grabbing a distractor puck
and moving it away from
the target pucks (e.g. into
a corner). Time

PD

g) Controlling
A

B

Briefly grabbing a fast mov-
ing puck and releasing it to
slow it down.

Time

PD

Note: Schematic: target pucks are labeled A or B, and distractor pucks are unlabeled.
Profile: Predictive divergence profiles for coded strategies in Experiment 2, smoothed
using a GAM (Hastie & Tibshirani, 1990), with fills showing 99% confidence intervals.
Black vertical lines mark onset of control. Shaded horizontal fills and gray vertical lines
respectively indicate range and median time after onset at which the participant let go of
the puck.
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Figure 6 . Experiment 1: Comparison of average predictive divergence for (a) passive and
active participants, and (b) periods of observation and intervention for active participants.
Bars denote means and error bars denote bootstrapped 95% confidence intervals.
“Baseline” denotes the average PD measured for every dimension over which the worlds in
W vary.

Predictive divergence. To get a better sense of what participants were doing, we
applied the Predictive Divergence (PD) measure from the model (see Assessing the
informativeness of actions in the Introduction). This allows us to assess the information
available about the world’s latent properties at different points during a trial. We
considered three variants: PDmass measures the current predictive divergence depending on
the target objects’ masses. PDforce does the same for the target force. We compare these
measures against Baseline, which is the average at each time point of the predictive
divergence for all the properties of the world that could vary across trials (the masses of
the targets, their force relation but also the five distractor forces). In the passive condition,
natural dynamics should not privilege the target over the distractor properties. This is
shown in Figure 6a where PDmass and PDforce are similar to baseline. In line with the fact
that the ideal observer generally found natural dynamics to better reveal mass than force,
PDmass is a little higher than baseline t(34) = 7.5, p < .001 but there there is no difference
between PDforce and baseline t(38) = 0.89, p = 0.38.

Active participants had higher average baseline t(29) = 3.4, p = 0.002, PDmass

t(29) = 8.3, p < 0.001 and PDforce t(29) = 4.4, p < 0.001 than passive participants (see
Figure 6a). Additionally, looking within active learners’ trials, we compared periods of
active control to periods of passive observation. We found that periods of control exhibited
no increase in baseline divergence t(12) = 0.56, p = 0.58 but a large increase in PDmass

t(12) = 9.6, p < .001 and a barely significant increase in PDforce t(12) = 2.1, p = 0.0498 (see
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Figure 7 . Example trial from Experiment 1. Replay:
https://neilrbramley.com/experiments/apl/e1/replays?p=1 a) Timeline for PD.
Lines indicate PD for any dimension (solid), mass (dotted), and force (dot–dashed),
smoothed using a LOESS kernel (Cleveland, Grosse, & Shyu, 1992) with fills indicating
90% confidence intervals. Gray rectangles indicate periods of control. b–d) Visualizations
of actions during clip. A sequence of screen-shots are superimposed with later frames
becoming more opaque. Thick black circles indicate controlled object and “+” indicates
the mouse.

Figure 6b).
Figure 7a shows a timeline from an active participant’s trial. At first, the participant

takes control of puck A and brings it close to puck B (Figure 7b). He or she also knocks
the targets together several times. This generates considerably more PDmass and PDforce

than baseline. In a later part, the participant takes puck B and shakes it back and forth
(Figure 7c), and later takes puck A to do the same. These periods generate high PDmass

(because a heavier controlled object reacts more slowly to changes in direction) but not
PDforce (because the target pucks are typically not close together). When the participant
stops controlling, PDforce and PDmass drop to close to baseline (Figure 7d).

https://neilrbramley.com/experiments/apl/e1/replays?p=1
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Discussion

Experiment 1 revealed a benefit for active over passive learning in this dynamic
physical setting. Participants’ actions resulted in more information about force, and in
some cases, more information about mass, too. In particular, active participants were able
to gather more evidence about repulsion by bringing target objects close together and
moving distractor objects out of the way. A number of learners also gathered information
about masses by shaking the target objects back and forth, and generally staged many
more interactions between targets and fewer between distractors compared to passive
participants.

Our PD measure showed that periods of control were particularly informative about
mass. Since the large majority of interventions were on one or other target puck, this
suggests that most active manipulations of these objects were directly informative about
mass. This is intuitive since a heavier object will be slower to accelerate for the same
application of force (here, for the same displacement between the mouse and the controlled
object center; cf. Figure 2b). While active participants were able to make use of this
information, yoked participants’ failed to capitalize on this. This suggests that an ability to
anticipate the consequences of ones actions (i.e., where the mouse will be) may have been
crucial to interpreting evidence stemming from the direct effects of control. Force
information was higher on average during interventions but inspection of the
individual-trial timelines shows that this was not always the case (cf. Figure 7). Periods of
high force information were generally those where the target pucks were close to one
another, far from other pucks and traveling slowly. Surprisingly, our information model
considered the trials to contain stronger evidence about mass than about force while most
participants found force easier to identify than mass. We return to this divergence in the
General Discussion.

The quality of the control exerted by the active participants was an important
determinant of the quality of the final evidence available to the yoked participants.
However, the substantial drop-off from active to yoked accuracy is consistent with the idea
that first-hand knowledge of what was being tested (e.g. force or mass), when and how, was
likely to be crucial for learning successfully (cf. Markant & Gureckis, 2014a).

In Experiment 1, participants were asked about two properties of the worlds at the
end of each learning trial. This means that there is ambiguity about what active learners
focused on at any one moment. In Experiment 2, learners were asked to infer the value of a
single property per trial. This makes it possible directly assess property-specific differences
in active learning strategies. Furthermore, by having some yoked participants answer the
same question as active participants but others answer a different question, we can assess
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directly how much it matters that learning goals are matched.

Experiment 2: Matched and mismatched yoking

In this experiment we had participants learn in the same worlds as before, but this
time there were two blocks, one in which they were asked about the target objects’ mass,
and one in which they were asked about the force between the target objects. We then
matched active participants with passively observing participants who were either asked
about the same property (yoked–match) or asked about the alternative property
(yoked–mismatch). In this setup, our information measures assess the extent to which
active participants generated information tailored to the specific question they were asked
about, and investigate how this affected yoked participants.

In line with Experiment 1, we hypothesized that active participants would generate
information relevant to the property of the world they were asked about. To the extent
that active learners did not also generate substantial information about the alternative
property en passant, we expected this to result in lower accuracy for yoked–mismatch
participants compared to yoked–match participants.

In our analyses of Experiment 2, we will further unpack participants’ active learning
strategies both qualitatively and quantitatively. First, we will contrast the informational
statistics of the actions performed depending on the goal (mass vs. force identification).
Second, we will have independent human coders assign labels to every one of the active
participants actions based on the strategies proposed in Table 2. This will allow us to
assess their overall prevalence as well as whether there was a clear separation of
strategy-use depending on which property of the current world was under investigation.

Methods

Participants. One hundred and twenty participants were recruited from Amazon
Mechanical Turk (76 male, M ± SD age 37.1± 11.8) using psiTurk (Gureckis et al., 2016).
Following Experiment 1, we aimed initially to collect 20 participants per condition as in
Experiment 1 but due to an error in our counterbalancing scheme, the first 20 active
participants shared the same task order (i.e. they always answered a block of questions
about mass before force). As a result, we doubled the cell size to retain a balance between
block orders in the overall data set. Participants were paid at a rate of $6 per hour, plus
performance-related bonuses ($0.83± 0.25).

Conditions. Participants were assigned to one of three learning conditions:

1. Active (N = 40) Participants could grab the pucks and drag them around with the
mouse, exactly as in Experiment 1 except they were aware which of the two candidate
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questions they would be asked at the end.
2. Yoked–match (N = 40) Participants watched replays of the interactions of an active

participant and had to answer the same question about each world as the active
participant that they were observing

3. Yoked–mismatch (N = 40) This condition was like yoked–match except that
participants had to answer the opposite question. If the active participant was asked
about the masses of the target objects, the yoked–mismatch participant would be
asked about the force relationship between the two targets. If the active participant
was asked about the force, the yoked–mismatch participant would be asked about the
mass.

The first 40 participants were assigned to the active learning condition, the
subsequent 80 participants were randomly assigned to either the yoked–match, or
yoked–mismatch conditions.

Worlds. Each participant watched or interacted with the same 9 microworlds from
Experiment 1. However participants faced each world twice, once asked about the target
masses, and once about the target forces.

Materials and Procedure. Given that only one property was probed per trial,
each world was run for 30 s, rather than the 45 s in Experiment 1. In other respects, the
Box2D physics simulator was set exactly as in Experiment 1.

Participants were told which question they will be asked prior to starting the
interaction. Participants did not have to wait until the end of the trial to indicate their
response. To ensure that active participants were motivated to interact efficiently with the
worlds, the available bonus for each trial diminished from 10¢ for correctly answering at
the very beginning of each trial to 5¢ for correctly answering by the end of the trial. If
participants answered the question correctly they would receive whatever bonus remained
at the moment of their final interaction with the response options. Even if answering early,
participants would have to wait until the end of the 30s trial to continue, to ensure there
was no incentive beyond the bonus payment to hurry. This procedure means that we can
use an active participant’s decision time as a marker delineating their actions in service of
answering the question from any filler actions they might perform once they are already
sure of the answer. As in Experiment 1, each question was paired with a confidence slider
that was not tied to the bonuses.

Participants first completed instructions relevant to their condition (see
https://github.com/neilbramley/active_physics), answered comprehension check
questions, and then completed two blocks of 10 trials. In one block of trials they were
asked about target masses, in the other they were asked about the target force relationship.

https://github.com/neilbramley/active_physics
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The order of the question blocks were counterbalanced between subjects. For each block,
participants interacted with or watched one practice trial followed by all nine test worlds in
random order, as in Experiment 1. As before, the practice trials were indistinguishable
from the test trials and were excluded from analyses.

The yoked–match participants faced the same 20 trials as the active participants,
while the yoked–mismatch participants were asked the alternative question on all trials.
That is, if the active participant faced the force block first followed by the mass block, the
yoked–mismatch participants would answer the mass question during the first block and
the force question during the second block. For all conditions, the practice trials were
worlds one in the force block and five in the mass block (cf. Table 1).

Unlike Experiment 1, where the letter labels were different for each trial, this
experiment always used “A” and “B”.17 The distractor forces (between the other five pairs
of objects than the target-target pair) and puck colors were again drawn at random for
each trial for active participants and these were repeated for yoked–match and
yoked–mismatch participants. The experiment took 20.6± 8.7 minutes.

Results

Following the structure of Experiment 1’s results section, we first report judgment
accuracy by condition and question before turning to our information measures.

Accuracy. Figure 8 shows overall performance by condition. We analyze the two
mass and force accurately separately since, in this Experiment, they correspond to different
trials. In the active, yoked–match, and yoked–mismatch conditions respectively,
participants answered (M ± SD) 61±23%, 50±22%, and 46±16% mass questions correctly.
There was a main effect of condition on accuracy on the mass question
F (2, 117) = 5.6, η2

p = 0.09, p = .003 with fewer correct mass responses for both
yoked–match t(39) = 2.4, p < .001 and yoked–mismatch t(39) = 3.3, p = 0.001 participants
relative to active participants. In the active, yoked–match, and yoked–mismatch conditions
respectively, participants answered 73±23%, 73±18%, and 57±20% force questions
correctly. Thus, there was also a main effect of condition on accuracy on the force question
F (2, 117) = 8.0, η2

p = 0.12, p < .001. There was no difference between the number of correct
force responses for active and yoked-match participants t(39) = −0.06, p = .95, but a
substantial drop from active to yoked-mismatch t(39) = 3.4, p < .001. Across the two
questions, there was no main effect of the block order on accuracy nor any interaction with
condition.

17There are not enough letters in the alphabet to give unique labels to all forty target objects across the
twenty trials.
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Figure 8 . Experiment 2: Performance by condition measured by the accuracy with which
participants’ correctly answered the three-alternative forced-choice questions about the
local forces and object masses. Bars denote condition means. Error bars denote
bootstrapped 95% confidence intervals. Points denoting individual participants are jittered
along the x-axis for visibility. Dashed lines connect active participants with matched yoked
participants. The horizontal line indicates chance performance.

As in Experiment 1, participants were better at identifying the force relationship
67.9± 21.8% than mass 52.9± 21.4%, with a repeated measures analysis revealing a
substantial effect of question type on accuracy F (1, 117) = 39, η2

G = 0.11, p < .001.18

Twenty-six participants were more accurate on mass questions, 19 were equally accurate,
and 76 were more accurate on force questions. A marginal interaction between question
type and condition on accuracy F (2, 117) = 2.6, η2

G = .02, p = .075, captures the slightly
different patterns of accuracy for mass and force trials. Yoked–match participants were less
accurate than active participants on mass trials t(117) = −2.5, p = 0.014 but not force
trials t(117) = −0.06, p = 0.95.

As in Experiment 1, participants were more accurate at identifying when one of the
targets was heavier than the other 63.5± 19.3% than when they had the same mass
54.2± 22.2% F (1, 117) = 18.9, η2

G = .05, p =< .001 (see Figure 9). Similarly, participants

18η2
G is a generalized measure of effect size recommended for repeated measures analysis (see, Bakeman,

2005).
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Figure 9 . Experiment 2: Confusion matrices for mass trials (a) and force trials (b). For
example, the mass question in the active condition, left matrix in a), when A was heavier
than B (top row), participants correctly identified that this was the case 61% of the time,
they falsely judged that B was heavier than A in 13% of the cases, and thought that both
A and B have the same mass in 26% of the cases.

were better at identifying attraction 66.9± 24.8% , followed by repulsion 59.6± 23.7%, and
worst at identifying when there was no force 54.6± 24.1%,
F (2, 234) = 10, η2

G = 0.05, p < .001. In this experiment, by-answer accuracy patterns did
not interact significantly with condition for either question type.

Response time. Participants made their judgments before the end of the trial
82.5% of the time, doing so after 18.3± 8.4 seconds on average. Response time did not
differ significantly between the three conditions F (2, 117) = 0.73, η2 = 0.01, p = .48, nor
was it related to accuracy r = 0.02, t(118) = 0.26, p = 0.79.

Confidence. As well as being less accurate, participants were also less confident
about their responses for mass 64± 26% compared to force 76± 26% questions
F (1, 117) = 62.4, η2

G = 0.09, p < .001. There was only a marginal difference by condition —
active: 72± 26% yoked–match: 73± 27%, yoked–mismatch:
65± 26%, F (2, 117) = 2.6, η2

G = 0.03, p = 0.078. Participants were around 11% more
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confident about their correct judgments 75± 26% than their incorrect judgments 64± 27%
t(118) = 7.9, p < .001.

Measuring information. As in Experiment 1, we computed the posterior over
models P (W |d, β; c) and associated posterior overall uncertainty H(W |d, β; c), mass
uncertainty, and force uncertainty with participants’ judgments (see Figure 10). Here, we
are interested in contrasting the evidence produced in trials where the active participant
was asked about mass and where they were asked about force. A repeated measures
ANOVA predicting posterior marginal uncertainty reveals a significant main effect of
question type F (1, 39) = 30, p < .001, a very strong effect for property in question (mass or
force) F (1, 39) = 1252, p < .001, and crucially, also a clear interaction between block and
property F (1, 39) = 56, p < .001. This supports the hypothesis that active participants
were successful at generating evidence that was informative specifically for the question
they were asked to answer. This difference in information is behaviorally significant
because it impacted performance, with commensurate performance by yoked–match to
active participants but worse performance by yoked–mismatch participants.

Did the information differences correlate with performance? Average mass accuracy
was inversely related to average mass uncertainty t(39) = −2.6, r = −.39, p = 0.01 for
active participants, but not for their yoked–match counterparts (p = .67), nor for
yoked–mismatch (p = .14) participants (on the relevant trials). Average force accuracy was
strongly inversely related to average force uncertainty for active participants
t(39) = −6.0, r = −0.69, p < .001 and their yoked–match counterparts
t(39) = −3.2, r = −.46, p = .002 but there was no such relationship for yoked–mismatch
participants on the relevant trials (p = .35). Thus, we see a clear relationship between
lower uncertainty according to our model and higher accuracy for the active participants
for both types of question. This carries over to yoked–match observers on the force
question but not on the mass question.

Finally, at the individual trial level, the probability of answering a particular question
correctly was significantly related to posterior uncertainty on the relevant dimension, even
after accounting for the main effects of condition, dimension and the average accuracy for
each trial type (i.e., those in Table A1). This is shown by a generalized logistic mixed
effects model, with condition and question as covariates and random intercepts for each of
the nine trial types, under which lower posterior uncertainty increases the probability of a
correct response β = −0.57± 0.13, z = −4.5, p < .001.19

19This was fit using R’s glmer function in the lme4 package (Bates, Mächler, Bolker, & Walker, 2015).
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Figure 10 . Experiment 2: Mean marginal posterior uncertainty about mass and force
relationship according to IO model . Dashed bars correspond to the evidence available for
yoked-mismatch participants. Note: Smaller bars indicate lower uncertainty (i.e., greater
certainty). Error bars denote bootstrapped 95% confidence intervals. Points denoting
individual participants are jittered along the x-axis for visibility.

Classification of participants’ actions

To see whether the strategies identified in Experiment 1 were used differentially on
mass and force questions, we asked two independent coders to label all 2313 interventions
performed by active participants in Experiment 2 using the video coding software DataVyu
(2014). Coders were blind to the learners’ goals and our hypotheses. We used the 7
categories described in Table 2: (a) Launching, (b) Knocking, (c) Throwing, (d) Shaking,
(e) Encroaching, (f) Deconfounding and (g) Controlling. In addition, we included the
following two categories:

(h) Multiple. The intervention satisfies more than one of a–g and none of the strategies
is clearly dominant.

(i) Unclear/other. The intervention does not clearly fall under any of a–h.

Coders were provided with the descriptions and diagrams as in Table 2, and a short
video of an intervention exemplifying each strategy taken from Experiment 1. If a control
period appeared to fall under multiple categories but one of these categories was clearly
dominant, the coder was instructed to select that category rather than ‘Multiple’.20

Inter-rater agreement on the primary category was .79, and Cohen’s κ = .76± 0.02, both
higher than their respective heuristic criteria for adequacy of 0.7 and 0.6 (Krippendorff,
2012; Landis & Koch, 1977). The agreed codes are summarized in Figure 11 and a
confusion matrix showing where coders disagreed is included in the Appendix. The only
clear difference between the two coders is that the second coder was more likely to select
‘Unclear’ or ‘Multiple’.

20All materials given to coders along with coded videos are available in the online repository.
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Figure 11 . Coded strategy use in Experiment 2. Bars show the N agreed instances of each
of the strategies from Table 2 broken down by question (panels).

We found large differences in the distribution of strategies by condition
χ2(8) = 838, p < .001. When focused on mass, active learners perform many ‘Launches’,
‘Knocks’, ‘Throws’ and ‘Shakes’. When focused on the force relation they rarely perform
these sorts of actions, and instead predominantly ‘Encroach’ (move and holding targets
close together).

Predictive divergence

As in Experiment 1, we computed the online information measures PDmass, PDforce

and baseline PD throughout every trial for each participant.21 Recall, PD lets us look
inside the trials to assess whether the mass and force evidence was produced predominantly
during periods of control or during periods of passive observation. Furthermore, we can
explore the extent to which interventions ostensibly targeted at revealing one property also
reveal the other property.

Figure 12 compares mean PD scores during periods of observation and periods of
intervention as in Figure 6b. Baseline is lower during periods of intervention than during
periods of observation for both mass t(35) = −2.5, p = 0.016 and force
t(35) = −6.6, p < .01 question blocks.22, and is generally considerably lower than both

21We provide predictive divergence timelines, as in Figure 7a, paired with movie replays for all participants
in the online repository.

22Some participants in the active condition did not intervene at all either across all mass trials, across all
force question trials or both. Hence, these participants were not included in this analysis.
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PDmass t(39) = −16.8, p < .001 and PDforce t(39) = −11.4, p < .001. PDmass is considerably
higher during the mass question block 0.206± 0.044 than the force question block
0.16± 0.023 t(39) = 6.8, p < .001, and over periods of intervention compared to observation
on both mass question trials t(35) = 12.6, p < .001 and force question trials
t(35) = 11.2p < .001. PDforceis considerably higher during the force question block
0.20± 0.053 than the mass question block 0.12± 0.028 t(39) = 8.7, p < .001, but exhibits a
different control pattern with marginally lower PDforce during interventions (compared to
observation) on force question trials t(35) = −2.24, p = 0.031 but substantially lower
PDforce during interventions on mass question trials t(35) = −5.5, p < 0.001.

Overall, this pattern confirms what was suggested by the results of Experiment 1.
Simply taking control of a target object provides evidence about its mass. The heavier
object reacts more sluggishly than the lighter object. Thus, PDmass was raised when
interacting with the objects regardless of the goal. In contrast, PDforce was spread over
both periods of control and subsequent periods — e.g., while the pucks remained in close
proximity — but was only raised overall on trials where active learners’ goal was to identify
force. The lower baseline PD during interventions suggests that participants were also
somewhat successful in minimizing the confounding influence of the surrounding dynamics.
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Figure 12 . Experiment 2: Comparison of average predictive divergence for periods of
observation and intervention (i.e., controlling one of the pucks). Larger values indicate
more evidence. Bars denote means and error bars denote bootstrapped 95% confidence
intervals. “Baseline” denotes the average PD measured for every dimension over which the
worlds in W vary.

We now take a closer look at the PD measures by relating them to the different coded
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intervention strategies (cf. Table 2 and Figure 11). To do this, we took instances of each
strategy for which both coders agreed, timelocked them to their onset, and averaged our
PD measures over a short period period beginning 1s before each onset. The resulting
profiles are in the righthand column of Table 2. By plotting these profiles along with the
distribution of offset times, we see that ‘Knocking’, ‘Throwing’ and ‘Shaking’ are all
relatively punctate actions, lasting around a second. Their profiles also confirm our
intuitions about the nature of the evidence they produce. ‘Launching’ — throwing a puck
at a target puck — causes a spike in PDmass shortly after the controlled object is released
i.e., around when the pucks collide. ‘Knocking’ — hitting a target puck with a
still-controlled puck — reaches its maximum before release (again presumably when
controlled objects collide), while ‘Throwing’ — avoiding the other pucks — creates a
smaller spike since only one controlled object is involved, and this also occurs before
release. ‘Launching’ and ‘Knocking’, but not ‘Throwing’, are associated with a small spike
in PDforce, presumably because they often involve targets passing close to one another.
‘Shaking’ also leads to strong and sustained increase in PDmass. Instances of ‘Shaking’ are
variable in length and do not create a spike in PDforce, since during shaking other objects
must be avoided. Encroaching actions are also long and variable , but lead to the
substantial and sustained increase in PDforce continuing after release. ‘Deconfounding’ —
moving non targets out of the way — is also associated with a sustained period in which
PDforce is higher than PDmass (although lower than for encroaching). By reducing
probability of collisions, ‘Deconfounding’ leads to situations with little evidence about the
target objects’ mass.

We can also ask which strategies were associated with successful identification of the
target properties. At the participant level, we entered the frequency with which a
participant performed each of the nine coded actions as independent predictors of accuracy
on the two question types. In both cases, two of the nine strategies were significantly
associated with performance and in combination they explained 58% of the variance in
accuracy on both questions. For mass trials, ‘Shaking’ was most strongly associated with
accuracy β = 0.022, t(30) = 3.9, p < .001, followed by ‘Throwing’
β = 0.016, t(30) = 3.3, p = .003 while the other seven strategy codes did not have a
significant association. For force trials, ‘Encroaching’ was strongly related to accuracy
β = 0.016, t(30) = 4.2, p < .001 while ‘Launching’ was significantly negatively related
β = −0.034, t(30) = −2.2, p = .04. Again, the other 7 strategy labels did not have a
significant association with accuracy. There was no evidence that participants adapted
their use of strategies systematically over the 9 test trials, with no relationship between the
number of strategies applied and trial position within either mass p = .81 or force p = .17
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question blocks. However, we note that each block was preceded by a practice trial which
we did not analyze, so it is possible that some adaptation took place between the practice
and test trials.

Finally, we can ask whether the goal-specific value of an action (i.e., its average
predictive divergence) predicts participants’ tendency to perform that action. To do this,
we calculated a single predictive divergence value for each strategy and goal. For example,
we calculated how useful the ‘Encroaching’ or ‘Shaking’ strategy are for the goal of
identifying the local force and the objects’ mass. We took the mean divergence on the
relevant dimension over the period from the onset of a learner’s control to one second after
they released control (to allow for a delay in the effect of some of the actions such as
‘Launching’). We then averaged these across all coded instances of each strategy. The
resulting values predict the frequency with which participants performed the different
strategies across the force and mass trials r = .75, t(12) = 3.8, p = 0.02.

Discussion

In Experiment 2, we found that active learners interacted with the microworlds in
ways that served to emphasize relevant physical properties for their current learning goal
and mitigate confounding information. Observers whose goal it was to identify the same
property as the active learners were as accurate on average as their active counterpart,
while those whose goal it was to identify the other property were considerably less
accurate. This supports the idea that ambiguity about the active learner’s goal in
Experiment 1, may have driven the reduction in accuracy for yoked observers.

By having human coders classify all of participants’ active learning actions, we
related these differences in overall accuracy to differences in strategy selection. When
focused on mass, participants repeatedly threw the target objects at one another or into
empty space, knocked them together, and shook them. Active interactions involving the
target pucks tended to be informative about mass even if this was not the learners’ goal,
but this evidence quickly dissipated. When learning about forces, participants used most of
their control actions to bring the target pucks close together (‘Encroaching’), creating
unambiguous and extended demonstrations of the target relationship that often continued
beyond the point at which the pucks were released. In both trial types participants took
actions (like ‘Controlling’ and ‘Deconfounding’) that reduced the complexity of these
inferences by reducing how dependent the outcomes of the tests were on the distractor and
non-target properties. This is shown by the reduced Baseline PD during interventions in
Figure 12.

The most effective strategy for identifying masses in terms of the size of its PD spike
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and association with performance was ‘Shaking’, while ‘Encroaching’ played a dominant
role for force trials. Overall, the different strategies’ average predictive divergence was
positively related to participants’ propensity to select that action for a given goal.
Interestingly, the quality of active learners’ force-revealing actions predicted yoked learners’
accuracy but the same was not true for mass, suggesting that first-hand experience and
anticipation of actions while controlling the pucks was important for making use of the
extra evidence generated by those interventions that are diagnostic of mass.

General Discussion

Intuitive examination of our everyday experience suggests that we move and interact
with the physical world to reveal latent properties. But how effective are those actions at
helping us meet our learning goals? This is an interesting cognitive problem exactly
because it is so under-constrained. Here we take the first step toward understanding this
behavior by analyzing quantitatively how strategies reveal information in real time about
latent properties in a virtual physical world. We developed a framework for assessing the
evidential value of interactions with a simulated physical world applied it in two
experiments in which participants actively learned about the properties of objects in simple
2D physical “microworlds”. Experiment 1 revealed that participants who were able to grab
and manipulate the objects, are more accurate at identifying latent object properties than
passive or yoked observers. Our analysis revealed that part of this advantage stems from
the fact that active participants actions produced stronger evidence about the target
properties than was produced by the naturally occurring dynamics. In Experiment 2, we
investigated whether the worse performance by yoked participants was due to uncertainty
about the active participant’s current goal. Yoked participants who were given the same
learning goal no longer underperformed their active counterparts overall (but were still
somewhat worse on mass judgments), while those with a different learning goal remained
disadvantaged. Going beyond our primary aims, we also found systematic differences in the
strategies people adopted dependent on their learning goal that we classified (through a
combination of video coding and information measurement) as a set of micro-experimental
strategies. In summary, our key findings are:

1. Human intuitive experimentation in physical environments depends systematically on
learning goals and is formally effective at revealing physical properties of interest.

2. Learning from observing another person’s actions is only successful when the goal is
shared and unambiguous, and the evidential signal does not depend on an ability to
anticipate the other person’s next action.
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3. Learners’ sequences of actions are characterizable as micro-experiments that
emphasize particular properties while minimizing the confounding influence of
uncertainty about other properties.

We now discuss these findings more broadly in the light of ongoing and related work. We
first discuss our simulation framework, then revisit differences between active and yoked
observational learners before turning to the questions of how learning strategies are
themselves learned and the connections between naturalistic active learning and control.

Simulation

The idea that we use mental simulations to reason about physics raises important
questions about how such a simulator could be implemented in the brain, as well as
questions about its specificity, optimality and ability to deal with uncertainty (Davis &
Marcus, 2016; Davis, Marcus, & Chen, 2013; Davis et al., 2013; Marcus & Davis, 2013).
While much of the details of what form this intuitive understanding takes still need to be
worked out, the results of these and number of recent experiments are consistent with the
view that people have a rich intuitive theory of physics that supports approximately
accurate mental simulations of several aspects of physical scenes (Gerstenberg et al., 2012,
2015; Smith et al., 2017). Thus, although deeply related, in the current paper we remained
agnostic about how people represent and reason about the physical world and instead
focused on the question of whether actions human learners take in the dynamic physical
worlds are informative about latent physical properties. In particular, we viewed this
question from the perspective of an Ideal-Observer analysis (Geisler, 1989; Kersten,
Mamassian, & Yuille, 2004; Marr, 1982). This allowed us to quantify the information
available to the learner, and the amount of information generated by the learner’s actions,
without making specific claims about the psychological mechanisms that underlies people’s
understanding of physics. To be clear, our intention is not to claim that people are
near-normative at learning in this domain. The normative model provides a useful
benchmark to compare participants’ actions and judgments against.

Information measures and detectable differences

One difference between participants’ judgments and our information measures was
that the models suggested there was more information available about mass than force,
while around two thirds of participants still found the mass question more difficult to
answer than the force question. There are several possible explanations for this. One is
that participants were also uncertain about other aspects of the worlds which were not
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included in the simulations. For simplicity, our ideal observer model started its simulations
with the true locations and velocities and had accurate knowledge of the worlds’ fixed
properties (e.g., the elasticity of the objects, the friction, the strength of the attractive
force of the mouse on controlled objects, the laws of the simulated physics). It could be
that incorporating uncertainty about these other aspects makes the model likelihoods and
predicted divergences less sensitive to differences in mass.

Another possibility is that participants may have made inferences that go beyond
what our ideal observer model captures. For instance, participants experienced attraction
and repulsion among the non-target as well as between the target objects. Thus,
participants may have learned about the characteristic behavior of attraction and repulsion
partly by comparing against these other objects’ motion. Our ideal observer model does
not capture this between-object generalization of expectations about dynamics, but could
be extended to do so by including shared, or hierarchically related parameters (Kemp,
Goodman, & Tenenbaum, 2010; Lake, Ullman, Tenenbaum, & Gershman, 2017).

A third possibility is that the kinds of divergences caused by the local forces are more
easily spotted by our perceptual system. The local forces created qualitative differences in
the paths of objects (e.g. making objects veer toward or away from one another rather
than continuing in a straight line) while the masses affected things more quantitatively (e.g.
affecting the degree of veering or the angle of exit from collisions). Our ideal observer
model assessed likelihoods using the distance between simulated objects’ projected motion
in terms of magnitude r and angle θ. Separating these aspects of the likelihood (as in
Figures A2 and A3 in the Appendix) reveals that the mass–force evidence asymmetry is
present in the magnitude information but not the angle θ information. It was not possible
to fit parameters of a multivariate likelihood model due to the large size of the data, so we
opted to scale r and θ by their empirical variances so that they contributed roughly equally
to our model predictions. However, it is plausible that the perceptual system is better
tuned to detecting change in direction than change in velocity (Tenenbaum & Witkin,
1983; Treisman & Gormican, 1988), especially as veering movements are hallmarks of
causal influences (Michotte, 1946/1963; Oakes & Cohen, 1990; White, 1995).

In general, the use of a quantified “distance” between a simulated and an observed
outcome in place of a proper likelihood function, is a new and growing area of applied
machine learning sometimes called “likelihood-free inference” (Gutmann, Corander, et al.,
2016). For example, finding parameter settings that minimize distance between forward
simulations and observations has proved an effective way to learn complex generative
models in particle physics (Brehmer, Freitas, López-Val, & Plehn, 2016) and systems
biology (Ratmann et al., 2007). However, a general issue with this approach is identifying a
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good distance measure. As such, it is instructive to examine what choices of distance
measure can explain the behavior of nature’s successful learners. Our assessment of a range
of distances for driving our IO model in the Appendix supports the idea that humans rely
on motion information, particularly direction change for physical inference.

Diagnosing differences between yoked and active learning

There are a number of ways one might model the differences between active and
yoked performers’ experiences. In our analysis, we treated all objects’ locations and
velocities as equally uncertain. However, it is plausible that active learners have a better
idea about the locations of objects while controlling them since they can incorporate direct
motor feedback from their mouse or finger on the track-pad (e.g. Körding & Wolpert,
2004). One could model this by assuming smaller perceptual uncertainty for objects under
control (captured by the β parameter in our model). This would result in the prediction
that active learners receive stronger evidence from events involving the controlled object.
Additionally, learners’ attention is certainly limited relative to the action in the scenes. We
cannot easily track the location of multiple objects at the same time (Scholl, 2001; Vul et
al., 2009). Thus, we might model learners’ attention as a focal window. Active learners
could then use their knowledge of planned action to focus their attentional window on a
region they expect to be informative. Yoked learners lack this foresight and hence are more
likely to be attending elsewhere when something informative happens.

A more mundane reason for why yoked learners might perform differently to active
learners is a difference in motivation and engagement with the task. Interactivity is often
seen as increasing engagement, leading to improved learning irrespective of differences in
information or a better match between evidence and processing (Berlyne, 1960; Gureckis &
Markant, 2012; Hebb, 1955). However, we attempted to equate motivation across
conditions by incentivizing participants. Furthermore, in Experiment 2 yoked–matched
participants performed as well overall as active participants while yoked–mismatched
participants were worse. This suggests that, when an active learner’s goal is unambiguous
and aligned to an observer’s, the observer is able to make commensurate use of the
evidence.

Learning to actively learn

Computing ideal interventions requires playing out all possible possible outcomes of
all possible actions in all possible worlds (Raiffa, 1974). This calculation is intractable for
any non-trivial world and plausibly-bounded learner. Fortunately, many active learning
situations share fundamental similarities. We are repeatedly faced with uncertainty about
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specific aspects of our current environment: How heavy is that suitcase? Can this table
support my weight? Will the surfboards stay on the roof of the car? Fortunately, the laws
of physics, as well as many of the materials involved, are shared across these everyday
contexts. Once we have a sense for what actions allow us to resolve uncertainty about a
familiar physical property, this can provide a strong prior about what will be effective in
the future, analogous to the way domain expertise supports one-shot passive inference
(Goodman et al., 2011; Vul, Goodman, Griffiths, & Tenenbaum, 2014). This perspective
may explain why humans are robustly successful at gathering information even though
calculating expected information is intractable. While transferring strategies from past
experience helps directly, having a good intuitive theory of physics, and of our own actions
in the world makes us more adaptable.

Several recent papers in machine learning have begun to explore learning to actively
learn in dynamic environments. For example, Denil et al. (2017) use reinforcement learning
to train deep neural networks to perform simple actions with the goal of identifying the
heaviest of a set of virtual blocks, or the number of (potentially occluded) blocks in a tower
(see also Chang, Ullman, Torralba, & Tenenbaum, 2016). Relatedly, Agrawal, Nair,
Abbeel, Malik, and Levine (2016) train a robotic arm to actively poke and prod real
physical objects and successfully predict their resultant displacement. These projects found
success through explicitly or implicitly encoding an abstract model of the action and state
spaces. This allows planning to be done in a top down way, one step removed from the
detailed realization of actions and dynamics (i.e. in pixel space). In the current task this is
like having a model that supports planning at the level of strategy selection, that is,
whether to ‘Shake’ or ‘Encroach’ given your inquiry goal.

Some developmental psychologists have argued that children are “intuitive scientists”,
with inquiry skills that are either innate or established early during development (Gopnik,
2012; Gopnik et al., 2004; Gopnik & Sobel, 2000; Lucas, Bridgers, Griffiths, & Gopnik,
2014). However, this perspective has not yet fleshed out how these scientific intuitions are
learned and applied across contexts, at least not to the extent that “intuitive theories”
have been in explaining few- and one-shot judgments (e.g. Gerstenberg & Tenenbaum,
2017; Lake et al., 2017; Tenenbaum, Griffiths, & Niyogi, 2007). We see the current
experiments as supporting the idea that adults are intuitive physical scientists in this
sense. Our participants were able to draw on their intuitive understanding of physical
dynamics when interacting with simulated physical objects, repeatedly applying strategies
that presumably work well in the real world, or that they discovered to be effective in
earlier trials. A nice example of such cross-trial transfer was the case of ‘Shaking’. We did
not come up with ‘Shaking’ when designing and piloting the task, but 21 out of 40
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participants in Experiment 2 discovered this strategy and used it multiple times in their
remaining mass block trials. Our PD analysis (e.g. Table 2) suggests that ‘Shaking’ is a
particularly effective way of answering the mass question: participants who used this
strategy answered the mass questions more accurately.

Notwithstanding their systematicity, the strategies we observed still largely lack some
key properties of formal experiments that help rule out artifacts and experimenter bias
(Winer, 1962). Our learners could not perform multiple actions in parallel, meaning that
there is generally no direct “control group” to compare an intervention against, and it
seems unlikely that random allocation played much role in participants’ choices of actions.
However this is a fundamental problem for online naturalistic learning, and presumably one
we must find ways to sidestep where possible.

Participants in our tasks certainly repeated actions many times, in this way
potentially averaging over variation in surrounding conditions. Furthermore, in line with
the mechanism of our inference models, they may often have made property inferences by
synthesizing an appropriate comparison through memory and simulation. Gerstenberg et
al. (2017) use eye tracking to show that when judging the causal role of a collision event,
participants’ eyes “play out” the counterfactual trajectory of objects if the collision had not
occurred. This suggests people estimate the causal effect of everyday physical interactions
by comparing what actually happened against expectations about what would have
happened otherwise. In a similar way, to learn in the current task, people must often have
been able to make informal comparisons between observations and either relevant
memories of past dynamics or synthesized expectations of dynamics. In the current context
for example, the learner cannot shake both objects at once so must shake A and then shake
B and compare the current motion against the recent memory. The behavior of two objects
during encroaching may be compared against the behavior in other trials, or for other pairs
of objects.

An interesting question is when, during development, children start to exhibit the
systematic and goal-directed active learning we observed in adults. Some studies have
suggested that children’s exploratory behavior is essentially random (Cole, Robinson, &
Adolph, 2016; Kretch & Adolph, 2017) while others have emphasized ways in which even
young children are sometimes efficient active learners (Bonawitz et al., 2011; McCormack,
Bramley, Frosch, Patrick, & Lagnado, 2016; Schulz & Bonawitz, 2007). The former
research has typically focused on children’s behavior in “real world” situations — for
instance, analyzing whether children walk purposefully around a laboratory playroom. The
latter has focused on more constrained tasks that lend themselves straightforwardly to
formal analyses — in which children select from a limited set of possible actions. One
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interesting exception is Stahl and Feigenson (2015), who show 11 month olds exposed
scenes that violate “core” (Spelke & Kinzler, 2007) principles, act in different ways
depending on which principle is violated. After an object appears to pass through a wall in
apparent violation of solidity, the infants tended to “bang” it, but having seen it appear to
roll off an edge without dropping, were more likely try to “drop” the object. This is
suggestive that rudimentary strategies for active physical inference may emerge very early.
However, the rudimentary classification precludes a more detailed assessment. Thus, a
variant of this task, perhaps using a touch screen interface, will be valuable for this debate.
We can allow children to engage in naturalistic, albeit simulated, real-time active learning,
record behavior in fine detail, and use our information framework to quantitatively assess
the systematicity of their actions.

Heuristics

Ullman et al. (2014, to appear) proposed a heuristic model of participants’ passive
learning in their task. The basic idea was that learners collect statistics about a world they
are observing — for example, the pucks’ average positions, velocities and pairwise distances
— and compare these to summary statistics of past observations (or internal simulations)
of worlds with known properties. For example, objects that attract one another tend to be
closer together, so when two objects are close together on average in a scene, the heuristic
will assign a high probability to an attractive force. This approach is more frugal than the
ideal observer model because the statistics do not depend on online simulation. However,
this approach is not directly applicable to the active setting. For instance, if you
repeatedly move pucks close together, then their average location is no longer a good guide
to their force relationship. However, a similar idea could be powerful within the expanded
framework we outlined above. For example, relative to an established active learning
strategy it could be enough to identify abstract statistical properties of the outcomes.
Given equal ‘Shaking’, or ‘Throwing’ of two objects of potentially different masses, will the
heavier one move more or less than the other? Given ‘Encroaching’, will an attractive
object veer toward or away? Such heuristic qualitative decision criteria could be learned
through experience and preplay (Pfeiffer & Foster, 2013). Once the characteristic effects of
interventions have been learned, an expert active learner need merely look out for some
critical signal in the dynamics following their intervention, without having to perform
costly online simulation and comparison.
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The road to control

We first introduced interventions as behaviors that affect the world without being
caused themselves (Pearl, 2000). However, the continuous and interactive nature of the
current task challenges this distinction. Active learners are likely to have planned their
actions based on their current beliefs and learning goal, tried to perform the action as
planned, and then updated their beliefs. This would be a reasonable idealization of some of
the more punctate actions such as ‘Throwing’ and ‘Launching’. However, many of
participants’ actions were extended in time, and clearly reactive to the ongoing dynamics.
For instance a learner might shake an object harder — moving the cursor faster and
further — if it reacts sluggishly. When ‘Encroaching’, a learner might end up “chasing” or
“dragging” one target with another depending on how it reacts, and in ways that were not
plausibly predictable in advance. Intuitively, these reactive behaviors themselves become
an important part of the evidence produced by the interaction. For instance, mass could be
assessed by comparing how hard an object must be shaken (how far and fast to move the
mouse in this task) to make it oscillate a certain amount. It would be just as reasonable to
infer mass this ways as to judge how far it oscillates for a fixed amount of ‘Shaking’. For
‘Encroaching’, having to constantly chase the other target is a clear mark of repulsion,
while being able to drag the other object is a mark of attraction. These examples are
perhaps rather idiosyncratic to the current task. In the real world, we intuitively assess
how heavy objects are by picking them up and monitoring how much effort we had to exert
to do so. In these cases, the primary evidential signal seems to come from the reactive
control required to achieve a goal, rather than from how the world reacts to a fully
preplanned action.

The above considerations suggest that, as the learning context becomes more
interactive and open-ended, active learning becomes increasingly closely related to an
adaptive , or “dual-”, control problem (Feldbaum, 1960; Guez, 2015; Klenske & Hennig,
2016; Schulz, Klenske, Bramley, & Speekenbrink, 2017). The idea is that in many real
world contexts, we face the “dual” problem of learning how something works while already
“on the job”. As a simple example, learning how to play tennis takes place, largely, while
attempting to play tennis. At first our shots are wild and do not go where we intend. But,
over many games, we learn to adapt our swing to different angles and speeds of the
incoming ball. Eventually we may become experts with a sophisticated control model of
tennis that allows us to get the ball where we want most of the time. Analogously,
participants in our task might have learned, in part, by attempting to move objects to
particular locations and adapting their control model of the world in the process, before
probing it to answer the test questions. In general, as we study richer, more physically
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embedded cognition, it seems likely that we will see an increasing convergence between
models of active learning and adaptive control.

The real world

The simulation-based framework we used in our task and analyses allows us to
precisely record participants’ real-time interactions and analyze them within a
computational framework that links idealized probabilistic inference with
information-driven action selection. We noted at the start that the microworlds we
explored here are a simplification of true physics. However, the methods we used to study
participants’ behavior in these worlds are very general and can be extended to more
physically realistic scenarios. In general, with this approach we can start to model
interactive behavior in any simulable scenario, whether information seeking or reward
driven.

Our inference framework is a form of analysis by synthesis where we assume the
learner strives to build an internal model that can produce the dynamics they observe
(Yuille & Kersten, 2006). The novelty here is that analysis is facilitated by having a precise
record of a participants’ experience. Furthermore, participants probative actions provide a
useful source of evidence about their learning trajectory, promising insights similar to how
eye-tracking is used to model attention and simulation (Gerstenberg et al., 2017).

Using our framework, computer and mobile game data could be used as case studies
of human adaptive control (cf. Mnih et al., 2013). Furthermore, the advent of augmented
reality displays will make it possible to study action in the physical world directly, precisely
recording and partially controlling an agent’s interactions with a real environment. Using
virtual reality devices like force-feedback gloves will also allow us to overcome the largest
remaining discrepancy between the nature of the experience of the task and that of real
world learning; the feeling of overcoming static forces, such as holding an object against
gravity or two magnets together against repulsion. In general, we feel it is crucial to closely
study behavior in realistic tasks. Such tasks better capture the immediate and dynamic
nature of real-world evidence, and resemble more closely the continuous learning and
control problem that characterizes the human experience.

Conclusions

Making sense of the physical world is one of the most fundamental problems for
cognition. The physical world is the primary source of data, as well as the ultimate
location of rewards. We are also intimately connected to it, affecting it in one way or
another with every action we take. Despite this, much of the research on the computational
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basis of active learning has stayed far from the coal face, typically studying learning from
abstract (normally passive) presentations of information that lack meaningful physical
extension. This is understandable since the complexity of natural environments complicate
the application of mathematical tools such as probability and information theory. However,
these tasks underestimate the richness and immediacy of the data that learners have access
to. The studies and analysis we present here take an important step toward bridging this
gap. Our task dynamics have a richness and immediacy familiar from the real world, yet
the simulation is still constrained enough to submit the results to familiar formal methods
used in analysis of prior active learning tasks. Most striking was the sophistication of the
active control strategies that participants used to reveal specific properties. How these
strategies are learned and applied in development is an interesting and open question in
psychology, and a formidable challenge in the search for more human-like artificial
intelligence.
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Appendix

Physics simulator settings

We used a standard open source 2D physics simulator called Box2D
(http://box2d.org/about/). Source code is available at
https://github.com/erincatto/Box2D. The simulator is written in C but to integrate it
with our Psiturk interface, we used a javascript port (box2d-js.sourceforge.net) of a
Flash port (http://box2dflash.sourceforge.net/) of the original engine.

Demo code for our Experiments is available at
https://github.com/neilbramley/active_physics. Table A1 details the settings for
the physics simulator common to both experiments.23,24

Data

The response data from both experiments and code for analyses is available at
https://github.com/neilbramley/active_physics.

Online information measures

We defined PDmass as the average predicted divergence between worlds w ∈ W
differing on the target mass dimension. To write this we split W into three subsets
W =WA ∪WB ∪Wsame such that models WA{i},WB{i} and Wsame{i} are identical on all
dimensions except the target mass. We then evaluated their expected divergence by
averaging over all comparisons (e.g. A vs. B, A vs. same and B vs. same) and all other
properties (e.g. i ∈ |W|3 ), using the same Gaussian error assumption as Ullman et al. (2014,
to appear) and Equation 1. To get a measure that increases for greater average divergences
(unlike the likelihoods that decreased), we subtracted these scores from 1. The resulting
average divergence can be written as:

23Damping in Box2D slows objects while they are not in contact with any other objects (like wind
resistance). The controlled object was given high damping to prevent it from oscillating for a long time
around the cursor location.

24Friction in Box2D occurs when two objects slide past each other while touching (e.g. a puck sliding
along a boundary wall).

http://box2d.org/about/
https://github.com/erincatto/Box2D
box2d-js.sourceforge.net
http://box2dflash.sourceforge.net/
https://github.com/neilbramley/active_physics
https://github.com/neilbramley/active_physics
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Table A1
Physics world settings

Parameter Value
N frames 2700 (Exp 1), 1800 (Exp 2)
Trial length 45s (Exp 1), 30s (Exp 2)
Box2D step size 1/60s (≈ 17ms)
Pixels to meters 100
Object velocity cap 30 m/s

Refresh criterion Fastest object < 0.25 m/s

Pause on refresh 500ms
Starting velocities (x, y) drawn from Unif(−10, 10) m/s

World width 6m (600 pixels)
World height 4m (400 pixels)
Attractive forces +3 m/s2

Repulsive forces −3 m/s2

Controlled object attraction cursor .2× dist(cursor, object) m/s2

Controlled object damping 10
Puck masses 1kg (2kg for heavy target)
Puck friction .05
Puck elasticity .98
Puck damping .05
Puck radius 0.25 m
Puck object types Dynamic
Wall mass n/a
Wall friction .05
Wall elasticity .98
Wall damping n/a
Wall width 0.2m
Wall object types Static

PD
mass

= 1− E
I<J∈[WA,WB ,Wsame]

[
E

i∈I,j∈J

[
e−

η
2 (st−dt)>Σ−1(st−dt)

]]
. (A-1)

We do the same for PDforce, replacing WA,WB and Wsame with Wattract,Wrepel and Wnone:

PD
force

= 1− E
I<J∈[Wattract,Wrepel,Wnone]

[
E

i∈I,j∈J

[
e−

η
2 (st−dt)>Σ−1(st−dt)

]]
. (A-2)

Finally, to compute baseline PD we repeat this procedure for all 7 dimensions of the
problem ∀ z ∈ Z (e.g. the target mass, target force and the five possible distractor forces)
and take the average of all of these:
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PD
baseline

= 1− E
z∈Z

[
E

I<J∈[Wz1 ,Wz2 ,Wz3 ]

[
E

i∈I,j∈J

[
e−

η
2 (st−dt)>Σ−1(st−dt)

]]]
. (A-3)

We assumed a different scaling parameter η = 10 for the predictive divergence
measures (Equations A-1, A-2 and A-3) rather than the β = 1

50 for computing model
posteriors (Equation 1). Using the same parameter for both led to underflow in the case of
PD because, while the overall likelihood is a product over all frames, the predicted
divergences are computed per frame then averaged for each ten frame snap-back window.
In other respects, a range of values for β and η did not affect the reported comparisons.

Free response coding
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15 7 275 1 2 4 3 24 18
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Figure A1 . Confusion matrix for our two independent strategy coders, showing close
correspondence between coders and no clear systematicity to disagreements with the
exception of a greater tendency for coder 2 to assign multiple or unclear.

Comparing different distance measures for likelihood approximation

Figures A2 and A3 illustrate the differences in information model predictions
depending which aspects of physical dynamics are used to calculate likelihoods and
predictive divergences. Figures A2 compares measures at a high level of aggregation
showing that location information x, y largely yields results similar to those from motion
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information r, θ but results in somewhat lower posterior uncertainty about masses. We
include log r because ∆ log r encodes relative magnitude information in line with Weber’s
law (1834). That is, a doubling of magnitude has the same ∆ log r regardless of the
absolute values involved. However, for these data log r proved relatively non-diagnostic
about both key properties. Focusing only on θ also results in high uncertainty about both
properties and as such, both of these measures might resolve the inconsistency between
human and model accuracy about masses. However they also fail to capture pattern shown
by the other measures and combinations in Experiment 2 A2b, whereby participants
generate more information about mass when this matches their goal.

Figure A3 compares the measures at a low level, in terms of the instantaneous
predictive divergence they predict across the trial used in Figure 7 in the main text. We
include plots showing these variants for all participants and trials paired with the replay
videos for Experiment 2 in the online supplement available at
https://github.com/neilbramley/active_physics.
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Figure A2 . Comparison of entropies resulting from combining different distance measures
with Equation 1. a) Experiment 1: Comparing mass and force entropy across passive and
active trials as in Figure 5. b) Experiment 2: Comparing mass and force entropy across
mass and force question blocks as in Figure 10.

https://github.com/neilbramley/active_physics


INTUITIVE PHYSICAL EXPERIMENTATION 60

Figure A3 . Example trial from Experiment 1 as in Figure 7. Replay:
https://neilrbramley.com/experiments/apl/e1/replays?p=1 a) Timelines for PD
using various combinations of distance measure. b–d) As in Figure 7, visualizations of
actions during clip. A sequence of screen-shots are superimposed with later frames
becoming more opaque. Thick black circles indicate controlled object and “+” indicates
the mouse.

https://neilrbramley.com/experiments/apl/e1/replays?p=1
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