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Abstract

A large body of research has explored how the time between two events affects judgments of

causal strength between them. In this paper, we extend this work in 4 experiments that explore

the role of temporal information in causal structure induction with multiple variables. We

distinguish two qualitatively different types of information: The order in which events occur, and

the temporal intervals between those events. We focus on one-shot learning in Experiment 1. In

Experiment 2, we explore how people integrate evidence from multiple observations of the same

causal device. Participants’ judgments are well predicted by a Bayesian model that rules out

causal structures that are inconsistent with the observed temporal order, and favors structures

that imply similar intervals between causally connected components. In Experiments 3 and 4, we

look more closely at participants’ sensitivity to exact event timings. Participants see three events

that always occur in the same order, but the variability and correlation between the timings of

the events is either more consistent with a chain or a fork structure. We show, for the first time,

that even when order cues do not differentiate, people can still make accurate causal structure

judgments on the basis of interval variability alone.

Keywords: causal learning; structure induction; time; order; Bayesian model.

Word count: 13749
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Time in Causal Structure Learning

Many aspects of higher level cognition, including prediction, explanation, and goal-directed

action, depend on representing the causal structure of the world (Sloman, 2005; Tenenbaum,

Kemp, Griffiths, & Goodman, 2011). But, how do people learn this structure? Research has

predominantly focused on learning from statistical covariation between variables (Cheng, 1997;

Deverett & Kemp, 2012; Gopnik, Sobel, Schulz, & Glymour, 2001; Perales & Shanks, 2007)

sometimes involving active interventions on the system (Bramley, Lagnado, & Speekenbrink,

2015; Meder, Mayrhofer, & Waldmann, 2014; Sloman & Lagnado, 2005; Steyvers, Tenenbaum,

Wagenmakers, & Blum, 2003). However, people utilize a range of sources of information in causal

learning (Lagnado, Waldmann, Hagmayer, & Sloman, 2007) and human causal knowledge goes

beyond mere expectations about covariation (Gerstenberg, Goodman, Lagnado, & Tenenbaum,

2015; Sloman & Lagnado, 2015).

In this paper, we focus on the role of time in causal structure induction. To be able to

predict and diagnose causality in real-world situations, we must form expectations about how long

different relationships take to work (Griffiths & Tenenbaum, 2009; Lagnado & Sloman, 2006). For

example, we learn to expect a radiator to heat up within a few minutes of turning on the boiler;

to feel an effect of a pill after around half an hour; and for the TV to come on a second or two

after we press “power” on the remote. Such expectations, in turn, support structure inference

(Buehner & McGregor, 2006; Griffiths & Tenenbaum, 2009; Hagmayer & Waldmann, 2002; Kemp,

Goodman, & Tenenbaum, 2010). If the stereo comes on shortly after we press “power” on the

remote, we wonder whether we have picked up the wrong remote. If the TV comes on soon after,

we might infer that both the TV and stereo are tuned to the same signal, or start looking for

another cause for the stereo’s activation. In general, consistency between an observed sequence of

events and the predictions of different causal models provides evidence about the underlying

relationships. This temporal information is unavailable to a purely contingency-based learner who

only uses the statistical associations between events.

Much of the extant research has focused on judgments of causal strength. Here, the causal

structure is known and the question is how strong or reliable the relationship between cause and
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effect is. However, in everyday life, variables do not normally come neatly packaged as causes and

effects — one must first learn the causal structure relating the variables. A number of recent

papers have explored this more general problem. This work often compares human judgments

with the normative predictions of Pearl’s (2000) causal Bayesian network (CBN) framework (see

also Spirtes, Glymour, & Scheines, 2000). The CBN framework supports probabilistic inference

on structured representations, and provides a normative calculus for reasoning both about the

consequences of observations as well as hypothetical (or counterfactual) interventions.

By defining a language for expressing possible causal models, the CBN approach allows

causal learning to be framed as a Bayesian model induction problem, where the learner uses

observed evidence to infer an underlying causal structure. From this perspective, people are

generally found to be effective causal learners making inferences that are broadly normative (e.g.,

Griffiths & Tenenbaum, 2005; Lagnado & Sloman, 2002, 2004, 2006; Steyvers et al., 2003) but

also exhibiting the signatures of inductive biases and cognitive limitations (Bramley, Dayan,

Griffiths, & Lagnado, 2017; Bramley, Dayan, & Lagnado, 2015; Bramley, Lagnado, &

Speekenbrink, 2015; Coenen, Rehder, & Gureckis, 2015; Mayrhofer & Waldmann, 2016; Rehder,

2014; Rottman & Hastie, 2013, 2016).

A shortcoming of the CBN framework is that Bayesian networks do not naturally encode

the temporal or spatial dimensions of causal beliefs (cf. Gerstenberg & Tenenbaum, 2017).

Consequently, many studies have focused on situations where information about time and space is

non-diagnostic or abstracted away. When temporal cues have been pitted against statistical cues

experimentally, judgments tended to be dominated by temporal information (Burns &

McCormack, 2009; Frosch, McCormack, Lagnado, & Burns, 2012; Lagnado & Sloman, 2004, 2006;

Schlottmann, 1999). Furthermore, when researchers have tried to instruct participants to ignore

event timing, participants still often treated the observed timings of events to be diagnostic

(McCormack, Bramley, Frosch, Patrick, & Lagnado, 2016; White, 2006). These results suggest

that we cannot tell a complete story of causal representation without accounting for the role of

time. In the current paper we take a novel approach: we eliminate statistical contingency

information, and focus exclusively on what participants can learn about causal structure from

temporal information.
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The paper is structured as follows. First, we review the literature on causal learning and

time. After describing the learning problem we focus on, we outline the Bayesian framework and

methodology we use to explore human causal learning in time. We contrast a model that attends

only to event order against models that also form expectations about delays. Experiment 1

explores one-shot judgments, based on a single observation of a simple device operating through

time, asking whether people’s judgments are driven only by the qualitative order in which events

occur, or whether they also expect similar delays across connections. Experiments 2–4 look at

how people integrate evidence from multiple observations of the same device, again asking

whether judgments are based only on event order, or additionally based on preference for similar

causal delays. Experiments 3 and 4 test whether participants can infer the true causal structure

from delay variability and correlation alone, when the order of events is held constant but the

timings of the events are either more consistent with a chain or a fork structure.

Existing research

Temporal information is relevant for causal inference in at least two respects. First, the

temporal order of events places hard constraints on what could have caused what. Second, within

these constraints event timings provide additional evidence for distinguishing further between

order-consistent causal structures.

Temporal order. Since effects cannot precede their causes, the order in which events

occur is an important cue to causality. In line with this, much of the human and animal learning

literature is built around the notion that learners readily form associations from one event to the

next (Pavlov, 1928; Skinner, 1938; Watson, 1913). Associative theories try to account for learning

as an automatic pairwise association of stimuli. However, recent re-analyses of classical

conditioning phenomena have suggested that learning is often better understood as involving

inferences about the causal structure that is responsible for the observed events (Courville, 2006;

Courville, Daw, Gordon, & Touretzky, 2003; Courville, Daw, & Touretzky, 2004, 2006; Gershman

& Niv, 2012).

In the causal learning tradition, several papers have explored the role of temporal

information in structure inference. Rottman and Keil (2012) investigated how people infer the
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causal structure of multiple variables measured at discrete time points at which variables may be

subject to exogenous influences or interventions. For example, suppose you are interested in an

amoeba that occasionally produces two different hormones. Suppose it is producing neither

hormone at time t− 1. If, at time t, you stimulate the production of one of the hormones and the

other hormone is also produced, this invites the inference that the first hormone causes the

production of the second. Importantly, this inference is based on the fact that the second

hormone’s level changed state relative to the preceding time point, while pure covariational

inference would treat each measurement as independent. In seven experiments, the authors found

that people readily attribute causal relationships from variables influenced at time t to others

whose state changed relative to t− 1, doing so even if a cover story strongly suggests

independence (i.e., if a new amoeba is measured at each time point).

Experienced event order also affects people’s causal judgments when events take place in

continuous rather than discretized time. Lagnado and Sloman (2006) explored a situation that

contrasted trial-by-trial covariation with temporal order cues. In their experiment, a virus

propagates through a network and infects computers at different times. Participants’ task was to

infer the structure of these computer networks based on having observed the virus spreading

through the network multiple times. Participants preferred causal models that matched the

experienced order in which computers displayed infection, even when covariation cues went

against temporal order cues.

Event timings. Not only the order in which events occur but also their exact timing is

important for causal inference (Hagmayer & Waldmann, 2002). A basic associative learning result

is that, as the average interval between two events increases, the associative strength between the

two events decreases (Grice, 1948; Shanks & Dickinson, 1987; Wolfe, 1921). Early cognitive

theories predict this effect by suggesting that the more distant two events are in time, the more

costly it is to sustain the first event in working memory long enough to relate it to the second,

leading to monotonic reduction in causal judgments (Ahn, Kalish, Medin, & Gelman, 1995;

Einhorn & Hogarth, 1986). Buehner and May (2003) and Lagnado and Speekenbrink (2010) give

a normative justification for why delays often lead to reduced judgments of causality. All things

being equal, the longer the gap between putative cause and effect, the more likely it is that other
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events may have occurred in the meantime that could have also caused the effect.

However, shorter intervals do not always lead to stronger causal inferences. Rats form food

aversions even when sickness is induced hours after eating — reflecting the true time course of

food poisoning (Garcia, Ervin, & Koelling, 1966). Likewise, longer fixed-interval reinforcement

schedules in pigeons result in longer delays between the appearance of the reinforcer and pecking

responses (Gallistel & Gibbon, 2000; Skinner, 1938). These results show that time-delayed

associations are formed and can be used to guide action in animals.1

Humans make causal inferences that are sensitive to expectations about delays due to

causal mechanisms. Seeing shorter-than- as well as longer-than-expected intervals leads to

reduced causal strength judgments (Buehner & May, 2002, 2003, 2004; Greville & Buehner, 2010,

2016; Hagmayer & Waldmann, 2002; Schlottmann, 1999). Variability in inter-event intervals has

usually been found to reduce causal judgments (Greville & Buehner, 2010; Greville, Cassar,

Johansen, & Buehner, 2013; Lagnado & Speekenbrink, 2010), although also in one case, to

increase them (Young & Nguyen, 2009). Young and Nguyen explain this increase as a

consequence of experiencing occasional very short delays when there is high variability. While

these studies have focused on situations in which there is a single candidate cause–effect pair, in

this paper, we explore the more general problem of inferring the causal structure of multiple

variables based on observations of events in time.

Griffiths (2005) showed how different expectations about delay distributions allow for

strong one-shot causal structure inferences. In his experiments, participants made causal

judgments about “nitroX” barrels that were causally connected and exploded in different

sequences. Because different causal models imply different event timings, the Bayesian model

rapidly inferred the causal structure from an observed sequence of exploding barrels. Building on

this work, Pacer and Griffiths (2012) model causal inference in situations where a discrete event

affects the rate of occurrence of another variable in continuous time (cf. Greville & Buehner,

2007), and Pacer and Griffiths (2015) capture situations where causal influences last for some

time before they gradually dissipate.
1Whether or not these behaviors rely on causal beliefs is debated (Blaisdell & Waldmann, 2012; Clayton &

Dickinson, 2006).
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Pacer and Griffiths’ approach is well-suited for capturing situations where events alter the

rate of occurrence of other events. It does not readily apply to situations in which causes bring

about their effects exactly once. In this paper, we focus on situations in which the relationship

between causes and effect is singular.

Modeling causal induction from temporal information

We present a modeling framework for understanding how temporal information affects

causal beliefs. We first introduce our inference problem, and then lay out a Bayesian

ideal-observer approach to modeling learning in this situation. We distinguish between learning

based on information about temporal order alone from learning based on forming parametric

expectations about temporal intervals between causes and effects.

The learning problem

The learner’s task is to identify the causal structure of a system made up of a number of

components that are causally related but in which the causal links take time to propagate. The

learner knows that the causal relationships are generative and deterministic. Each activation of a

cause component will invariably lead to the activation of its effect component(s), but the

cause-effect delays are variable across instances.

For example, in the A-fork (see Figure 1d) it might take longer on average for A to cause B

than for A to cause E. Furthermore, the same connection might also exhibit variability in delays

across trials — for example, A’s causing E might be subject to longer or shorter delays on

different occasions. As a consequence of this variability, many causal structures can generate

several qualitatively different orders of activation.

In Experiments 1 and 2, we focus on judgments about the causal structure of a simple

system with two causal components A and B and an effect component E that form a hypothesis

space of seven possibilities (Figure 1). In Experiments 3 and 4, we focus on a more restricted

space of two models, with a chain from S to A to B, or an S-fork where S is a direct common of

both A and B. In all experiments, participants see video clips that show how the components of a

causal device activate over time.
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Figure 1 . Possible causal structures in Experiments 1 to 3. The arrows indicate the direction of the causal

relationship. Dotted lines indicate different types of structure. Note: The Collider is conjunctive — both A

and B must occur for E to occur.

Bayesian models of learning with time

From a Bayesian perspective, learning is the process of updating a probability distribution

over the true state of the world, where the ground truth is treated as a random variable and its

possible values make up the hypothesis space. A Bayesian learner updates her prior probability

distribution into a posterior distribution after evidence is observed. The posterior from one

learning instance becomes the prior for the next. With sufficient evidence, the learner’s subjective

beliefs should eventually approximate the ground truth provided that the hypotheses are

distinguishable2 and the hypothesis space contains the ground truth (Chater & Oaksford, 2008;

de Finetti, 1975; Lee, 2012; Savage, 1972).

Exact Bayesian inference is intractable for most realistically complex problems. However,

for a suitably constrained problem space like the one explored here, Bayesian inference provides a

normative yardstick for evaluating human learning. We can look at how people update their

beliefs as evidence is presented, and learn about the prior assumptions they bring to the task.

In the current context, the random variable we are interested in is the true underlying

causal structure s ∈ S from the set of possible structure hypotheses S, and data will take the

form of n observed patterns of component activations over time d = (d1, d2, . . . , dn). We update a

prior belief about the possible underlying structures p(S) to a posterior belief over the structures

given the data p(S|d) using Bayes’ theorem

p(S|d) ∝ p(d |S) · p(S), (1)

where p(d |S) is the likelihood function over structures S.
2See Glymour (2001) for cases where causal structure hypotheses may not be distinguishable.
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For inference to proceed, the learner needs a likelihood function determining how likely each

structure would be to exhibit the set of experienced temporal patterns d. We first propose a

model based on simple likelihood functions that ignore the exact timing of events but are simply

based on temporal ordering. We then consider a richer framework that incorporates expectations

about causal delays. We show how, based on the principles of Bayesian Ockham’s razor (MacKay,

2003), both approaches form preferences for different causal structures requiring neither

contingency information nor specific a priori expectations about the duration or variability of the

delays.

Only order matters

Likelihood functions. The order of events constrains what structures could possibly

have produced the observed evidence. We capture the information contained in the temporal

order of events in a simple “Order model” that divides its likelihood evenly across all

order-consistent patterns. Hence, any particular sequence of component activations has likelihood

1/N , where N is the number of distinct temporal orderings consistent with that structure

(Figure 2b, columns). In the following, we use the � operator to denote event order. For example,

A � B � E means that A preceded B which preceded E. AB � E means that A and B happened

simultaneously before they were succeeded by E.

In the A-fork, A is the cause of both B and E, therefore this structure is consistent with

patterns in which A preceded both B and E (A � B � E, A � E � B and A � BE, see

Figure 2a) but inconsistent with any pattern where either B or E precede A. Whether AB � E

or AE � B are consistent with the A-fork depends whether one assumes causes and effects can

occur simultaneously. In prior work using the same paradigm, people treated simultaneous events

as inconsistent with the hypothesis that one caused the other (Bramley, Gerstenberg, & Lagnado,

2014). Thus, we assume here that simultaneous events cannot have caused each other.

When two or more structures are compatible with a particular evidence pattern, the Order

model favors causal structures that are consistent with fewer evidence patterns compared to

structures that can produced the observed patterns as well as well as many others. For example,

the AB-chain is only compatible with pattern (A � B � E in row 2), while A-single is consistent
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Figure 2 . a) Seven possible qualitatively different temporal patterns of three events A, B, and E. b)

Likelihood of each pattern type for the seven different causal structures. Each structure spreads its

likelihood evenly amongst the qualitative temporal order patterns it could produce.

with all but two patterns, and thus spreads its likelihood much more widely (cf. Figure 2).

Switching focus from Figure 2’s columns to its rows gives a perspective on the model’s posterior

predictions. For instance, upon observing a device that activates in the A � B � E order

(Figure 2a evidence pattern 2), the Order model will favor the AB-chain, even though it has not

ruled out the Collider, the A-fork, or either of the two single-link structures A-single and B-single.

As another example, after observing pattern 1) AB � E, the Order model will rule out all

structures except for the Collider, A-single, and B-single. Between these remaining structures, it

prefers the Collider since it is consistent with fewer evidence patterns (MacKay, 1991; Myung &

Pitt, 1997).
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Figure 3 . Two examples of predictions by the Order model. a) Sets of 4 time series showing staggered

activation of components A, B and E. b) Model posteriors for an initial judgment after seeing clips 1–3

(left column), and for a second judgment after having seen all four patterns (right column).

Inference. After seeing data d in the form of one or several temporal order patterns,

inference proceeds by updating a prior over causal structures p(S) to incorporate this data.

The Order model only considers the qualitative ordering of the component activations, for

example d = (d1 = {A � B � E}, d2 = {AB � E}, . . .), where di indexes independent

observations of the device. Starting from a uniform prior over the seven structures, Figure 3

shows posteriors based on having observed three patterns of activation d1, d2, and d3, and then

again after having observed a fourth pattern d4. In the first example (top row), the model favors

the Collider after d1, d2, and d3 and this preference increases with d4. In the second example

(bottom row), the model prefers the Collider after d1, d2, and d3 but switches upon d4 which rules

out out all the structures except the A-single.

Timing matters

Generative model. The Order model makes the strong assumption that any activation

pattern whose temporal order is consistent with the device is equally likely. While simple to work
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with, the assumption is likely to be inconsistent with more specific beliefs about delays between

causes and effects. For example, people may believe that causes take a certain amount of time to

bring about their effects and that these delays will be similar across instances. To capture these

intuitions, we need a richer representation that incorporates assumptions about how and when

events are brought about.

In our task, an observed temporal pattern di consists of the activation times tX of the three

components A, B, and E; thus di = {tiA, tiB, tiE}. We will use tXY to refer to the temporal interval

between the activations of X and Y (i.e., tXY = tY − tX). Additionally, we will use tX→Y to

distinguish causal delays from temporal intervals tXY which are not necessarily causal.

Independent events. We start by formalizing the timing of independent events that do

not have any parents in the causal structure (such as variables A and B in the Collider, A-single,

and B-single). Because these events occur without being caused by other variables in the causal

model, the model cannot tell us when we should expect them to occur. Thus, analogously to

causal Bayes nets, in which independent causes are assumed to be statistically independent from

each other (i.e., uncorrelated), we define independent causes to occur temporally independently of

one another as well as independent from the (artificially determined) beginning of a clip. We use

an exponential distribution to model temporal independence. The exponential distribution is

“memory-less” meaning that your expectation of when the event will occur is constant over time.

If X is an independent event then the timing of X is determined by

p(tX |λ) = λe−λtX (2)

with p(tX |λ) = 0 for activation times smaller than 0 and expectation 1
λ .

Causal links. The generalization of the exponential distribution is the gamma

distribution. It introduces dependence on the start time (i.e., the cause) with flexibility in the

form of this dependence ranging from a strong and specific to a vague and widely distributed

expectation about when the effect will occur. Gamma distributions can be defined by a shape

parameter α and an expectation µ. Under the assumption that X causes Y , the timing of Y

depends upon the timing of X such that tY = tX + tX→Y with tX→Y being gamma distributed:
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Temporal independence is modeled by α = 1 (the exponential distribution). α > 1 capture positive

dependence, in which the expectation of an effect peaks some time after its cause.

p(tX→Y |α, µ) =
(αµ )α

Γ(α)(tX→Y )α− 1e−
α
µ
tX→Y . (3)

Figure 4 shows examples of gamma distributions for different parameter values. The

gamma distribution is flexible and allows to represent a continua of short (small µ) to long (large

µ) delays that are variable (low α) or reliable (high α).

As α→∞, the gamma distribution becomes increasingly centered around its expected

value, capturing reliable cause–effect delays (e.g., Figure 4, solid and dashed lines). One’s

expectation about the time of an effect increases following the observation of its cause, peaking

around its mean and then dropping away again. For α = 1 the gamma distribution is an

exponential distribution.3

Colliders/Common-effect structures. Within this framework, the Collider (i.e.,

common-effect structure) requires additional thought, since it involves a joint influence of two

distinct causes. There are various plausible combination functions for capturing this kind of joint

influence. In the experiments reported below, we explicitly stipulate that the Collider structure is
3Values of α < 1 capture what we might call “negative” dependence. This would capture a belief that, having

observed a cause, one expects to see its effect either right away, or in a very long time (e.g., Figure 4, gray dot-dashed

line), however we do not focus on such situations in this paper.
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conjunctive, meaning that the activation of E requires the activations of both causes A and B

and, by implication, the arrival of both of their causal influences (Rehder, 2011). To model this

conjunction, we consider the tE in a Collider structure to be the maximum of the two unknown

causal delays for tA→E and tB→E offset by their activation time

tE = max[tA + tA→E , tB + tB→E ] (4)

with tA→E and tB→E being gamma distributed (see Equation 3) and tA and tB being

exponentially distributed events (see Equation 2).4 Note that a disjunctive Collider would be

modeled by simply using the minimum instead of the maximum in Equation 4 (see Equations A-7

and A-9 in the Appendix).

Likelihood functions. The generative model laid out above provides the tools we need

to determine the likelihood of any observed temporal pattern given a structure hypothesis. To

distinguish different causal structures, we translate the absolute timings of a set of events into

specific cause–effect pairings, depending on the parents pa(X) of each variable under the

structure at hand. For instance, absolute timings {tA, tB, tE} will be translated into

{tA, tAB, tBE} with tAB = tB − tA and tBE = tE − tB under the AB-chain hypothesis. This means

that the same set of observed activation times is more or less likely depending on the assumed

underlying causal structure and delay distributions.

Model variants. Often it may be reasonable to assume that the different connections in

a causal system have the same underlying delay distribution. For instance, they might all be

components of the same type. However, in other situations, we might learn to expect completely

different delays for different causal relationships (for example, burning fossil fuels produces energy

quickly and environmental problems much more slowly). We can embody these different

assumptions with different model variants. The pooled model (DelayP , Figure 5a) has a single α

and µ parameter for all the delays within a single structure s ∈ S. In contrast, the independent

model (DelayI , Figure 5b) has separate parameters αc and µc for each causal connection c ∈ Cs

where Cs is the list of all connections in structure s. To capture weaker assumptions (e.g., that

the delay distributions for relationships within a device are related but not identical), one could
4We derive the full equations for the Collider likelihood assuming shared parameters for the input connections (as

in DelayP ) and separate parameters (as in DelayI), in the Appendix.
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Figure 5 . Delay sensitive models and predictions. a) i. Pooled DelayP in plate notation. ii. Going from

evidence to structure inference in the pooled model. Observed event timings are mapped onto causal delays

under different models. Each row shows the causal delays assuming a different structure. For the Collider,

dashed lines indicate that one or other causal delay may be shorter than the observed intervals. Red arrows

indicate that structures can be ruled out based on order alone. iii. Posterior predictions of the delay model

assuming priors of S ∼Unif( 1
7 ), α ∼Exp(0.1), and µ ∼Exp(0.0001). b) i. Independent DelayI model in plate

notation. ii. 12 patterns of evidence ordered by increasing tSA. iii. Posterior marginal inference for two

possible structures. The plots show posterior observed intervals (red triangles) delay samples (gray lines)

and their overall density (dotted black line). Both structures share the same tS→A delays, but the high

variance of tAB relative to tSB means this data was more likely produced by a fork as shown in iv., which

plots the posterior probability of the fork structure averaged over subsets of the 12 clips (red line gives

smoothed average, black dots give posteriors for samples). c) An example of a hierarchical DelayH model in

plate notation, where different components have different distributions but are related by hyperparameters.

extend this with a hierarchical model (DelayH , Figure 5c) that combines expectations about the

variability of the different distributions within a device via hyperparameters that define

distributions for α and µ, although we do not do this in the current paper.
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To see how this timing sensitivity supports causal structure inferences, let us assume that a

learner observed the following order of activation: A � B � E. If she makes the DelayP

assumption that cause–effect delays for the connections in this device come from the same

distribution, we would expect her belief about whether the underlying causal structure was a

Collider, an AB-chain, or an A-fork to shift depending on tAB and tBE . Intuitively, if tAB and

tBE are similar, this is most consistent with an AB-chain. However, if tBE is very small this

seems more consistent with the A-fork (in which tA→B and tA→E would be similar). If tAB is very

small then the device might be a Collider (where we would expect tA→E and tB→E to be similar).

DelayP makes these predictions via Bayesian Occam’s razor. Essentially, it assumes all causal

delays of the connections in a device follow the same underlying gamma distribution GX→Y (α, µ).

Even if we have only a vague idea what specific form this distribution takes (as specified by priors

on α and µ), the model will still tend to favor whatever causal hypothesis renders these causal

event timings the most similar on average. The more tightly clustered the inferred delays are, the

more compact the generative causal delay distribution can be (here a high average α shape

parameter), which leads to higher likelihoods being assigned to the data points. See Figure 5a for

an illustration of this point. The late occurrence of B is most consistent with an A-fork under

which tA→E is similar to A→B, but also quite consistent with the Collider where it could be the

case that tA→E and tB→E are both short but where some time passes between the arrival of A’s

influence and B’s influence.

Inference in the independent DelayI model (Figure 5b) proceeds in same way, but with

separate parameters for the delay distributions of the different causal connections c ∈ C [e.g.,

α = (α1, . . . , α|C|) and µ = (µ1, . . . , µ|C|)]. That is, it assumes there is no relationship between

the delays of different parts of a causal device. The distribution of delays implied by mapping

event timings onto different causal models can still be diagnostic, provided one interacts with the

same device more than once. Figure 5b gives an illustration of this. Here, the temporal intervals

tiSB for {i ∈ 1, . . . , 12} are consistently around 2 s, while tiSA and tiAB are much more variable.

Despite the fact that mere temporal order favors the SA-chain, we can actually explain these

patterns of evidence more parsimoniously by assuming that the true structure is an S-fork with a

regular S → B connection and an irregular S → A connection. It is possible that the true
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structure is a chain, but the chain structure cannot explain the additional systematicity in the

data whereby the variation in the tS→A and tA→B intervals almost perfectly cancel out.5

Summary

In summary, the Order model operationalizes inference based purely on the qualitative

ordering of observed activations. While this model is effective at ruling out inconsistent causal

structures, it is limited in its ability to distinguish between structures that are consistent with the

observed order of events.

The delay-based models pooled DelayP and independent DelayI make inferences within the

space of hypotheses not-yet-ruled-out by the Order model, but distribute their likelihood very

differently depending on the expected rate and variability of the various inter-event intervals.

Assuming an uninformative prior on shape α and mean µ, the pooled delay model DelayP favors

whichever structures render the experienced inter-event intervals the most regular across all

connections and all instances (e.g., an AB-chain if tAB and tBE are both reliably 1 second), while

the independent delay model DelayI favors whichever structures imply the most regular

within-edge delays on average, even if the mean causal delays differ considerably for different

connections (e.g., an AB-chain if tAB is a reliable 1 second and tBE is a reliable 5 seconds).

Overview of Experiments

The task

We designed a task environment in which participants observed causal devices exhibiting

one or several patterns of activation, and then made judgments about how they thought the

components of that device were causally connected. Evidence was presented in the form of short

movie clips. Each clip simply showed three components, (A, B, and E in Experiments 1–2, and S,

A and B in Experiments 3 and 4), which were represented by circles and arranged in a triangle

(see Figure 6a bottom left). During each clip, all three components activated by turning from
5We note though that with additional assumptions about the functioning of the device the reverse inference might

hold. For example, if the A → B connection was somehow designed to cancel out variation in S → A so as to lead

to a reliable tB .
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a) b) c)

Figure 6 . a) Experiments 1–2 main judgment interface. b) Experiment 2: Eliciting priors before main task.

c) Experiment 2: Eliciting likelihoods after main task.

white to gray (Experiments 1–2) or from white to yellow (Experiments 3 and 4). Activated

components remained colored until the end of the clip. In order to separate the inference task as

far as possible from domain specific knowledge of real-world causal delays, participants were not

told anything about what kinds of causal processes underlie the activation of the different

components but had to rely purely on the event timings.

Possible causal structures. As discussed in the introduction, we restricted the space of

possible causal structures to seven in Experiments 1 and 2 (see Figure 1) and two in Experiments

3 and 4. In Experiments 1 and 2, each structure featured two candidate causes A and B and one

effect E. Participants were informed that the Collider structure is conjunctive, meaning that both

A and B must activate in order for E to occur. In Experiments 3 and 4 there was a starting

component S and two candidate effects A and B. The true structure was either a chain (e.g.,

S → A→ B) or a fork (e.g., A← S → B).

Eliciting judgments. In order to have a fine-grained measure of participants’ beliefs, we

asked participants to distribute 100 percentage points over the set of possible candidate causal

structures, such that each value indicated their belief that the given structure is the one that

generated the observed evidence (see Figure 6a top). We can then directly compare participants’

distributions over the structures with the predicted posterior distributions based on our different

models.
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Experiment 1: One-shot inferences

Often in everyday life we must make snap judgments about causality based on a single

observation. In Experiment 1 we explored this kind of “one-shot” inference. We asked participants

to make judgments about causal devices after watching a single clip and replaying it several

times. We were interested simply in the extent and nature of judgment differences depending on

the relative timing of the activations. We varied the timing and order of the activation of the

three components systematically across problems. In particular, we were interested whether, in

the absence of specific delay expectations, judgments would reflect a DelayP preference for models

under which the cause–effect delays are similar between components. If this was the case, we

would expect participants to assign more points to, for instance, the Collider if B occurs very

early as in clip 2 shown in Figure 7a, and the Fork if B occurs very late as in clip 6.

Methods

Participants and materials. Thirty-one participants (18 female, Mage = 36.8,

SDage = 11.9), recruited from Amazon Mechanical Turk6 took part in Experiment 1. The task

took 15 minutes (SD= 8.7) on average and participants were paid at a rate of $6 per hour. The

task interface was programmed in Adobe Flash 5.5.7 Demos of all experiments, along with source

code and data is available at https://github.com/neilbramley/time_cause.8

Stimuli and model predictions. Participants made judgments about nine devices in

total. For each device they saw evidence in the form of a single, replay-able video clip. All clips

began with a 500 ms interval after which the first component(s) activated. The clip then lasted

another 1000 ms whereupon the final component(s) activated. We chose a range of clips that

varied where the activation of B fell between A and E (see Figure 7a, clips 1–7), and also

included two clips in which E occurred earlier than B (clips 8 and 9). Participants were told that
6Mechanical Turk (http://www.mturk.com/) is a web based platform for crowd-sourcing short tasks widely used

in psychology research. It offers a well validated subject pool, diverse in age and background, suitable for high-level

cognition tasks (Buhrmester, Kwang, & Gosling, 2011; Crump, McDonnell, & Gureckis, 2013; Hauser & Schwarz,

2015; Mason & Suri, 2012).
7Flash has been shown to be a reliable way of running time-sensitive experiments online (Reimers & Stewart,

2015).
8All experiments were approved by UCL Reserach Ethics Committee under protocol CPB/2014/006.

https://github.com/neilbramley/time_cause
http://www.mturk.com/


TIME IN CAUSAL STRUCTURE LEARNING 21

a) Event timings

1)

2)

3)

4)

5)

6)

7)

8)

9)

t

A B E

A
B E

A B E

A
B
E

A B EB

A B E

A B E

A BE

A BE

0 50 275 725500 950 1000 ms

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

Ju
dg

m
en

t

Participants
Order
DelayP

b) Posterior judgments and model predictions

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

Collider AB-chain A-fork A-singleBA-chain B-fork B-single

Figure 7 . a) The timeline for each clip type in Experiment 1 b) Participants’ averaged judgments after

viewing each clip (black bars) and predictions by the models (gray bars). Error bars ±1 standard error.

the parentless components in the device activate due to background causes. We obtained model

predictions by computing the posterior for p(S|d) for Order and DelayP , assuming learners began

each problem with a uniform prior across structures (see Appendix).9 We compare these against a

Baseline model that simply assigns an equal probability to all models.

Sensitivity to timing leads to predictions that differ across clips 2 to 6. DelayP favors the

Collider and A-single and B-single structures when B occurs relatively early, and favors the A-fork

when B occurs relatively late. DelayP is also sensitive to the difference in the timing of E between

clips 8 and 9, preferring the A-fork if E happens relatively late and the A-single if it occurs early.
9Note that DelayI requires repeated evidence to form preferences about causal structures.
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Table 1

Experiment 1: Order and Delay Models Compared to Judgments

Model M r SD r M rs SD rs Mode match RMSE N
Baseline 0 0 0 0 .14 20.1 0
Order .90 .29 .76 .26 .78 11.1 22
DelayP .80 .67 .64 .39 .44 15.9 9

Note: M and SD r = mean and standard deviation of Pearson’s r correlation between model and participants’ assignments to

structures within each device. M and SD rs =: same for Spearman’s rank correlations. Mode match = proportion of problems

where participants’ modal choice matched model’s. RMSE = root mean squared error (%). N = Number of individuals best

correlated with model.

Procedure. In the instructions, participants were familiarized with the seven causal

structure diagrams, and the response format. Participants then completed the 9 problems in

random order. Components A and B were counterbalanced such that on approximately half of

the problems their roles were reversed (e.g., B would occur at the start rather than A) with their

responses flipped for analysis. In each trial, participants observed a single clip of a device and

then replayed that same clip. After the fourth replay, participants distributed 100 percentage

points across the 7 possible devices displayed at the top of the screen. They were allowed to

replay the clip a fifth and final time before finalizing this judgment and moving on to the next

device. Participants could only move on if their indicated answers summed to 100%. The causal

devices were displayed at the top of the screen in the same order for all problems. For half of the

participants, the order of the seven devices was as depicted in Figure 6a while for the other half it

was reversed.

Results

We compared aggregated participant judgments to our models by correlating the

assignments across the seven structural hypotheses for each judgment and then averaging these

correlations across the nine devices using the Fisher’s z transformation (Corey, Dunlap, & Burke,

1998). The average assignments of percentage points over the seven structures were best

correlated with the Order model, and to a lesser degree with DelayP (see Figure 7b and Table 1).

Overall there was relatively little sensitivity to the exact timing at which B occurred. If we

compare patterns 2 to 6 in Figure 7b, we see that the AB-chain was the modal response across
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Figure 8 . Comparison of probability assignments to Fork, Chain and Collider structures for clips 1–7 (cf.

Figure 7), in which B appears at 0, 50, 275, 500, 725 950 and 1000 ms after A, with E always occurring at

1000 ms. Bars show participant means with standard errors with points, showing individual judgments,

jittered on the x-axis for visibility. Results in text concern the five clips with staggered activations 2–6.

Red dashed line denotes Order model predictions, green full line DelayP predictions.

early to late occurrence of B consistent with Order predictions. Notwithstanding, there was

evidence of modest time sensitivity. Figure 8 shows participants’ probability assignments to the

Collider, AB-chain, and A-fork for clips 1–7. For clip 2 where B happens right after A,

participants assigned some probability to the Collider structure. For clip 6 where B happens right

before E, participants assigned probability to the A-fork. This timing sensitivity is revealed by

fitting repeated measures ANOVAs to the points assigned to the Collider, the AB-chain, and the

A-fork across clips 2–6. The three structures’ assignments vary across these clips (Collider:

F (4, 120) = 7.1, p < .005; AB-chain: F (4, 120) = 5.1, p = .002; A-fork:

F (4, 120) = 10.0, 27, p < .001, with Greenhouse-Geiser corrected p-values) while the Order model

does not distinguish between these clips. Furthermore, we see hints of the bimodal shape for

Collider assignments predicted by DelayP . For the model this is a consequence of the conjunctive

combination function (Equation 4) under which clip 6 is consistent with equal (e.g., 50ms) causal

delays tA→E and tB→E with A’s influence arriving earlier and “waiting” for B’s, while not a

perfect match to either chain or fork. As expected, AB-chain judgments peaked when tAB and
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tBE are the same (clip 4) and A-fork when tAB and tAE are the same (clip 7).

Discussion

The results of Experiment 1 show that participants’ one-shot structure judgments can

largely be explained by a simple model that only uses event order. The Order model’s predictions

were not perfect though, underestimating participants’ strength of preference for the Collider in

clip 1, chain in 3-5 and fork in clip 7, and assigning more weight overall to the A- and B-singles.

One possible explanation is that participants found some structures more likely a priori

than others. Alternatively, the fact that A and B are perfectly simultaneous in clip 1 might have

been seen as evidence for a common causal mechanism — for example some prior mechanism that

ensures that the joint causes in the Collider occur in lock-step rather than independently at

different times. Another, more indirect, explanation could be that participants figured that in the

collider, A and B produce E only if they occur roughly simultaneously. Since we stipulate that we

focus on cases where all the events do occur, this might be seen as implying that any trials where

the true device is a collider must be ones where A and B did infact occur at a similar time.

Finally, for the fork structure, people might assume that the two effects share an intermediary

delay mechanism, such that the effects will tend to occur simultaneously even if their delay might

vary if the device was tested multiple times (Park & Sloman, 2013).

Participants’ judgments shifted over clips 2 to 6 as predicted by the DelayP model. This is

evidence for some default assumptions about timing. However, it was not sufficient to alter many

participants’ modal judgments away from those predicted by the Order model. Figure 8 shows an

inverted U pattern for the AB-chain across clips 2 to 6, rather than the inverted V shaped curve

predicted by the DelayP model. A possible explanation for this is that people have limited ability

to detect differences between interval lengths, with the modest differences between tAB and tBE

in clips 3–5 falling below this threshold (Addyman, French, & Thomas, 2016). Generally,

participants exhibited a robust preference for a chain structure whenever activations occurred

sequentially.

In Experiment 1, participants had little evidence to go on. Observing a device in action only

once, does not reveal its full range and variability in behavior and limits the scope for forming
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expectations about delays.10 Thus, to further investigate the adequacy of the Order and Delay

models, we now turn to extended learning, where participants observe multiple different clips of

the same device and must integrate this evidence to narrow in on the true causal structure.

Experiment 2: Integrating evidence

In this experiment, we explored how people integrate evidence from multiple observations of

the same device. We constructed sets of evidence in which we varied the order in which

components activated. Participants saw several different clips of each device, made an initial

judgment, and were then asked to update their judgment after an additional clip. This procedure

allowed us to explore how learners revised their beliefs as they received more evidence.

Additionally, by providing multiple exposures to the same set of connections, we were able to test

whether participants’ judgments reflect a preference for consistent cause-effect delays.

Participants in Experiment 1 made larger assignments to the Collider and smaller to the A-

and B-single structures that our Order and DelayP models predicted. We hypothesized that this

could be partly due to different a-priori assumptions about which kinds of structures are more

probable. Some participants’ might have thought that, since the Collider was the only unique

structure type among the response options (Figure 1), it would be encountered more frequently.

or that the single structures, with their unconnected components, were somehow degenerate

devices, and so less likely to be encountered. Another possibility is that, while participants may

rely predominantly on temporal order, they might still judge the likelihood of order patterns

differently than simply dividing evenly across order-consistent patterns as we initially assumed. In

particular they might think qualitative patterns that imply equal delays (such as A � BE under

the A-fork) are more likely than those that imply unequal delays (such as A � B � E under the

A-fork). We tested both of these hypotheses directly in Experiment 2 by eliciting judgments of

prior probability for the different device types — that is, P (S) — and judgments of the likelihood

that different device types would produce the various order patterns — that is, P (d |S). This

allowed us to assess the extent to which participants’ integration of evidence was normative with

respect to their assumptions and expectations about how different devices would behave.
10Although we note that participants could have formed delay expectations across the task in a hierarchical fashion.
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Methods

Participants. Forty participants (19 female, Mage = 30.8, SDage = 7.4) were recruited

from Amazon Mechanical Turk as in the previous experiment. The task took 27.0 minutes

(SD=16.6) and participants were paid at a rate of $6 per hour.

Stimuli and model predictions. We created evidence sets for eight different devices.

For each device, participants watched four clips. We depict the qualitative order of the events in

each clip for each device in Figure 9a. Participants were asked to provide a posterior probability

judgment after they had seen the first three clips, and another after having seen the fourth clip.

We selected sets of clips such that, for devices 1–3, little or no shift in the most favored device

was predicted by the Order model, while for devices 4–8, the Order model predicted a large shift

belief between the first judgment (after the first three clips) and the second judgment (after the

fourth clip).

For example, devices 1 and 4 correspond to Figure 3 top and bottom. Thus, for device 4,

participants first saw a clip in which components activated in the order: AB � E, then one where

they activated A � B � E and one where they activated B � A � E resulting in a strong

prediction by the Order model in favor of the Collider. Finally, participants saw a fourth clip

where components activated A � E � B, which is incompatible with a (conjunctive) Collider,

meaning that the Order model predicts a dramatic shift to A-single — the only remaining

structure that is consistent with all four patterns. We only used sets of patterns that did not lead

any of the considered models to rule out all the causal structures.

Since we elicited individuals’ priors and order-based likelihoods, we can compute the

Individual Order model’s posterior predictions P IV (S|d) using participant’s subjective likelihood

functions P IV (d |S) and prior P IV (S).

In the experiment, we drew intervals between components independently for each

connection. Because each participant might have a different prior, we also compute the DelayP

model’s predictions separately for each participant.

Procedure. After reading the instructions, participants had to successfully answer

comprehension check questions to proceed. At this point there was an initial prior judgment

phase in which participants were asked to assign 100% points across the seven structures to
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Figure 9 . Experiment 2 devices and posterior judgments. a) Devices and qualitative order of activations

for each. b) Participants’ posterior judgments (black bars) compared to a model based on individually

elicited priors and order-based likelihoods Order (dark gray bars) and individual priors and exact timings

DelayP (light gray bars). Left hand column, judgments after viewing 3 clips, right hand column judgments

after all four clips. Error bars ±1 standard error. Note: Model prediction bars omit cases in which

participants’ chosen likelihoods and priors led to all hypotheses being ruled out.

indicate how probable they thought each of the different structures was a priori (see Figure 6b).

Then participants completed a posterior judgment phase, as in Experiment 1. Here participants

made judgments about the structure of 8 devices, one after watching three clips and then a

second judgment after the fourth clip in each case (see Figure 9). At judgment time, they were
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provided with a qualitative visual summary of the clips they had seen for that device. The order

in which the devices were presented was randomized between participants. However, the order of

clips for each device was always as shown in Figure 9a. We varied the interval between each

activation, drawing each from a uniform distribution between 200 and 1200 ms to assess the role

of delays at the individual level. The clips used in the experiment varied in total length between

1189 and 3094 ms depending on these intervals and whether there were three staggered

component activation events or only two. We again counterbalanced two presentation orders of

the seven structure hypotheses shown at the top of the screen between participants (Figure 6b).

Finally, participants completed a likelihood judgment phase. In this phase, participants

made seven additional percentage allocations, one for each causal structure. We elicited these at

the end so that a desire for consistency could not affect participants’ posterior inferences (Koriat,

2012). However, we note that a preference for self consistency could mean that these likelihood

judgments were influenced by recall of posterior judgments. For each allocation, participants were

shown one of the seven structure diagrams. They were then asked: “Out of 100 tries, how often

would you expect this device to activate in each of the following temporal orders?” Participants

distributed 100%-points across the different temporal order patterns (see Figure 6c). The order in

which participants were asked about each structure, and the order in which the different temporal

patterns appeared on each page were randomized between subjects.

Results

We will discuss the results from the prior, likelihood, and posterior judgment phase in turn.

Prior judgment phase. We used clustering to identify whether participants break down

into meaningful groups in terms of their judgments of prior probability across the seven

structures. We used a finite mixture model to find the BIC optimal clustering. This analysis

found seven clusters respectively containing 18, 11, 4, 3, 2, 1, and 1 participant.11 Eighteen

participants assigned roughly equal weight to all seven response options (see Figure 10a). Eleven

assigned approximately double to the Collider compared to the rest of the structures. The

remaining eleven participants made heterogeneous responses.
11We used a Gaussian finite mixture model using R’s mclust package (Fraley, Raftery, & Scrucca, 2012).
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Figure 10 . Elicited prior and likelihood judgments. a) Prior probability judgments, clustered as detailed in

text. b) Nine temporal order patterns. c) Participants judgments of the likelihood of each pattern

compared with those of Order and Delay models as detailed in text. Error bars indicate ±1 standard error.

Likelihood judgment phase. Participants’ likelihood judgments across the nine

temporal order patterns for each of the seven structure hypotheses are shown in Figure 10b and c.

Both the Order model as well as the DelayP model accurately capture participants’ likelihood
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Table 2

Experiment 2: Likelihood Judgment Model Fits

Model M r SD r M rs SD rs Mode match RMSE N

Baseline 0 0 0 0 0.11 15.4 2
Order 0.92 0.30 0.78 0.30 0.71 8.9 12
DelayP 0.98 0.39 0.81 0.39 1.00 7.3 26

Note: r = average Pearson’s r correlation between average likelihood judgments for patterns under different device types, and

likelihoods derived from models. rs = average Spearman’s rank correlation within problems. Mode match = proportion of

problems where participants’ modal choice matched model’s. RMSE = root mean squared error. N = Number of individuals

best correlated by model.

judgments (see Table 2). For the DelayP model we assumed the same parametrization as in

Experiment 1, and encoded the timings implied by the depictions of the order patterns (e.g.,

Figure 10b).12 However, as Figure 10 reveals, only the DelayP -derived likelihoods capture the fact

that participants assigned more probability to the patterns implying reliable delays — more to

AB � E than A � B � E or A � E � B for the Collider, and more to A � BE than A � B � E

or A � E � B for the A-fork, and similarly for the B fork — while the Order model spreads its

likelihood equally across these cases.

Posterior judgment phase. Because each participant experienced different timings, we

compared individual’s posterior judgments rather than aggregated judgments to individually

computed versions of our Order and DelayP models (Figure 9b). For each participant, we

computed Order based on their personal prior P IV (S) and likelihood P IV (d |S) judgments.

Similarly, we compute individual DelayP predictions based on participants’ personal priors plus

the sensitivity to the precise event timings they experienced. We find a closer by-problem

correlation between the time-sensitive DelayP model’s predictions and participants’ judgments

with an average correlation of .78 (SD=.58) compared to .70 (SD=.59) for the Order model.

Twenty-four participants were better correlated with the DelayP model and fifteen with the Order

model. One participants was not correlated with either model.13 This suggests some influence of
12Specifically assuming they represented a total interval of 1400 ms, with 700 ms between the initial and middle

events for patterns 2, 4, 5 and 7, corresponding to the mean interval between events in the task
13For 14% of first and 27% of second judgments, all structure hypotheses were ruled out based on combining

individuals’ priors and likelihoods. To allow comparison we simply had the models predict a uniform distribution
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experienced delays over and above the order of the events for many participants. However, the

idiosyncratic differences in what the DelayP model predicts from these delays prohibits focused

analysis of where participants did and did not make additional use of temporal information.

The fact that many individuals’ judgments were better correlated with the DelayP model

than the Order model invites the question of whether participants were generally influenced by a

mixture of order and delay information, or whether some individuals focused on order and others

on delays. We assessed this by fitting individual regression models, each predicting a single

participant’s judgments with both their personalized DelayP model and Order model predictions

— using their priors and, for Order, their likelihoods — and comparing the strength of the

contribution of the two factors for each participant. Twelve participants had a significant positive

relationship only with the Order model, eight only with the DelayP model, while there were

eleven for whom both the Order model and the DelayP model had a significant positive

relationship with judgment patterns, with the remaining 9 unrelated to either measure (4) or or

negatively related to one or other measure (5). This analysis suggests substantial heterogeneity in

participants’ inferences, with many individuals focussing primarily on order information, some

primarily on timing, and others on both order and timing.

Discussion

In Experiment 2, we attained a clearer picture of the sources of variability in people’s causal

structure inferences. Eleven participants considered the Collider structure to be significantly more

probable a priori than the rest of the structures. One possible explanation for this is that these

participants conceived of the options in terms of four types of structure: collider, chain, fork and

single, subdividing across the specific cases within each type. This would explain their putting

more prior weight on the Collider, since it is the only structure option in its class. This is sensible

from a taxonomic perspective (e.g., Goodman, Tenenbaum, Feldman, & Griffiths, 2008)

suggesting that participants are simply registering a uniform prior over what type of structure

they expect to see.

Participants reported finding patterns that implied equal delays across all components more

over the hypotheses in these cases, guaranteeing a correlation of 0 for that device — the same as the Baseline model.
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likely than unequal delays. This finding was predicted by the DelayP model which assigns more

likelihood to these patterns. Combining personal priors and qualitative likelihoods resulted in a

tight qualitative fit with participants’ posterior judgments. Furthermore, many participants

showed hints of additional sensitivity to timing, with posterior predictions based on their

individually experienced event timings (DelayIV ) contributing significantly to explaining their

judgments over and above what was accounted for by their order preferences. In general, these

results suggest that an expectation of regularity feeds into structure judgments even in the

absence of domain knowledge.

Interestingly, despite distributing likelihoods in a way that suggested they preferred equal

delays across devices’ components, a substantial number of participants’ posterior judgments were

better described by the Order model than the DelayP model. One explanation for this is that the

design of the experiment nudged people toward this behavior. We provided summaries showing

the qualitative order of events in Experiment 2 while the exact event timings were only

represented in the clips themselves. This may have encouraged some participants to focus on

order.14

In sum, Experiments 1 and 2 show that participants make sensible judgments about

structure based on event order, and to some extent, event timing even in the absence of prior

expectations about the nature of cause–effect delays. To look more closely at the role of timing,

we now turn our focus to a more constrained situation where order is non-diagnostic and the only

available information comes from the variability and correlation in event timings.

Experiment 3 — Learning from timing variability alone

In this experiment, we focused on causal inference in situations in which the qualitative

order of events was held constant, but the temporal delays between events varied. We chose a

more constrained situation than before, with only two possible structures: an S → A→ B chain

and an A← S → B fork. We systematically varied the mean and variability of the inter-event

timings such that they were more consistent with having been generated by either a chain or a
14However, Bramley et al. (2014) included an experiment similar to the posterior judgment phase of this experiment

but varied whether participants saw a qualitative, quantitative or no visual summary. Results were highly correlated

across conditions .94 and no systematic differences in judgment patterns was observed.
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fork under the DelayI .

As we will show in Model Predictions below, for a fork and chain to be distinguished based

on timing alone, there must be variability in the delay leading to the intermediate event — here

tS→A — and there must be not too much variability in the other delay — tS→B or tA→B. This

produces correlation between the timing of A and the timing of B in the case that the structure is

in fact a chain. If there is variability in the other delay, this correlation will be weaker but still

present. This correlation fits with the Markov condition (Pearl, 1988): A and B should be

dependent in the chain, even controlling for S. S is held constant because subjects initiate the

system by activating S. In contrast, for A← S → B, A and B should be independent conditional

on S. Again, since subjects intervene on S, and timings are relative to S, S is being controlled for.

We hypothesized that participants would be sensitive to these differences and use them to

distinguish between the two candidate structures. However, we also expected based on the results

from the previous experiments, that participants would have a general preference for the chain.

While the chain can only produce the S � A � B pattern, the fork is more flexible. We also

hypothesized that participants would find it more difficult to draw inferences from quantitative

differences in time intervals, versus the qualitative differences in event order. Thus, we predicted

that participants would be more uncertain in their posterior judgments, requiring more evidence

even accounting for the narrower response set. To assess how well participants detect and track

timing variability, we first elicited judgments based on simply experiencing the timings.

Afterwards, we provided participants with summaries of the trials detailing all the timings

visually, and allowed them to update their judgments. By providing participants with summaries,

we eliminated any potential memory effects, or effects resulting from perceptual noise associated

with encoding the timings(Addyman et al., 2016). We expected participants’ preference for one of

the two structures to become stronger and more normative after having seen the visual summary.

Methods

Participants and materials. 104 University College London undergraduates (87 female,

Mage = 18.8, SDage = 0.81) took part in this experiment under laboratory conditions as part of a

course requirement. The sample size was determined by the number of students on the course,
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who all participated in the experiment on the same day. The task took M=23.0 minutes

(SD= 3.1).

Stimuli. Participants had to judge whether a device was a S → A→ B chain or a

A← S → B fork. Both chain and fork structures shared an S → A connection, but differed in

whether they had an S → B or an A→ B connection. This implies that tB could be explained by

one of two delay distributions: either tS→B or tA→B. Under the independent DelayI model, this

results in a preference for one of the two structures, depending on which of these inferred delay

distributions assigns more likelihood to the evidence (marginalizing over its unknown

parameters).

To explore this we chose a set of devices that exhibited a mixture of reliable and unreliable

causal delays (see Figure 11a). We created two chain devices (chain1 and chain2 ) and two fork

devices (fork1 and fork2 ) by augmenting each connection with a delay distribution (see

Figure 11a). All four devices shared an S → A connection with delay parameters

α = 5, µ = 1000ms. This meant that A would occur an average of 1000ms seconds after S but

with considerable variability (SD=447ms). We then chose distributions for A→ B for the chains

and S → B for the forks such that tSB was 2000ms on average, but the shape and extent of the

variability in the timing of B depended on the underlying connections. In chain1 there was a

near-constant interval between A and B (α = 1000, µ = 1000ms). In chain2 tA→B had as much

variability as tS→B. In fork1, the S → B connection had a near-constant 2 second delay

(α = 1000, µ = 2000ms) while in fork2 the delay was variable (α = 10, µ = 2000ms).

We used these four generative devices to select sets of twelve clips used as evidence. We

chose a representative sample of clips by taking twelve equally spaced quantiles from each

distribution. To ensure that the delay draws for tS→B (or tA→B for the forks) were independent of

those for tS→A, they were paired in counterbalanced order. The resulting sets of evidence are

depicted in ascending order of tSA in Figure 11b. Finally, we included a variant of fork2, named

fork2rev, which featured a single order reversal trial. This allowed us to compare the respective

influence of order and timing cues on participants’ judgments.
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Figure 11 . Experiment 3 and 4: Stimuli and model predictions. a) Graphical representation of the different

device types. b) Plot showing the 12 patterns generated for each device. c) Red triangles: tAB for patterns

1 to 12. Gray lines: P (GA→B |d) for a posterior sample of αs and βs. Dashed black line: The posterior

marginal likelihood of GA→B . d) As in c) but for GS→B under the fork structure. e) Posteriors

P (s = fork|d) for progressively more evidence. Individual dots represent the samples of evidence seen by

participants. The red lines represent smoothed average (using the general linear additive model with

integrated smoothness estimation gam from R’s mgcv library). Note: Individual points in e) are jittered

along the x-axis to increase visibility.

Model predictions. We used the DelayI model to obtain a posterior joint distribution

over the true structure (i.e., fork or chain) and its associated parameters.15 We obtained posterior
15We used the DelayI variant of our delay model because the DelayP variant assumes that all delays share the

same parameters, and participants were explicitly instructed that this was not the case.
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predictions by averaging over the parameters. These predictions are normative in the sense that

the DelayI model inverts the true generative model. Figure 11e shows how these predictions

change with each additional clip seen. Because we randomized the order of the clips, there is

variability in what evidence the model has received so far. Each point in the plots shows the

predicted posterior given the evidence an individual participant has seen up to this point. The

red line shows the averaged predicted posterior. By the 12th clip, all participants have seen the

same evidence so the predictions converge.16

Figure 11e shows that the model rapidly infers that the true model is a chain for chain1

and a fork for fork1. Looking at the predictive distribution subplots (Figure 11c and d), we see

that this is due to the model’s ability to fit a tighter distribution onto the experienced timings

under the true model, assigning more mass to all the data points which are less spread out and

more evenly distributed under the true than the alternative structure. Under the noisier chain2

and fork2 evidence, the model forms infers the correct structure but does so much more slowly,

retaining significant uncertainty even after 12 clips for fork2, where the delay distribution is only

slightly less variable under the fork structure than the chain. Finally, for fork2rev the predictions

are the same as fork2 until the order reversal trial is seen and the chain is ruled out. Thus

normatively, we expect more points to be assigned to the chain structure for chain1 and chain2,

than for fork1, fork2 and fork2rev; more to chain1 than the more difficult to infer chain2.

Likewise, we expect more points to be given to the fork structure for fork1 than fork2. Finally,

since the order cue in fork2rev rules out the chain we expect judgments here to be more strongly

in favor of the fork structure than for the other fork patterns.

Procedure. Participants were instructed about the two possible causal models, the

interface, the number of problems they would face, the number of tests they would perform for

each problem, the presence of delay variability, and the independence of variability between

different connections. Participants initiated the system by clicking on the S component and

watching when the other two components activated (see Figure 12a). To familiarize participants
16We used MCMC to estimate these posteriors without specifying any prior on delay parameters. In the appendix

we compare these to Simple Monte Carlo sampling predictions under a variety of priors. This allows us to assess the

impact of prior choice for α and λ in Experiments 1 and 2.
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a) b)

Figure 12 . Experiment 3 interface. a) Testing the device. b) Viewing a visual summary.

with the delay variability, they interacted with four two-component devices during the

instructions, each with a single cause and a single effect. They tested each device at least four

times. There were two pairs with short (µ = 1s) delays, one near-constant and one variable, and

two with longer (µ = 2s) delays, likewise one near constant and one variable. Participants were

instructed that the variability of the delays of the different components of a device were

independent such that an unusually long tS→A would not imply that there would be an unusually

long tS→B, or an unusually short tA→B. Before proceeding to the main task, participants had to

correctly answer comprehension check questions.

All participants faced each of the five problem types twice, once as detailed in Figure 11

and once with the labels and locations of A and B reversed. Thus, there were ten within-subjects

problems in total. On each problem, participants tested the device twelve times, generating the

twelve clips in a random order. For each problem they made three causal judgments. They made

their first judgment after the 6th test, their second after all twelve test, and a final judgment after

seeing a visual summary of the timelines of the tests they had performed (see Figure 12b).

Participants gave their causal judgments by distributing 100% points across the two structures.

During trials 7–12, participants’ initial response remained visible but grayed out in the response

boxes. They then had to interact with one of the response boxes (changing the value or just

pushing enter) to unlock the “Continue” button on the second and third judgments.
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Figure 13 . Experiment 3: Judgments for the different devices. Box plots show participants’ median and

upper and lower quartiles, participants with judgments ± > 1.5 interquartile range are plotted separately.

White filled black circles represent participant means. Red triangles represent the DelayI model’s

posteriors.

Results

In order to analyze participants’ judgments, we must account for the fact that each

participant faced each device twice. To do this, we fit linear mixed effects models to all

judgments, with participant and device as random effects. To test our specific hypotheses about

the differences between devices, we constructed orthogonal contrast codes comparing: 1. [chain1,

chain2 ] to [fork1, fork2 and fork2rev], 2. chain1 vs chain2, 3. fork1 to fork2 and 4. [fork1, fork2 ]

to fork2rev, matching the normative predictions described above. The four regressions are

summarized in Table 3. Judgments for all three responses differed by device type, with the size of

these differences increasing for the judgments made after seeing twelve compared to six clips, and

after seeing the visual summary relative to before. For instance, after six clips participants

assigned 10.2% more percentage points to the chain diagram when the true structure was a chain,



TIME IN CAUSAL STRUCTURE LEARNING 39

Table 3

Experiment 3: Main Effects and Planned Comparisons for Participants’ Responses

After 6 tests After 12 tests After summary

Main effect (LR) 86*** 334*** 378***

Planned contrasts
Intercept 52± 0.9%∗∗∗ 46± 0.9%∗∗∗ 42± 0.9%∗∗∗

1. Chains vs. Forks 10.2± 1.3%∗∗∗ 22.2± 1.3%∗∗∗ 33.8± 1.6%∗∗∗

2. Chain1 vs Chain2 2.7± 1.0%∗ 4.1± 1.1%∗∗ 7.8± 1.3%∗∗∗

3. Fork1 vs Fork2 2.1± 1.0% 4.0± 1.1%∗∗ −.6± 1.3%
4. Forks1&2 vs Fork2rev 4.5± 1.1%∗∗ 19.6± 1.3%∗∗∗ 16± 1.5%∗∗∗

Additional
5. Chain2 vs Fork2 3.6± .97%∗∗∗ 6.2± 1.2%∗∗∗ 8.6± 1.3%∗∗∗

Note: For main effects we report the likelihood ratio (LR) for a model with device type as predictor relative to a model with

just an intercept. For all contrasts we report the size of the effect (%) ± standard error, and level of significance after

applying a Bonferroni correction for the total of five contrasts: ∗ = p < .01, ∗∗ = p < .002, ∗∗∗ = p < .0002.

increasing to 22.2% after twelve clips and to 33.8% after viewing a visual summary of the

evidence.

On all three judgments, participants assigned significantly more points to the chain diagram

for chains than forks. They also assigned more chain points to the reliable than the unreliable

chain, and more to the forks that did not exhibit the order cue (fork1 and fork2 ) compared to

fork2rev. However, on the judgment after twelve clips, participants assigned more points to the

chain diagram (i.e., fewer to the fork) for the theoretically easier and “reliable” fork1 than the

“unreliable” fork2. After the visual summary, the fork diagram was again equally favored for each

of these two devices.

Theoretically, chain2 and fork2 are the hardest cases to distinguish since both causal

relationships are noisy. Given the substantial difference in judgments between Chains and Forks

overall, we also checked is participants picked up on this, more subtle difference. We found a

significant difference in judgments on these two problems at the < .001 level, even after six clips

(Table 3, 5th row) demonstrating that participants still distinguished these patterns on average

without the aid of visual summary.
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Discussion

In sum, we found that participants were able to distinguish between a fork and a chain

based on the variability and correlation in event timings alone. However, participants found this

inference more difficult than making judgments based on having observed different temporal

orders of events. In this experiment, some participants reported relatively weak preferences

despite having seen considerably more data, and having fewer structure hypotheses to evaluate

than in Experiments 1 and 2. Furthermore, participants were at chance for fork1 until viewing

the visual summary suggesting that the reliable tSB was hard to detect given the variability in the

intervening tA.

Looking closely at the evidence we generated, we see that the difference between chain2

and fork2 is very subtle. While the tAB interval is more variable under fork2 than chain2

(Figure 11c 2nd vs 4th row), tSB is actually also slightly more variable under fork2 than chain2

(Figure 11d). Thus, if participants focused on tSB it is not surprising that they favor the chain

structure for this problem. The fact that participants still form a preference for the chain for

chain2 and the fork for fork2 based on this subtle difference in tAB, while failing to note the

reliable tSB in fork1 relative to fork2, is suggestive that participants may have been particularly

tuned to monitoring the successive intervals rather than the overall interval (see Figure 13). We

examine this idea in more detail in Experiment 4.

Experiment 4 - Replication and extension

From the DelayI model perspective, variability in tS→A is crucial for distinguishing forks

from chains. If tB “inherits” the variability in tA such that an early/late tA is followed by an

early/late tB then this is evidence that the device is a chain. If it does not, this is evidence that

the device is a fork. Thus, in the absence of variability in tA there is no signal to pass on, and the

DelayI model cannot strongly favor one model over the other. However, it is also plausible that

learners might rely on the variability of tAB or tSB independent of the other timings as cues to

structure. For example one might reject the chain if tAB is “too variable”, irrespective of tSA, in

which case, systematic chain and fork preferences could still emerge with reliable tS→A. While

Experiment 3 focused on cases with variable tS→A, Experiment 4 completes the set of
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combinations of variable/reliable connections to better understand which properties of the

intervals participants are sensitive to when inferring causal structure.

Methods

Participants and materials. Sixty participants (20 female, Mage = 35.5, SDage = 9.9),

recruited from Amazon Mechanical Turk, took part in this experiment. The task took 30.6

minutes (SD=15.4) and participants were paid at a rate of $6 per hour.

Stimuli. We used the same generative stimuli as in Experiment 3 but included four

additional devices chain3, chain4, fork3 and fork4 (see Figure 11 bottom half). Chain3 and

chain4 have the same tA→B variability as chain1 and chain2 respectively, but have a reliable

instead of a variable tS→A. Likewise, fork3 and fork4 have the same tS→B variability as fork1

and fork2 respectively, but also have a reliable rather than a variable tS→A.

Model predictions. According to the DelayI model, the reliable tS→A delay makes it

hard to detect whether the timing of B is dependent on A. Where variability is also low for tA→B

(chain3 ), the DelayI model does form a preference for the chain structure. However, for fork3 it

requires all 12 datapoints to form a very weak preference for the fork. It forms no strong

preference for chain4, fork4 where the variability in tAB or tSB overwhelms any dependence. The

high reliability of the shorter tAB means the pattern is still more likely on average to have been

generated by a chain.

For chain4 and fork4, the variability in tAB renders the correlation, or absence of

correlation, between tSA and tSB undetectable from 12 data points.17 Thus, the DelayI model

predicted that participants would be highly uncertain about these additional problems. If, on the

other hand, participants relied on the the variability of the successive intervals, we would expect

to see some degree of fork preference if tAB is highly variable. To assess the impact of variability

in tSA on structure judgments, we compared judgments between the old and new devices that

differed only in terms of σ2(tSA): chain3 against chain1, chain4 against chain2, fork3 against

fork1 and fork4 against fork2.
17Note that in all these cases the true generative model is identifiable in principle, but reliable recovery requires

considerably more data.
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Procedure. As in Experiment 3, participants made three judgments about each device.

Because we increased the number of devices from five to nine, participants only faced each device

once instead of twice, so as to ensure that the experiment was not too long.

Results

Replication of Experiment 3. We found highly similar patterns of judgments for the

same devices as presented in Experiment 3. Across the three judgments and five repeated device

types, there was a correlation of r = .98 between the averaged judgments in Experiment 3 and

Experiment 4. We also replicated the same significant effects for the same planned contrasts (as

in Table 3). The exceptions are that in Experiment 4, contrasts between chain1 and chain2 after

twelve tests, fork1 and fork2 after twelve tests and forks1&2 and fork2rev after summary are no

longer significant. As in Experiment 3, participants assigned significantly fewer % points to the

fork for fork1 than fork2 in their two responses before the visual summary contrary to the DelayI

model’s predictions. Despite very similar patterns, there was a significant global increase in

preference for the chain hypothesis across the problems shared between experiments of

M= 4.3%, (SD = 3), t(14) = −5.8, p < .001 (compare white circles to yellow squares in Figure 14).

Extension to new structures. To assess what impact reducing the variability of tS→A

had on participants’ judgments, we compare the four new devices with their counterparts that

only differ in terms of the reliability of tS→A as described in Model Predictions above. We find

that participants’ chain preference is diminished for chain3 relative to chain1 across all three

responses (after six tests: t(59) = 3.2, p = .002, after twelve tests: t(59) = 2.1, p = .04 and after

summary: t(59) = 3.5, p < .001). Participants’ chain preference is increased for fork3 relative to

fork1 for responses after twelve tests (t(59) = −2.2, p = .02 and after summary:

t(59) = −4.2, p < .001). Chain4 and fork4 responses did not differ significantly from those for

chain2 and fork2 on any of the three responses. This supports the claim that variability in tS→A

does play an important role in participants’ successful inference of the true generative structure.

Overall, participants assigned considerably more than 50% points to the chain hypothesis

for chain3, chain4, fork3, and were ambivalent on average about fork4. This differs from the

predictions of the DelayI model which is neutral about chain4 (Figure 11e). Another way of
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circles represent participant means. Red triangles represent the DelayI model’s posteriors.

unpacking this pattern is that participants made similar judgments for chain3, chain4 and fork4,

perhaps simply reflecting a default preference for a chain given staggered activations. Only in the

case of fork4, with its particularly extreme tAB variability, did they somewhat overturn their

chain preference.

Discussion

In this experiment we replicated the findings of Experiment 3 and additionally showed that

people do not form a preference for a fork in the absence of significant variability in tS→A, as

predicted by the DelayI model. However, there was also a modest overall increase in chain

preference compared to Experiment 3. This might have been a consequence of exposure to a

different set of devices, with the additional problems’ lack of a predictive signal nudging

participants away from focusing on this signal. However, it could also be a consequence of
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population differences. The online population we tested in Experiment 1, 2 and 4 is markedly

older and more educationally diverse than the undergraduate psychology students tested in

Experiment 3, and may have performed the task under less ideal experimental conditions that

may have made it more difficult to perceive the subtler differences in event timing.

Among the new devices unique to Experiment 4, participants were neutral about fork4

while favoring the chain for the other three. Inspecting Figure 11 we see that the most substantial

difference between fork4 and chain4 was that the variance of tAB was substantially higher (due to

its actually being caused by S). This suggests that the level of variability under the chain

hypothesis may still have nudged participants away from the belief that this device is a chain.

We note also that the DelayP model would form a preference for the chain based on fork3 –

since this evidence is particularly consistent with their being a single parameterization for two

sequential causal delays. Thus, while we have shown that participants can learn that there are

different delays, they may still tend to favor the structure that can explain the results more

parsimoniously. In this case a chain with shared delay parameters can capture the evidence more

parsimoniously than a model with separate delay parameters.

Overall, our Bayesian DelayI model did a reasonable job capturing participants’ structure

judgments (see Figure 14). However, there is also evidence that participants used the timing data

in a more heuristic way. Firstly, participants’ judgments were weaker than what the normative

model predicts. Secondly, the DelayI model strongly favored the fork structure after seeing only a

few clips from fork1, while participants remained at chance for this problem until having seen the

visual summary at the end.

General Discussion

In this paper we propose a normative account of how the when informs the why: how

temporal delays between events allow inferences about their underlying causal structure. We used

this account as a framework to closely explore human patterns of causal structure inference from

time. We distinguished inference from event order from sensitivity to timing information. We

focused on abstract structure induction to minimize the influence of domain-specific prior beliefs

and to isolate, as far as possible, domain general causal learning patterns and preferences.
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In Experiment 1, we found that participants’ one-shot structure judgments were shaped by

event order and sensitive to how many different order patterns each candidate structure could

generate. Participants were also influenced by the exact event timings, preferring structures that

could have produced the evidence with more equal cause–effect delays.

In Experiment 2, we explored how people integrate information from multiple observations

of a device. We elicited prior, likelihood and posterior judgments, allowing us to explore

participants’ deviations from normative inference under our initial assumptions. We found that

some participants’ priors were compatible with uniformity at the level of types of structure rather

than the options we presented them with. Furthermore, while we initially assumed an equal

likelihood for all evidence patterns a device was capable of producing, participants were not

indifferent in this way. Participants assigned more likelihood to patterns implying similar

cause–effect delays occurred across connections, in line with a general preference for causal

regularity. At the individual level, participants differed in how sensitive they were to the exact

delays in the evidence they experienced. With these factors in place, we were able to capture

participants’ posterior judgments to a high degree of quantitative accuracy.

Experiments 3 and 4 focused on the role of event timing in distinguishing between

structures that are indistinguishable by temporal order alone. In this setting, participants were

able to use the variability in the event timings alone to distinguish between a chain and a fork

structure. To our knowledge, this is the first time this has been shown experimentally.

In sum, our modeling and behavioral findings present the following picture of human

structure inference from temporal information: (1) When both delay expectations and evidence

are very limited, people rely on order information. (2) As evidence accrues, they use reversals to

rule out structures as captured by the Order model and favor structures that imply similar delays

as captured by the DelayP model. (3) If there is sufficient evidence, they are also able to use a

subtler causal signal, the variation and correlation in event times as captured by the DelayI

model. Overall, we found that people are capable of using temporal information at a level of

sophistication that depends on necessity and the available data.
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Alternative timing models

Ideal probabilistic structure inference involves maintaining a probability distribution over

all candidate hypotheses. Although Experiments 3 and 4 only featured two hypotheses,

considering all hypotheses is infeasible in the general case as there is a theoretically infinite

number of possible models. There have been several recent proposals suggesting that people

maintain a single candidate causal model at a time, and switch to another candidate when their

current model proves strongly incompatible with the observed evidence (Bonawitz, Denison,

Gopnik, & Griffiths, 2014; Bramley et al., 2017). Additionally, Lagnado and Sloman (2006)

propose that people often take event order as an initial proxy for causal order. In this section we

consider several heuristics based on the idea that participants used simpler statistics to identify

the generative model without computing the predictions under both structures at once. We now

propose several specific aspects of the clips that participants might have been sensitive to.

Does A predict B?. In general, if A causes B, we expect that the time at which we

observe A (relative to its cause S) to be predictive for when we will later observe B (also relative

to S). Thus, a reasonable proxy for computing the full posterior is to try and estimate the the

extent that the timing of A predicts the timing of B. In the current context this comes down to a

correlation between tSA and tSB, hereafter cor(tSA, tSB). If cor(tSA, tSB) is positive, this is a sign

that S’s causing of B may be mediated via A — that is, observing an unusually early/late A is a

noisy predictor of an early/late B (see Figure 11a). Conversely, if tSA is statistically independent

of tAB this is more consistent with the idea that B is caused directly by S as in a fork structure.

Variance under a single structure. Computing a correlation between tSA and tSB

across clips places high demands on perception and storage to be estimated online while watching

the clips. The issue here is that the correlation depends on encoding two overlapping intervals for

each clip, storing them, and comparing their relationship across multiple clips. It is

well-established that there are strong limitations on explicit attention and short-term memory

which may prohibit such explicit multitasking (Baddeley, 1992; Lavie, 2005). Rather, it seems

plausible that learners might only monitor the timings in the clips under a single hypothesis at a

time, for example either focusing on tAB if they are currently entertaining the chain structure, or

tSB if currently entertaining the fork structure.
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Accordingly, a simpler strategy than comparing models would be to monitor the variance

assuming that one or the other structure is true. If this variance seems “too high” one can reject

the structure hypothesis and start monitoring the delays under the alternative structure.

Assuming that participants tend to perceive event order as causal order by default

(Lagnado & Sloman, 2006), it is possible that participants found it more natural to monitor

σ2(tSA) and then σ2(tAB) than to monitor σ2(tSB) (while ignoring the intervening event at A).

Thus, σ2(tSB) may effectively have been masked by participants’ default tendency to perceive

succeeding events as a chain, and thus only encode the delays between directly succeeding events.

Online approximation. Estimating variance of the delays across trials may already be

challenging. Many models of sequential estimation avoid storing all the data, replacing it with an

operation over all the evidence with a simpler adjustment that can be performed as evidence

comes in (Halford, Wilson, & Phillips, 1998; Hogarth & Einhorn, 1992; Petrov & Anderson,

2005). We propose a simple model based on this idea here. Average pairwise difference (APD)

simply stores the difference between the interval in the latest clip tkXY and the one before tk−1
XY ,

summing this up across trials. When variance is high this will tend to be high too but it is also

sensitive to the order in which evidence is observed, being larger when intervals fluctuate more

between adjacent tests.

Each of these measures — cor(tSA, tSB), σ2(tSA), σ2(tSB), σ2(tAB),APD(tSA),APD(tSB),

and APD(tAB) — assigns a value to the evidence seen at each time point by each participant in

Experiments 3 and 4. Thus, all the measures make different predictions for each participant on

the first judgment because the clips seen so far differ between participants. Additionally, the APD

measure is computed sequentially and thus creates order effects and results in different

predictions for different participants for the second and third judgments, too.

We used all these measures as predictors of the number of percentage points assigned to the

chain structure on each judgment for all devices (except fork2rev) with a prediction of zero

indicating 50% chain (50% fork). This means that measures which support the chain have

positive weights and measures that support the fork have negative weights, and the intercept

indicates a baseline preference for one or the other structure.
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Table 4

Experiments 3 and 4: Alternative Predictors

Name Description

Intercept Positive value captures overall preference for chain, negative for fork.

cor(tSA, tSB) The correlation between the delays t1:k
SA and t1:k

SB.

σ2(txy) The variance of the inter-event timing between activation of components x and

y in the tests performed so far. We entered the variance for each inter-event

interval (i.e., σ2(tSA), σ2(tSB) and σ2(tAB)

APD(txy) Average pairwise difference. A sequentially computed proxy for variance. The

difference in activation time on current test compared to previous test for example

tkxy and tk−1
xy summed up over tests 1 : K. E.g. for tAB after six trials this is

APD(tAB) =
∑
k=2:6 t

k
AB − t

k−1
AB . As with the variance, we entered the APD for

each inter-event interval.

DelayI The posterior probability of the chain according to DelayI

Modeling all participants. To establish which combination of these measures best

explains participants’ judgments, we entered them all into a competitive, stepwise, model

selection procedure. We used all the data from Experiments 3 and 4 for the model selection. As

before, we fit mixed effect models with random effects for devices within participants. The

independent variables were first z-scored meaning that the final beta weights can be interpreted

as percentage increase in assignments to the chain for a 1 SD increase in the value of each

independent variable. We entered the predictors detailed in Table 4.

Figure 15 depicts the models selected by the stepwise procedure for the first, second, and

third judgments respectively. Table 5 shows the bivariate correlations between all the predictors

we considered.

For the first judgment, occurring after six tests, one of the eight predictors was chosen and

the rest were eliminated. Participants assigned fewer points to the chain (and more to the fork) if

there was high apparent fluctuation in tAB, measured by comparing each observation to the

previous one (i.e., APD(tAB)). The fact that the intercept was � 0 indicates a baseline preference
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Figure 15 . The models resulting from stepwise model selection to all 1040 1st, 2nd and final judgments in

Experiment 3. Plots show the selected predictors’ fixed effects (i.e., the β values) with consistent colored

fills across subplots to aid comprehension. All predictors were z scored, and the dependent variable was

centered (so that a prediction of 0 corresponded to assigning 50% to the chain and 50% to the fork). Effect

sizes are interpretable as differences in percentage assigned to the chain moving one standard deviation up

on the independent variable.

for the chain that could be overturned by high APD(tAB).

For the second judgment which occurred after having seen all the evidence, the actual

variance of tAB was selected rather than its sequential proxy. This time the sequential measure of

variance in tSB model additionally contributed to the prediction.

We see a similar pattern for the final judgment participants made after having seen the

visual summary. However, now APD(tAB)), σ2(tAB)) and APD(tSB)) all contributed more

substantially to the fit.

On all judgments, but particularly those before the visual summary, the strongest single

predictor was either σ2(tAB), or APD(tAB) (Table 5) with apparent variance contributing to

assignment of more points to the chain. Corroborating this, Figure 16 visualizes participants’

pattern of judgments by device and compares this against −σ2(tAB) and DelayI . On the first two

judgments in particular, only −σ2(tAB) captures participants’ ambivalence between chain2 and

fork1 and confidence about fork2. In no case was the Bayesian posterior was selected as part of

the final model.

In sum, these additional analyses suggest that participants had an initial preference for the
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Figure 16 . Comparison of participants patterns in Experiment 4 with DelayI predictions and −σ2(tAB).

Judgments and predictors are rescaled to have a mean of 0 and standard deviation of 1 across the three

judgments for comparability.

chain which was modulated based on their perception of variability in tAB and, to a lesser extent,

in tSB. This is consistent with the idea that many began with an (order-driven) preference for the

chain which they could gradually reject if their experienced delays were highly variable under the

chain hypothesis. After the visual summary was available, judgments were more strongly

influenced by both the putative chain delay tAB and putative fork delay tSB, consistent with the

idea that where tB does covary with tA this pops out clearly when viewing the summary timelines

side by side (Figure 12b). Only after seeing this visual summary did participants “get” fork1

while the σ2(tAB) still predicts that participants should be undecided in this case.

Conjunctive influence

In Experiments 1 and 2, we instructed participants that the Collider structure was

conjunctive and required both of its causes to activate before the effect would activate. We also

included a comprehension question to check that participants had understood this. Nevertheless,

some participants across both experiments, appeared to treat the Collider as disjunctive (or at

minimum not rule out that it was capable of behaving disjunctively sometimes), assigning
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Table 5

Experiments 3 and 4: Bivariate Correlations Between Judgments, DelayI and Heuristic Measures

First Judgment (after 6 tests)

DelayI cor(tSA, tSB) σ2(tSA) σ2(tSB) σ2(tAB) APD(tSA) APD(tSB) APD(tAB)
% chain 1st .13 .12 .01 -.06 -.19 .00 -.04 -.19
DelayI .59 -.08 .28 -.32 -.08 .35 -.45
cor(tSA, tSB) .14 .11 -.59 .16 .22 -.58
σ2(tSA) .21 .18 .83 .25 .23
σ2(tSB) .58 .19 .87 .47
σ2(tAB) .15 .44 .86
APD(tSA) .34 .30
APD(tSB) .43

Second and Third Judgments (after all 12 tests)

DelayI cor(tSA, tSB) σ2(tSA) σ2(tSB) σ2(tAB) APD(tSA) APD(tSB) APD(tAB)
% chain 2nd .22 .22 -.05 -.11 -.29 -.03 -.06 -.27
% chain 3rd .40 .38 -.09 -.04 -.37 -.07 .03 -.39
DelayI .92 -.05 .26 -.59 -.03 .32 -.61
cor(tSA, tSB) .21 .20 -.49 .16 .13 -.47
σ2(tSA) .25 .20 .75 .10 .07
σ2(tSB) .55 .23 .75 .41
σ2(tAB) .13 .33 .72
APD(tSA) .40 .33
APD(tSB) .57

nonzero posterior probabilities to the Collider even after observing clips where one of its cause

components occurred after the effect, as well as nonzero likelihoods, under the Collider, for these

patterns. This suggests that people default to the disjunctive assumption so strongly that it can

either overrule instructions, or fill in if the instructions were forgotten (cf. Lu, Yuille, Liljeholm,

Cheng, & Holyoak, 2008; Lucas & Griffiths, 2010; Yeung & Griffiths, 2015).

Additionally, people might have struggled to make sense of the idea of a conjunction in the

context of the abstract task they were solving. Indeed, formalizing the conjunction for our Delay

models forced us to think about what would be a plausible mechanism. Concretely, we assumed

that the later arriving causal influence was what determined when the effect would occur. This

could be understood as the earlier-arriving causal influence waiting in a “buffer” for the later to

arrive. However, it would have also been plausible to assume that the two causes have influences

that must (at least approximately) coincide in their arrival time in order for a threshold to be
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reached that triggers the effect. This would explain participants strong preference for a Collider

when A and B co-occurred in Experiment 1 device a. Additionally, people might find conjunctive

influence more natural in situations where at least one of the causal relationships has a sustained

or continuous effect (e.g., so that the second event simply tips the level of influence over a

threshold that causes the activation of the effect). In general, participants were more uncertain

about devices where the impact of the evidence depended on assumptions about how the Collider

worked.

Causal and temporal perception

We looked only at a narrow range of time intervals in the current studies, with trials never

lasting more than around three seconds. For these short intervals, existing causal beliefs have

been shown to shape and distort perception (Buehner & Humphreys, 2009; Haggard, Clark, &

Kalogeras, 2002), sometimes even leading to reordering of a surprising series of events to a more

“normal” causal order (Bechlivanidis & Lagnado, 2013, 2016). This suggests that at this temporal

grain, experience is still somewhat under construction (Dennett, 1988), scaffolded by preexisting

expectations about causal structure.

Having formed an impression that a device has a certain structure, a subsequent observation

may be perceived as consistent with that structure even though it was actually inconsistent. This

might occur more often if the distortion required to make it consistent is very small. Such

potential distortion effects are not captured by our Order and Delay models which work at Marr’s

(1982) computational level, and are intentionally scale-invariant. However, an interesting project

would be to construct a cognitive model that exhibits these patterns. A first step toward this

might be to simply add perceptual noise in proportion to the temporal delays. Related to this, a

fundamental reason to expect different learning at different timescales comes from the so-called

“now or never bottleneck” (Christiansen & Chater, 2016) inherent to experiencing events in real

time. When observing closely spaced events, there is little time for explicit comparison of

structural hypotheses, or to do anything much beyond constructing an impression of what

happened or measuring how wrong your prediction was. Reasoning about relationships between

events that are separated on the order of minutes (e.g., the effects of ingredients and temperature
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changes in cooking) or weeks (e.g., policy changes effects on social issues) are likely a substantially

different cognitive processes. There is more time to explicitly reason about and compare

hypotheses but also more intervening demands on attention that may limit fine grained timing.

The blessing of variability

Our experimental design highlights an interesting and counterintuitive property of temporal

causal structure inference. Unreliable systems can actually be simpler to uncover. The more

unreliable the timings of the events are, the more frequently revealing order reversals will occur,

and the more a learner can rely on simple qualitative order-based inference. A similar principle

applies in the absence of revealing order information (c.f. Young & Nguyen, 2009). It is actually

the variability in delays that allows for the correlation signal that the DelayI model uses to infer

the generative causal structure. If the causal delays are perfectly reliable it becomes impossible to

distinguish between the order-consistent structures based on their timing without some prior

expectation of the lengths of the different delays.

This has interesting parallels to the case of learning from contingency information. In a

deterministic system, chains and forks are indistinguishable from contingencies because both

effects always covary with their root cause. However, they can be covariationally distinguished in

various settings provided the relationships are at least somewhat unreliable (Bramley, Dayan, &

Lagnado, 2015; Fernbach & Sloman, 2009).

One model at a time?

Some participants in Experiments 1 and 2 assigned more probability to structures that, if

they produced the evidence, did so with cause–effect delays that were of roughly equal length. For

instance, participants assigned more probability to the fork than the collider based on clip two,

and more to the collider than the fork based on clip six in Experiment 1. Additionally,

participants’ likelihood assignments over qualitative patterns in Experiment 2 was clearly

consistent with a preference for equal delays. However, judgments in Experiments 3 and 4 were

consistent with the proposal that people tend to “see” the evidence through the lens of one causal

model at a time (Bechlivanidis, 2015), becoming more likely to switch if observed events are
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sufficiently hard to accommodate under this presumptive structure (Bonawitz et al., 2014;

Bramley et al., 2017). Since seeing several events that always occur in the same order ceteris

paribus is most naturally perceived as a chain, participants may have begun the problems in

Experiments 3 and 4 with a sense of watching a causal chain, which could be gradually overturned

in the cases where there was another more plausible hypothesis available (of the device as a fork).

Building richer causal representations

While CBNs provide a useful framework for building theories about causal cognition, they

are not rich enough to explain central aspects of causal cognition such as detailed mechanism

knowledge or mental simulation (Gerstenberg et al., 2015; Mayrhofer & Waldmann, 2015; Sloman

& Lagnado, 2015; Waldmann & Mayrhofer, 2016). People’s causal representations are likely to lie

somewhere in between a compact statistical map (a CBN) and a scale model of the physical world

(Gerstenberg & Tenenbaum, 2017; Goodman, Tenenbaum, & Gerstenberg, 2015; Lake, Ullman,

Tenenbaum, & Gershman, to appear; Tenenbaum et al., 2011; Ullman, Spelke, Battaglia, &

Tenenbaum, 2017). We can often get away with treating detailed mechanisms as black boxes

(Keil, 2006), but we still need our representation to help us choose when and where to act in the

world. Thus, it seems necessary that people’s representations sometimes include expectations

about delays between causes and effects. Of course, our causal representation of the world is rich

in space as well as time, with detailed knowledge of mechanisms likely to be intertwined with

delay expectations. Our Delay model represents a step toward capturing the ways in which

human causal cognition goes beyond contingencies.

Conclusions

We have shown in four experiments that people form systematic beliefs about causal

structure based on temporal information. We can capture inferences with a combination of

qualitative order-based, and generative delay-based inference models. Participants were able to

use the order in which events occurred to narrow in on candidate causal structures, and within

these, favored those that rendered the causal delays more similar and more predicable. Going

beyond order patterns, we showed that people can also use interval variability alone to identify
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whether a structure is a chain or a fork, and proposed how participants might achieve this while

“seeing” the evidence through the lens of one hypothesis at a time. By pulling these ideas

together, we get a picture of temporal causal structure learning in which learners have an initial

impression of causal structure based on event order (Lagnado & Sloman, 2006) but are capable of

refining this initial belief as they observe more evidence about the system by considering what

structural changes from this default better explain what happened when. These results contribute

to our scientific understanding of the role of time in causal learning and representation, showing

that just as time is inherent to our experience of the world, it is integral to how we learn and

represent the world.
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Appendix

Collider likelihood

Pooled model. For the Collider, event E happens as the two causal influences of A and

B arrived (i.e., conjunctive common-effect; see Equation 4). Thus, the observed between-event

intervals tAE and tBE may contain waiting time and so do not necessarily reflect the underlying

causal delays tA→E and tB→E as we have assumed for the other structures. To model the joint

likelihood of the two observed intervals, we have to discriminate two cases: Either (1) the causal

influence of B was waiting for the influence of A and therefore E happened as the delay of A

arrived (i.e., tAE = tA→E but tBE ≥ tB→E) or (2) the causal influence of A was waiting for the

influence of B to arrive and E happened as the delay of B arrived (i.e., tBE = tB→E but

tAE ≥ tA→E).

Let the influence of B waiting for A (i.e., Case 1). In this case, the joint likelihood is given

by the gamma likelihood of tAE (as tAE does in fact equal tA→E and is therefore gamma

distributed) weighted by the probability of tBE being in fact larger than the respective gamma

distributed event tB→E . As we assume the same parameters α and µ for both links (pooled

model), the likelihood can be written as

p(tAE , tBE |α, µ; tAE = tA→E , tBE ≥ tB→E) = p(tAE |α, µ) · p(tBE ≥ tB→E |α, µ) (A-1)

Analogously, for the case in which A is waiting for B (i.e., Case 2) it holds

p(tAE , tBE |α, µ; tAE ≥ tA→E , tBE = tB→E) = p(tBE |α, µ) · p(tAE ≥ tA→E |α, µ) (A-2)

As both cases are mutual exclusive and therefore constitute a partitioning of the joint

likelihood, the joint likelihood can be written as a sum of both (law of total probability)

p(tAE , tBE |α, µ) = p(tAE , tBE |α, µ; tAE = tA→E , tBE ≥ tB→E) + p(tAE , tBE |α, µ; tAE ≥ tA→E , tBE = tB→E)

(A-3)

= p(tAE |α, µ) · p(tBE ≥ tB→E |α, µ) + p(tBE |α, µ) · p(tAE ≥ tA→E |α, µ) (A-4)

with p(tAE |α, µ) and p(tBE |α, µ) being gamma distributed and p(tAE ≥ tA→E |α, µ) and

p(tBE ≥ tB→E |α, µ) following the gamma’s cumulative distribution function with
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p(tAE ≥ tA→E |α, µ) =
tAE∫
0

(αµ )α

Γ(α)(x)α− 1e−
α
µ
x
dx (A-5)

and for p(tBE ≥ tB→E |α, µ) analogously.

Independent model. In the independent model, each causal connection between a

variable X and its effect Y is assumed to have its own set of parameters αXY and µXY .

Therefore, the Collider likelihood in the independent model is given by

p(tAE , tBE |αAE , αBE , µAE , µBE) =p(tAE |αAE , µAE) · p(tBE ≥ tB→E |αBE , µBE)

+ p(tBE |αBE , µBE) · p(tAE ≥ tA→E |αAE , µAE) (A-6)

Disjunctive Collider. In our experiments, we used conjunctive Colliders. However, in

other scenarios a disjunctive combination function of the causal influences may be more natural.

In this case, the activation time of effect event E is determined by the first arrival of the causes’

influences

tE = min[tA + tA→E , tB + tB→E ] (A-7)

In this case, one of the underlying causal delays tA→E or tB→E is overshadowed by E’s happening

resulting in a smaller observed delay. Analogously to the conjunctive Collider, there are two

cases: (1) the influence of A arrives first, causing E to happen and overshadowing the influence of

B (i.e., tAE = tA→E but tBE ≤ tB→E) and (2) the influence of B arrives first overshadowing the

influence of A (i.e., tBE = tB→E but tAE ≤ tA→E). Thus, the joint likelihood of a disjunctive

(pooled delay) Collider can be written as

p(tAE , tBE |α, µ) = p(tAE |α, µ) · p(tBE ≤ tB→E |α, µ) + p(tBE |α, µ) · p(tAE ≤ tA→E |α, µ) (A-8)

= p(tAE |α, µ) · (1− p(tBE ≥ tB→E |α, µ)) + p(tBE |α, µ) · (1− p(tAE ≥ tA→E |α, µ))

(A-9)

Timing based likelihoods

We start by describing the likelihood function of the pooled DelayP variant of the model.

The likelihood of a temporal pattern di given a causal structure s ∈ S with timings governed by
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parameters λ, α and µ, is the product of the likelihoods of the relative delays between causes and

effects that result from mapping the absolute event timings tX ∈ di onto the structure of the

model s ∈ S

p(d |λ, α, µ; s) =
∏
i∈1:n

p(di|λ, α, µ; s) =
∏
i∈1:n

∏
tiX∈di

p(tiX − tipa(X)|λ, α, µ; s) (A-10)

with p(tiX − tipa(X)|λ, α, µ; s) being either gamma or exponentially distributed (see Equation 3 and

Equation 2, respectively) depending on whether X has a parent or not (and assuming that the

structure is not a Collider).

For the Collider, we have to determine the joint likelihood of tAE and tBE according to the

derivation in Appendix A.1.

In the general case, λ, α, and µ are unknown. To get the (marginal) likelihood of the data

given the structure, which is our target for Equation 1, we have to marginalize out the parameters

by integration, assuming some prior distribution over λ, α, and µ18

p(d |s) =
∫
p(d, λ, α, µ|s) dλ dα dµ (A-11)

=
∫
p(d |λ, α, µ; s) · p(λ, α, µ|s) dλ dα dµ (A-12)

=
∫
p(d |λ, α, µ; s) · p(λ|s) · p(α|s) · p(µ|s) dλ dα dµ (A-13)

We discuss how we approximated these integrals and sensitivity to priors in the next section.

Simple Monte Carlo — Experiments 1 and 2

As there is no closed form solution for the marginal likelihoods p(d |s) of data d under

structure s, we used a simple Monte Carlo sampling scheme to approximate the multiple integral.

For this purpose, we drew B = 100, 000 independent samples from the respective parameters’

prior distributions p(λ|s), p(α|s) and p(µ|s) and averaged over the likelihoods (see Equation A-13)

at the sampled points in parameter space
18Concretely, we used an Exponential (0.1) prior for α, an Exponential (0.0001) prior on µ and an

Exponential (10000) prior on λ, corresponding to a weak expectation for positive dependence, shorter delays and

frequently occurring independent causes.
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p(d |s) =
∫
p(d |λ, α, µ; s) · p(λ|s) · p(α|s) · p(µ|s) dλ dα dµ (A-14)

≈ 1
B

B∑
b=1

p(d |λ(b), α(b), µ(b); s) (A-15)

with λ(b), α(b), and µ(b) being the b’s sampled points from the prior distributions.

Markov Chain Monte Carlo estimation — Experiments 3 and 4

In Experiments 3 and 4, we could use an uninformative prior for the parameters of the

gamma distribution (as no collider was involved). For one causal link and the gamma’s (α, θ)

parametrization with µ = α
θ , we can derive the posterior based on a conjugate prior assuming “no

prior observations”

p(α, θ|d; s) ∝ pα−1e−
q
θ

Γ(α)nθαn (A-16)

for n data points d with p =
∏
di and q =

∑
di.19 The normalizing constant of the equation’s

right hand side is our target of interest, namely the marginal likelihood of the data given the

structure of interest p(d |s). To approximate the integral, we used a two-step procedure:

1. We generated a sample from the posterior over α and θ via the Metropolis–Hastings

algorithm (i.e., MCMC) with 10,000 points sampled from 10 chains each with Gaussian

proposal distribution on α (SD=50) and θ (SD= 10) and burn-in of 1,000 and only each

tenth point taken (i.e., thinning). We run the sampler ten times to check for convergence

(see Gelman, Carlin, Stern, & Rubin, 2004).

2. We used the obtained sample to estimate the marginal likelihood with the method proposed

by Chib and Jeliazkov (2001). Although the method formally works with just one sampled

point, we used a subset to generate a more stable estimate. We randomly drew 1,000 points

from the MCMC sample and took the 50 points with the largest likelihoods in this
19Note that we describe delays in terms of their shape α and mean µ in the main text to aid exposition. However,

in statistical applications including approximating inference it is more common and more convenient to work with

shape and rate θ.
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subsample. For each of these points, we calculated the marginal likelihood estimate with the

method proposed by Chib and Jeliazkov (2001) and averaged over these to get our estimate

of p(d |s).

Checking sensitivity to priors

We first assess the sensitivity of our model fits to our choice of priors on α, µ and λ before

comparing them against the predictions of the Markov Chain Monte Carlo procedure we used to

estimate posteriors in Experiments 3 and 4. The Markov Chain procedure gives posterior

predictions based on an uninformative “improper” (Hartigan, 2012) prior but cannot be used for

the Collider structure in Experiments 1 and 2.

Figure 17 shows that we get similar Delay model fits for a range of α, µ and λ values

spanning 3–4 orders of magnitude in each case. In general there is some variability, particularly in

Experiment 4 where for half of the problems there is essentially no causal signal, and meaning

even weak prior expectations can dominate. Figure 18a and b compare our Simple Monte Carlo

estimations directly against our prior-free MCMC procedure. We see there is a little sensitivity to

choice of priors on α and µ. Particularly, too high a rate for µ leads to an initial preference for

shorter delays and hence the chain under which the delays are necessarily shorter. Additionally,

too low a rate for either α or µ led to less stable predictions as few samples fall in the range of the

true generative model. However, our chosen values of 0.1 for α and 0.0001 for µ make these effects

negligible for the range of event timings we consider in Experiments 1 and 2.
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Figure 17 . Sensitivity of model predictions to priors on α, µ and λ. The settings used in the paper are

denoted by an “X” in each case. Legends apply to all plots in the column.
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a) Prior sensitivity α b) Prior sensitivity μ

Figure 18 . a) Sensitivity of α prior on model predictions in Experiments 3 and 4. Left hand column

(dashed line) shows predictions using an “improper” uninformative prior. Other columns show predictions

under different priors on α. Asterisk indicates the values used for predictions in Experiments 1 and 2.

Lines smoothed using the general linear additive model with integrated smoothness estimation gam from

R’s mgcv library with gray surrounds indicating a 99% confidence interval. The prior on µ for these

simulations was Exponential(0.0001). b) Sensitivity of µ prior on model predictions in Experiments 3 and

4. Columns, asterisks, and lines as in a. The prior on α for these simulations was Exponential(0.1).
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