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ABSTRACT
The C++ programming language offers a strong exception mech-
anism for error handling at the language level, improving code
readability, safety, and maintainability. However, current C++ im-
plementations are targeted at general-purpose systems, often sac-
rificing code size, memory usage, and resource determinism for
the sake of performance. This makes C++ exceptions a particularly
undesirable choice for embedded applications where code size and
resource determinism are often paramount. Consequently, embed-
ded coding guidelines either forbid the use of C++ exceptions, or
embedded C++ tool chains omit exception handling altogether. In
this paper, we develop a novel implementation of C++ exceptions
that eliminates these issues, and enables their use for embedded
systems. We combine existing stack unwinding techniques with a
new approach to memory management and run-time type infor-
mation (RTTI). In doing so we create a compliant C++ exception
handling implementation, providing bounded runtime and memory
usage, while reducing code size requirements by up to 82%, and
incurring only a minimal runtime overhead for the common case
of no exceptions.

CCS CONCEPTS
• Software and its engineering → Error handling and recov-
ery; Software performance; Language features;

KEYWORDS
C++, exceptions, error handling

ACM Reference Format:
James Renwick, Tom Spink, and Björn Franke. 2019. Low-Cost Determin-
istic C++ Exceptions for Embedded Systems. In Proceedings of the 28th
International Conference on Compiler Construction (CC ’19), February 16–17,
2019, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3302516.3307346

1 INTRODUCTION
One of the major benefits of C++ is its promise of zero-cost ab-
stractions and its rule of “you don’t pay for what you don’t use”.
This allows the use of various safer and more productive modern
programming idioms, without the performance drawbacks with
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which their use is often associated. However, C++’s wide usage has
not been without issues. For many of the different domains within
industry the use of exceptions in C++, a core part of the language,
has been disallowed. For example, the Google C++ Style Guide [7],
the Joint Strike Fighter Air Vehicle C++ Coding Standards and the
Mars Rover flight software [14] do not allow the use of exceptions
at all, while MISRA C++ specifies detailed rules for their use [1].

While there are many advantages to the use of exceptions in C++,
perhaps their greatest disadvantage lies in their implementation.
The current exception implementations were designed to prioritise
performance in the case where exceptions do not occur, motivated
primarily by the idea that exceptions are exceptional, and thus
should rarely happen. This prioritisation may suit applications for
which errors are rare and execution time is paramount, but it comes
at the cost of other factors – notably increased binary sizes, up to
15% in some cases [4], memory usage and a loss of determinism,
in both execution time and memory, when exceptions do occur.
These drawbacks make exceptions unsuitable for use in embedded
systems, where binary size and determinism are often as, if not
more, important than overall execution time [12, 18]. However, the
C++ language, its standard library and many prominent 3rd party
libraries, such as ZMQ [10] and Boost [2], rely on exceptions. As
a result, embedded software developed in C++ generally disables
exceptions [8], at the cost of reduced disciplined error handling
through C++ exceptions and the exclusion of available libraries.
The Arm C++ compiler tool chain, for example, and in contrast to
most other compilers, disables exceptions by default [5].

In this paper we develop a novel C++ exception implementation,
which reduces memory and run-time costs and provides determin-
ism. The key idea is to apply and extend a recently developed
low-cost stack unwinding mechanism [19] for C++ exceptions. In
our novel C++ exception implementation we make use of a stack-
allocated object that records the necessary run-time information for
throwing an exception, such as the type and size of the exception
object. This state is allocated in a single place and is passed between
functions via an implicit function parameter injected into functions
which support exceptions. The state is initialised by throw expres-
sions, and is re-used to enable re-throwing. catch statements use
the state in order to determine whether they can handle the ex-
ception. After a call to a function which may throw exceptions,
a run-time check is inserted to test whether the state contains
an active exception. We have implemented our new C++ excep-
tion implementation in the LLVM compiler Clang and evaluated
it on both an embedded Arm as well as a general-purpose x86-64
platform. Using targeted micro-benchmarks and full applications
we demonstrate binary size decreases up to 82% over existing im-
plementations, and substantial performance improvements when
handling and propagating exceptions. We demonstrate that our

https://doi.org/10.1145/3302516.3307346
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void C() {

Bar bar;

throw 0;

}

void B() {

Foo foo;

C();

}

void A() {

try {

B();

} catch (int& p) {

// Catch exception

}

}

Figure 1: Example code showing a possible scenario inwhich
exceptions are used. Function A has a try/catch block, that
encompasses the call to B. B allocates a local object, and calls
C, which also allocates a local object, and throws an excep-
tion.

novel C++ exception implementation achieves memory and execu-
tion time determinism, thus making it better suited for embedded
applications with specified worst-case execution time requirements.

1.1 Motivating Example
Consider the motivating example in Figure 1, where function

A has a try/catch block, that encompasses a call to B. B allocates
a local object, and calls C, which also allocates a local object, and
throws an exception. During exception handling stack unwinding is
performed, i.e. stack frames for functions C and B must be removed
from the call stack and local objects destroyed. Finally, the catch
handler (found in A) is invoked. Figure 3 shows this operation in
action for both the standard implementation, and our proposed
implementation. In each case, the stack must be unwound from the
throw site in function C, back to the catch handler in function A.
This involves three steps:
(1) Local objects in C are destroyed, and callee saved registers are

restored.
(2) Local objetcs in B are destroyed, and called saved registers are

restored.
(3) Control is transferred to the catch handler in A.
The most common implementation of C++ exception handling, in
use by both e.g. GCC and Clang, makes use of table-based stack
unwinding. It seeks to eliminate any runtime overhead in the case
where no exceptions are thrown. This is achieved by storing abstract
instruction sequences required for identifying the catch handler,
restoring the call stack and machine state, and invoking object
destructors in Unwind Tables, which are generated at compile-time
and embedded in the final program binary. When an exception is
thrown, the exception object is allocated on the heap, and a 2-stage
process for stack unwinding is started: The first stage, shown in

Return Address
Callee-saved Registers

Return Address
Callee-saved Registers

foo

Return Address
Callee-saved Registers

bar
C

B

A
Unwind
Tables

Resolve catch handler
(found in A)

Call Stack

Figure 2: The standard exception handling implementation
requires an initial phase to scan over the call stack, looking
for a catch handler. This phase does not unwind the stack, it
identifies how far back the stack should be unwound.

Figure 2, is concerned with finding a suitable catch handler. Using
the unwind tables an embedded abstract machine executes the
prepackaged instruction sequence to identify the catch handler by
scanning over the call stack to determine how far back the stack
should be unwound. The second stage, shown in the top half of
Figure 3, then performs the actual stack unwinding. Again, an
abstract machine implements a so-called personality routine which
uses instruction sequences stored in the unwind tables to destroy
local objects, remove stack frames from the call stack, update and
commit the machine state and eventually invoke the catch handler.

The unwind tables used by the conventional C++ exception im-
plementations can grow large and become complex. Furthermore,
these tables typically encode operations to perform during stack
unwinding (such as restoring registers, running object destructors,
etc), which must be executed by an integrated software abstract
machine. While this approach eliminates runtime overhead when
no exceptions occur, it increases the memory footprint of the appli-
cation and introduces non-determinism due to the abstract machine
used at runtime for exception handling.

Our novel C++ exception implementation, shown in the bottom
half of Figure 3, eliminates the need for unwind tables, and the as-
sociated abstract machine. Instead, we introduce a stack-allocated
exception state object, which is allocated at the outermost exception
propagation barrier (function A, in our example), and is populated
at throw time (function C). This state object contains bookkeeping
information for propagating the exception between the throw and
catch sites. We pass this object into any invoked function via an
implicit function parameter and use it to initiate and orchestrate
exception handling. After each return from a function call the com-
piler inserts an additional check of the exception state to determine
if an exception is in progress and, if so, uses a standard function
return mechanism for step-by-step stack unwinding until we reach
the matching catch statement (stages 1, 2, and 3 in Figure 3).

1.2 Contributions
In this paper we contribute to the development of a novel C++
exception implementation particularly suitable for use in embedded
systems. We address following issues:
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Our Implementation

Standard Implementation

Return Address
Callee-saved Registers

Return Address
Callee-saved Registers

foo

Return Address
Callee-saved Registers

bar
C

B

A
Unwind
Tables

Return Address

Callee-saved Registers

Return Address

Callee-saved Registers

foo

Return Address

Callee-saved Registers

bar
C

B

A
Exception State

(1) Destroy bar
(2) Restore saved registers
(3) Return to B

Standard Function Return Sequence

Personality Routine
(1) Destroy bar
(2) Update machine state
(3) Finish

Return Address
Callee-saved Registers

Return Address
Callee-saved Registers

foo
B

A

Personality Routine
(1) Destroy foo
(2) Update machine state
(3) Finish

Unwind
Tables

Return Address
Callee-saved RegistersA

Personality Routine
(1) Commit machine state
(2) Continue in catch handler

Unwind
Tables

(1) (2) (3)

(1) Check active flag in excp. state
(2) Continue in catch handler

Standard Function Return Sequence
(1) Destroy foo
(2) Restore saved registers
(3) Return to A

Standard Function Return Sequence

Return Address

Callee-saved Registers

Return Address

Callee-saved Registers

foo
B

A
Exception State

Return Address

Callee-saved RegistersA
Exception State

Figure 3: Stages involved in stack unwinding for the standard exception implementation (top), and our novel scheme (bottom).

(1) Reducing the binary size increase caused by exceptions.
(2) Permitting the bounding of memory usage and execution time

when using exceptions, i.e. supporting determinism.
(3) Maintaining or improving the performance of exceptions.
Although we focus on embedded systems, we will ensure that these
goals also apply to general-purpose applications.

2 DETERMINISTIC C++ EXCEPTIONS
Stack unwinding forms a core part of the mechanisms underpinning
exceptions. It is also responsible for its poor execution times and
increased binary sizes, and is part of the reason for exceptions being
non-deterministic.

Sutter [19] has only very recently proposed re-using the exist-
ing function return mechanism in place of the traditional stack
unwinding approaches, requiring no additional data or instruc-
tions to be stored, and little to no overhead in unwinding the stack.
Furthermore, by removing stack unwinding’s runtime reliance on
tables encoded in the program binary itself, the issue of time and
spatial determinism is solved. As it is possible to determine the
worst-case execution times for programs not using exceptions, it
follows that exception implementations making use of the same
return mechanism must also be deterministic in stack unwinding.

Given these clear advantages, we have based our implementation
on this design, with a core difference being the replacement of
their use of registers with function parameters, allowing for much
easier interoperability with C code, which can simply provide the
parameter as necessary.

A limitation with [19] is that they require all exceptions be of
the same type, leaving much of the standard exception-handling
functionality up to the user. Our novel approach includes a method
of throwing and catching exceptions of arbitrary types (as with

1 void foo(__exception_t* __exception) throws {

2 // Exception state '__exception' assigned to by throw

3 throw SomeError();

4 }

5 int main() {

6 // State automatically allocated in 'main'

7 __exception_t __exception_state;

8 foo(&__exception_state);

9 // check for exception

10 if (__exception_state.active) goto catch;

11 }

Figure 4: Pseudocode showing injected exception state ob-
ject (line 7) and parameter (line 1)

existing exception handling), without imposing any meaningful
execution-time penalties when exceptions do not occur. We also
reduce the size of run-time type information (RTTI), and maintain
determinism over existing implementations.

Our schememakes use of a stack-allocated object that records the
necessary run-time information for throwing an exception, such as
the type and size of the exception object. This state is allocated in a
single place and is passed between functions via an implicit function
parameter injected into functions which support exceptions. The
state is initialised by throw expressions, and is re-used to enable
re-throwing. catch statements use the state in order to determine
whether they can handle the exception. After a call to a function
which may throw exceptions, a run-time check is inserted to test
whether the state contains an active exception.
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1 auto safe_divide(float dividend, float divisor) throws {

2 if (divisor == 0)

3 throw std::invalid_argument("Divide by zero");

4 else

5 return dividend / divisor;

6 }

Figure 5: Example function marked with our proposed
throws exception specifier (line 1) allowing exception prop-
agation

Figure 4 gives an example of the variables the compiler will
automatically inject during code generation. Line 1 shows the nor-
mally hidden implicit exception state parameter __exception. Line
3 assigns values corresponding to the SomeError type to the ex-
ception state parameter. Line 7 shows the automatically allocated
__exception_state variable, emitted by all noexcept functions.
Line 8 shows the exception state object being automatically passed
to the throws function foo. Line 10 shows the check inserted after
each call to a throwing function to test for an active exception.

The design of this implementation performs almost all of the
exception handling directly within the functions being executed, al-
lowing the optimiser to work most effectively, and by implementing
exceptions on top of normal execution flow; code used in return-
ing from functions is re-used when unwinding the stack following
exceptions. This helps to reduce code size and unpredictability,
and overcomes the largest roadblock in achieving deterministic
execution time. This approach combines the exception-handling
mechanism of C++ with the inter-mixed error-checking and non-
error-handling code integral to the design of [9].

2.1 Throws Exception Specifier
A fundamental issue is to decide which functions should take the
implicit exception parameter that our design requires (i.e. which
functions could throw exceptions). The natural choice would be to
apply it to all functions with C++ linkage, except for those marked
noexcept, in keeping with the current exception implementation.
However, the issue with this approach would be that C++ and C
functions would then have different calling conventions. Whilst
C++ functions can in general be called without special handling
from C, this is only due to the coincidence that the two calling
conventions are identical.

With our proposed scheme, the decision to have C++ functions
support exceptions by default is impractical, as C++ has certain
language holes when it comes to specifying linkage. Specifically,
neither classes, structs nor their members, such as function point-
ers, can have a specified linkage. Therefore, we propose to have
functions be declared noexcept by default. This change in default
exception specification preserves compatibility with C at the cost
of a language change in C++.

Like noexcept, we require functions that might throw encode
this into their signature (similar to [19]), as this impacts on how they
are called. Thus, to indicate that functions can throw exceptions,
we introduce an exception specifier (that is part of the function
prototype), as shown in Figure 5.

Name Description
type The “type id” variable address identifying the

exception object’s type
base_types Pointer to an array of “type id”s identifying

the exception object’s base class types
ptr Whether the exception object is a pointer to

a non-pointer type
size The size, in bytes, of the exception object
align The alignment, in bytes, of the exception ob-

ject
ctor The address of the object’s move or copy con-

structor
dtor The address of the object’s destructor
buffer The address of the exception object
active Whether the exception is currently active

Table 1: Exception State Fields

2.2 Throwing Exceptions and Exception State
The exception state object exists to hold run-time information on the
exception currently in progress. Every function marked noexcept,
including the program main function, and functions used as thread
entry-points, allocates and initialises its own exception state object,
effectively making noexcept functions boundaries beyond which
exceptions cannot propagate.

The address of this object is passed to any of the called functions
that are marked throws, allowing the exception to propagate down
the call chain as far as the first noexcept function, where, if not
handled, the program is terminated.

Following a throw expression, the fields in the exception state
object are populated at the throw-site with values known at compile-
time corresponding to the exception object given in the expression.
The active flag is set to true, the exception object is moved into a
buffer, and its address assigned to the buffer field of the exception
state.

If the throw expression is directly within a try statement, the
code jumps to the first catch block for handling. Otherwise, pro-
vided the current function is marked as throws, the exception is
propagated; execution is transferred to the function epilogue as if
returning normally, but the return value for the function, if any, is
not initialised.

During the return sequence, local objects have their destructors
executed as if a standard function return had occurred, efficiently
unwinding the stack. The exception beingmarked active is notmade
visible to destructors, as destructors are necessarily noexcept in
this context (“If a destructor called during stack unwinding ex-
its with an exception, std::terminate is called (15.5.1)”[17]). In
this way, the exception state is untouched until entering the ini-
tial catch block. If the current function is not marked as throws,
propagation is replaced by an immediate call to std::terminate
to terminate the program.

After each function call to a function marked as throws, a check
is automatically inserted by the compiler to test whether the active
flag has been set, and thus whether the exception has been prop-
agated. This is the largest overhead as a result of our changes -
requiring a test for each function called regardless of whether an
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exception was thrown or not. There is perhaps a good case to be
made for its necessity, however. By indicating that a function can
throw, via throws, the developer is encoding into the function sig-
nature the fact that an error may occur during its execution. Thus
regardless of performance requirements, some test must be made
for that error in a correct program.

2.3 Handling Exceptions
Once an exception has been thrown, and if it does not result in a
call to std::terminate, control is transferred to the first available
catch block.

Before each catch block executes, it first compares for value
equality the “type id” of the exception type it handles, and the type
marked in the type field of the exception state. If they are equal, or
if the type the catch block handles is a base type of the type in the
type field, then the catch block is entered. Otherwise, execution
jumps to the next catch block, and repeats this process until the
catch block is a catch-all, or all blocks have been exhausted. If no
blocks remain, the exception continues propagation as described
previously.

Once a catch block is executed, the active flag of the exception
state is cleared, memory is allocated on the stack for the exception
object, and the move or copy constructor is invoked to transfer
ownership of the exception object into the current block.

If an exception was to occur during the move or copy operation,
std::terminate is called to satisfy the C++ specification, which
states “If the exception handling mechanism, after completing eval-
uation of the expression to be thrown but before the exception is
caught, calls a function that exits via an exception, std::terminate
is called (15.5.1).”

Catch filters can take two forms: (1) by value, where the catch
variable represents an object allocated within the catch block, or (2)
by reference, where the catch variable is a reference to the exception
object allocated elsewhere.

In the latter case, an additional unnamed variable is introduced
in which to store the exception object, and its allocation and ini-
tialisation is performed as described above using the equivalent
non-reference type. The catch variable reference is then bound to
this unnamed variable. In this way, even when the exception object
is caught by reference, it is still owned by the catch block.

Following a successful move/copy of the exception object, the
destructor is called on the original exception object instance within
the buffer. Naturally, as destructors are necessarily noexcept, were
the destructor to exit with an exception, again std::terminate
would be called.

With the catch variable successfully initialised, the catch block
then commences execution. Once complete, execution moves to a
point past the final catch block in the current scope and the catch
variable is destroyed as usual.

2.4 Re-Throwing
One of the issues with maintaining and passing references to a
single instance of exception state via the exception state parameter
is thatmore than one exceptionmay be active at a time, and crucially
the initial exception may require to be re-thrown following the
intermediary exception.

try { throw 1; }

catch (int i) {

try { throw 2; }

catch (...) { }

throw;

}

Figure 6: Re-throwing following a nested exception. The
first exception’s state must be persisted and not overwritten
by the second exception to allow the re-throw.

Figure 6 gives an example. The first exception is thrown on line
1, caught on line 2, then a second exception is thrown on line 3
and caught by the catch-all on line 4. The first exception is then
re-thrown on line 5, which requires the first exception’s state to
have persisted across the second inner throw/catch.

To allow for this, a local copy of the exception state is allocated
when entering a try block, and if an exception occurswithin the try
block, the exception modifies the local copy. If the same exception
is not handled by the try block’s corresponding catch block or
blocks, the local state is copied back to either the outer state, or
to the function’s exception state, as passed in the parameter, for
exception propagation.

If the inner exception is handled correctly, only its local excep-
tion state is modified, thus the outer exception state is maintained
and can be used, for example, to successfully re-throw the outer
exception. As we only initialise the active field of the local copy,
its cost is a simple stack allocation, plus zero-initialisation of a
boolean flag.

C++ already has a mechanism for obtaining and re-throwing
exceptions by making and passing around an explicit copy of (or
reference to) the exception state via the use of
std::current_exception(), which when called returns an in-
stance of std::exception_ptr. To provide similar functionality in
our implementation, we propose an equivalent mechanism, namely:
std::get_exception_obj. This function returns a reference to a
std::exception_obj instance stored on the stack.

What makes std::exception_obj novel is that its type is tem-
plated such that developers can specify a custom allocator, giving
them control over where the exception object is to be allocated
when being transferred to a new instance. However, we restrict the
use of std::get_exception_obj such that it can only be called
from directly within a catch block. This makes sense from a value-
oriented perspective - functions can only inspect and access their
own variables and not their callers’ unless shared explicitly via
parameters. Since in our implementation, the exception object is
directly owned by catch block, functions called from within that
catch block would not normally have access to the object.

Re-throwing in our implementation is achieved by calling the
std::rethrow function, and passing a std::exception_obj in-
stance. This is intuitive, arguably more so than the bare throw;
expression, and crucially makes clear the cost of re-throwing, as
std::exception_obj instances must be explicitly moved around.

Figure 7 shows a complete example. On lines 1 and 2, a function is
declared taking a std::exception_obj instance using the default
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1 void store_exception(

2 std::exception_obj<std::allocator<const char*>> obj)

3 throws {

4 // Move the exception object into a global

5 result.exception = std::move(obj);

6 }

7 // ---------------------------------

8 try {

9 // ...

10 } catch (...) {

11 // Move the exception object out of the catch block

12 store_exception(std::move(std::get_exception_obj()));

13 }

14 // The exception can be re-thrown from a global

15 std::rethrow(std::move(result.exception));

Figure 7: Example of re-throwing the exception ob-
ject using our proposed std::rethrow function and
std::exception_obj type.

allocator. This object is move-constructed from the corresponding
std::exception_obj instance, representing the exception object
within the catch block on line 12, allocating the exception object as
instructed. The object is then moved and stored in a global variable,
result.exception on line 5, which is then re-thrown on line 15.

To enable re-throwing, the std::exception_obj instance also
contains the exception state object, which is already populated with
the details of the exception. Thus, all that is required to re-throw
that exception is to copy those fields to the current exception state,
restore the exception object to the buffer, to set the active flag and
then to attempt to propagate the exception as if throwing normally.

2.5 Throwing Destructors
Although generally advised against by the C++ specification, de-
structors can throw, and can be explicitly marked as throws. Were
such destructors to be called during stack unwinding, they would
incorrectly share the same exception state as the uncaught excep-
tion. In particular, the active flag would be set, leading to incorrect
execution flow when function calls from within the destructor per-
formed their exception check.

To avoid this, we modify the compiler such that when throwing
destructors are entered, they allocate and initialise their own local
exception state, as if they were a noexcept function. This local
state will be used within the destructor. If at any point an exception
is unhandled within the destructor, such that it would exit with that
exception, it first checks the exception state parameter to see if it is
marked as active. If so, two unhandled exceptions are in progress,
and thus the program must be terminated with std::terminate
per the C++ standard (15.5.1, as quoted above).

As throwing destructors may be called when an exception is not
active as part of normal logic, these additional measures consti-
tute overhead on the in the case where exceptions are not thrown.
However, throwing destructors are rare, and are conceptually odd -
exceptions exist to indicate the failure of the operation, but in C++
destruction always succeeds.

2.6 Exception Object Type Identification
One of the disadvantages of current exception implementations
is their use of RTTI in matching the types of thrown exception
objects to a corresponding catch handler. Current approaches make
use of complete RTTI objects in exception binaries, emitting a full
std::type_info instance for each type, which includes a unique
string identifying it. Either the address of these std::type_info
instances, or the string identifier is used to compare against the
corresponding std::type_info instance for the catch handler. In-
heritance adds an additional layer of complexity, as each candidate
type must also enumerate and compare its public base classes when
matching against the catch block type.

Seeking to reduce binary sizes, we introduce an optimisation
that both reduces the space required to represent types, and ad-
dresses concerns with execution time determinism. This solution is
predicated upon the fact that each type requires solely some unique
identifier, and not the full std::type_info instance.

For each unique type of exception object thrown, the compiler
will automatically emit a char-sized variable with minimum align-
ment, whose identifier is composed of the name of the type prefixed
with __typeid_for_. Pointer types will have an integer prefix cor-
responding to the number of levels of indirection. Type qualifiers
such as const and volatile are ignored.

This “type id” variable will use its address to represent a unique
type identifier with which types might be compared for equality.
In a throw expression, the type field of the exception state will be
assigned the address of the “type id” matching the thrown type.

To handle polymorphic types, for each unique type of exception
thrown, an additional array of addresses will be emitted, containing
the addresses of the “type id” variables for the base types. In similar
fashion to the “type id” variables, its identifier is prefixed with
__typeid_bases_for_, followed by the name of the type. For those
types which do not have base classes, a single shared array with
the identifier __typeid_empty_bases will be emitted, containing
only a null entry.

Testing whether a given type is a base class of another type is
then a matter of getting the pointer to the base class array (which is
known at compile-time), and iterating through its fixed-size list of
bases. When an exception is thrown, its corresponding base class
array will be assigned to the base_types field of the exception
state.

This same iteration of base classes applies when throwing and
catching pointer types. While the type field will contain a “type
id” identifying the pointer, the base_types field will correspond
to the base type array of the pointee type.

In both the “type id” and base-array cases, to ensure both emis-
sion and uniqueness, these variables will be marked as being weak
symbols, an indication given to the linker that only one instance of
each variable will be preserved in the final binary.

2.7 Exception Object Allocation
When throwing an exception, the exception object must be allo-
cated such that it is constructed in the scope where it was thrown,
but is also accessible to the scope where it is caught. It is not enough
to simply allocate the object on the stack, despite the fact that the
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bool type_is_base(void* type, const char** bases) noexcept {

for (; bases[0] != nullptr; bases++) {

if (static_cast<const void*>(bases[0]) == type)

return true;

}

return false;

}

Figure 8: Example iteration over base entries, the candidate
base is passed to the type parameter and the array of base
“type id”s to the bases parameter.

exception will cause the stack to be unwound, as local object de-
structors will run as the stack is unwound, potentially overwriting
the exception object. Allocating the exception object on the heap
is a solution, but the allocation may result in system calls, which
(a) potentially have unbounded execution time, and (b) may fail
if memory is exhausted. As our target is to support deterministic
exceptions, standard heap allocation is not an option.

We propose a statically sized buffer using a simple constant-
time stack allocator for our exception object, with a heap-backed
fall-back upon buffer exhaustion for those applications who can-
not compute or do not require run-time determinism. The size of
this buffer will be given a default value by the ABI in use, but
will be optionally application-overridden at link-time via a linker
command-line parameter, to optimise or prevent any and all heap
allocation.

In the worst-case scenario, our solutionmatches the performance
of current exception implementations, as at least that of g++ uses a
similar buffer. However, as we free our exception objects as early
as possible, we expect usage of this buffer to be less than other
implementations, and with our novel ability to customise its size
(and in combination with earlier improvements), we uniquely offer
deterministic allocation.

3 STANDARDS COMPLIANCE
In this section we consider the compliance of our exception im-
plementation against the ABI specification, and the C++ standards
document.

3.1 ABI Compliance
Existing ABI specifications mandate the use of tables and manual
stack unwinding. However, since using the existing function return
mechanism is a superior method of achieving stack unwinding, our
implementation deviates entirely from their design. Therefore, we
will not evaluate our solution against any existing ABI specifica-
tions. A side effect of this is that our own ABI is significantly easier
to implement, as the stack unwinding and exception handling code
is generated in a platform-independent way by the compiler.

3.2 C++ Standard Compliance
In general, our implementation conforms to the C++ standard’s re-
quirements for exceptions. However, we have observed four clauses
where there are deviations:

Clause 18.1.4. describes the interaction between the exception
object and std::exception_ptr, which is designed for exception
objects allocated on the heap. This is therefore not suited to our
stack-based implementation, however our replacement provides
similar functionality.

Clause 18.2.2. requires local temporaries, such as return values,
to have their destructors called when unwinding. However, clang’s
existing exception implementation does not conform to this part
of the specification, and as a result our implementation also does
not conform. This is a bug in the clang compiler (on which our
implementation is based), and if this is repaired, our implementation
will also be repaired.

Clauses 18.2.3 and 18.2.4. require the destruction of base class
instances and sub-objects already constructed when an exception
occurs during a constructor. This feature is not yet implemented,
and will be addressed in future work, however it does not require
any conceptual changes, as following from its simplicity and simi-
larity to local object destruction, we foresee no issues that might
occur in its implementation.

4 EVALUATION
We have implemented our novel scheme in the clang compiler, and
present results showing the performance of our implementation,
compared to the existing implementation.

4.1 Experimental Set-up
For our experiments, we used two different machines with two
different platforms:

• x86-64 Machine Desktop computer running Ubuntu 18.04, Intel
8700k @ 3.7-4.7GHz, 32GB 3200MHz DRAM, Samsung 980 Evo
NVMe storage.

• ArmMachine Raspberry Pi 1 Model B running Raspian Stretch
Lite, ARM1176JZFS ARMv6 @ 700MHz, 512 MB DRAM, 16GB
SD storage.

All binaries were built with identical flags, other than those deter-
mining the type of exceptions to use. Run-time type information
is disabled (-fno-rtti), the symbol table is removed (-s), and
-O3 optimisation with link-time optimisation (-flto) is employed.
Clang-7.0 was used as the compiler, along with libstdc++ and
libgcc on Arm, and libc++ and libunwind on x86.

4.1.1 Benchmark Application. Lacking an obvious existing realistic
benchmark with which to test exceptions, we instead developed our
own microbenchmark. xmlbench is a simple XML parser, targeting
ease of use and functionality as a real XML parser. It organically
includes a good mixture of functions that can and can not throw
exceptions, and also those which do throw exceptions and those
which are “exception neutral”, i.e. allowing exception propagation.
By supplying different XML files as input to the parser, we can
precisely control the rate of exceptions. Errors in input XML syntax,
and external conditions (such as the input file missing, or an out-
of-memory condition) can be influenced in a realistic way. This
approach to benchmarking is similar to [15], who also use an XML
parser as a representative application.
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Platform Implementation Size
Arm Standard 59,188 bytes
Arm Deterministic 22,068 bytes
x86-64 Standard 105,312 bytes
x86-64 Deterministic 18,600 bytes

Table 2: Final binary sizes for xmlbench benchmark, with the
standard and deterministic exception implementations.

4.2 Results
The following sections detail the results of our observations on
various facets of the exception handling infrastructure.

4.2.1 Unwind Library Overhead. Statically-linked binaries partici-
pate in whole-program optimisation, and as such have the exception
handling and unwind functions removed when using our imple-
mentation. This allows for a direct comparison against binaries that
use the standard implementation.

Table 2 shows the results of the binary built with both the stan-
dard and the deterministic exception implementations. The results
for both x86-64 and Arm show substantial decreases in binary size,
when using our deterministic implementation. This measurement
indicates how large the unwinding code is. Arm’s unwinding code
is smaller, but by removing it we see a decrease in binary size of
36.3 Kilobytes, a 62.7% reduction for our program. x86-64 has a
much larger unwind library, with our implementation saving 84.7
Kilobytes, an 82.3% reduction in size for identical functionality.

On both platforms, the code section (.text) grows due to the
inclusion of additional instructions for checking the exception state.
On x86-64, the removal of the unwind tables compensates for this
growth, with a reduction of 0.3%. However, on Arm missed opti-
mization opportunities by the compiler leads to an net increase of
roughly 8%.

4.2.2 Application Benchmark Performance. We generated two sets
of XML files one with syntax errors, and one without, and parsed
them with xmlbench. The syntax error is contained within the
deepest element, resulting in an exception thrown with the stack
at its largest number of function calls. For each run, we measured
the total run-time of the xmlbench program, including the start-up
time.

Figure 9 shows the average execution time in microseconds per
XML element parsed by our benchmark, for both the Arm (Figure 9a)
and x86-64 (Figure 9b) platforms. On the Arm platform, the results
show there is little difference between execution times, except for
the standard exception implementation generally performing the
worst of the four, when faced with an exception. As was expected,
the standard implementation performs better when no exception is
raised with only 156 elements, as our implementation must check
for active exceptions. This difference disappears as more elements
are processed.

On the x86-64 platform, our deterministic implementation takes
slightly longer per element than the standard implementation for
larger numbers of nodes. This is primarily due to the overhead of
checking whether an exception has occurred. As is expected, the
difference in time for our implementation depending on whether

# Elems. Throw? Time (σ )
Standard Impl.

Time (σ )
Determ. Impl.

A
rm

156 ✗ 42.7ms (0.6ms) 41.7ms (0.6ms)
156 ✓ 43.7ms (0.6ms) 43.0ms (0.0ms)
3,906 ✗ 158.7ms (2.1ms) 162.7ms (1.5ms)
3,906 ✓ 160.7ms (1.5ms) 162.0ms (2.0ms)

x8
6-
64

3,905 ✗ 3.3ms (0.6ms) 3.3ms (0.6ms)
3,905 ✓ 3.3ms (0.6ms) 3.3ms (0.6ms)
97,655 ✗ 68.0ms (1.0ms) 70.7ms (0.6ms)
97,655 ✓ 69.0ms (1.0ms) 70.3ms (0.6ms)

Table 3: Overall execution time summary for xmlbench on
the Arm and x86-64 platforms.

an exception was thrown or not is very small, particularly in com-
parison to the same for the standard implementation, which at its
peak has a 2.3% overhead.

The benchmark clearly shows how throwing a single exception
increases execution time for the standard exception implementation,
given the lengthy unwind procedure. However, with our implemen-
tation, the improvements to exception handling speed are not quite
enough to compensate for the overhead in the absence of excep-
tions. With more than a single exception, and particularly given
the results for 488,281 elements, where the trend suggests that our
implementation scales better than the existing one, it should be
enough for our solution to out-perform the current one.

As shown in Table 3, our implementation creates a small ad-
ditional execution time overhead in comparison to the standard
implementation, however, the difference is negligible and within
the standard deviation.

4.2.3 Exception Propagation. To test exception propagation, we
used a different benchmark, which simply called the same function
recursively as many times as indicated by Stack Frames, with a local
object having a simple custom destructor within each frame. After
Stack Frames calls, an exception is thrown, and caught by reference
from the first invocation. The benchmark was compiled with the
same flags as xmlbench.

The CPU time was measured between the first function call, and
arrival in the catch handler. The experiment was run multiple times
for each configuration, and the mean and standard deviation of the
results are tabulated in Table 4.

The results show a significant difference in execution time be-
tween the two exception implementations. Our implementation
is on average 98× faster at performing exception propagation on
x86-64. The factor of improvement increases from 68× to 138× as
the number of stack frames increases, indicating that the perfor-
mance penalty seen in the current implementation increases as the
number of frames increases. Our implementation performs best on
x86-64 with deep call stacks.

On Arm, the improvement in execution time remains almost
constant, at 32× to 33× for 100 and 1000 frames, and 35× speedup
for 10,000 frames. This suggests that our implementation will con-
sistently offer improved performance independent of the number
of frames.



Low-Cost Deterministic C++ Exceptions for Embedded Systems CC ’19, February 16–17, 2019, Washington, DC, USA

 0

 50

 100

 150

 200

 250

 300

156 781 3906 19531

E
xe

c.
 T

im
e
 p

e
r 

e
le

m
e
n
t 

(u
S
)

# XML Elements

Standard: No Error
Standard: With Error

Deterministic: No Error
Deterministic: With Error

(a) Arm

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

3905 19531 97655 488281

E
xe

c.
 T

im
e
 p

e
r 

e
le

m
e
n
t 

(u
S
)

# XML Elements

Standard: No Error
Standard: With Error

Deterministic: No Error
Deterministic: With Error

(b) x86-64

Figure 9: Execution times in µs per XML element for different element counts with our xmlbench benchmark on Arm (a) and
x86-64 (b). Lower is better.

Stack Frames Implementation Time σ

A
rm

100 Standard 1351.3µs 74.3µs
100 Deterministic 41.7µs 0.6µs
1,000 Standard 9.6ms 0.2ms
1,000 Deterministic 0.3ms 0.0ms
10,000 Standard 94.8ms 1.0ms
10,000 Deterministic 2.7ms 0.1ms

x8
6-
64

100 Standard 114.7µs 21.6µs
100 Deterministic 1.7µs 0.8µs
1,000 Standard 2572.0 µs 231.2µs
1,000 Deterministic 29.0 µs 0.0µs
10,000 Standard 8823.8µs 960.0µs
10,000 Deterministic 64.0µs 6.4µs

Table 4: Execution times for the exception propagation
benchmark.

The improvements in execution time are a result of not having
to resolve the encoded unwind information, and walk the stack
twice to locate the catch handler before unwinding.

4.2.4 Re-Throwing. To measure exception re-throwing, we used
another benchmark, which called the same function recursively as
many times as indicated by Stack Frames, with a local object having
a custom destructor within each frame. After Stack Frames calls, an
exception is thrown, but unlike before, caught and re-thrown by
each function. The benchmark was compiled with the same flags
as xmlbench.

The CPU time was measured between the first function call, and
arrival in the catch handler. The experiment was run multiple times
for each configuration and the mean and standard deviation of the
results are tabulated in Table 5.

These results show a similar pattern to those for straight propa-
gation. On x86-64 for 10,000 stack frames, the current implemen-
tation takes almost 3× longer to catch and re-throw than simply
propagating, while our implementation is 38× slower than when
simply propagating. This factor of slowdown is to be expected

Stack Frames Implementation Time σ

A
rm

100 Standard 4.1ms 0.1ms
100 Deterministic 0.2ms 0.0ms
1,000 Standard 33.5ms 0.4ms
1,000 Deterministic 1.8ms 0.0ms
10,000 Standard 318.4ms 6.3ms
10,000 Deterministic 18.2ms 0.1ms

x8
6-
64

100 Standard 1071.7µs 363.3µs
100 Deterministic 22.7µs 13.8µs
1,000 Standard 3.8ms 0.1ms
1,000 Deterministic 0.2ms 0.0ms
10,000 Standard 22.0ms 0.3ms
10,000 Deterministic 2.4ms 0.1ms

Table 5: Execution times for the exception re-throwing
benchmark.

given how fast our implementation is when not re-throwing, but
also due to the multiple steps required to move the exception ob-
ject into and then out of each stack frame. This is clearly a good
target for optimisation, as such transfer is unnecessary. Despite
this, our implementation yielded a 9× speedup over the standard
implementation.

For 1000 stack frames on x86-64, the difference between execu-
tion times is larger, with our implementation executing 19× faster.
With 100 frames, the results have a very high standard deviation, but
there is a clear order of magnitude between the two times, indicat-
ing that the difference in performance remains largely independent
of the number of frames.

On Arm, the additional time taken to initialise the exception
state in our implementation is evident, as it takes roughly five
times longer than in the propagation benchmark. The standard
implementation also suffers a performance hit, but one which de-
creases as the number of frames increases, suggesting that a large
part of it is constant. This matches the fact that in the standard
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implementation the exception object is allocated on the heap, creat-
ing a large up-front cost, but one which is amortised across many
re-throwings.

In reality, however, re-throwing at every frame is highly un-
usual behaviour, making both this amortisation and our worsening
performance unlikely to be noticed.

4.3 Timing and Memory Determinism
We base our understanding of the language and algorithmic require-
ments for determinism on Verber and Colnaric [20]. In general, the
requirements for deterministic execution fall into two categories:
deterministic memory usage, and deterministic execution time.

Formemory usage, we can further subdivide the requirement into
stack usage, and heap usage. When no exception occurs, our stack
usage is static. A fixed-size allocation for the exception state occurs
per noexcept function invocation, throwing destructor invocation,
and try block entry.

When an exception is thrown, the object is either allocated with a
fixed size determined by the catch block, or with a variable size that
can be bounded by the maximum allocation size of all exception
objects thrown. The functions called by our implementation have
a well-defined order and number known at compile-time and are
not recursive. While pointers are used to store this address, their
addresses are fixed within the range of the exception object buffer,
or the current stack frame.

Our implementation does not require heap allocation. However,
it is possible for the program to allocate an arbitrary amount of
memory, if local object destructors throw exceptions. For exam-
ple, during stack unwinding, destructors may throw an exception,
causing their own local objects to be destroyed, which in turn may
throw additional exceptions.

However, since this potential execution flow is known at compile-
time, and is akin to normal function calls made directly via their
function definition, rather than via function pointer, static analysis
tools are able to give a bound for the number and type of exceptions
thrown, and thus the maximum size of allocation. Furthermore, due
to the nature of stack unwinding, recursion is not possible, except
where introduced explicitly by the developer’s code, and thus the
number of stack frames is known.

Deterministic execution time generally refers to the ability to
calculate the worst-case execution time (WCET), as demanded by
most real-time systems. For execution time, unlike with existing
implementations, it is trivial to calculate the WCET of all of our
operations. Aside from the allocation and initialisation of the local
exception state, and the checking of the active flag (all of which
have deterministic timing) we have three operations.

The first allocates the exception object in the exception buffer. In
this case, the allocator is a stack allocator, which merely advances
a pointer, except where the developer does not specify a correct
maximum bound on exception allocation. The second frees the
exception object, which again is trivially a pointer decrement. The
final function resolves the base class “type id”s when matching
polymorphic exception types against catch handlers. Our imple-
mentation’s novel approach guarantees a fixed number of iterations
through the list of base classes, again known at compile time and
derived from the filter of the catch block.

Therefore, should a WCET analysis tool give correct predictions
for programs not using exceptions, it would also give such predic-
tions for our implementation, meeting the criteria for determinism.

5 RELATEDWORK
Modern exception handling, including the semantics of raising
(throwing) and handling (catching) exceptions, exception hierar-
chies, and control flow requirements were first introduced in [6].

In [11] inherent overheads, both in terms of execution time and
memory usage, in the current C++ implementations of exceptions
are identified. A further evaluation on how C++ features impact
embedded systems software is presented in [16]. This report sin-
gles out exceptions and its prerequisite run-time type information
(RTTI) as “the single most expensive feature an embedded design
may consider”.

Lang and Stuart [12] describe stack unwinding as it relates to
exceptions in real-time systems and show how the worst-case ex-
ecution time of the stack unwinding is unbounded. This has later
been confirmed in [9]. For our own definition of determinism, we
take insight from [20], which details many of the requirements
necessary for languages to be susceptible to time analysis.

A new exception handling approach which is better suited to
static analysis is presented in [13], but it requires substantial code
rewriting. SetJmp/LongJmp and table-based exception handling are
discussed in[3]. The results demonstrate large increases in binary
size and an execution time overhead of 10-15%. Gylfason and Hjalm-
tysson [8] develop a variant of table-based exception handling for
use within the Itanium port of the Linux kernel.

Most relevant to the work present in this paper is [19]. It focuses
on propagating exceptions down the stack by duplexing the return
value of functions so as to fit the exception object itself within the
register or stackmemory used for the return value, and, importantly,
to re-use the existing function return mechanism to perform stack
unwinding. This approach hinges on two complex changes to C++’s
function calling convention, though. This kind of change would be
significant, breaking compatibility with C code and all existing C++
libraries. Instead, our novel exception implementationmaintains the
existing exception model by finding a new way to store and match
exceptions at run-time, with little to no additional performance
impact when exceptions are not thrown.

6 SUMMARY & CONCLUSIONS
In this paper we have developed a novel implementation of C++ ex-
ceptions, which better suits the requirements of embedded systems,
while still upholding the C++ core design tenets. Our implemen-
tation shows binary size decreases of up to 82.3% over existing
implementations, performance improvements of up to 325% when
handling exceptions, minimal execution time overhead on x86-64,
and none on the Arm platform. We have shown that our implemen-
tation achieves memory and execution time determinism, making
it significantly better-suited to calculating worst-case execution
times, a major hurdle in the adoption of exceptions.

Our future work will investigate further code size improvements
resulting from code optimizations and shrinking of the exception
state object, while reducing execution time by allocating the active
flag in the exception state to a register.
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