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Abstract 21 

The Southern Ocean is a hotspot of the climate-relevant organic sulphur compound dimethyl 22 

sulphide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other 23 

oceanic region, especially in the marginal ice zone. During a one-week expedition across the 24 

continental shelf of the west Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in 25 

January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulphoniopropionate (DMSP) 26 

was studied and linked with environmental conditions, including sea ice melt events. Concentrations 27 

of sulphur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters 28 

varied by a factor of 5 to 6 over the entire transect. DMS and DMSP concentrations were an order of 29 

magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP 30 

(DMSPp) concentrations were correlated most strongly with POC and the abundance of Haptophyte 31 

algae within the phytoplankton community, which in turn was linked with sea-ice melt. The strong 32 

sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with 33 

ongoing reductions in sea ice cover along the WAP. This has implications for feedback processes on 34 

the region’s climate system. 35 

 36 

 37 

Keywords: 38 
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 40 
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 2 

Introduction 42 

The semi-volatile organic sulphur compound dimethyl sulphide (DMS) is the most important natural 43 

sulphur source to the atmosphere, where it forms an important precursor of aerosols after oxidation 44 

to sulphate. Oceans are the main source of DMS, contributing >90% to the global flux. The modelled 45 

contribution of DMS to the climate-relevant non-sea-salt sulphate (nss-SO4
2-) is especially high in the 46 

Southern Ocean, where human impacts are smallest, with a mean annual contribution of 43% to 47 

Southern Hemisphere nss-SO4
2- and an 85% contribution to nss-SO4

2- over the summer period ((1)). 48 

Aerosols and clouds contribute to the albedo of the atmosphere. This has led to the well-known 49 

CLAW hypothesis, whereby a negative feedback exists between the production of DMS in the ocean 50 

and the albedo of the sky and clouds, thus regulating Earth’s climate (2). Although this hypothesis 51 

inspired much research, there are still large uncertainties about many aspects of the hypothesis, 52 

especially in remote locations like the Southern Ocean. 53 

Modelling the radiation budget around Antarctica is one of the biggest uncertainties in projections of 54 

global climate. This is at least partly due to the fact that oxidation pathways in the atmosphere are 55 

intrinsically complex with large impacts on the efficiency of the DMS-to-SO4
2- pathway (3). 56 

Nonetheless, high numbers of ultra-fine particles have been observed in air masses coming from 57 

Antarctic sea-ice areas and it has been suggested that DMS is a potential source (4). Indeed, high 58 

DMS fluxes have been found above sea ice, but it remains unclear how much can be attributed to 59 

direct flux from surface communities in ice, or from leads between ice floes where surface-60 

microlayer concentrations of DMS are typically 10-fold higher than in the underlying water column 61 

(5)(6). So far, most attention has been paid to the impact of changing sea-ice cover on the pelagic 62 

ecosystem and its consequences for DMS release. Coupled climate simulations have shown a 150% 63 

increase in zonal-averaged DMS flux in the Southern Ocean, when modelling a future world with an 64 

atmospheric CO2 concentration of 970 ppm. This increase is due to sea-ice reductions and concurrent 65 

ocean community changes, and did not involve DMS flux from sea ice itself (7).  66 

Climatologies of DMS concentrations and fluxes to the atmosphere show that the Southern Ocean as 67 

a whole is a global hot spot of DMS production (8). A recent update of the Southern Ocean summer-68 

time climatology of DMS confirms the region’s importance and calculates an overall increase in 69 

concentrations and fluxes compared to Lana et al. (9). The Southern Ocean is also the region with 70 

highest temporal variability in DMS concentrations, whereby highest concentrations are observed in 71 

the Marginal Ice Zone (MIZ). Data from the West Antarctic Peninsula (WAP) region are scarce, with 72 

only a few published datasets (10) (9) (11). Two time-series from the Palmer Long-Term Ecological 73 

Research (LTER) program show increasing DMS concentrations in December, reaching relatively 74 

stable concentrations in January between 5 and 15 nM and an occasional maximum exceeding 25 nM 75 

(10) (11). A recent multi-year time series at the Rothera Time-Series (RaTS) site in northern 76 

Marguerite Bay, shows a similar pattern, but with much higher concentrations. Here, DMS 77 

concentrations exceeded 20 nM during several weeks in January of each year, with a maximum of 78 

160 nM in January 2015 (Webb et al. in prep). 79 

The cause of the difference between the Palmer LTER and RaTS datasets is yet unexplained, but we 80 

hypothesise an important role for sea ice in modulating the magnitude of DMS concentrations. Sea-81 

ice conditions along the WAP have changed dramatically since the onset of the satellite era in the 82 

late 1970s, resulting in an increase in the length of the summer ice-free season by more than 3 83 

months (12). These changes are strongest in the northern part of the WAP, where sea ice losses have 84 

been significantly more pronounced than further south and in the Marguerite Bay region (13). 85 

Impacts of these changes on the ecosystem are now becoming apparent, with strong reductions in 86 

primary production in the northern part of the WAP and increased primary production in the 87 

southern WAP region (14). Average sea-ice coverage over the last 5 years shows that the northern 88 

boundary of the retreating MIZ at Palmer occurs two months earlier than at Rothera (Figure 1a and 89 

b), with potential consequences for the timing and magnitude of the phytoplankton bloom. The 90 

impact of sea ice on primary production acts through stabilization of the upper mixed layer, thereby 91 

offering favourable conditions for phytoplankton growth (15), but also potentially through seeding 92 
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 3 

algae to the surface waters when high algal biomass is released upon ice melt (16) (17). The 93 

consequences of sea ice changes for DMS(P) production are yet unknown. 94 

Large blooms and spikes of DMS in the MIZ have been associated with melting ice (18). These DMS 95 

spikes may be caused by the release upon ice melt of large amounts of ice algae that produce the 96 

precursor of DMS, dimethyl sulphoniopropionate (DMSP). DMSP is an important osmolyte for ice 97 

algae (19). As a result, extremely high DMSP concentrations in sea ice – two to three orders of 98 

magnitude higher than in the underlying surface waters (20) – are a common feature. When sea ice 99 

decays, ice algae are released to the water column, and this may result in a release of DMSP from the 100 

cells and subsequent enzymatic conversion into DMS. Direct evidence for this pathway is limited, 101 

however, and a large range of water-column inventories of DMS have been observed in different 102 

studies in the MIZ. For instance, in a time-series study in the Weddell Sea in which both sea ice and 103 

surface water were monitored simultaneously, the loss of two-thirds of the DMSP inventory in sea 104 

ice co-occurred with increases of DMSP in the water column, but only a small increase in DMS, with 105 

concentrations around 1 nM (20). 106 

The role of sea ice in the flux of DMS to the atmosphere is complex and we are far from having a 107 

quantitative understanding of the processes involved. The efficiency with which DMSP is converted 108 

to DMS strongly depends on the community structure of the microbial foodweb (21), in combination 109 

with abiotic factors such as salinity, temperature, nutrient availability and light conditions (22). High 110 

salinity, low temperature, nutrient limitation and high-light stress in sea-ice ecosystems may all 111 

result in increased production of DMSP, especially by the well-known DMSP producer Phaeocystis 112 

antarctica, which is often found in surface-ice communities (20). Upon ice melt, brine channels open 113 

and surface communities are flushed. Reductions in salinity, increased temperatures and potential 114 

invasion of the brine channels by zooplankton that graze on ice algae are processes with the 115 

potential to release DMSP from algal cells. Subsequent conversion to DMS depends both on the algal 116 

and bacterial community composition, because Phaeocystis and dinoflagellates can have an active 117 

DMSP-lyase enzyme that converts DMSP into DMS, whereas diatoms do not (22). In addition, an 118 

active bacterial community can add to the DMSP cleavage into DMS, but also use DMSP as a carbon 119 

and sulphur source, thereby diverting DMSP consumption away from DMS production (22).  120 

The latest DMS climatology of the Southern Ocean does not indicate that the WAP is a particularly 121 

profound hotspot of DMS production (9); however, this may at least partly be due to a lack of data 122 

within the marginal ice zone. These authors make a case for using a summer-time climatology, 123 

covering the December through February months in a single data point, which results in a calculated 124 

DMS concentration for the WAP of around 10 nM. Although this approach may be justified on a basin 125 

scale when a limited number of data points are available, it does not account for the large and 126 

dynamic fluctuations we observed during time-series measurements in Marguerite Bay (Webb et al. 127 

in prep.), and may inadvertently dampen climatologically-important fluxes. The objective of the 128 

current project was to study the spatial heterogeneity of DMS(P) concentrations in the upper ocean 129 

across the WAP shelf, from the shelf break to Marguerite Bay, including the RaTS site. Through 130 

linking the concentrations of these compounds with environmental conditions, including sea ice 131 

melt-water inputs, we obtain a better understanding of the ecological factors that drive the 132 

demonstrated heterogeneity and study the relative contribution of DMS(P) released from sea ice to 133 

the pelagic environment. This is important knowledge that is needed to improve our understanding 134 

on the impact of interannual variability and potential long-term trends in sea-ice growth and retreat 135 

on the regional production of DMS and ultimately on global climate. 136 

 137 

Materials & Methods 138 

Sampling 139 

This study was conducted on board RRS James Clark Ross during the JR307 cruise. For a full 140 

description of sampling see Henley et al. (this issue)(23). In brief: From 1 to 7 January 2015, 11 141 

profiles were taken along a cruise track that followed Marguerite Trough from the shelf break 142 

(station T01) into Ryder Bay (station T10, which coincides with the location of the RaTS site) (Figure 143 
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 4 

1c). At each station, a full-depth conductivity-temperature-depth (CTD) cast was taken with a Seabird 144 

SBE911Plus package attached to a 24-bottle rosette frame. Water samples were taken at each 145 

station on the upcast of CTD deployments from 12 L Niskin bottles. One set of bottles was sampled 146 

over the full depth for carbonate system parameters, macronutrients, oxygen isotopes of seawater 147 

and salinity (23).  148 

In addition to these parameters, 6 Niskin bottles were used to sample the upper 120 m for total and 149 

filtered fractions of DMS + DMSP, particulate organic carbon (POC) concentrations and δ13C-POC, and 150 

phytoplankton pigments. Samples were taken from various depths: 5, 15, 25, 40, 70 and 100 or 120m 151 

depending on the depth of the pycnocline. First, duplicate 70 mL samples for DMS(P)-compounds 152 

were collected in amber-glass vials, using silicone tubing from the Niskin nozzle. Care was taken that 153 

no bubbles formed in the tubing and that the vials were superfluously overflown with sample water 154 

before carefully removing the tubing. The vials were closed with screw caps containing teflon-faced 155 

liners. Secondly, a 0.5L teflon bottle was filled for POC samples and an additional 4.5L polycarbonate 156 

Nalgene bottle for phytoplankton pigments. Before sampling, all sample bottles were thoroughly 157 

rinsed with Milli-Q water and the sample water. After collection, samples were stored in the dark 158 

and cold and immediately processed on board. 159 

 160 

Chemical analyses 161 

S-compounds 162 

From each 70 mL sample a 10 mL subsample was transferred to a 20 mL vial; 1 pellet of NaOH 163 

(approximately 0.2g) was added to convert all DMSP to DMS and the vial was closed with a teflon-164 

coated crimp cap. This sample contains all DMS and dissolved and particulate DMSP (DMSPd and 165 

DMSPp respectively) and is denoted as DMS(P)t. The remainder of the sample was gently poured into 166 

a Sartorius filter holder containing a 4.5cm Whatmann GF/F filter and filtered using gravity filtration 167 

only, thereby making sure that the filter holder was removed from the filtrate well before the filter 168 

would run dry in order to prevent release of DMSP from algal cells. From approximately 20 mL of 169 

filtrate, one 10 mL subsample was taken and stored in 20 mL vials; 1 pellet of NaOH was added and 170 

the vial was closed with a teflon-coated crimp cap. This sample contains all DMS and DMSPd and is 171 

denoted DMS(P)d. All samples were kept at ~15 °C in the lab. Samples were analysed upon return to 172 

Rothera Research Station in the week after the cruise had taken place.  173 

DMS was analysed on a Proton-Transfer Reaction Time-Of-Flight Mass Spectrometer (PTR-TOF8000, 174 

IONICON GmbH, Innsbruck, Austria). The time-of-flight analyser was set to analyse a mass-to-charge 175 

(m/z) range from 0 to 256 at a sampling rate of 25 kHz. Data were averaged over 1.2 sec intervals. An 176 

advantage of the PTR-TOFMS is that most proton transfer processes are non-dissociative, so that the 177 

compounds are not fragmented during ionization. As a consequence, there is only one protonated 178 

product to be analysed. Hence, the compound of interest is analysed as its mass plus one: in the case 179 

of DMS as mass 63.  180 

Flow rates of carrier gas through the sample and into the PTR-TOFMS were kept constant by the 181 

instrument's pressure regulators: total input flow rate is set to 150 mL/min, whereas the rate into 182 

the instrument’s drift tube is ~10 mL/min, which is maintained at a constant pressure of 2.2 hPa. Lab 183 

air is used as carrier gas after cleaning with a zero-air generator (Parker-Balston). DMS(P) samples 184 

were analysed directly by putting the 20 mL vials in-line with the inlet flow, using two needles 185 

through the vial’s stopper. When attaching a sample, DMS is swept out of the vial, via an overflow 186 

vial, into the PTR-TOFMS, resulting in an exponentially decaying peak. Depending on the amount of 187 

DMS in the sample, the signal came back to base-line levels after 6 to 15 minutes. Total amounts 188 

were calculated by integration of peak areas. Daily, a ~6 µM DMS working standard was prepared in 189 

Milli-Q water from a primary ~60mM DMS standard, prepared from pure DMS (Sigma-Aldrich) in 190 

methanol. From the working standard, standards of ~30 nM were analysed regularly in between the 191 

samples. Standard curves proved to be linear over more than 3 orders of magnitude, with typical 192 

correlation coefficients larger than 0.999 when using 8 concentration steps and a detection limit of 1 193 

pmol DMS per sample.  194 

Page 4 of 24

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 5 

Particulate DMSP (DMSPp) was calculated after subtracting DMS(P)d from DMS(P)t. The DMS(P)d 195 

concentrations provide an upper limit to the potential concentration of DMS. During two surveys in 196 

the nearby Ryder Bay, also in January 2015, for which it was possible to analyse both DMS and 197 

DMSPd separately, the fraction of DMS within the DMS(P)d pool reached 84 and 93% respectively 198 

(n=13 and 17). In discussing our data, we used a conservative estimate of 80% to calculate the DMS 199 

contribution. 200 

 201 

POC 202 

Samples for POC analysis were collected through gentle filtering (<15 KPa) of the 0.5L sample over 203 

2.5 cm pre-combusted Whatman GF/F filters. Filters were snap-frozen in liquid nitrogen, wrapped in 204 

aluminium foil and stored at -20°C until analysis at the home laboratory. To remove inorganic carbon, 205 

the filters were left in an exicator with 4 ml 37% fuming HCL for 4 hours and dried at 60°C overnight. 206 

Before analysis, filters were packed in 5x12 mm tin cups. Samples were analysed with a combustion 207 

module attached to a Cavity Ring-Down Spectroscopy analyser (CM-CRDS, with a G2101-i Analyzer, 208 

Picarro, California, USA). Total POC and its δ13C signature were determined with a precision of ±0.3 209 

‰ at 250 µgC. Due to low POC loading of the filters, the δ
13

C values below the 40m-depth sample 210 

may be inaccurate and were deleted. The stable carbon isotope composition was calculated relative 211 

to the international Vienna Pee Dee Belemnite standard. 212 

 213 

HPLC-pigments 214 

Samples for pigment analysis were collected through gentle filtering (<15 KPa) of two to four litre of 215 

water over 4.5 cm Whatman GF/F filters. Filters were snap-frozen in liquid nitrogen, wrapped in 216 

aluminium foil and stored at -80°C until analysis at the home laboratory. Before extraction in 90% 217 

acetone, filters were freeze-dried at -55°C during 48 h (24). Pigments were analysed by high-218 

performance liquid chromatography on a Waters system equipped with a photodiode array (24) (25). 219 

A Waters DeltaPak reversed-phase column (C18, fully end-capped) was used. Pigment standards 220 

were obtained from DHI Water Quality Institute (Horsholm, Denmark).  221 

 222 

Ancillary data 223 

Several ancillary data were used to describe the chemistry across the cruise track. Sampling and 224 

analyses of macro nutrients, the dissolved inorganic carbon system, oxygen isotopes of seawater and 225 

parameters measured directly with a Seabird conductivity-temperature-depth (CTD) package 226 

attached to the rosette frame (including oxygen, Chlorophyll a fluorescence, PAR) are described in 227 

Henley et al. (23). Samples for determination of the stable isotopes of oxygen in seawater were 228 

processed as described in Henley et al. (23), which also outlines their use for quantification of the 229 

relative contributions of sea-ice melt and meteoric water to the freshwater content of the sample. 230 

The mixed layer depth (MLD) is defined as the depth where the potential density exceeds that at the 231 

surface by 0.05 kg m-3, based on definitions in Venables et al. (15).   232 

 233 

Data representation and statistical analyses 234 

All transect-distribution plots were done with Ocean Data View version 4.6.1 using weighted-average 235 

gridding. 236 

CHEMTAX matrix factorization was applied to derive algal classes from pigment patterns (26). The 237 

initial pigment ratio included eight algal classes (Table 1). These classes were chosen based on 238 

literature information (e.g.(27) (28)) and microscopy. Two groups of diatoms were described. 239 

Diatoms_1 contained typical diatom species that are characterised by chlorophyll c1, 2 (Chl c1, 2). 240 

Diatoms_2 is a separate group in which Chl c1 is replaced by Chl c3. This group represents 241 

Pseudonitzschia sp., though not exclusively. Haptophytes were also separated in two groups, 242 
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 6 

representing Haptophytes 6, 7, 8 as defined by Zapata et al.(29): Haptophyte-C represents amongst 243 

others Chrysomonodales; Haptophyte-P represents amongst others Phaeocystis antarctica (van 244 

Leeuwe et al 2014). Dinoflagellates were described as a separate class that was defined by peridinin. 245 

However, as many dinoflagellates do not carry peridinin, this group is probably underestimated. The 246 

input ratios were based on (30).  247 

To establish significant effects of a number of biochemical factors on sulphur compounds, data of the 248 

top 25m were analysed by linear modelling in R (RStudio, 0.99.902). The models were tuned down to 249 

three variables; a number sufficiently adequate for data interpretation and with a relative high 250 

precision to improve model robustness. To this end, the Akaike Information Criteria was applied, 251 

which combines the goodness of fit to the number of parameters in the model, whilst defining 252 

hierarchy in the parameters (31). Canonical correspondence analysis (CCA) was performed in R 253 

(RStudio, 0.99.902, Vegan package) to evaluate the relationship between the community 254 

composition as calculated with CHEMTAX and abiotic parameters. Abiotic parameters included 255 

salinity, nitrate, silicate, phosphate, O2, dissolved inorganic carbon (DIC) and the fractional 256 

contribution of sea-ice melt and meteoric water to the water composition. 257 

 258 

Results 259 

Hydrographic conditions:  260 

The JR307 cruise took place under conditions of a retreating MIZ, with many small-sized ice floes 261 

present close to the sampling stations (Figure 2c). An extensive description of nutrient and carbon 262 

dynamics over the full water depth along the transect is provided in Henley et al. (23). The upper 263 

120m is characterized by a relatively shallow mixed layer of <15m along the whole transect (Table 2). 264 

The pycnocline extends to depths varying between 25 and 40 m. A layer of cold Winter Water was 265 

persistently present between the pycnocline and 100-120 m depth. The largest signature of 266 

Circumpolar Deep Water (CDW) protruding into surface waters is seen closest to the coast at stations 267 

T09 and T10 where upwelling of relatively warm and saline water occurs (Fig. 2a, b).  268 

Sea ice melt along the transect calculated from isotope mass balance techniques (e.g. (32), (33)) 269 

show fractions of -0.02 at around 60-80m depth up to +0.04 in the surface layers (Figure 2c). The 270 

presence of some negative values is not unexpected; the nature of the calculation produces positive 271 

values for waters that have been freshened by net sea-ice melt, and negative values for waters that 272 

have been salinified by brine rejection due to net sea ice production. The waters in the 60-80m layer 273 

correspond broadly with the Winter Water layer (i.e. the remnant of the previous winter’s mixed 274 

layer), consistent with them showing the imprint of net sea ice production. Near the surface, the 275 

pattern of sea-ice melt is roughly inverse to that of salinity, indicating the impact of sea ice melt on 276 

the salinity distribution in this layer. The range of sea ice melt values is consistent with full-WAP 277 

surveys of δ18O conducted across several years (33). Lowest contributions of sea-ice melt were 278 

observed in the innermost stations, with an increasing trend towards the shelf edge. An opposite 279 

trend was observed for the contribution of meteoric water to the surface-water composition. 280 

 281 

Biomass and productivity indicators: 282 

High levels of chlorophyll a (Chl a) characterised the surface waters, with an average concentration 283 

measured at 5 m of 5 µg/L and a range of 1-7.5 µg/L (Table 2). The highest concentrations were 284 

observed at stations T03, T05, T09 and CH1 (Figure 3a). Chl a data from the discrete HPLC analyses 285 

corresponded well with the in situ fluorescence measurements (y = 1.0703x + 0.1355, R² = 0.9185; 286 

data not shown), especially considering that the CTD-data are subject to variations due to daytime 287 

quenching of fluorescence (see Xing et al. for discussion (34)).  288 

Particulate organic carbon (POC) displayed a similar pattern with average values of 600 µg/L, and 289 

maximum values of over 900 µg/L in surface waters at stations T05 and T08 (Figure 3b). The stable 290 

isotope composition of POC indicated the enrichment of POC with the heavier 
13

C-isotope at the 291 
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surface, except for station T02 (Figure 3c). High δ13C-POC values appear to extend to deeper waters 292 

at stations T01, T03, T05, T06 and all inner shelf stations.  293 

Nutrient, oxygen and DIC profiles indicated net community production (Figure 4). Compared to 294 

values below the euphotic zone, DIC in the upper mixed layer was reduced from 2220 µmol/kg to 295 

1950 µmol/kg, with pH increasing from 7.9 to 8.3 (Table 2 and Figure 4a), which resulted in a reduced 296 

CO2 concentration of 8-13 µmol/kg (Figure 4b). Oxygen concentrations increased from a mean of 297 

250-300 µmol/L below the MLD to ~400 µmol/L in surface waters, with large spatial variations (Table 298 

2 and Figure 4c). Carbon reductions and oxygen supersaturations between 110 and 140% indicated a 299 

productive surface community. 300 

When considering half-saturation constants for nutrient uptake for diatoms of 0.24 µM for 301 

phosphate and 1.6 µM for nitrate (35), primary production was potentially nitrate or phosphate-302 

limited at station T05 and to a lesser extent at stations T03 and T07 (Table 2 and Figure 4d). 303 

Phosphate and silicic acid exhibited similar patterns as nitrate, but silicic acid remained above 45 µM 304 

(see Henley et al. (23) for more detail on nutrient sources and sinks). 305 

 306 

Community composition:  307 

Based on HPLC-pigment fingerprints (of which several are given in Figures 5a-d), the phytoplankton 308 

community composition was calculated with CHEMTAX software (26). Diatom contribution 309 

decreased offshore from more than 50 % of the phytoplankton community at the innermost stations 310 

to less than 25 % at the outermost stations (Figure 5e). An increasing contribution of both 311 

Haptophyte types (characterized by 19’-hexanoyloxy-fucoxanthin and other pigments; Table 1, Figure 312 

5c, e) was observed towards the outermost stations. Green algae, which contain chlorophyll b (Figure 313 

5d), contributed around 20 % to total Chl a. This group was mainly represented by Chlorophytes; 314 

Cryptophytes were only observed at stations T02 and T04 where the total Chl a inventory of the 315 

surface 25 m water column was low (Figure 5f). Prasinophytes and dinoflagellates were only minor 316 

contributors to the phytoplankton biomass, but might have been underestimated somewhat (see 317 

Materials and Methods section). 318 

 319 

DMSP distribution: 320 

Distribution of both DMS(P)t and DMS(P)d exhibited similar patterns to other biological parameters 321 

(Figure 6a, b). Very high DMS(P)t concentrations were observed in surface waters of stations T03 and 322 

T05 through T08, with values between 565 and 640 nM and a lower but still high concentration of 323 

429 nM at station T01 (Table 2). At 100 m depth DMS(P)t concentrations ranged between 1 and 8 nM. 324 

On average, DMS(P)d contributed 25% (sd = ±18%) to the total DMS(P)t concentration. Highest 325 

concentrations were found at stations T03 and T06, with concentrations between 140 and 275 nM, 326 

and slightly lower concentrations between 60 and 85 nM at stations T01, T04 and T05 (Table 2). 327 

Concentrations at 100 m depth were between 0.8 and 1.5 nM. The high concentration of DMS(P)d at 328 

station T06 did not coincide with any other outstanding parameter, except that the highest – but still 329 

relatively low – concentration of zeaxanthin was observed at this station. Zeaxanthin is found in 330 

specific types of dinoflagellates. 331 

 332 

Discussion 333 

Phytoplankton community composition across the shelf 334 

A gradual shift in species composition was observed across the shelf, with diatoms dominating the 335 

inner shelf area and an increasing importance of Haptophytes towards the outer shelf area. A strong 336 

correlation between phytoplankton biomass and O2 saturation, nitrate depletion and DIC drawdown 337 

was observed, and indicated that the community had been growing healthily, with no trace-element 338 
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limitation of primary production evident in this shelf setting (Figure 7). This observation of an early 339 

summer-phytoplankton bloom is a common feature at the WAP (36) (37).  340 

The 13C-enrichment in surface samples along the cruise track was likely a reflection of high rates of 341 

growth and biological CO2 uptake, as well as input of POC from sea ice. High δ
13

C-POC values are 342 

often found in sea ice with high Chl a and POC concentrations, due to CO2 uptake within the semi-343 

closed sea ice matrix, where CO2 exchange is limited so drawdown is intense (38) (39). In addition, ice 344 

melt can result in favourable growth conditions in the surface ocean by stabilising the upper water 345 

column, thereby providing an optimal light climate and potentially an input of micronutrients such as 346 

iron (40). Such conditions will also result in high δ13C-values, as previously recorded in Ryder Bay (39), 347 

the Ross Sea (41) and Prydz Bay (42). No direct correlation could be observed between δ
13

C-POC and 348 

the community structure, and we suggest that this is the result of mixed controls on δ13C-POC 349 

imposed by sea ice inputs and variability in growth rates. 350 

The CCA analysis indicated that the presence of Haptophytes-C could best be explained by the 351 

relatively strong component of sea-ice melt (Figure 7). The unique relationship between 352 

Haptophytes-C and sea-ice melt suggests that sea-ice has a role in enriching the pelagic algal 353 

community, as is often suggested but difficult to establish (17). Cryptophytes were only observed at 354 

the outer-shelf stations T02 and to a lesser extent at T04, where relatively low Chl a concentrations 355 

and low contributions of ice melt were observed. Cryptophytes have been linked with low salinity, 356 

colder water (43) (44) and more specifically with glacial melt (e.g. (45), but results from our CCA-357 

analysis do not show these relationships (Figure 7).  358 

The other groups distinguished by CHEMTAX were grouped more closely together. Especially the 359 

clustering of Haptophytes-P, representing amongst others Phaeocystis antarctica, and diatoms is 360 

remarkable. The two groups are often suggested to thrive in different habitats. In the Ross Sea it was 361 

observed that diatoms are more abundant under more stable light conditions, whereas Haptophytes 362 

are assumed to be better adapted to dynamic light conditions (46). However, a recent analysis of 363 

RaTS data (28) and Palmer LTER data (44) revealed a stable background population of flagellate 364 

species (Haptophytes and Cryptophytes), which is masked by high diatom abundances in high 365 

chlorophyll years. These findings are in agreement with our observations showing that Haptophytes 366 

are omnipresent. Whilst these groups contribute less to algal biomass, as a result of their smaller size, 367 

they are of high importance for DMS(P) fluxes.  368 

 369 

Drivers of DMS(P) production 370 

Sulphur compounds, POC and Chl a in the surface waters varied by a factor of 5 to 6 over the entire 371 

transect. When using a linear model to explain the drivers of the DMS(P) concentration, DMS(P)t and 372 

DMSPp were best explained by POC, then by the Haptophyte pigment Hex-Fuco and thirdly by the 373 

oxygen concentration. The DMS(P)d pool was best explained by the nitrate concentration, then POC 374 

and another Haptophyte pigment, Hex-kFuco (Table 3).  375 

The fact that POC explains DMSPp better than the total phytoplankton biomass expressed as Chl a or 376 

the Haptophyte contribution to the community is intriguing and was examined further. A potential 377 

contributor to high POC loading of the water column is sea-ice melt. Upon ice melt, ice algae that 378 

contain DMSP are released to the upper water column. High concentrations of DMSP in the MIZ have 379 

been attributed to this process (e.g. (19) (18), but not studied in detail in the Antarctic. Compared to 380 

an Arctic study on sea ice and release of algal biomass and DMSP to the underlying water (47), our 381 

DMSP-to-Chl a ratios were very high (10 versus 64 ± 26.5 mmol DMSP g Chl a-1), highlighting the 382 

difference in community structure. In the Arctic study an under-ice bloom of diatoms developed, 383 

whereas we found a substantial contribution of Haptophytes to the community. At the same time, 384 

the DMSPp-to-POC ratios in our samples ware relatively low (514 ±157 µmol DMSP gC
-1

 or 0.006 385 

±0.002 mol:mol). These values are substantially less than the 0.011 mol:mol observed in cultures of 386 

Haptophyte algae (22) and suggest additional sources of POC. 387 
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Sea ice contains different communities with very different DMSP-to-Chl a ratios. The well-known 388 

DMSP producer Phaeocystis sp. has often been found to dominate surface-ice communities, whereas 389 

the bottom-ice community mainly consists of large diatoms (20) (47) (17). DMSP-to-Chl a ratios in 390 

these communities can vary by up to an order of magnitude, with ratios between 200 and 500 in 391 

surface communities and less than 20 in bottom communities (20) (22). However, biomass 392 

accumulations in the bottom-ice communities are much higher than in the surface-ice community. 393 

Therefore, the melt of sea ice may have opposing impacts on the DMSP signature of the water 394 

column: a high POC loading can result in high DMSP concentrations, but low DMSP-to-Chl a ratios 395 

when containing mainly diatoms, whereas a low POC loading can also result in high DMSP and high 396 

ratios when containing mainly Haptophytes. These effects were also observed in the present study. 397 

High POC loading – which is associated with high Chl a – and high DMSPp concentrations of surface 398 

waters were largely associated with sea-ice melt (Figure 8a), whereas high Chl a and lower DMSPp 399 

concentrations often corresponded with lower sea-ice melt signatures (Figure 8b). The association of 400 

Haptophytes with elevated sea-ice melt (Figure 7 and 8c) indicate that the DMSP signature on the 401 

WAP shelf was driven by a combination of high POC loading and the contribution of Haptophytes, 402 

both of which were associated with sea ice melt. The surface value with second-highest sea-ice melt 403 

and relatively low DMSP concentration was observed at station T04, which exhibited very low Chl a 404 

levels. This may indicate a relatively recent input of sea-ice. 405 

The inverse correlation between both the DMS(P)t pool and the DMSPp pool (data not shown) versus 406 

salinity (R2 of 0.685 and 0.662 respectively) provides further supporting evidence for the impact of 407 

sea-ice melt on the biogeochemical composition of the upper water column (Figure 8d). Sea-ice melt 408 

can also lead to increased DMSP through stabilization of the upper mixed layer and a subsequent 409 

increase in primary production as a result of favourable light conditions. Growth conditions did have 410 

a positive control on DMSP production (Table 3), but were of much less importance than the 411 

community composition and total organic biomass, both of which were influenced strongly by sea-412 

ice melt. On the contrary, phytoplankton uses DMSP as an osmolyte and hence reduced 413 

concentrations are to be expected when algae have to adapt to lower salinities in an ice-melt event. 414 

The fact that the opposite is shown in the present study indicates the release of ice-associated algae 415 

with high concentrations of DMSP as the primary driver of the changes in DMSP that we observe. 416 

Whilst it could be expected that the release of intracellular DMSP – and conversion to DMS – would 417 

increase upon ice melt as ice algae are introduced to relatively fresh melt water, there was no 418 

correlation between DMS(P)d and salinity in the present study.  419 

A more detailed investigation of the phytoplankton-pigment fingerprint also showed a correlation 420 

between DMS(P)t and DMS(P)d with zeaxanthin (data not shown). This suggests a contribution of 421 

dinoflagellates to both the production and conversion of DMSP, although the contribution of this 422 

group to total Chl a was minor. Both Haptophytes and dinoflagellates are well known for their 423 

extremely high intracellular DMSP concentrations and expression of enzymes that convert DMSP to 424 

DMS (48) (22). The presence of algal DMSP-lyases can result in high fractional DMS production from 425 

dissolved DMSP, whereas bacterial conversion of DMSPd often follows the demethylation pathway, 426 

which does not yield DMS (22) (49). Although the highest concentrations of DMS(P)d were indeed 427 

observed at stations with high zeaxanthin and hex-fuco, the fractional contribution to DMS(P)t was 428 

not particularly high. For example, only the surface samples of stations T04 and T06 contained a 429 

slightly higher than average contribution of DMS(P)d, 38 and 48 % respectively. Since both 430 

Haptophytes and dinoflagellates appeared to co-occur, distinguishing the contribution of each group 431 

to DMSPd is difficult to achieve.  432 

 433 

Implications for the WAP 434 

The objective of this study was to obtain a better understanding of the ecological parameters that 435 

drive the pronounced heterogeneity in DMS(P) dynamics and to study the relative contribution of 436 

DMS(P) released from sea ice to the pelagic environment. All biogeochemical parameters were highly 437 

variable along the cross-shelf transect and a clear signature of sea-ice melt could be detected in the 438 
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DMS(P) distribution. Gali et al. (50) made a first attempt to produce a global DMSPt climatology. The 439 

authors used a global database of DMSP and ancillary measurements to create a remote sensing 440 

algorithm for phytoplanktonic DMSP. Available data of DMSPt and Chl a were binned into Longhurst 441 

provinces and seasonal means. For the Austral Polar province (APLR) in spring, they calculated 442 

approximately 50 nM DMSPt and 2 µg/L chl-a, whilst summer values of 110 nM DMSPt and 0.5 µg/L 443 

Chl a and autumn values of 100nM DMSPt and 3 µg/L Chl a were obtained ((50), suppl. mat. figure 444 

S2). In our study, DMS(P)t values in surface waters ranged between 94 and 643 nM (average 398 nM) 445 

and DMSPp ranged between 76 and 572 nM (average 323 nM), which is considerably higher than the 446 

climatological value for the APLR (50). 447 

The DMS(P)d concentrations provide an upper limit to the potential concentration of DMS. Taking a 448 

conservative estimate of 80 % DMS in the JR307 DMS(P)d samples, this means that DMS 449 

concentrations ranged mostly between 30 and 220 nM, except for stations T02, T09 and CH1 where 450 

concentrations were between 10 and 15 nM. These concentrations are well above the current DMS 451 

climatology for the WAP region, which provides a summer-time value of around 10 nM (9), 452 

suggesting that DMS fluxes along the WAP shelf may be significantly higher than previously 453 

estimated. In the adjacent Ryder Bay, similar values for DMS concentration were observed in the 454 

2014/15 season (Webb et al. in prep.). Although this season showed the highest values in our five-455 

year time series from Ryder Bay, summertime DMS concentrations exceeded 30 nM during four out 456 

of the five years (Webb et al. in prep.).  457 

Both the DMSP and the DMS climatologies do not account for the large and dynamic fluctuations we 458 

observed during our one-week sampling of the WAP shelf. The strong sea-ice signal we observed 459 

indicates that the contribution of the Antarctic coastal zone to the production of DMS(P) depends 460 

strongly on the sea-ice distribution. With a potential further reduction of sea ice along the WAP, this 461 

may lead to reductions of DMS(P) production with implications for feedback processes on regional 462 

and larger-scale climate system processes. 463 

464 
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Table 1. Final optimized pigment ratios (pigment : Chl a) after CHEMTAX-analyses. 628 

 Chl c2 Chl c3 Peri Fuco Neo 19’-Hexfuco Allo Chl b 

Prasinophytes_1 0 0 0 0 0.073 0 0 0.687 

Dinoflagellates 0 0 0.300 0 0 0 0 0 

Cryptophytes 0.130 0 0 0 0 0 0.839 0 

Haptophytes_P 0.337 0.293 0 0.201 0 0 0 0 

Haptophytes_C 0.355 0.053 0 0.073 0 1.241 0 0 

Chlorophytes 0 0 0 0 0.005 0 0 0.005 

Diatoms_1 0.483 0 0 0.603 0 0 0 0 

Diatoms_2 0 0.045 0 1.298 0 0 0 0 

Abbreviations: Chl: chlorophyll; Peri: peridinin; Fuco: fucoxanthin; 19′-Hexfuco:  629 

19′-hexanoyloxyfucoxanthin; Allo: alloxanthin.  630 

 631 

 632 

Table 2. Mixed Layer Depth (MLD) and main characteristic biochemical parameters at 5-m depth for 633 

each station along the JR307 cruise track. Stations are ordered from the shelf edge (T01) towards the 634 

innermost station in Ryder Bay (T10). 635 

station MLD salinity CTD O2 nitrate silicate phosphate DIC alkalinity pH Chl a POC DMS(P)t DMS(P)d 

 
m 

 
µmol/L µmol/L µmol/L µmol/L µmol/kg µmol/kg 

 
µg/L mg/L nmol/L nmol/L 

T01 5 33.05 412.9 14.1 46.4 1.03 2041.0 2254.9 8.31 5.20 0.501 429 85 

T02 9 33.27 357.8 22.6 55.0 1.54 2120.7 2262.8 8.13 1.12 0.222 94 18 

T03 5 32.68 446.0 2.1 47.7 0.31 1978.2 2242.2 8.43 7.10 0.625 643 143 

T04 9 32.55 393.3 14.8 50.0 1.04 2044.8 2222.0 8.25 3.23 0.351 221 85 

T05 13 32.98 449.6 0.8 44.5 0.14 1959.1 2266.8 8.48 6.90 0.920 588 61 

T06 3 33.08 399.9 7.4 49.1 0.58 2047.0 2241.7 8.27 5.22 0.615 580 275 

T07 7 32.01 469.7 4.2 47.7 0.41 1953.2 2172.1 8.36 5.99 0.826 565 50 

T08 7 33.06 431.9 5.5 45.4 0.44 2016.3 2272.3 8.39 4.55 0.930 609 36 

CH1 5 33.33 422.6 11.1 53.3 0.80 2068.1 2277.7 8.29 7.51 0.725 267 13 

T09 7 33.25 496.3 10.7 49.7 0.63 2066.6 2286.1 8.30 7.41 0.619 180 12 

T10 7 33.42 364.0 21.1 60.0 1.51 2146.7 2281.3 8.12 2.81 0.308 202 46 

 636 

 637 

Table 3. Significance levels derived by linear modelling for impact of POC, O2, nitrate, Hex-Fuco and 638 

Hex-kFuco on sulphur compounds. See text for abbreviations. n.d. = not determined 639 

Sulfur compound POC O2 Nitrate Hex-Fuco Hex-kFuco 

DMS(P)t p < 1.03 e-08 p < 0.0177 n.d. p < 1.00 e-07 n.d. 

DMSPp p < 5.92e-12 p < 0.00294 n.d. p < 3.74e-06 n.d. 

DMS(P)d p < 0.000231 n.d. p < 0.000131 n.d. p < 0.000751 

 640 

641 
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Figure captions: 642 

 643 

Figure 1. Sea-ice concentration at the Western Antarctic Peninsula: Average concentration in 644 

October-November over the period 2013-2017 (A); Average concentration in December-January over 645 

the period 2013-2018 (B); Map of the study area showing the average sea-ice coverage just 646 

preceding the JR307 cruise (16-31 December 2014), and the eleven sampling stations (C). 647 

Figure 2. Hydrographic conditions of the surface waters along the JR307 cruise track: a) potential 648 

temperature; b) salinity; c) fractional contribution of sea-ice melt to the surface water composition. 649 

Figure 3. Spatial distribution of biological parameters along the JR307 cruise track. a) Chl a (in µg/L); 650 

b) particulate organic carbon (in mg/L); c) 
13

C-isotopic signature of POC. Note different depth scales 651 

in c.: data below 40m depth were capped as they may be unreliable due to low POC loading of the 652 

samples.  653 

Figure 4. Patterns of surface-water chemistry along the JR307 cruise track: a) pH; b) CO2 654 

concentration calculated from DIC and pH measurements; c) oxygen concentration as measured with 655 

the CTD sensor; d) nitrate concentration (from (23)) 656 

Figure 5. Phytoplankton pigment distribution along the JR307 cruise track. a) Chl a as in figure 3, for 657 

comparison; b) Fucoxanthin; c) 19’-hexanoyloxy-fucoxanthin; d) Chlorophyll-b; e) species 658 

contribution as percentage of total Chl a as calculated with CHEMTAX; f) absolute species 659 

contribution to the total Chl a burden of the upper 25 m, as calculated with CHEMTAX. All data in 660 

figures a) through d) in µg pigment/L. 661 

Figure 6. Spatial distribution of DMS(P)t (a) and DMS(P)d (b) along the JR307 cruise track.  662 

Figure 7. Ordination plot of a CCA analyses of species composition and abiotic parameters. The first 663 

two axes explain 92% of the variance. Sea-ice melt, nitrate and DIC concentration and O2-saturation 664 

are the strongest drivers (blue arrows) of algal species composition (in red), with a less 665 

differentiating role for glacial melt. The green circle clusters 5m surface samples. Deeper waters 666 

(15m and 25m) are distinguished in two more clusters: the black circle (1
st 

quadrant) clusters coastal 667 

stations (T05 –T10) and the blue circle (2nd quadrant) shelf stations (T02 –T04). Numbers denote 668 

station ID and depth. 669 

Figure 8. Correlations of the full data set between DMSPp and POC (a), DMSPp and Chl a (b), DMSPp 670 

and the Haptophyte pigment Hex-kFuco (c), and between the total DMS(P)t pool and salinity (d). The 671 

colour coding shows the fractional contribution of sea-ice melt to the water composition. 672 
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