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How to prevent viremia rebound?
Evidence from a PRRSv data-supported model
of immune response
Natacha Go1,2,3* , Suzanne Touzeau2,4†, Zeenath Islam3, Catherine Belloc1 and Andrea Doeschl-Wilson3†

Abstract

Background: Understanding what determines the between-host variability in infection dynamics is a key issue to
better control the infection spread. In particular, pathogen clearance is desirable over rebounds for the health of the
infected individual and its contact group. In this context, the Porcine Respiratory and Reproductive Syndrome virus
(PRRSv) is of particular interest. Numerous studies have shown that pigs similarly infected with this highly ubiquitous
virus elicit diverse response profiles. Whilst some manage to clear the virus within a few weeks, others experience
prolonged infection with a rebound. Despite much speculation, the underlying mechanisms responsible for this
undesirable rebound phenomenon remain unclear.

Results: We aimed at identifying immune mechanisms that can reproduce and explain the rebound patterns
observed in PRRSv infection using a mathematical modelling approach of the within-host dynamics. As diverse
mechanisms were found to influence PRRSv infection, we established a model that details the major mechanisms and
their regulations at the between-cell scale. We developed an ABC-like optimisation method to fit our model to an
extensive set of experimental data, consisting of non-rebounder and rebounder viremia profiles. We compared,
between both profiles, the estimated parameter values, the resulting immune dynamics and the efficacies of the
underlying immune mechanisms. Exploring the influence of these mechanisms, we showed that rebound was
promoted by high apoptosis, high cell infection and low cytolysis by Cytotoxic T Lymphocytes, while increasing
neutralisation was very efficient to prevent rebounds.

Conclusions: Our paper provides an original model of the immune response and an appropriate systematic fitting
method, whose interest extends beyond PRRS infection. It gives the first mechanistic explanation for emergence of
rebounds during PRRSv infection. Moreover, results suggest that vaccines or genetic selection promoting strong
neutralising and cytolytic responses, ideally associated with low apoptotic activity and cell permissiveness, would
prevent rebound.

Keywords: Immunological model, ABC-like optimisation method, Rebounder viremia profile, PRRSv

Background
One of the biggest challenge in infection control is dealing
with heterogeneity in host response to infection. Unipha-
sic vs. multiphasic infection dynamics are of a partic-
ular interest given their potential consequences on the
population dynamics and efficacies of control strategies
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(vaccination, genetic selection). Multiphasic infection
profiles have been reported for various infections such as
Influenza, HIV, Hepatitis B and C, as well as Porcine Res-
piratory and Reproductive Syndrome (PRRS). They can
occur during natural infection (HIV [1], equine Influenza
[2], PRRSv [3]), under drug therapy [4, 5] or co-infection
[6, 7]. In the majority of cases, the underlying causes
for multiphasic infection profiles are subject to much
speculation [6, 8–12].
In this context, infection by PRRS virus (PRRSv), is

of particular interest. It not only constitutes a major
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concern for the swine industry, responsible for signifi-
cant economic losses worldwide [13, 14], but also elicits
a highly diverse host response, that may contribute to the
experienced difficulty in eliminating this disease despite
tremendous control efforts [15–18]. Rebounders (i.e. indi-
viduals exhibiting a biphasic infection profile) have been
reported for various PRRS viral strains and pig breeds
[3, 11, 19, 20]. In particular, a large scale challenge experi-
ment conducted by the Porcine Host Genetic Consortium
(PHGC), in which almost 2000 pigs from various cross-
breeds were infected with the same dose of a virulent
PRRSv strain, revealed that around 20% of pigs exhibited
viremia rebound within 6 weeks post infection, demon-
strating that this phenomenon is genuine (i.e. not a simple
measurement error) and common [19]. A previous study
on this data set showed that the infection severity dif-
fered depending on the pig genotype; moreover, a higher
proportion of rebounder pigs carried the genotype asso-
ciated with severe infection [21, 22]. These results suggest
that viremia rebound could be due to a genetic factor,
that would lead to variable immune responses. So viremia
rebound could be determined by immune mechanisms.
However, mechanisms responsible for the emergence of
rebound remain unclear [9, 11, 12, 19, 21, 23].
PRRSv targets antigen presenting cells (macrophages

and dendritic cells), key components of the innate
immune response, and hence alters the innate and the
subsequent adaptive immune responses in complex ways.
It induces a prolonged viremia due to its ability to hamper
the whole immune response, mostly characterised by high
pro-inflammatory and immuno-modulatory responses,
a low antiviral response, a weak and delayed cellular
response, as well as a significant but inefficient humoral
response [13, 14, 24]. Moreover, infection and immune
dynamics are highly variable among hosts and viral
strains. Depending on experimental studies, various com-
ponents of the immune response have been highlighted
as having an impact on the severity and duration of
PRRSv infection. The main ones are: (i) the target cell
permissiveness and viral replication rate; (ii) the levels of
antiviral cytokines (TNFα, IFNα and IFNγ ) and immuno-
regulatory cytokines, the latter being either pro-cellular
(IL12 and IFNγ ) or pro-humoral (IL10 and TGFβ); (iii)
the orientation of the adaptive response towards the cellu-
lar (Cytotoxic T Lymphocytes and IFNγ ), humoral (anti-
bodies and IL10), or regulatory (TGFβ and IL10) response
[reviews: 15, 16, 17, 25]. The aim of our study was to
identify which of these immune mechanisms can repro-
duce and explain the rebound patterns observed in PRRSv
infection dynamics. For this purpose we adopted a mech-
anistic modelling approach of the within-host infection
dynamics.
Given the large spectrum of immunemechanisms found

to influence PRRSv infection dynamics details in [26],

Chap. 1, a sufficiently comprehensive representation of
themultiplex immune response was required to avoid pre-
liminary bias. This was achieved by extending an integra-
tive model of the viral and immune component dynamics
within the host representing immune mechanisms at the
between-cell scale [27]. The resulting model, based on
knowledge from in vitro and in vivo experimental studies
on PRRSv, provides an explicit and detailed representa-
tion of: (i) the innate immune mechanisms, in particular
the interactions between the virus and its target cells; (ii)
the activation and orientation of the adaptive response
towards the cellular, humoral or regulatory response; and
(iii) the main cytokines and their complex regulations of
the innate and adaptive immune mechanisms.
We fitted our within-host model to a viremia data sub-

set from ([19], smoothed PHGC data). Due to the high
number of model parameters, we were faced with a poten-
tial identifiability issue, preventing us from obtaining
unique parameter estimates associated with each indi-
vidual. However, experimental studies show that hosts
challenged with the same inoculum may exhibit dif-
ferent immune responses and that contrasting immune
responses can result in similar viremia profiles (reviewed
in [26], Chap. 1). So our aim was to identify parameter
sets that generate data-compatible uniphasic and bipha-
sic viremia profiles, rather than one unique parameter set
for each individual viremia profile. To do so, we devel-
oped an Approximate Bayesian Computation (ABC)-like
fitting procedure, which allows an extensive exploration
of a high-dimensional parameter space and is compu-
tationally less expensive than standard ABC method.
This procedure resulted in the selection of two viremia
sets representing the between-host variability for unipha-
sic and biphasic profiles respectively. We first examined
the corresponding immune dynamics to characterise the
response associated with the biphasic viremia profile. We
then compared, between both viremia profiles, the set of
estimated parameter values and the efficacies of immune
mechanisms which are assumed to drive the viral dynam-
ics. This led to the identification of discriminant candi-
date mechanisms, which we further explored with regards
to their ability to either trigger or prevent virus load
rebound. Hence, using an original model of the immune
response and an appropriate systematic fitting method,
the paper provides the first mechanistic explanation for
PRRS viremia rebound, and possibly also for other virus
infections.

Results
Figure 1 shows a functional diagram of the mathemat-
ical model, which describes the evolution over time of
the concentration of 19 state variables: the virus (V );
the naive (Tn), mature non-infected (Tm) and mature
infected (Ti) antigen presenting cells, which are the virus
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Fig. 1 Functional diagram of the model representing the within-host immune response to PRRSv infection. Functional diagram of the model
representing the within-host immune response to PRRSv infection. Binding of PRRS viral particles (V) and naive target cells (Tn) either result in
mature and non-infected cells (Tm) that phagocytes viral particles, or in mature and infected cells (Ti) that allows viral replication and excretion of
new viral particles. Phagocytosis is amplified by antiviral cytokines (TNFα, IFNα, IFNγ ) and inhibited by immuno-modulatory (IL10, TGFβ) cytokines;
on the contrary, infection and viral replication are inhibited by antiviral cytokines and amplified by immuno-modulatory cytokines. TNFα induces the
apoptosis of Tn , Tm and Ti . Viral particles are neutralised by antibodies (nAb); infected cells are cytolysed by natural killers (NK) and Cytotoxic T
Lymphocytes (CTL). Mature target cells (Tm and Ti) synthesise cytokines and present the viral antigen to naive adaptive effectors (En, not explicitly
represented in the model). Once activated, they differentiate into cellular (Ec), humoral (Eh) or regulatory (Er ) effectors, depending on the cytokinic
environment. Pro-cellular regulatory cytokines (IFNγ , IL12) favour Ec , whereas pro-humoral regulatory cytokines (IL4, IL6) Eh and pro-regulatory
regulatory cytokines (TGFβ) Er . These effectors synthesise cytokines and induce the activation of plasma cells (B), which synthesise nAb. Moreover, Ec
induce the activation of CTL. Finally, the recruitment of Tn and NK is amplified by pro-inflammatory cytokines (Pi, which groups IL1β , IL6, IL8 and
CCL2). Colours – green: PRRSv particles; red: innate response; blue: adaptive response; purple: both innate and adaptive responses. Lines – plain with
arrow: state changes; dashed (dotted) with arrow: (cytokine) syntheses; plain dark grey with ⊕: up-regulations by cytokines; plain light grey with �:
down-regulations by cytokines

target cells; the natural killers (NK); the type 1 helper
T cells (cellular effectors Ec); the type 2 helper T cells
(humoral effectors Eh); the regulatory T cells (regula-
tory effectors Er); the cytotoxic T lymphocytes (CTL);
the plasma cells (B); the neutralising antibodies (nAb);
the pro-inflammatory cytokines (Pi, which groups IL1β ,
IL6, IL8 & CCL2); the antiviral cytokines (TNFα, IFNα,
IFNγ ); the immuno-modulatory cytokines (IL10, TGFβ);
the pro-cellular regulatory cytokines (IFNγ , IL12); the
pro-humoral regulatory cytokines (IL4, IL6); the pro-
regulatory cytokine (TGFβ).
Fitting the model to viremia data (from [19, smoothed

PHGC data]) produced a wide spectrum of uniphasic
and biphasic viremia profiles. For each profile, we iden-
tified 625 parameter sets, referred as “individuals”, whose
viremia characteristics, i.e. infection durations, peaks and
peak dates matched the viremia data (Fig. 2a & b). Dif-
ferences between simulated and experimental data were
observed (i) at the first few days post infection, where
the model tended to predict a faster rise to peak viremia,
and (ii) at the later stage of infection, where simulated
biphasic profiles tended to experience a lower and later
second peak than suggested by the data. Such relatively
minor discrepancies are expected, given the adopted level

of model complexity, and partly originate from the fact
that viremia data were only sampled 8 times over 42 days,
with the first sample on day 4; furthermore, experimental
data were smoothed using Wood’s functions [19].
Among the 625 individuals of each profile, parameter

values were not uniformly distributed. In order to cap-
ture the full range of parameters associated with each
profile without sampling bias, we used a k-means clus-
tering method to generate a representative sample and
obtained 35 individuals per viremia profile (Fig. 2c & d, see
“Selection of representative individuals for both viremia
profiles” section for the clustering method).

Characterisation of the immune response associated with
the biphasic viremia profile
Individuals with uniphasic and biphasic viremia profiles
also had, respectively, uniphasic and biphasic profiles for
most of the immune components (Additional file 1). The
main characteristics that discriminate between the bipha-
sic and uniphasic profiles, illustrated in Figs. 3 and 4, are
listed below.
1 Higher immune response activation. The immune
response activation is a global indicator of both the sever-
ity of infection and the host ability to counter infection. It
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a b

c d

Fig. 2 Fitted viremia over infection time for the uniphasic and biphasic profiles. Fitted viremia over infection time for the uniphasic and biphasic
profiles. a-b Comparison between the 625 fitted individuals and the smoothed PHGC data (lower and upper envelopes in black, [19]) for the a
uniphasic (green) and b biphasic (red) profiles. Black boxes: data ranges for the first viral peak, the rebound peak (max) and the minimum between
the two peaks (min). c-d Comparison between the 35 representative individuals (lines) and the 625 fitted individuals from which the 35 were
sampled (shaded area) for the c uniphasic (green) and d biphasic (red) profiles. Viremia detection threshold (horizontal dashed line). Semi-log graphs

is reflected by infected cell (as PRRSv targets the antigen
presenting cells) and pro-inflammatory cytokine levels for
the innate response, and by total helper T cell levels for the
adaptive response. Biphasic profiles were associated with
higher levels for these three immune components over the
whole time window (Fig. 3a-c). In particular, these differ-
ences were significant for infected cells over the whole
time window (Fig. 3a).

2 Stronger depletion of naive target cells. Infection causes
a temporary reduction of naive target cells, which reduces
both cell infection and immune functions of antigen-
presenting cells (APC), as PRRSv targets APC. Levels of
naive target cells were significantly lower for biphasic pro-
files until day 20 (Fig. 3d); the minimum was reached
significantly earlier for biphasic profiles (test results not
shown).

3 Early predominance of antiviral vs. immuno-modulatory
cytokines. Immuno-modulatory cytokines (IL10, TGFβ)
inhibit numerous immune functions and promote the
target cell permissiveness while antiviral cytokines
(TNFα, IFNα, IFNγ ) are key inhibitors of the viral mul-
tiplication. Levels of IL10 were lower for biphasic profiles

until day 20 (Fig. 3e), whereas TNFα and IFNα levels were
higher (Fig. 3f-g). Differences in IFNα levels between pro-
files were particularly marked over the whole time period
(Fig. 3g). These results suggest a predominant antiviral
response at the earlier infection stage for biphasic profiles,
which was confirmed by comparing the proportion of
antiviral vs. immuno-modulatory cytokines (Fig. 4a). Fur-
thermore, for biphasic profiles, antiviral cytokines were
initially (i.e. first week post infection) dominated by IFNα

and then by IFNγ , whereas IFNγ always dominated for
uniphasic profiles (Fig. 4b-c). Compared to IFNα and
IFNγ , TNFα was consistently relatively low for both
profiles. IL10 was the predominant immuno-modulatory
cytokine for the whole infection period and for both
profiles (Additional file 1 R & S).

4 Weaker cytotoxic and neutralisation adaptive responses.
Adaptive cytotoxic response, mediated by Cytotoxic T
Lymphocytes, and neutralisation response, mediated by
neutralising antibodies, are key immune mechanisms to
counter viral infections. Levels of cytotoxic lymphocytes
were lower for biphasic profiles during almost the whole
time window (Fig. 3h). Levels of neutralising antibod-
ies were negligible for both profiles during the earlier
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Fig. 3 Immune components discriminating between uniphasic and biphasic viremia profiles over infection time. Immune components
discriminating between uniphasic and biphasic viremia profiles over infection time. Mean value (solid line) and standard deviation (shaded area) of
the 35 representative individuals selected for the uniphasic (green) and biphasic (red) viremia profiles. Semi-log graphs. ∗ p-value< 5% when
comparing uniphasic and biphasic profiles (permutation tests over four time periods: 0–10, 11–20, 21–31, 32–42 days)

infection stage and significantly lower for biphasic profiles
from day 10 (Fig. 3i). Furthermore, the adaptive response
orientation was highly variable within each profile and on
average orientated towards the humoral response for both
profiles over the whole time window (Fig. 4d-e).
These four immune characteristics associated with

biphasic viremia profiles can result from various
interacting immune mechanisms with complex cytokine
regulations. For instance, depletion of naive target cells
(Characteristic 2) can be due to low recruitment of
permissive target cells controlled by pro-inflammatory
cytokines, high cellular decay amplified by TNFα, high
cell infection or phagocytosis regulated by antiviral and
immuno-modulatory cytokines. Therefore, a deeper

exploration into the underlying mechanisms for these
discriminant immune characteristics was required.

Identification of immunemechanisms responsible for the
biphasic viremia profile
The baseline rate (i.e. model parameter,) of a given
immune mechanism defines the host ability to carry out
the corresponding immune function. Hence, comparing
the estimated baseline rates between both viremia profiles
can provide valuable information to identify the critical
immune mechanisms responsible for biphasic profiles.
Nevertheless, immune components interact in complex

ways involving more or less direct regulation loops via
cytokines (Fig. 1). Consequently, the baseline rate (e.g. cell
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Fig. 4 Relative cytokine levels discriminating between uniphasic and biphasic viremia profiles over infection time. Relative cytokine levels
discriminating between uniphasic and biphasic viremia profiles over infection time. Percentage of a antiviral cytokines (IFNγ , IFNα, TNFα) among
antiviral and immuno-modulatory (IL10, TGFβ) cytokines; b IFNγ and c IFNα among antiviral cytokines; d pro-cellular (IL12, IFNγ ) and e pro-humoral
(IL4, Pi) cytokines over the pro-cellular, pro-humoral and pro-regulatory (TGFβ) cytokines. Mean value (solid line) and standard deviation (shaded
area) of the 35 representative individuals selected for the uniphasic (green) and biphasic (red) profiles; Balanced contribution level (horizontal dashed
line). ∗ p-value< 5% when comparing uniphasic and biphasic profiles (permutation tests over four time periods: 0–10, 11–20, 21–31, 32–42 days)

infection rate) does not necessarily reflect the efficacy of
the mechanism (e.g. cell infection efficacy: total number
of cells infected over total number of naive target cells
recruited) or the dynamics of the corresponding immune
component (e.g. level of infected cells over time). There-
fore, the identification of critical immune mechanisms
responsible for biphasic viremia profiles cannot be based
on parameter values alone. Consequently, we also com-
pared the efficacy of the mechanisms known to affect the
viral dynamics directly, namely: cell infection, apoptosis
and cytolysis of infected cells, as well as viral neutrali-
sation by antibodies; or less directly: apoptosis of naive
target cells.

Baseline rates
The values of six baseline rates among the 14 param-
eters estimated significantly differed between uniphasic
and biphasic profiles, presented in relative scale in Fig. 5
(see Additional file 2 for all 14 parameters).
Firstly, the biphasic profile was characterised by higher

baseline rates for cell infection, viral excretion and T-
helper activation (Fig. 5a-c), which can explain the higher
immune response activation (Characteristic 1) and the
higher naive target cell depletion (Characteristic 2).

Secondly, the biphasic profile had higher baseline rates
for the synthesis of TNFα and IFNα and lower baseline
rates for IL10 (Fig. 5d-f ), which can explain the early pre-
dominance of antiviral vs. immuno-modulatory cytokines
(Characteristic 3). Moreover, as TNFα induces target cell
apoptosis and IL10 inhibits the synthesis of TNFα, it
can also explain the higher naive target cell depletion
(Characteristic 2).
However, no baseline rate differences could directly

explain the weaker cytotoxic and neutralisation adaptive
responses for biphasic profiles (Characteristic 4). This
characteristic probably results from multiple and indirect
mechanisms.

Efficacies of immunemechanisms
The efficacy of the key immune mechanisms (cell infec-
tion, cell, apoptosis, cytolysis of infected cells and viral
neutralisation) for the uniphasic and biphasic profiles are
presented in Fig. 6.

Cell infection.Target cell infection results in viral multipli-
cation, but also induces the synthesis of various cytokines
and the activation of the adaptive response. The infec-
tion efficacy, defined as the total number of cells infected
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Fig. 5 Baseline rates discriminating between uniphasic and biphasic viremia profiles. Baseline rates discriminating between uniphasic and biphasic
viremia profiles. Parameters linked to a-b viral multiplication; c adaptive response activation; d-f antiviral (TNFα and IFNα) vs. immuno-modulatory
(IL10) cytokine syntheses by activated target cells. Rate values are presented in relative scale, i.e. normalised according to their assumed upper and
lower boundaries (see Additional file 5: Table A5-4). Mean value and standard deviation of the 35 representative individuals selected for the
uniphasic (green) and biphasic (red) profiles over the parameter ranges. Parameters were significantly different between profiles (� p-value< 1%,
Kolmogorov–Smirnov test)

over the total number of naive target cells recruited, was
globally low (Fig. 6a). However, it was sufficient to induce
host infection with realistic viremia (Fig. 2). The effi-
cacy was significantly higher for biphasic profiles, which
underpins the significant difference exhibited by the esti-
mated infection rates. The difference between both pro-
files was particularly marked for the first time period, i.e.
before any viremia rebound occurred. This result suggests
that cell infection could be a critical immune mechanism
determining viremia profile.

Apoptosis of naive target cells. Naive target cell apoptosis
can lead to the depletion of these cells, which could be
a critical mechanism to restrain cell infection. However,
apoptosis efficacy, defined as the total number of naive
target cells undergoing apoptosis over the total number
of naive target cells recruited, was significantly higher for
biphasic profiles (Fig. 6b). The difference between both
profiles was particularly marked for the earlier infection
stage. Apoptosis efficacy was globally high for both pro-
files (21 and 39% on average). These findings showed that
naive target cell apoptosis was a critical mechanism and
that it could determine the viremia profile.

Elimination of infected cells. Immune response-mediated
killing of infected cells plays a fundamental role in
preventing continuous production of new viral particles.

Our model includes apoptosis and cytolysis as the main
mechanisms that kill infected cells. Apoptosis and cytoly-
sis efficacies were defined as the total number of infected
cells undergoing apoptosis, respectively cytolysis, over the
total number of cells infected. In contrast to the rela-
tively low efficacy of apoptosis (less than 15% on average,
Fig. 6c), cytolysis was found to play a major role in the
destruction of infected cells for both profiles (higher than
80% on average, Fig. 6d, e).
Natural killer (NK) cytolysis efficacy was low for both

profiles (4 to 17% on average) and not significantly higher
for biphasic profiles (Fig. 6d) despite significantly higher
levels of NK cells (Additional file 1: E). In contrast, Cyto-
toxic T Lymphocyte (CTL) cytolysis efficacy was high for
both profiles (higher than 63% on average) and signifi-
cantly lower for biphasic profiles (Fig. 6e). The difference
in CTL cytolysis efficacies between both profiles was par-
ticularly marked at the earlier infection stage. This result
suggests that Cytotoxic T Lymphocyte cytolysis could be a
critical immune mechanism determining viremia profile,
while natural killer cytolysis and infected cell apoptosis
would not.

Viral neutralisation by antibodies. Neutralisation of
viral particles by antibodies prevents new cell infec-
tion. The neutralisation efficacy, defined as the total
number of viral particles neutralised over the total
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Fig. 6 Immune mechanism efficacies discriminating between uniphasic and biphasic viremia profiles. Immune mechanism efficacies discriminating
between uniphasic and biphasic viremia profiles. Efficacies of mechanisms known to affect the viral dynamics directly: a cell infection, c-e
elimination of infected cells, f neutralisation; or indirectly: b apoptosis of naive target cells. Mean value and standard deviation of the 35
representative individuals selected for the uniphasic (green) and biphasic (red) profiles. ∗ p-value< 1% when comparing uniphasic and biphasic
profiles (Kolmogorov–Smirnov tests over two time periods: 0-20, 21–42 days)

number of viral particles created, was low for both
profiles (mean values lower than 10%, Fig. 6f ). More
precisely, this efficacy was almost null for both pro-
files at the earlier infection stage and significantly lower
for the biphasic profile at the later infection stage.
This result suggests that viral neutralisation is probably
not a critical immune mechanism determining viremia
profile.

Validation of immunemechanisms inducing or preventing
the biphasic viremia profile
In order to disentangle whether the above candidate
immune mechanisms can indeed induce biphasic viremia
profiles and could thus be targeted by future pharma-
ceutical or genetic interventions, we tested whether a
viremia profile inversion could be achieved by boosting or
reducing the efficacy of either one of these mechanisms.
Figure 7 shows the percentages of individuals, among the
35 representative individuals selected per viremia profile,
that turned from biphasic to uniphasic viremia profiles,
and vice versa (Additional file 3 for more details).
Most individuals (uniphasic: 77%, biphasic: 100%) had a

viremia profile inversion by varying the efficacy of at least
one candidate immunemechanism. Varying the NK cytol-
ysis efficacy never induced a viremia profile inversion.
Boosting (reducing) the cell infection efficacy induced a

profile inversion for almost a quarter of uniphasic (bipha-
sic) individuals. Boosting (reducing) the apoptosis efficacy
induced a profile inversion for more than half of uniphasic
(biphasic) individuals. Reducing the CTL cytolysis effi-
cacy induced a profile inversion for 37% of the uniphasic
individuals, while boosting its efficacy induced a pro-
file inversion for all biphasic individuals. Reducing the
neutralisation efficacy never induced a profile inversion
for uniphasic individuals, whereas boosting its efficacy
resulted in a profile inversion for more than 90% of bipha-
sic individuals.
To conclude, biphasic viremia profiles mainly resulted

from high apoptosis and low CTL cytolysis efficacies;
moreover, boosting CTL cytolysis or neutralisation effi-
cacy was very efficient to prevent biphasic viremia profile.

Discussion
Viremia rebound following a steady phase of viral decline
is a common but undesirable phenomenon for PRRSv and
other viral infections across a range of species [1–3, 19].
The PHGC challenge experiments, in which thousands
of pigs were infected with the same dose of a virulent
PRRSv strain, revealed substantial between-host variabil-
ity in infection dynamics with a quarter of pigs exhibiting
viremia rebound [PHGC data: 12, 19, 21]. What causes
some individuals to experience viremia rebound while
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Fig. 7 Influence of candidate immune mechanisms on viremia profile inversion. Influence of candidate immune mechanisms on viremia profile
inversion. Percentage of individuals, among the 35 representative individuals selected for the uniphasic (green) and biphasic (red) viremia profiles,
that had a profile inversion when boosting or inhibiting (depending on the profile) either mechanism: infection, apoptosis of naive target cells by
TNFα, cytolysis of infected cells by NK or CTL, viral neutralisation by nAb (standard error bars were obtained by jackknifing)

others manage to steadily clear the virus has however
been subject to much speculation [9, 11, 12, 19, 21, 23].
Our mechanistic within-host infection model, fitted to
smoothed PHGC viremia data [19], not only successfully
captured the observed between-host variation in infec-
tion dynamics but also offers, for the first time, insight
into potential causative immune mechanisms for generat-
ing rebound. In particular, contrary to current hypotheses
emerging from genetic analyses, our model reveals that
viremia rebound can occur as a result of between-host
differences in the immune competence alone, without
the commonly hypothesised emergence of viral escape
mutants or re-infection [12, 19, 23]. This finding has
profound consequences for the development of interven-
tion strategies, as it would imply that rebound can be
prevented by modifying the immune response through
pharmaceuticals or genetic selection.

Main results We identified several mechanisms that
differed between the uniphasic and biphasic viremia
profiles. Firstly, the immune response activation was
higher for rebounders, although they elicited on aver-
age weaker and less efficacious cytotoxic and neutral-
isation responses. Rebounders also exhibited a higher
cell infection efficacies, despite an early predominance of
antiviral cytokines (IFNγ , IFNα, TNFα) over immuno-
modulatory cytokines (IL10, TGFβ). Lastly, target cell
apoptosis by TNFα was more efficacious for rebound-
ers, which provoked a rapid and strong depletion of
naive target cells. All these differences, except for the
neutralisation efficacy, occurred prior to the onset of
rebound, suggesting that these were critical mechanisms
that could determine viremia rebound. These results were
confirmed by our validation step of the candidate immune
mechanisms. Inhibiting neutralisation never generated

a rebound. However, boosting infected cell cytolysis by
cytotoxic T lymphocytes or viral neutralisation, as well
as inhibiting target cell apoptosis, effectively prevented
viremia rebound. Surprisingly, altering the efficacy of
infected cell cytolysis by natural killers had no impact on
the rebound.
To our knowledge, no published experimental study

compared the immune response between uniphasic and
biphasic PRRS viremia profiles. Mechanistic models of
host response fitted to influenza virus data predicted
biphasic (uniphasic) viremia profiles in the presence
(absence) of IFNα [2, 10, 28, 29]. This finding is consis-
tent with our results, as we showed that viremia rebounds
were associated with significantly higher levels of IFNα.

Modelling approach It should be noted that rebound
patterns can be easily generated with simple models
with few broad immune categories that exhibit oscilla-
tory behaviour (see [2] for an elegant example). However,
such simplistic models are generally limited in scope, are
often dismissed as over-simplistic by experimental biolo-
gists, and often fail to reproduce exact patterns of real data
[2, 6, 30]. The present study aimed to go a step further: our
model aims to reproduce observed viremia characteristics
observed in experimentally infected individuals and deter-
mine why some individuals experienced rebound while
others did not.
A number of mechanistic models of virus infections

in a variety of species aim at linking viremia profiles
with the immune response, but only three for PRRSv
[27, 31, 32]. Of particular relevance to our PRRSv mod-
elling study are influenza models [2, 6, 10, 28–30, 33],
as influenza is a respiratory virus that targets antigen
presenting cells, among other cells. Moreover, viremia
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rebounds have been observed in natural influenza infec-
tions [2]. Influenzamodels often provide a fairly simplified
representation of the immune response, focusing on the
dynamics of few measurable immune components ([26],
Chap.1) However, a recent study confronted a number
of existing influenza models with experimental data and
showed that these models failed to accurately reproduce
at least one aspect of the immune response, even though
the model parameters had been fitted to the data [10].
Moreover, several studies have pointed out the necessity
of more comprehensive models to infer which immune
mechanisms determine viremia characteristics [2, 6, 30].
Particularly for PRRSv, a large spectrum of immune

mechanisms were found to influence the infection dynam-
ics: target cell permissiveness, viral replication, adaptive
response orientation, cytolysis, antibody neutralisation,
all being modulated by various cytokines [reviews: 15,
16, 17, 25]. These mechanisms were only partly repre-
sented in the published models cited above, except in
[27, 32] which provided a basis for this study but had
a rougher representation of the adaptive response acti-
vation. Our study, based on an extension of these latter
models, includes all relevant mechanisms and reflects the
current understanding on PRRSv within-host dynamics.
Our model contains an explicit and detailed representa-
tion of both the innate and adaptive immunemechanisms,
including complex regulations by major cytokines, but
with the minimum number of parameters. As these mech-
anisms are involved inmost infections, this paper provides
a more general framework for modelling studies requiring
a representation of the global immune response.
Our holistic approach gave rise to several candidate

mechanisms underlying differences in infection profiles,
which are difficult to observe in experiments. Moreover,
our approach illustrates an important point that is often
overlooked in statistical data analysis, i.e. that differences
in observed levels of immune components do not nec-
essarily imply differences in their immune functions. For
example, levels of natural killers were significantly differ-
ent between both uniphasic and biphasic viremia profiles
in our fitted model. However, the NK cytolysis efficacy,
i.e the proportion of infected cells cytolysed by NK, was
similar for both profiles. Moreover, boosting or inhibit-
ing this efficacy neither generated nor prevented rebound.
In contrast, cytotoxic T lymphocytes only differed signifi-
cantly in efficacy, not in actual levels, but they were highly
effective to prevent rebound.

Fitting procedure A known caveat of complex models
such as ours is that they inevitably require many
parameters for which no prior estimates exist, thus caus-
ing a potential identifiability issue for model fitting [34].
As, on the one hand, we fitted our model only on
viremia data and, on the other hand, PRRS experimental

studies showed that contrasted immune responses could
result in similar viremia (reviewed in [26], chapter 1),
we expected our model to be non identifiable. Further-
more, the viremia data set [19] exhibits a large between-
host variability within each viremia profile. Consequently,
rather than reducing the model complexity and thus sig-
nificantly limiting the scope of our approach, we chose
to deal with this issue by relaxing the uniqueness con-
straint for model parameter values: we defined fitting
criteria and developed a fitting procedure that identi-
fies data-compatible parameter sets instead of one unique
parameter set for each individual viremia.
For this purpose, we developed an Approximate

Bayesian Computation (ABC)-like fitting procedure that
extensively explores the parameter space using an Adap-
tive Random Search (ARS) algorithm, starting from a large
number of initial conditions, This procedure allows an
extensive exploration of a high-dimensional parameter
space and is computationally less expensive than stan-
dard ABC. In total, over 109 model simulations were
performed to identify 625 data-compatible parameter sets
for each viremia profile. In order to best represent the
host diversity within each viremia profile, we used a
clustering method to sample the 625 estimated parame-
ter sets, rather than considering the parameter posterior
distributions.
So our method does not identify parameter sets that

fit individual viremia data, as many classical estimation
methods do, nor does it provide posterior distributions,
as Bayesian methods do. It ensures, however, that the
viral indicators of the selected parameter sets match the
observed data ranges. Moreover, it allowed us to over-
come the identifiability issues with a reasonable computa-
tional cost and and simultaneously capture the between-
host variability in individual viremia profiles.

Comparison of model results to literature The fit-
ted model not only reproduced the wide viremia range
observed in the viremia data, but also generated immune
response profiles similar to those reported in independent
experimental studies. For example, innate immune com-
ponents mainly peaked one week post infection, whereas
the adaptive immune components peaked after week
two [14, 35, 36] and neutralising antibodies appeared
after week three [14, 24, 37]. Furthermore, cytokine lev-
els varied substantially among simulations, with peak
values in agreement with experimental observations
[14, 15, 17, 24, 36, 38]. Similarly, the orientation of the
adaptive response was highly variable, but on average
favoured the humoral response, in line with experimental
studies [15–17, 25]. Finally, our model supports exper-
imental results that identified target cell apoptosis by
TNFα as a critical mechanism for the early naive tar-
get cell depletion [39, 40]. Within-host dynamics selected



Go et al. BMC Systems Biology           (2019) 13:15 Page 11 of 21

by our fitting procedure are hence compatible with pub-
lished experimental data, although we would need more
longitudinal data on various immune components to fully
validate our model.
However, our model is likely not an accurate repre-

sentation of the early infection dynamics. Despite its
enhanced level of complexity in comparison to previ-
ous PRRSv infection models, our model still constitutes a
gross over-simplification of the immensely complex fine-
tuned immune system. In particular, our model ignores
spatial structure despite evidence that infection kinetics
are tissue specific and are partly determined by migra-
tion of immune components between body compartments
(e.g. [20, 41]). This is particularly important at the onset
of infection, when immune cells need to be recruited
to the infection site. Furthermore, the model does not
incorporate time delays for immune initiation or gradual
build up of immune efficacies, which are also known to
play a key role in infection dynamics (e.g. [42]). These
simplifications were necessary in the absence of data to
inform the model parameters. However, they lead to the
unrealistically sharp rises in viral load (Fig. 2) and some
immune response components (Fig. 3) at the early stage of
infection.
Furthermore, caution is advised when interpreting the

actual estimated model parameter values (relative scales
in Additional file 2 & boundaries in Additional file 5:
Table A5-4,), as they are affected by several factors. For
example, to limit over-parametrisation, the values of some
model parameters had to be fixed to somewhat arbitrary
values. As a consequence, the values of the remaining
model parameters included in the fitting process partly
depend on these fixed values [43]. Furthermore, as only
mechanisms that had previously been identified to play
a role in PRRSv infection dynamics were included in the
model, the efficacy of mechanisms represented in the
model could be exaggerated as these mechanisms may
absorb functions of other immune mechanisms excluded
from the model. Lastly, as data to inform parameter esti-
mates for most immune components are extremely sparse
in the literature, a conservatively large value range was
admitted for the model parameters in both preliminary
numerical explorations and fitting process. As a result of
all these contributing factors, model parameter estimates
may differ from their actual values. This does not affect
the model conclusions, which are based on comparison
between profiles that were generated under the same
model assumptions.

Alternative hypotheses for rebound Our study clearly
illustrates that viremia rebound can originate from
differences in the host (genetically regulated) immune
response alone. This result appears to stand in conflict
with previous genetic studies of the PHGC data, which

found that viremia rebound was not heritable and which
led to the conclusion that reboundwasmore likely caused by
factors related to the virus or the environment [12, 19, 21].
So we explored the role of host immune genetics on
viremia rebound further, focusing on a polymorphism
(WUR SNP) previously found to confer significant differ-
ences in cumulative viremia within the first 21 days post
infection [21, 22]. We found that resistant pigs, i.e. pigs
carrying the beneficial allele, were less likely to experi-
ence viremia rebound (odds ratio 2.4; 95% CI: [1.2,4.9]).
This implies that rebound is partly under host genetic con-
trol. The lack of genetic signal found in previous genetic
analyses may potentially originate from an improper clas-
sification of pigs as rebounders or non-rebounders. Some
pigs classified as non-rebounders may have experienced
rebound later, i.e. outside the 42 day observation period.
This is why we worked on a data subset in this study, in
which we selected non-rebounders that would most prob-
ably not experience a rebound outside the observation
period.
Previous studies proposed a number of alternative mecha-

nisms responsible for the emergence of viremia rebound.
These include within-host viral mutations [8, 12, 19], re-
infection by infected contact individuals [6, 12] or spon-
taneous release of the virus from lymph nodes into the
blood stream [12, 19]. Our systemic within-host model of
a single strain infection cannot provide any insight into
the contribution of these mechanisms to viremia rebound.
However, the current model could be easily extended to
test mutation and re-exposure hypotheses.

Insights Our results have important implications for the
development of control strategies, as they suggest that
rebound could be prevented by vaccines or genetic control
methods targeting specific components of the immune
response. We showed that boosting the efficacy of cyto-
toxic T lymphocytes or neutralising antibodies in our
model effectively prevented rebound. Cytotoxic T Lym-
phocytes and neutralising antibodies are the usual targets
of vaccines [15, 17, 25, 36]. However, given the high diver-
sity of circulating PRRSv strains, cross-protection remains
a major challenge for PRRSv vaccination [15]. Conse-
quently, vaccines using adjuvants that target non antigen-
specific mechanism are particularly relevant. Interest-
ingly, our results indicate that reducing TNFα-induced
apoptosis should also prevent rebound, but to our knowl-
edge, such vaccines have not yet been explored [44].
Our results also offer relevant insights for genetic dis-

ease control strategies. In particular, they suggest that
marker-assisted genetic selection of pigs carrying the
identified resistance allele at the WUR SNP would not
only reduce the overall virus load of infected pigs antic-
ipated from previous studies, but also reduce the occur-
rence of viremia rebound. It would therefore potentially
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help to eliminate the infection faster from the herd. More-
over, the key immune mechanisms that we identified
may help to focus ongoing research about the role of
the GBP5 candidate gene for this resistance SNP, which
is currently poorly understood [45]. Furthermore, recent
scientific breakthroughs in blocking the permissiveness of
porcine alveolar macrophages to some PRRSv strains by
gene editing highlight potential new avenues for genetic
disease control [46, 47]. Our model suggests that consid-
erable beneficial effects could already be achieved, even if
gene editing only led to a partial reduction of target cell
permissiveness.
Finally, our modelling approach, together with the

model fitting and validation procedure of candidate
immune mechanisms developed in this study, provides a
useful template for complementing conventional statis-
tical data analyses with more sophisticated mechanistic
models. Such models integrate existing biological under-
standing and provide new insights into the causative
underlying mechanisms of observed statistical associa-
tions. This approach can be easily adapted to other virus
infections in different host species.

Conclusion
We developed an holistic and comprehensive model of
within-host PRRSv infection that represents the large
spectrum of immune mechanisms influencing the infec-
tion dynamics. This model gave rise to several candidate
mechanisms underlying differences in infection profiles,
which are difficult to observe in experiments and can
not be targeted by simplistic models. In order to iden-
tify the model parameter values that allow to generate
realistic within-host dynamics, we developed an ABC-like
fitting procedure. This method overcome the identifiabil-
ity issues, a known caveat of such complex models, with
a reasonable computational cost and a good representa-
tion of the variability among individuals. Our fitted model
not only successfully capture the observed between-host
variation in infection dynamics but also provide, for the
first time, insight into potential causative immune mecha-
nisms for generating PRRS viremia rebound. This finding
has profound consequences for the development of inter-
vention strategies, as it would imply that rebound can be
prevented by modifying the immune response through
pharmaceuticals or genetic selection.

Methods
Experimental data
The viremia data considered in this study were derived
from longitudinal viremia measures of approximately
1600 weaner pigs experimentally infected with a vir-
ulent strain of PRRSv, carried out by the PRRS Host
Genetic Consortium (PHGC1). A detailed description of
the experimental protocol, data collection and molecular

techniques can be found in [9, 48]. Briefly, the data
result from a primary infection of non-isolated weaner
pigs with a highly virulent North American PRRSv strain
in controlled conditions, in eight distinct experimental
trials (∼200 pigs per trial), carried out at the same high
health farm at Kansas State University, following identical
protocols. Pigs were commercial cross-breeds provided
by different breeding companies, thus exhibiting a large
variation in host response [19, 22]. Viremia was found
moderately heritable, pointing to significant host genetic
influence underlying disease severity and progression
[21]. All source farms were free of PRRSv, Mycoplasma
hyopneumoniae, and swine influenza virus. Animals were
transported at weaning (average age of 21 days) to Kansas
State University and randomly placed into pens of 10 to
15 pigs. After a 7-day acclimation period, pigs were exper-
imentally infected, both intramuscularly and intranasally,
with 105 TCID50/ml of NVSL-97-7985, a highly virulent
PRRSv isolate [49]. Blood samples were collected at 0, 4, 7,
11, 14, 19/21, 28, 35, and 40/42 days post infection (dpi).
Serum viremia was measured using a semi-quantitative
TaqMan PCR assay for PRRSv RNA. Due to the sensitivity
of RT-PCR the detection threshold (and so the threshold
of the infection resolution) was set at 10TCID50/ml.
Visual inspection of individual viremia measures over

time confirmed that all animals were infected with peak
viremia levels above 103 TCID50/ml and that only a sub-
set of pigs (45%) had managed to clear the infection
within the 42-day observation period [19, 22]. The major-
ity of viremia data were uniphasic with a viremia peak
ranging between 4 and 11 dpi, but a subset of pigs experi-
enced a viremia rebound (viremia increase after post-peak
decline) 3 weeks post infection [21]. A previous analysis
showed that an adequate mathematical representation of
the full range of viremia data could be obtained by fit-
tingWood’s functions to the longitudinal log-transformed
viremia measurements of each pig, using Bayesian infer-
ence with a likelihood framework [19]. This approach
not only produced for each pig a continuous smoothed
viremia curve from 0 to 42 dpi, but also provided a statis-
tical classification of individual data into non-rebounders
with a uniphasic viremia profile and rebounders with a
biphasic viremia profile [19]. Based on this analysis, 17%
of the data were classified as biphasic, indicating that
viremia rebound is a genuine phenomenon rather than a
measurement error.

Subset selection In this study, we aimed at identify-
ing the immune mechanisms that discriminate between
uniphasic and biphasic viremia profiles, from data
observed during a 42-day observation period. To do so,
we selected a relevant subset of the smoothed PHGC data
[19]. Firstly, we needed to ensure that the uniphasic data
would most probably not exhibit a second viremia peak
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beyond the 42-day observation period. So we only con-
sidered data showing a clear resolution of viremia, i.e.
viremia measurements below 10 TCID50/ml, the detec-
tion threshold, over at least two consecutive weeks within
35 dpi. This more constraining criterion, rather than
42 dpi, was chosen based on the observation that no
viremia curve exhibiting 7 consecutive days or more
below the detection threshold was classified as biphasic
([19], personal communication).With this first constraint,
20% of the curves initially classified as uniphasic were
retained.
Secondly, we wanted the uniphasic and biphasic pro-

files to be as comparable as possible during the phase
corresponding to the first viremia peak, i.e. prior to the
rebound onset (0 to 20 dpi). Previous analyses of the com-
plete data set found no significant differences between
the two profiles within the first 21 dpi [19]. To reinforce
their similarity, we added extra constraints on the follow-
ing three key profile shape indicators (Fig. 8): the viral
peak (Vmax), the date of the viral peak (Tmax) and the
standardised viremia decline rate after the peak (SV ). The
latter was defined as follows (with V (t) the viral titer over
time t):

SV =Vmax − V (t = Tmax + 12)
12 × Vmax

, (1)

The 12-day post-peak time chosen in Eq. (1) corre-
sponds more or less to half the peak value for uniphasic

curves; moreover, it always precedes the rebound onset for
biphasic curves. We then selected curves with key indica-
tors within the range shared by the uniphasic data pres-
elected in the first step described above and the biphasic
data (Table 1). This second and final step resulted in a
subset of 131 non-rebounders, representing 12% of all
uniphasic data, and 109 rebounders, representing 48% of
all biphasic data. Selected data are illustrated in Fig. 9 and
provided in Additional file 4.

Mathematical model
We used a deterministic model that describes the within-
host dynamics induced by a primary PRRSv infection in
a PRRSv-naive post-weaning pig. The model represents
the mechanisms at the between-cell scale and provides
an integrative view of the immune response. It extends
a previous model representing the dynamics in the main
infection place, the lung, which allowed to identify the
immune mechanisms that determine the infection dura-
tion [27]. This previous model focused on the interactions
between the virus and its main target cells in the lung,
the pulmonary macrophages, which are major cells of
the innate immune system. It included an explicit and
detailed description of the innate immune response and
a coarse description of the adaptive response, in addition
to the main cytokines and their complex regulations of
the immune mechanisms. Compared to this previous
model, we mainly detailed the activation and orientation
steps of the adaptive response in order to get a more

a b

Fig. 8 Definition of viral indicators for the uniphasic and biphasic profiles. Definition of viral indicators for the uniphasic and biphasic profiles. For
both profiles a-b: viral peak (Vmax), date of viral peak (Tmax), standardised rate of viremia decline after the peak (SV , defined in Eq. (1)) and infection
duration (DI) when defined, i.e. when the viremia remains under the detection threshold until the end of the experiment. For the biphasic profile
only b: minimum reached before the second viral peak (VminR), date at which this minimum is reached (TminR), second viral peak (VmaxR), date of
second viral peak (TmaxR), viral titer at the end of the experiment Vend when defined, i.e. when the viremia is above the detection threshold. Grey
area: viremia lower than the detection threshold (10 TCID50/ml) or after the end of the experiment
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Table 1 Summary statistics (minimal min., mean and maximal max. values) of the viral indicators (defined in Fig. 8) for the uniphasic
(131 pigs) and biphasic (109 pigs) viremia data subsets (from [19, smoothed PHGC data])

Indicators Vmax Tmax SV VminR TminR VmaxR TmaxR DI Vend

[ units] [V] [days] [days−1] [V] [days] [V] [days] [days] [days]

Uniphasic

min. 6.5 6.0 0.032 – – – – 27 –

mean 7.2 7.1 0.038 – – – – 33 –

max. 7.6 9.0 0.048 – – – – 35 –

Biphasic

min. 6.5 6.0 0.031 < 1 20 3.2 22 31 –

mean 6.9 7.6 0.038 1.2 31 5.0 33 37 –

max. 7.6 9.0 0.049 2.8 40 6.9 42 � 5.7

[V] viremia unit in log: log TCID50/ml
�12 out of 109 data curves were not resolved at 42 dpi (Vend > 1)

balanced and realistic view of the immune response in the
whole pig.
The model describes the evolution over time of the con-

centration of 19 state variables: the virus, three states for
the target cells, the natural killers, five types of effector
cells of the adaptive response, the neutralising antibodies,
and eight (groups of) cytokines. The functional dia-
gram of the model is shown in Fig. 1. Our modelling
assumptions are detailed and justified in Additional file 5,
which gives a complete description of the model and
corresponding equations. We present below an outline
of the model, detailing a few representative key pro-
cesses and equations, with an emphasis on the adaptive
response.

Viral particles and target cells PRRS viral particles
(V ) target antigen-presenting cells, consisting of alveolar
macrophages, conventional and plasmacytoid dendritic
cells. These cells are represented as a functional group
with three states: naive (Tn), mature and non-infected
(Tm), or mature and infected (Ti).
The infection is initiated by the influx of viral par-

ticles into the infection site, represented by an expo-
sure function of time E(t) mimicking the infection pro-
tocol [32]. The interaction between viral particles and
naive or mature target cells either results in cell infec-
tion (rate βT ) or phagocytosis of viral particles (rate
ηT ). These interactions are regulated by cytokines, that
either activate κ+(•), amplify: 1 + κ+(•), or inhibit:

a b

Fig. 9 Uniphasic and biphasic viremia data subsets. Uniphasic and biphasic viremia data subsets. Selection from ([19], smoothed PHGC data) of a
131 (green curves) out of 1091 pigs for the uniphasic profile and b 109 (red curves) pigs out of 227 pigs for the biphasic profile (non selected data in
grey). Data smoothed by fitting Wood’s functions [19]. Dotted line: detection threshold
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κ−(•) a mechanism. Phagocytosis is amplified by antiviral
cytokines (TNFα, IFNα, IFNγ ) and inhibited by immuno-
modulatory cytokines (IL10, TGFβ); infection regulations
are just the opposite. Cell infection results in the excretion
of free viral particles (rate eT ), representing the replica-
tion within the cell and release outside the cell, which is
inhibited by antiviral cytokines. Viral particles are sub-
ject to natural decay (rate μnat

V ) and can be neutralised by
antibodies nAb (rate μad

V ). The resulting viral dynamics,
which determines the viremia profiles (as those depicted
in Fig. 9), is formalised in the Eq. 2.
Recruitment of naive target cells Tn to the infected

site (rate RT ) is amplified by pro-inflammatory cytokines
Pi (grouping IL1β , IL6, IL8 and CCL2) and IL12 act-
ing in synergy. Through phagocytosis (Tn become Tm)
or infection (Tn become Ti), naive target cells are acti-
vated and become mature cells. Mature non-infected
cells (Tm) eventually revert to the naive state (rate γT ).
This activation loss is amplified by immuno-modulatory
cytokines. In addition to natural decay (rate μnat

T ), TNFα
induces the apoptosis of target cells (rate μ

ap
T ). The result-

ing dynamics of naive target cells is formalised in the
Eq. 3.
Similar equations depict the dynamics of infected and

mature non-infected (which can be infected) target cells.
They include an extra feature: the cytolysis of infected
cells by natural killers (NK) and Cytotoxic T Lymphocytes
(CTL).

Innate immune response The virus target cells pertain
to the innate response. Mature target cells are involved in

the virus phagocytosis and in antigen presentation, which
activates the adaptive response. The model also includes
another innate cell type, the activated natural killers (NK),
which cytolyse infected cells. All these cells synthesise
various cytokines.

Adaptive immune response The first step of the adap-
tive response is the activation (rates α

Tm,Ti
E ) of helper

T cells by mature antigen-presenting target cells (Tm and
Ti). Depending on the cytokine environment, they differ-
entiate into the three main CD+

4 T lymphocyte subtypes,
that determine the adaptive response orientation: the cel-
lular (Ec, type-1 helper T cells), humoral (Eh, type-2 helper
T cells) and regulatory (Er , regulatory and type-17 helper
T cells) effectors. The humoral subtype is the default and
remains so when cytokines IL4 and IL6 (in Pi) predom-
inate over IL12, IFNγ and TGFβ . The dynamics of the
humoral effectors appears in the following in the Eq. 4.
The equations of the cellular and regulatory effectors

are similar, except for the differentiation term: IL12 and
IFNγ favour the cellular response, TGFβ the regulatory
response.
Once differentiated, together with viral particles, these

three effectors activate plasma cells (B, rate αE
B), which

in turn synthesise neutralising antibodies (rate ρB
nAb, see

Eq. 5.

Ḃ = +αE
B

V
1+V (Eh + Ec + Er) ←activation

+ pB B κ−(TGFβ) ←proliferation

− μnat
B B ←decay

(5)
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Moreover, the cellular effectors (Ec), together with
mature target cells, activate CD+

8 T cells, also called Cyto-
toxic T Lymphocytes (CTL, rates α

Tm,Ti
CTL ), which induce

the cytolysis of infected cells.:

˙CTL= + ∑
j=m,i

(
α
Tj
CTL

Tj
1+Tj

)
Ec ←activation

+ pECTL κ−(TGFβ)[ 1 + κ+(IL12)] ←proliferation

− μnat
CTL CTL [ 1 + κ+(TNFα)] ←decay

(6)

Proliferation of all five adaptive effectors (rates pE and
pB) is inhibited by TGFβ and amplified by IL12 (except
for B). Their natural decay (rates μnat

. ) is amplified by
TNFα (except for B), which induces their apoptosis. The
effectors synthesise various cytokines.

Cytokine regulations The model accounts for eight
cytokines, representing the major cytokines functions:
pro-inflammatory (Pi, grouping IL1β , IL6, IL8 and
CCL2), antiviral (TNFα, IFNα & IFNγ ), immuno-
modulatory (IL10 & TGFβ) and immuno-regulatory, the
latter being subdivided in pro-cellular (IL12 & IFNγ ),
pro-humoral (IL4 & IL6) and pro-regulatory (TGFβ)
responses.
Cytokines are synthesised by the immune cells. They

are involved in the regulation of most infection and
immune processes, including the cytokine syntheses.
Up-regulations, whether activations (multiply by κ+)
or amplifications (multiply by [ 1 + κ+]), and down-
regulations (multiply by κ−) depend on the cytokine con-
centration (Ck). The higher the cytokine concentration,
the stronger the effect. However, there is a limited number
of receptors, so the effect saturates above a given cytokine
concentration. Cytokine effects are hence classically based
on the Michaelis–Menten formalism [50–52]:

κ+(Ck) = vm Ck
km + Ck

& κ−(Ck) = km
km + Ck

, (7)

where vm denotes the saturation factor and km the half
saturation constant. Cytokines may interact: an additive
effect of cytokines Ck and C′

k is represented by κ±(Ck +
C′
k), a synergistic effect by κ±(Ck C′

k). To reduce the
model complexity, we assumed that the regulation param-
eters km and vm were the same, whatever the cytokine(s)
involved. This simplification was based on our sensitiv-
ity analyses, where both parameters were found to exhibit
a negligible influence on the viral dynamics (Additional
file 5: Figure A5-1).

Model fitting
The observed infection dynamics varies considerably
among individuals (Fig. 9). We hypothesised that the vari-
ability within and between the uniphasic and biphasic
viremia profiles is related to a different balance among

immune mechanisms and that it can be captured by
our mechanistic model using various parameter sets. In
order to identify parameter sets associated with either
the uniphasic or the biphasic profile, we fitted the model
to the experimental data subsets. Since the model has
many parameters, we were faced with a potential iden-
tifiability issue for obtaining unique parameter estimates
associated with a specific profile. Rather than reducing
the model complexity and thus significantly limiting the
scope of our approach, we first reduced the number of
parameters to estimate and, second, chose an appropriate
fitting procedure.

Parameter ranges and selection
There are few experimental or modelling data to inform
the parameter values. In previous work [26, 27], we
developed a specific procedure to tackle this issue: (i)
similar models in the literature provided large ranges
for model parameters; (ii) quantitative (for the viremia),
semi-quantitative (orders of magnitude, date of peaks,
etc. – for immune components) and qualitative (shape –
for immune components) data from PRRSv experimental
studies were collected to define realistic within-host
dynamics; (iii) through an extensive exploration of the
parameter space, parameter ranges were refined to obtain
realistic dynamics. We hence obtained ranges for all
model parameters (Additional file 5: Table A5-4 & Figure
A5-2).
To select which parameters to estimate and which to

fix, we performed global sensitivity analyses on the whole
viral dynamics (Additional file 5). A first sensitivity anal-
ysis exploring the influence of (almost) all model param-
eters exhibited that those parameters had comparable
contributions to the viremia variance, so we could not
identify a subset of parameters with a marked influence
on the viremia.
Consequently, we based our parameter selection on bio-

logical knowledge. Hypotheses linking between-host vari-
ability in the infection dynamics to immune mechanisms
are numerous [15–18, 25, 53]. In order to remain open to
all these hypotheses, we selected 14 parameters that are
associated with a wide range of relevant mechanisms: the
virus capacity to infect the cell and replicate, the target cell
capacity to synthesise antiviral vs. immuno-modulatory
cytokines, and the activation of the different arms of the
adaptive response. To avoid biasing our results, the ranges
of the 14 parameters to estimate were set equally for both
profiles.
Fixing the remaining parameters to an intermediate

value of their respective ranges, we performed a second
sensitivity analysis. As previously, it could not single out
parameters with a major impact on the viremia, but the
exploration of the parameter subspace showed that we
coveredmore than the variability observed in viremia data.
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Fitting procedure
We estimated the parameter values associated with each
profile by minimising a criterion which quantifies the
distance between a model simulation and the data. Our
aim was to identify parameter sets that characterise
each viremia profile. Rather than reproducing individual
viremia data, as classical fitting criteria do, we defined, for
each profile, a criterion based on the whole data range. A
data-compatible parameter set was then defined as a set
that satisfies (minimises) this criterion. We then looked
for not one but several data-compatible parameter sets.
To do so, we developed a fitting method that resembles
Approximate Bayesian Computation (ABC), but is less
computationally costly. This allowed us to specify a full
range of data-compatible parameter sets.

Fitting criteria. Before calculating the fitting criterion, the
simulation profile was determined. A viremia curve was
classified as: (i) uniphasic if and only if (i) it exhibited a
single peak above the detection threshold within the first
42 days of infection and (ii) the viremia was below the
detection threshold at day 42; (ii) biphasic if and only if it
exhibited at least two peaks above the detection threshold
within the first 42 days of infection.
If the simulated viremia curve matched the expected

profile, the corresponding criterion was computed as fol-
lows. Both uniphasic and biphasic criteria were based on
the viral indicators (Fig. 8) and the corresponding data
ranges (Table 1), rather than the whole viremia dynamics.
For each indicator i, the error 	i was defined as the short-
est standardised distance between the viral indicator value
simulated by the model IM

i and the corresponding range
observed in the data set

[
Imin
i , Imax

i
]
. The fitting criterion

(C) was then defined as the sum of squared errors of the
relevant viral indicators (n = 4 for the uniphasic profile,
n = 9 for the biphasic profile):

C =
n∑

i=1
	2

i

with:

	i =
{
0 if IM

i ∈ [
Imin
i , Imax

i
]
,

min
(|IM

i −Imin
i |,|IM

i −Imax
i |)

(
Imax
i −Imin

i
) else.

(8)

Indicator errors were normalised to account for differ-
ences in terms of magnitude and ranges. As we aimed
for zero-valued errors for all indicators, if some indicator
errors had outweighed the others, it could have affected
the convergence of the optimisation algorithm. NB: Viral
indicators would correspond to the summary statistics in
an ABC method. A fitting criterion equal to zero would
correspond to an ABC acceptance criterion with: (i) ABC

data defined as mean viral indicator values; (ii) ABC
tolerance defined as half the viral indicator ranges.
If, in contrast, the simulated viremia curve did not

match the expected profile, the corresponding fitting cri-
terion C was set to an arbitrarily high value, in order to
penalise the corresponding parameter set. If the viremia
curve matched a biphasic (resp. uniphasic) profile when a
uniphasic (resp. biphasic) was expected, we set C = 500.
If the viremia curve exhibited a single viral peak but was
unresolved at day 42, we set C = 700. Finally, if the viremia
curve did not exhibit any peak (either a steady growth or
unsuccessful infection), we set C = 1000.

Implementation and initialisation. The model simulation
and model fitting were conducted in Scilab 5.5.3 [54]. The
minimisation, i.e. the identification of data-compatible
parameter sets resulting in C = 0 (8), was performed using
the Adaptive Random Search (ARS) algorithm, for both
uniphasic and biphasic profiles independently. ARS is a
simple optimisation method, exhibiting good empirical
performance: numerous case studies have demonstrated
that the algorithm searches efficiently through large and
complex search spaces before reaching the perceived
global optimum [55], i.e. C = 0 (8) in our case.
In order to thoroughly explore the parameter space, we

performed the fitting procedure starting from 625 ini-
tial parameter sets that proceeded independently. They
were chosen following a fractional factorial design built
with the R package planor [56], in order to distribute the
algorithm starting points evenly in the parameter space,
minimising the computational effort. This method is par-
ticularly well suited for high dimensional problems char-
acterised by multiple influential parameters with strong
interactions, as was the case in our study (see Additional
file 5). 625 corresponds to the number of points required
for a resolution IV design with 3 levels per parameter.
For each parameter set staring point, the ARS algorithm
converged to an optimal parameter set, corresponding to
C = 0 (8), within 105.8 iterations on average.

Analyses
Selection of representative individuals for both viremia
profiles. In order to capture the full range of param-
eter combinations associated with each profile without
sampling bias, we generated a representative set of 35
individuals per viremia profile using a clustering method.
Indeed, among the 625 individuals of each profile, some
were very close, others quite distinct. Consequently, tak-
ing into account the full set would have lead to over- or
under-representations of some individuals. We proceeded
similarly but independently for both viremia profiles. We
used a k-means clustering method (kmeans function of
R package stats), which partitions the 625 parameter
sets obtained by the fitting procedure into a given number
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of clusters. The number of clusters has to be big enough
in order to represent the variability of the parameter sets
but small enough to prevent the over-representation of
some parameter sets. To set the number of clusters, var-
ious heuristics are employed, such as the “elbow rule”:
between-class inertia increasing with the number of clus-
ters, this rule consists in detecting the cluster number for
which adding another cluster does not result in a notable
inertia increase. We ran the k-means method for all pos-
sible numbers of clusters (1 to 625) and used the “elbow
rule” to get a rough idea of the appropriate number of
clusters (between 20 and 50). We then selected the small-
est number corresponding to 80% between-class inertia
for both profiles, namely 35 clusters. The representative
individual of each cluster was chosen as the parameter
set closest to the cluster barycentre. 35 individuals over
the 625 represent a sufficiently large number to cover the
full range of parameter combinations associated with each
profile and to provide sufficient statistical power to detect
differences between both profiles.

Identification of immune mechanisms discriminating
between both viremia profiles. In order to identify the key
immunological drivers that lead to either uniphasic or
biphasic viremia profiles, we compared, for the 35 individ-
uals selected per profile: (i) the dynamics of the immune
components represented in the model, over four time
periods (0-10, 11–20, 21–31, 32–42 dpi); (ii) the estimated
baseline rates of the immune mechanisms; and (iii) the
efficacy of key immune mechanisms for the earlier (0 to
20 dpi) and later (21 to 42 dpi) time periods. The efficacy
of a particular immune mechanism (e.g. cell infection,
viral neutralisation, infected cell cytolysis, etc.) was quan-
tified by the ratio of the total number of viral particles or
cells mobilised by the mechanism and the total number of
viral particles or cells generated, over the time period con-
sidered. As an example, the efficacy of viral neutralisation
was defined, from Eq. 2, as the total number of viral par-
ticles neutralised

∫ t2
t=t1 μad

V V (t) nAb(t) dt over the total
number of viral particles created (exposure + replication):
∫ t2
t=t1 eT Ti(t)κ−(TNFα(t)+IFNα(t)+IFNγ (t)) + E(t)dt.
Comparisons were performed by visual inspection and

standard uni-variate statistical tests: mean values and
standard deviations, permutation tests for the trajecto-
ries (R package stamod, with 104 permutations) and
Kolmogorov–Smirnov for the baseline rates and mecha-
nism efficacies (R package Matching).

Validation of candidate immune mechanisms Viremia
profiles are the result of many immune mechanisms that
interact and are regulated by complex feedback loops.
However, pharmaceutic interventions can often only
target a single mechanism. We therefore tested whether

boosting or inhibiting specific key mechanisms could
result in a viremia profile inversion, e.g. from uniphasic to
biphasic or vice versa.
For this purpose, we carried out additional simulations

in which we boosted (resp. inhibited) the values of the
parameters driving the efficacy of each mechanism by six
gradual levels from ×10 (10−1) to ×103 (resp. 10−3). We
performed the simulations on the 35 representative indi-
viduals per viremia profile. We focused on mechanisms
which directly affect the viral dynamics and are assumed
to play a critical role in the infection dynamics [17, 57, 58]:
infection (driven by infection rate βT ), naive target cell
apoptosis by TNFα (apoptosis rate μ

ap
T ), infected cytolysis

by natural killers and cytotoxic T lymphocytes (cytolysis
ratesμin

T andμad
T ), viral particle neutralisation by antibod-

ies (neutralisation rateμad
V ).When amechanism exhibited

a higher (lower) efficacy for the viremia profile of the
individual, we decreased (boosted) its efficacy. Then we
counted the percentage of individuals that had a profile
inversion for at least one of the six levels tested. A simu-
lation of a uniphasic (resp. biphasic) individual qualified
for profile inversion if the corresponding viral titer could
be classified as biphasic (resp. uniphasic) according to
the definition of the viremia profile given in the “Fitting
criteria” paragraph above.

Role of host genetics on rebound Genetic studies of the
PHGC data identified a single nucleotide polymorphism
(WUR10000125) on chromosome 4, denoted WUR SNP,
that was found to confer significant differences in cumula-
tive viremia (i.e. area under the viremia curve) within the
first 21 days post infection [21, 22]. So we tested whether
the WUR SNP was also associated with rebound. For this
purpose, we carried out a logistic regression analysis on
our data subset. We categorised pigs into two resistance
genotypes, high and low, according to whether or not
they carried the beneficial allele at the WUR SNP. We
accounted for systematic effects in this analysis [19, 21].
The result of this analysis is presented in the Discussion
alone.

Endnote
1 PHGC: http://www.animalgenome.org/lunney/index.

php
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