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Borel Kernels and their Approximation,
Categorically
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CNRS, ENS-PSL, INRIA ENS-PSL

Abstract

This paper introduces a categorical framework to study the exact and approximate semantics of probabilistic
programs. We construct a dagger symmetric monoidal category of Borel kernels where the dagger-structure
is given by Bayesian inversion. We show functorial bridges between this category and categories of Banach
lattices which formalize the move from kernel-based semantics to predicate transformer (backward) or state
transformer (forward) semantics. These bridges are related by natural transformations, and we show in
particular that the Radon-Nikodym and Riesz representation theorems - two pillars of probability theory -
define natural transformations.
With the mathematical infrastructure in place, we present a generic and endogenous approach to approxi-
mating kernels on standard Borel spaces which exploits the involutive structure of our category of kernels.
The approximation can be formulated in several equivalent ways by using the functorial bridges and natural
transformations described above. Finally, we show that for sensible discretization schemes, every Borel ker-
nel can be approximated by kernels on finite spaces, and that these approximations converge for a natural
choice of topology.
We illustrate the theory by showing that our approximation scheme can be used in practice as an ap-
proximate Bayesian inference algorithm and as an approximation scheme for programs in the probabilistic
network specification language ProbNetKAT.

Keywords: Probabilistic programming, probabilistic semantics, Markov process, Bayesian inference,
approximation

1 Introduction

Finding a good category in which to study probabilistic programs is a subject of

active research [22,17,6,21]. In this paper we present a dagger symmetric monoidal

1 Email: f.dahlqvist@ucl.ac.uk
2 This work was partially supported by ERC grant ProfoundNet.
3 This work was partially supported by ANR project REPAS.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 341 (2018) 91–119

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.11.006

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto: f.dahlqvist@ucl.ac.uk
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.11.006
https://doi.org/10.1016/j.entcs.2018.11.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


category of kernels whose dagger-structure is given by Bayesian inversion. The

advantages of this new category are two-fold.

Firstly, the most important new construct introduced by probabilistic program-

ming, viz. Bayesian inversion, is interpreted completely straightforwardly by the

†-operation which is native to our category. In particular we never leave the world

of kernels and we therefore do not require any normalization construct. Consider

for example the following simple Bayesian inference problem in Anglican ([24])

(defquery example

(let [x (sample (normal 0 1))]

(observe (normal x 1) 0.5)

(> x 1)))

The semantics of this program is built easily and compositionally (by functoriality

of †) in our category:

• The second line builds a Borel space equipped with a normally distributed prob-

ability measure – an object (R, μ) of our category.

• The (normal x 1) instruction builds a Borel kernel – a morphism f : (R, μ) →
(R, ν) in our category.

• The observe statement builds the Bayesian inverse of the kernel – the morphism

f † : (R, ν) → (R, μ) in our †-category.
• Finally, the kernel f † is evaluated, i.e. the denotation of the program above is

f †(0.5)(]1,∞[). Since f † is only defined μ-a.s., we understand the formal ex-

pression f †(0.5)(]1,∞[) as the evaluation of some representative of f † at (0.5)

and (]1,∞[). The choice of representative is μ-a.s. irrelevant, which justifies the

notation. Note also that Anglican cleanly separates the modelling process from

the inference process. The snippet of code above belongs to the modelling level,

whereas the choice of a representative of f † – that is to say of an inference al-

gorithm – belongs to the inference level, which is specified separately. We only

claim to provide a semantics at the modelling level.

Secondly, since Bayesian inference problems are in general very hard to compute

(although the one given above has an analytical solution), it makes sense to seek

approximate solutions, i.e. approximate denotations to probabilistic programs. As

we will show, our category of kernels comes equipped with a generic and endogenous

approximating scheme which relies on its involutive structure and on the structure

of standard Borel spaces. Moreover, this approximation scheme converges for any

choice of kernel for a natural choice of topology.

Main contributions and structure of the paper.

Sections 2-6 align in a chain of logical dependencies culminating in our Con-

vergence of Approximations Theorem (Theorem 6.3) which relies on the framework

developed in §2, the link with operators developed in §3-4 which allows us to access

a natural operator topology, and the presentation of our approximation scheme in

§5. More precisely, our main contributions can be summed up section by section as
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follows:

• We build a category Krn of Borel kernels (§2) and we show how two kernels which

agree almost everywhere can be identified under a categorical quotient operation.

This technical construction is what allows us to define Bayesian inversion as an

involutive functor, denoted †. This is a key technical improvement on [6] where

the †-structure 4 was hinted at but was not functorial. We show that Krn is a

dagger symmetric monoidal category.

• We introduce the categoryBLσ of Banach lattices and σ-order continuous positive

operators as well as the Köthe dual functor (−)σ : BLop
σ → BLσ (§3). These will

play a central role in studying convergence of our approximation schemes.

• We provide the first 5 categorical understanding of the Radon-Nikodym and the

Riesz representation theorems. These arise as natural transformations between

functors relating kernels and Banach lattices (§4).
• We show how the †-structure of Krn can be exploited to approximate kernels by

averaging (§5). Due to an important structural feature of Krn (Th. 2.1) every

kernel in Krn can be approximated by finite kernels.

• We describe a natural class of approximations schemes where the sequence of

approximating kernels converges to the kernel to be approximated. The notion

of convergence is given naturally by moving to BLσ and considering convergence

in the Strong Operator Topology (§6).
• We show how Bayesian inference can be performed approximately by showing that

the †-operation commutes with taking approximations. This provides the basis

for an approximate Bayesian inference algorithm which we apply to a simple

Anglican program. A second application, as an approximation scheme for the

denotation of ProbNetKAT programs [13,20] is given in the Appendix.

All the proofs can be found in the Appendix.

Related work.

Quasi-Borel sets have recently been proposed as a semantic framework for higher-

order probabilistic programs in [22]. The main differences with our approach are: (i)

unlike [22,21] we never leave the realm of kernels, and in particular we never need to

worry about normalization. This makes the interpretation of observe statements,

i.e. of Bayesian inversion, simpler and more natural. However, (ii) unlike the quasi-

Borel sets of [22], our category is not Cartesian closed. We can therefore not give

a semantics to all higher-order programs. This shortcoming is partly mitigated by

the fact that the category of Polish spaces, on which our category ultimately rests,

does have access to many function spaces, in particular all the spaces of functions

whose domain is locally compact. We can thus in principle provide a semantics to

higher-order programs, provided that λ-abstraction is restricted to locally compact

4 Suggested to us by Chris Heunen.
5 To the best of our knowledge.
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spaces like the reals and the integers, although this won’t be investigated in this

paper.

The approximation of probabilistic kernels has been a topic of investigation in

theoretical computer science for nearly twenty years (see e.g. [10,8,9,4]), and for

much longer in the mathematical literature (e.g. [5]). Our results build on the

formalism developed in [4] with the following differences: (i) we can approximate

kernels, their associated stochastic operator (backward predicate transformer), or

their associated Markov operator (forward state transformer) with equivalent ease,

and move freely across the three formalisms. (ii) Given a kernel f : X � Y , we

can define its approximation f ′ : X ′ → Y ′ along any quotients X ′ of X and Y ′

of Y as in [4], but we can also ‘internalize’ the approximation as a kernel f∗ :

X → Y of the original type. Morally f ′ and f∗ are the same approximation, but

the second approximant, being of the same type as the original kernel, can be

compared with it. In particular it becomes possible to study the convergence of

ever finer approximations, which we do in Section 6. Finally, (iii) we opt to work

with Banach lattices rather than the normed cones of [18,4] because it allows us to

formulate the operator side of the theory very naturally, and it connects to a large

body of classic mathematical results ([2,25]) which have been used in the semantics

of probabilistic programs as far back as Kozen’s seminal [16].

2 A category of Borel kernels

In [6] the first three authors presented a category of Borel kernels similar in spirit to

the construction of this section, but with a major shortcoming. As we will shortly

see, our category Krn of Borel kernels can be equipped with an involutive functor

– a dagger operation † in the terminology of [19] – which captures the notion of

Bayesian inversion and is absolutely crucial to everything that follows. In [6] this

operation had merely been identified as a map, i.e. not even as a functor. In this

section we show that Bayesian inversion defines a †-structure on a more sophisticated

– but measure-theoretically very natural – category of kernels.

2.1 Standard Borel spaces and the Giry monad

A standard Borel space – or SB space for short – is a measurable space (X,S) for
which there exists a Polish topology T on X whose Borel sets are the elements of

S, i.e. such that S = σ(T ) (see e.g. [15] for an overview). Let us write SB for

the category of standard Borel spaces and measurable maps. One key structural

feature of SB is the following:

Theorem 2.1 Every SB object is a limit of a countable co-directed diagram of

finite spaces.

Proof. This is a consequence of the Isomorphism Theorem (Theorem 15.6 of [15]):

two SB spaces are isomorphic iff they have the same cardinality. Uncountable

SB spaces are thus all isomorphic to the Cantor space 2N which is the limit of

the countable co-directed diagram (2n)n∈N with the connecting morphisms pn+1,n :

F. Dahlqvist et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 91–11994



2n+1 → 2n truncating binary words of length n + 1 at length n. Similarly all

SB-spaces of cardinality ℵ0 are isomorphic to the one-point compactification of N,

which is the limit of the countable co-directed diagram (n)n∈N with the connecting

morphisms pn+1,n : n+1 → n, i �→ min(i, n). The case of finite SB spaces is trivial.�

The Giry monad was originally defined in two variants [14]:

• As an endofunctor GPol of Pol, the category of Polish spaces, one sets GPol(X, T )

to be the space of Borel probability measures over X together with the weak

topology. This space is Polish [15, Th 17.23], and the Portmanteau Theorem [15,

Th 17.20]) gives multiple characterizations of the weak topology.

• As an endofunctor GMeas of Meas, the category of measurable spaces :

GMeas(X,S) is the set of probability measures on X together with the initial

σ-algebra for the maps evA : GMeas(X,S) → R, μ �→ μ(A), A ∈ S.
In both cases the Giry monad is defined on an arrow f : X → Y as the map f∗
which sends a measure μ on X to the pushforward measure f∗μ on Y , defined as

G(f)(μ)(B) = f∗μ(B) := μ(f−1(B)) for B a measurable subset of Y . We want to

define the Giry monad on the category SB of standard Borel spaces (and measurable

maps), and the two versions of the Giry monad described above offer us natural

ways to do this: given an SB space (X,σ(T )) we can either compute GPol(X, T )

and take the associated standard Borel space, or directly compute GMeas(X,σ(T )).

Fortunately, the two methods agree.

Theorem 2.2 ([15], Th 17.24) Let B : Pol → SB denote the functor sending

a Polish space (X, T ) to its associated SB-space (X,σ(T )) and leaving morphisms

unchanged, then

GMeas ◦ B = B ◦ GPol.

We define the Giry monad on SB spaces to be the endofunctor G : SB → SB

defined by either of the two equivalent constructions above. The monadic data of G
is given at each SB space X by the unit δX : X → GX,x �→ δx, the Dirac δ measure

at x, and the multiplication mX : G2X → GX,P �→ λA.
∫
GX evAdP. We refer the

reader to [14] for proofs that δX and mX are measurable.

2.2 The construction of Krn

Let us denote by SBG the Kleisli category associated with the Giry monad (G, δ,m).

We denote Kleisli arrows, i.e. Markov kernels, by X � Y , and we call such an arrow

deterministic if it can be factorized as an ordinary measurable function followed by

the unit δ. Kleisli composition is denoted by •. The category ∗ ↓ SBG has arrows

∗ � X as objects, where ∗ is the one point SB space (the terminal object in SB).

An arrow from μ : ∗ � X to ν : ∗ � Y is a SBG arrow f : X � Y such that

ν = f • μ, i.e. such that ν(A) =
∫
X f(x)(A)dμ for any measurable subset A of Y .

This situation will be denoted in short by f : (X,μ) � (Y, ν), and we will call a

pair (X,μ) a measured SB space.

We construct a quotient of ∗ ↓ SBG, such that two ∗ ↓ SBG arrows are identified
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if they disagree on a null set w.r.t. the measure on their domain. For g, g′ : (X,μ) �

(Y, ν), we define N(g, g′) = {x ∈ X | g(x) 
= g′(x)}.

Lemma 2.3 N(g, g′) is a measurable set.

Proof. By Dinkyn’s π-λ theorem, two finite measures are equal if and only if they

agree on a π-system generating the σ-algebra. Any standard Borel space admits

such a countable π-system (any countable basis for a Polish topology generating the

σ-algebra). Let {Bn}n∈N be such a π-system. Then, for all x ∈ X, g(x) 
= g′(x) ⇔
∃n.g(x)(Bn) 
= g′(x)(Bn). Hence,

N(g, g′) = ∪n{x ∈ X | g(x)(Bn) 
= g′(x)(Bn)}

= ∪n{x ∈ X | evBn(g(x)) 
= evBn(g
′(x))}

= ∪n(evBn ◦ g − evBn ◦ g′)−1(R \ {0})

By definition of the measurable structure of G(Y ), evBn ◦g−evBn ◦g′ is measurable,

hence N(g, g′) is also measurable. �

We now define a relation ∼ on Hom((X,μ), (Y, ν)) by saying that for any two

arrows g, g′ : (X,μ) � (Y, ν), g ∼ g′ if μ(N(g, g′)) = 0. This clearly defines

an equivalence relation on Hom((X,μ), (Y, ν)). In order to perform the quotient

of the category ∗ ↓ SBG modulo ∼, we need to check that it is compatible with

composition.

Proposition 2.4 If g ∼ g′, then h • g • f ∼ h • g′ • f .

Proof. We first show that if g ∼ g′, then h•g ∼ h•g′. Clearly, for any space V and

any deterministic function u : Y → V , N(u◦g, u◦g′) ⊆ N(g, g′). By definition of the

Kleisli category, h•g = mZ ◦G(h)◦g and similarly for h•g′. Taking u = mZ ◦G(h),
we obtain that μ(N(h • g, h • g′)) ≤ μ(N(g, g′)).

It is now enough to show that λ(N(g • f, g′ • f)) = 0. Let us reason contraposi-
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tively. We have:

λ(N(g • f, g′ • f)) > 0

⇔
∫
w∈W 1N(g•f,g′•f)(w) dλ > 0

→
∫
w∈W

∑
n∈N 1(g•f)(w)(Bn)�=(g′•f)(w)(Bn) dλ > 0

∃n→
∫
w∈W 1(g•f)(w)(Bn)�=(g′•f)(w)(Bn) dλ > 0

→
∫
w∈W |(g • f)(w)(Bn)− (g′ • f)(w)(Bn)| dλ > 0

⇔
∫
w∈W

∫
x∈X |g(x)(Bn)− g′(x)(Bn)| df(w) dλ > 0

⇔
∫
x∈X |g(x)(Bn)− g′(x)(Bn)| dμ > 0

∃X+⊆X→
∫
x∈X+ g(x)(Bn)− g′(x)(Bn) dμ > 0

→
∫
x∈X+ 1g(−)(Bn)>g′(−)(Bn)(x) dμ > 0

→
∫
x∈X+ 1N(g,g′)(x) dμ > 0

The last line implies μ(N(g, g′)) > 0, a contradiction. �

Definition 2.5 Let Krn be the category obtained by quotienting ∗ ↓ SBG hom-

sets with ∼.

The following Theorem is of great practical use and generalizes the well-known

result for deterministic arrows.

Theorem 2.6 (Change of Variables in Krn) Let f : (X,μ) � (Y, ν) be a

Krn-morphism. For any measurable function φ : Y → R, if φ is ν-integrable,

then φ • f(x) =
∫
Y φ df(x) is μ-integrable and

∫
Y
φ dν =

∫
X
φ • f dμ

Proof. If φ is ν-integrable, there exists a monotone sequence {φn} of simple

functions such that φn ↑ φ and
∫
Y φndν →

∫
Y φdν < ∞. By definition each

φn =
∑k

i=0 αi1Bi , and by unravelling the definition we have

∫
Y
1Bidν = ν(Bi) =

∫
X
f(x)(Bi)dμ =

∫
X

∫
Y
1Bidf(x)dμ =

∫
X
(1Bi • f)dμ

From which it follows that

∫
Y
φndν =

∫
X

∫
Y

k∑
i=0

αi1Bidf(x)dμ =

∫
X
(φn • f)dμ

and the result follows from the Monotone Convergence Theorem (MCT). �
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2.3 The symmetric monoidal structure of Krn

The symmetric monoidal structure of Krn is defined on a pair of objects

(X,μ), (Y, ν) by the Cartesian product and the product of measures, i.e. (X,μ) ⊗
(Y, ν) = (X × Y, μ ⊗ ν). On pairs of morphisms f : (X,μ) � (Y, ν) and

f ′ : (X ′, μ′) � (Y ′, ν ′) it is defined by (f ⊗ f ′)(x, x′) := f(x) ⊗ f ′(x′). The un-

itors, associator and braiding transformations are given by the obvious bijections.

2.4 The dagger structure of Krn

Krn has an extremely powerful inversion principle:

Theorem 2.7 (Measure Disintegration Theorem, [15], 17.35) Let

f : (X,μ) � (Y, ν) be a deterministic Krn-morphism, there exists a unique

morphism f †
μ : (Y, ν) � (X,μ) such that

f • f †
μ = id(Y,ν). (1)

The kernel f †
μ is called the disintegration of μ along f . As our notation suggests,

the disintegration depends fundamentally on the measure μ over the domain, how-

ever we will omit this subscript when there is no ambiguity. The following lemma

relates disintegrations to conditional expectations.

Lemma 2.8 ([7]) Let f : (X,μ) → (Y, ν) be a deterministic Krn-morphism, let

σ(f) be the σ-algebra generated by f , and let φ : X → R be measurable, then μ-a.e.

φ • f † • f = E [φ | σ(f)]

We can extend the definition of (−)† to any Krn-morphism f : (X,μ) � (Y, ν)

in a functorial way, although f † will not in general be a right inverse to f . The

construction of f † is detailed in [6], but let us briefly recall how it works. The

category SB has products which are built in the same way as in Meas via the

product of σ-algebras 6 . Given any kernel f : (X,μ) � (Y, ν), we can canonically

construct a probability measure γf on the product X × Y of SB-space by defining

it on the rectangles of X × Y as

γf (A×B) =

∫
x∈X

1A(x) · f(x)(B) dμ. (2)

Equivalently, γf = (δX ⊗ f) •ΔX •μ, where ΔX : X → X ×X is the diagonal map.

Letting πX : X × Y → X and πY : X × Y → Y be the canonical projections, we

observe that GπX(γf ) = μ and GπY (γf ) = ν: in other words, γf is a coupling of

μ and ν. The disintegration of γf along πY is a kernel π†
Y : (Y, ν) → (X × Y, γf ).

Finally we define:

f † = πX • π†
Y . (3)

6 Unlike the category Krn, which does not have products.
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The following Krn diagram sums up the situation:

(X,μ) π†
X

� ��
f

� ��
(X × Y, γf )

πY � ��

πX���
(Y, ν)

π†
Y���

f†
���

where π†
X is explicitly given by (δX ⊗f)•ΔX . The following property characterizes

the action of (−)† on Krn-morphisms:

Theorem 2.9 For all f : (X,μ) � (Y, ν), f † : (Y, ν) � (X,μ) is the unique Krn

morphism satisfying for all measurable sets A ⊆ X, B ⊆ Y the following equation:∫
x∈X

1A(x) · f(x)(B) dμ =

∫
y∈Y

f †(y)(A) · 1B(y) dν (4)

Proof. It follows by definition of f † and from the disintegration theorem that∫
y∈Y

f †(y)(A) · 1B(y) dν = γf (A×B), (5)

from which Eq. 4 follows easily. It remains to prove that this uniquely characterizes

f †. Let us reason contrapositively. Assume there exists g : (Y, ν) � (X,μ) verifying

for all A,B measurable
∫
y∈Y g(y)(A) · 1B(y) = γf (A×B) as in Eq. 5 and such that

ν(N(f †, g)) > 0 (assuming we take some representative of f †). Let {An}n∈N be

a countable π-system generating the σ-algebra of X. It is enough to test equality

of measures on X on this π-system. Therefore, N(f †, g) = ∪n{y | f †(y)(An) 
=
g(y)(An)}. Since ν(N(f †, g)) > 0, there must exist a k ∈ N such that ν({y |
f †(y)(Ak) 
= g(y)(Ak)}) > 0. Therefore, N+

k = {y | f †(y)(Ak) > g(y)(Ak)} must

also have positive measure for ν. But then,
∫
y∈Y g(y)(Ak) · 1N+

k
(y) 
= γf (Ak ×N+

k ),

a contradiction. �

In view of Eq. (4), we will call f † the Bayesian inversion of f , and refer to (−)†

as the Bayesian inversion operation on Krn. It will be crucial throughout the rest

of this paper. It is important to see that f † absolutely depends on the choice of μ

and not only on f seen as a function. We can now improve on [6] and show that

(−)† is indeed a †-operation in the strict categorical meaning of the term.

Theorem 2.10 Krn is a dagger symmetric monoidal category, with (−)† given by

Bayesian inversion.

Proof. Let us first show that (−)† is a functor Krn → Krnop, i.e. that id†(X,μ) =

id(X,μ) and that for any f : (X,μ) � (Y, ν) and g : (Y, ν) � (Z, ρ) we have

(g • f)† = f † ◦ g†.
Let (X,μ) be an object of Krn and idX,μ the corresponding identity. By Th. 2.9,

it is enough to prove, for all A,A′ measurable subsets of X, that∫
x∈X

1A(x) · idX,μ(x)(A
′) dμ =

∫
x∈X

idX,μ(x)(A) · 1A′(x) dμ.
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We have: ∫
x∈X

1A(x) · idX,μ(x)(A
′) dμ =

∫
x∈X

1A(x) · 1A′ dμ = μ(A ∩A′)

The same calculation on the right hand side of the first equation yields trivially the

same result. Hence the equality is verified.

Now, on to compatibility w.r.t. composition. In sight of Th. 2.9, it is enough to

show that for all A ⊆ X, C ⊆ Z,

∫
x∈X

(g • f)(x)(C) · 1A(x) dμ =

∫
z∈Z

1C(z) · (f † • g†)(z)(A) dρ

In the following, for X a measurable space, we denote by SF (X) the set of simple

functions over X (finite linear combinations of indicator functions of measurable

sets). We will use repeatedly the monotone convergence theorem (MCT). The left

hand side of the above equation can be re-written as:

∫
x∈X

(∫
y∈Y g(y)(C) df(x)

)
· 1A(x) dμ

(1)
=

∫
x∈X

(∫
y∈Y limn→∞ gn(y) df(x)

)
· 1A(x) dμ

(2)
=

∫
x∈X limn→∞

(∫
y∈Y gn(y) df(x)

)
· 1A(x) dμ

where (1) is because gn ↑ g(−)(C), gn ∈ SF (Y ) and (2) by monotone convergence.

Note that the n-indexed family x �→
∫
y∈Y gn(y) df(x) is pointwise increasing. There-

fore,

(∗) limn→∞
∫
x∈X

(∫
y∈Y gn(y) df(x)

)
· 1A(x) dμ

(1)
= limn→∞

∫
x∈X

(∑kn
i=1 α

n
i f(x)(C

n
i )
)
· 1A(x) dμ

= limn→∞
∑kn

i=1 α
n
i

∫
x∈X f(x)(Cn

i ) · 1A(x) dμ
(2)
= limn→∞

∑kn
i=1 α

n
i

∫
y∈Y 1Cn

i
(y) · f †(y)(A) dν

(∗)
=

∫
y∈Y g(y)(C) · f †(y)(A) dν

(3)
=

∫
y∈Y g(y)(C) · limn fn(y) dν

(∗)
= limn

∑kn
i=1 β

n
i

∫
y∈Y g(y)(C) · 1Dn

i
(y) dν

(2)
= limn

∑kn
i=1 β

n
i

∫
z∈Z 1C(z) · g†(z)(Dn

i ) dρ

= limn

∫
z∈Z 1C(z) ·

∫
y∈Y

∑kn
i=1 β

n
i 1Dn

i
(y) dg†(z) dρ

(∗)
=

∫
z∈Z 1C(z) ·

∫
y∈Y f †(y)(C) dg†(z) dρ

=
∫
z∈Z 1C(z) · (f † • g†)(z)(A) dρ

where (∗) is by monotone convergence, (1) is because gn ∈ SF (Y ), (2) is by Th. 2.9

and (3) is because fn ↑ f †(−)(A), fn ∈ SF (Y ). We have proved the sought identity.
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Finally let us show that (−)† is involutive, i.e. that for any f : (X,μ) � (Y, ν),

(f †)† = f . This follows easily by two applications of Th. 2.9): we have

∫
x∈X 1A(x) · (f †)†(x)(B) dμ =

∫
y∈Y f †(y)(A) · 1B(y) dν

=
∫
x∈X 1A(x) · f(x)(B) dμ;

and since adjoints are unique, f = (f †)†.
The fact that (f⊗g)† = f †⊗g† follows immediately from the definitions and the

property of disintegrations given by Th. 2.9. The fact that the associator, unitors

and braiding transformations are unitary follows immediately from the fact that

they are deterministic isomorphisms and Th. 2.7. �

3 Banach lattices

It is well-known that kernels can alternatively be seen as predicate – i.e. real-

valued function –transformers, or as state – i.e. probability measure – transformers.

The latter perspective was adopted by Kozen in [16] to describe the denotational

semantics of probabilistic programs (without conditioning). We shall see in this

section and the next, that the predicate and state transformer perspectives are dual

to one another in the category of Banach lattices, a framework incidentally also used

in [16]. For an introduction to the theory of Banach lattices we refer the reader to

e.g. [2,25].

An ordered real vector space V is a real vector space together with a partial

order ≤ which is compatible with the linear structure in the sense that for all

u, v, w ∈ V, λ ∈ R
+

u≤ v ⇒ u+ w≤v + w and u≤ v ⇒ λu≤ λv

An ordered vector space (V,≤) is called a Riesz space if the poset structure forms a

lattice. A vector v in a Riesz space (V,≤) is called positive if 0 ≤ v, and its absolute

value |v| is defined as |v| = v ∨ (−v). A Riesz space (V,≤) is σ-order complete if

every non-empty countable subset of V which is order bounded has a supremum.

A normed Riesz space is a Riesz space (V,≤) equipped with a lattice norm, i.e.

a map ‖·‖ : V → R such that:

|v| ≤ |w| implies ‖v‖ ≤ ‖w‖ . (6)

A normed Riesz space is called a Banach lattice if it is (norm-) complete, i.e. if

every Cauchy sequence (for the norm ‖·‖) has a limit in V .

Example 3.1 For each measured space (X,μ) – and in particular Krn-objects –

and each 1 ≤ p ≤ ∞, the space Lp(X,μ) is a Riesz space with the pointwise order.

When it is equipped with the usual Lp-norm, it is a Banach lattice. This fact is

often referred to as the Riesz-Fischer theorem (see [2, Th 13.5]). We will say that
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p, q ∈ N ∪ {∞} are Hölder conjugate if either of the following conditions hold: (i)

1 < p, q < ∞ and 1
p + 1

q = 1, or (ii) p = 1 and q = ∞, or (iii) p = ∞ and q = 1.

Theorem 3.2 (Lemma 16.1 and Theorem 16.2 of [25]) Every Banach lattice

is σ-order complete.

There are two very natural modes of ‘convergence’ in a Banach lattice: order

convergence and norm convergence. The latter is well-known, the former less so.

An order bounded sequence {vn}n∈N in a σ-complete Riesz space (e.g. a Banach

lattice) converges in order to v if either of the following equivalent conditions holds:

v = lim inf
n

vn :=
∨
n

∧
n≤m

vm, v = lim sup
n

vn :=
∧
n

∨
n≤m

vm.

For a monotone increasing sequence vn, this definition simplifies to v =
∨

n vn, which

is often written vn ↑ v.

In a general σ-complete Riesz space, order and norm convergence are disjoint

concepts, i.e. neither implies the other (see [25, Ex. 15.2] for two counter-examples).

However if a sequence converges both in order and in norm then the limits are the

same (see [25, Th. 15.4]). Moreover, for monotone sequences norm convergence

implies order convergence:

Proposition 3.3 ([25] Theorem 15.3) If {vn}n∈N is an increasing sequence in

a normed Riesz space and if vn converges to v in norm (notation vn → v), then

vn ↑ v.

In a Banach lattice we have the following stronger property.

Proposition 3.4 (Lemma 16.1 and Theorem 16.2 of [25]) If {vn}n∈N is a

sequence of positive vectors in a Banach lattice such that supn ‖vn‖ converges, then∨
n vn exists and ‖

∨
n vn‖ =

∨
n ‖vn‖.

It can also happen that order convergence implies norm convergence. A lattice

norm on a Riesz space is called σ-order continuous if vn ↓ 0 (vn is a decreasing

sequence whose infimum is 0) implies ‖vn‖ ↓ 0.

Example 3.5 For 1 ≤ p < ∞, the Lp-norm is σ-order continuous, and thus order

convergence and norm convergence coincide. However, for p = ∞ this is not the

case as the following simple example shows. Consider the sequence of essentially

bounded functions vn = 1[n,+∞[: it is decreasing for the order on L∞(R, λ) with the

constant function 0 as its infimum, i.e. vn ↓ 0. However ‖vn‖ = 1 for all n.

Many types of morphisms between Banach lattices are considered in the liter-

ature but most are at least linear and positive, that is to say they send positive

vectors to positive vectors. From now on, we will assume that all morphisms are

positive (linear) operators. Other than that, we will only mention two additional

properties, corresponding to the two modes of convergence which we have examined.

The first notion is very well-known: a linear operator T : V → W between normed
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vector spaces is called norm-bounded if there exists C ∈ R such that ‖Tv‖ ≤ C ‖v‖
for every v ∈ V . The following result is familiar:

Theorem 3.6 An operator T : V → W between normed vector spaces is norm-

bounded iff it is continuous.

Thus norm-bounded operators preserve norm-convergence. The corresponding

order-convergence concept is defined as follows: an operator T : V → W between

σ-order complete Riesz spaces is said to be σ-order continuous if whenever vn ↑ v,

Tv =
∨

Tvn. It follows that we can consider two types of dual spaces on a Banach

lattice V : on the one hand we can consider the norm-dual :

V ∗ = {f : V → R | f is norm-continuous}

and the σ-order-dual :

V σ = {f : V → R | f is σ-order continuous}

The latter is sometimes known as the Köthe dual of V (see [11,25]). The two types

of duals coincide for a large class of Banach spaces of interest to us.

Theorem 3.7 If a Banach lattice V admits a strictly positive linear functional and

has a σ-order-continuous norm, then V ∗ = V σ.

Example 3.8 The result above can directly be applied to our running example:

given a measured space (X,μ) and an integer 1 ≤ p < ∞, the Lebesgue integral

provides a strictly positive functional on Lp(X,μ), and we already know from Ex-

ample 3.5 that Lp(X,μ) has a σ-order-continuous norm. It follows that

Lp(X,μ)∗ = Lp(X,μ)σ

Moreover, it is well-known that if (p, q) are Hölder conjugate and 1 < p, q < ∞,

then Lp(X,μ)∗ = Lq(X,μ), and thus Lp(X,μ)σ = Lq(X,μ). It is also known that

L1(X,μ)∗ = L∞(X,μ), and thus L1(X,μ)σ = L∞(X,μ).

However Theorem 3.7 does not hold for L∞(X,μ) since the L∞-norm is not σ-

order continuous, as was shown in Example 3.5. It is well-known that L∞(X,μ)∗ 
=
L1(X,μ), and in fact L∞(X,μ)∗ can be concretely described as the Banach lattice

ba(X,μ) of charges (i.e. finitely additive finite signed measures) which are absolutely

continuous w.r.t, μ on X (see [12, IV.8.16]). However, as is shown in e.g. [25,4]

L∞(X,μ)σ = L1(X,μ) (7)

As Examples 3.5 and 3.8 show, the (−)σ operation brings a lot of symmetry

to the relationship between Lp-spaces since Lp(X,μ)σ = Lq(X,μ) for any Hölder

conjugate pair 1 ≤ p ≤ ∞. For this reason we will consider the category BLσ whose

objects are Banach lattices and whose morphisms are σ-order continuous positive

operators. Note that the Köthe dual of a Banach lattice is a Banach lattice, and it

easily follows that (−)σ in fact defines a contravariant functor BLop
σ → BLσ which
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acts on morphisms by pre-composition. As we will now see, BLσ is the category in

which predicate and state transformers are most naturally defined.

4 From Borel kernels to Banach lattices

The aim of this section is two-fold. First, we establish functorial bridges between

Borel kernels (i.e. Krn) and operators on Banach lattices (i.e. BLσ). This will allow

us to describe the convergence of a sequence of approximating kernels in terms of

operator topology in §6. Second, we show that the functors between Krn and BLσ

also provide an interesting structural insight into some of the most important results

in classical probability theory, in particular we show that the Radon-Nikodym and

Riesz representation theorems can be described as natural transformations.

The functors Sp and Tp.

For 1 ≤ p ≤ ∞, the operation which associates to a Krn-object (X,μ) the space

Lp(X,μ) can be thought of as either a contravariant or a covariant functor. We

define the functors Sp : Krn → BLop
σ , 1 ≤ p ≤ ∞ as expected on objects, and on

Krn-morphisms f : X � Y via the well-known ‘predicate transformer’ perspective:

Sp(f) : Lp(Y, ν) → Lp(X,μ), φ �→ λx.

∫
Y
φ df(x) = φ • f

This defines a functor (see [6]). We define the covariant functors Tp : Krn →
BLσ, 1 ≤ p ≤ ∞ as Tp = Sp ◦ (−)†.

The functor M�·.
An ideal of a Riesz space V is a sub-vector space U ⊆ V with the property that

if |u| ≤ |v| and v ∈ U then u ∈ U . An ideal U is called a band when for every subset

D ⊆ U if
∨

D exists in V , then it also belongs to U . Every band in a Banach lattice

is itself a Banach lattice. Of particular importance is the band Bv generated by a

singleton {v}, which can be described explicitly as

Bv = {w ∈ V | (|w| ∧ n |v|) ↑ |w|}

Example 4.1 Let X be an SB-space and ca(X) denote the set of measures of

bounded variation on X. It can be shown ([2, Th 10.56]) that ca(X) is a Banach

lattice. The linear structure on ca(X) is as expected, the Riesz space structure is

given by

(μ ∨ ν)(A) = sup{μ(B) + ν(A \B) | B measurable , B ⊆ A}

and the dual definition for the meet operation. The norm is given by the total

variation i.e.

‖μ‖ = sup

{
n∑
i

|μ(Ai)|
∣∣∣∣{A1, . . . , An} a meas. partition of X

}
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Given μ ∈ ca(X), the band Bμ generated by μ is just the set of measures of bounded

variation which are absolutely continuous w.r.t. μ. In particular Bμ is a Banach

lattice.

We can now define the functor M�· : Krn → BLσ by:{
M�·(X,μ) := Bμ

M�·f : M�·(X,μ) → M�·(Y, ν), ρ �→ f • ρ

We will usually write M�·(X,μ) as M�μ(X).

Proposition 4.2 Let f : (X,μ) � (Y, ν) be a Krn arrow. Let ρ be a finite measure

on X such that ρ � μ. Then f • ρ � ν, and thus M�· defines a functor.

Proof. Let B ⊆ Y be a measurable set. By definition, we have (f • ρ)(B) =∫
X evB ◦ f dρ where we recall that evB : G(X) → R+ is the evaluation morphism.

Let {fB
n }n∈N be an increasing chain of simple functions converging pointwise to

evB ◦ f such that for each n, fB
n =

∑kn
i=1 α

n
i 1An

i
with αn

i ≥ 0. By the MCT,

(f • ρ)(B) = lim
n

∫
X
fB
n dρ = lim

n

kn∑
i=1

αn
i ρ(A

n
i ).

Similarly,

ν(B) = (f • μ)(B) = lim
n

∫
X
fB
n dμ = lim

n

kn∑
i=1

αn
i μ(A

n
i ).

Notice that since the integral is linear and the sequence {fB
n }n is increasing, the

sequences {
∫
X fB

n dρ}n and {
∫
X fB

n dμ}n are also increasing. Assume ν(B) = 0.

Then for all n,
∫
X fB

n dμ = 0. We deduce that for all n, for all 1 ≤ i ≤ kn, either

αn
i = 0 or μ(An

i ) = 0. Using that ρ � μ, we deduce that for all 1 ≤ i ≤ kn, either

αn
i = 0 or ρ(An

i ) = 0, from which we conclude that for all n,
∫
X fB

n dρ = 0 and

finally, (f • ρ)(B) = 0. Hence, f • ρ � ν. �

Radon-Nikodym is natural.

We now present a first pair of natural transformations which will establish a

natural isomorphism between the functors T1 and M�·. First, we define the Radon-
Nikodym transformation rn : M�· → T1 at each Krn-object (X,μ) by the map

rn(X,μ) : M�μ(X) → L1(X,μ), rn(X,μ)(ρ) =
dρ

dμ

where dρ/dμ is of course the Radon-Nikodym derivative of ρ w.r.t. μ. The fact that

this transformation defines a positive operator between Banach lattices is simply a

restatement of the usual Radon-Nikodym theorem [12, III.10.7.], combined with the

well-known linearity property of the Radon-Nikodym derivative. To see that it is

also σ-order-continuous, consider a monotone sequence μn ↑ μ converging in order

F. Dahlqvist et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 91–119 105



to μ in M�ν(X). This means that for any measurable set A of X, limn→∞ μn(A) =

μ(A). Since (dμn/dν)n∈N is bounded in L1-norm the function g =
∨

n
dμn/dν exists

and is simply the pointwise limit g(x) = limn→∞ dμn/dν(x). It now follows from the

monotone convergence theorem (MCT) that∫
A
gdν =

∫
A

lim
n→∞

dμn

dν
dν = lim

n→∞

∫
A

dμn

dν
dν = lim

n→∞μn(A) = μ(A)

in other words, g = dμ/dν and rn is well-defined. That rn is also natural has – to our

knowledge – never been published.

Theorem 4.3 The Radon-Nikodym transformation is natural.

Proof. We start by proving the following Lemma

Lemma 4.4 For any f : (X,μ) � (Y, ν), φ ∈ L1(Y, ν), and BX ⊆ X measurable

∫
BX

(∫
Y
φdf(x)

)
dμ =

∫
Y
φ(y)f †(y)(BX) dν

Proof. We start by showing the equation on characteristic functions. If BY is

measurable in Y , we have

∫
BX

(∫
Y
1BY

df(x)

)
dμ =

∫
BX

f(x)(BY ) dμ

=

∫
Y
1BY

(y)f †(y)(BX) dν Eq. (4)

Since φ is measurable and integrable, there exists a sequence φn ↑ φ of simple

functions such that limn

∫
Y φn dν < ∞, and the results follows by the linearity of

integration and the MCT. �

We can now prove the naturality of rn. Let f : (X,μ) � (Y, ν) be a Krn-morphism;

we have on the one hand

rn(Y,μ) ◦M�·(f)(ρ)(y) = rn(Y,ν)(

∫
X
f(x)(−) dρ)(y)

=
d
∫
X f(x)(−)dρ

dν
(y) (∗)

and on the other

T1(f
†) ◦ rn(X,μ)(ρ)(y) = Tp(f

†)
(
dρ

dμ

)
(y)

=

∫
X

dρ

dμ
df †(y) (∗∗)

To show the equality of these two maps in L1(Y, ν) it is enough to show that they

are equal ν-a.e. To see this, we show that (∗∗) satisfies the condition to be the
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Radon-Nikodym derivative (∗). Let BY be a measurable subset of Y . We have

from the well-known property of Radon-Nikodym derivatives:

∫
BY

d
∫
X f(x)(−) dρ

dν
dν =

∫
x∈X

f(x)(BY ) dρ

Moreover, we have

∫
BY

∫
X

dρ

dμ
df †(y) dν

(1)
=

∫
x∈X

dρ

dμ
(x)f(x)(BY ) dμ

(2)
=

∫
x∈X

f(x)(B) dρ

where (1) is by Lemma 4.4 and (2) is a well-known property of Radon-Nikodym

derivatives. �

Secondly, we define the Measure Representation transformation mr : T1 → M�·

at each Krn-object (X,μ) by the map mr(X,μ) : T1(X,μ) → M�·(X,μ) defined as

mr(X,μ)(f)(BX) =

∫
BX

fdμ

This is a very well-known construction in measure theory, and the fact that mr(X,μ)

is a σ-order continuous operator between Banach lattices is immediate from the

linearity of integrals and the MCT.

Theorem 4.5 The Measure Representation transformation is natural.

Proof. We start with the following elementary lemma.

Lemma 4.6 If ψ, φ ∈ L1(X,μ) then

∫
X
ψφ dμ =

∫
X
ψ d(mr(M,μ)φ)

Proof. The proof of naturality now follows easily: it is enough to show the equality

in the case where ψ = 1BX
for a measurable subset BX of X, and the result then

extends to all measurable functions by linearity of integrals and the MCT. We have

∫
X
1BX

φ dμ =

∫
BX

φdμ := mr(M,μ)(φ)(BX)

=

∫
X
1BX

d(mr(M,μ)(φ))

�

To show naturality we now let f : (X,μ) � (Y, ν) be aKrn-morphism, φ ∈ L1(X,μ)
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and BY measurable in Y

mr(Y,ν)T1(f
†)(φ)(BX)

= mr(Y,ν)(φ • f †)(BY )

=

∫
BY

φ • f † dν

=

∫
BY

∫
X
φdf †(y) dν

=

∫
X
f(x)(BY )φ(x) dμ Lemma 4.4

=

∫
X
f(x)(BY ) d( d(mr(X,μ)(φ)) Lemma 4.6

= M�·f ◦mr(X,μ)(φ)(BY )

�

Riesz representations are natural.

We now present a second pair of natural transformations which will establish

a natural isomorphism between (−)σ ◦ S∞ and M�·. First, we define the Riesz

Representation transformation rr : (−)σ ◦S∞ → M�· at each Krn-object (X,μ) by

the map rr(X,μ) : (−)σ ◦ S∞(X,μ) → M�·(X,μ) defined as

rr(X,μ)(F )(BX) = F (1BX
)

This construction is key to a whole collection of results in functional analysis

commonly known as Riesz Representation Theorems (see [2] Chapter 14 for an

overview). One can readily check that the Riesz Representation transformation

is well-defined: rr(X,μ)(F )(∅) = F (0) = 0 and the σ-additivity of rr(X,μ)(F ) fol-

lows from the σ-order-continuity of F . To see that rr(X,μ)(F ) � μ, assume that

μ(BX) = 0, then clearly 1BX
= 0 μ-a.e., i.e. 1BX

= 0 in L∞(X,μ), and thus

F (1BX
) = 0.

Theorem 4.7 The Riesz Representation transformation is natural.

Proof. Again, we start with a simple but helpful Lemma.

Lemma 4.8 Let F ∈ (S∞(X,μ)σ and φ ∈ S∞(X,μ), then

F (φ) =

∫
X
φ d(rr(X,μ)(F ))

Proof. Starting with characteristic functions, let φ = 1B for some measurable

subset B of X. We then have

F (1B) := rr(X,μ)(F )(B) =

∫
X
1B d(rr(X,μ)(F ))
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We can then extend the result to simple functions by linearity and to all functions

in L∞(X,μ) by the MCT. �

To show naturality we now let f : (X,μ) � (Y, ν) be a Krn-morphism, F ∈
(S∞(X,μ))σ and BY measurable in Y . We have

M�·f ◦ rr(X,μ)(F )(BY ) =

∫
X
f(x)(BY ) d(rr(X,μ)(F ))

= F (f(·)(BY )) Lemma 4.8

= F (

∫
X
1BY

df(·))

= F (1BY
• f)

= rr(Y,ν)(F (− • f))(BY )

= rr(Y,ν) ◦ (T1f)
σ(F )(BY )

�

Finally, we define the Functional Representation transformation fr at each Krn-

object (X,μ) by the map fr(X,μ) : M�·(X,μ) → (−)σ ◦ S∞(X,μ) by

fr(X,μ)(μ)(φ) =

∫
X
φdμ

This construction is also completely standard in measure theory, although it has

never to our knowledge been seen as a natural transformation.

Theorem 4.9 The Functional Representation transformation is well-defined, i.e.

fr(X,μ) is a σ-order continuous positive operator, and is natural.

Proof. We start by showing that fr is well defined. The linearity of fr(X,μ) is easily

checked on simple functions and extended by the CMT. Positivity is also immediate.

For the σ-order continuity, let μm ↑ μ, φ ∈ L∞(X,μ), and φn ↑ φ be a monotone

approximation of φ by simple functions. We need to show that

lim
m→∞

∫
X
φ dμm =

∫
X
φ dμ

For note first that the doubly indexed series
∫
X φndμm is monotonically increasing

in m, since the μm are monotonically increasing. Note also that the differences

dmn :=

∫
X
φn dμm+1 −

∫
X
φn dμm

are monotonically increasing in n. Indeed we have(∫
X
φn+1 dμm+1 −

∫
X
φn+1 dμm

)
−

(∫
X
φndμm+1 −

∫
X
φn dμm

)

=

∫
X
(φn+1 − φn) dμm+1 −

∫
X
(φn+1 − φn) dμm > 0
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since the sequences φn and μm are monotonically increasing. Since dmn is monoton-

ically increasing in n we can apply the CMT to dmn seen as a function of m w.r.t.

the counting measure, i.e.

lim
n→∞

∞∑
m

dmn =
∞∑
m

lim
n→∞ dmn

which is to say, by taking partial sums

lim
n→∞ lim

m→∞

m∑
k=1

dkn = lim
n→∞ lim

m→∞

∫
X
φn dμm

= lim
m→∞

m∑
k=1

lim
n→∞ dkn

= lim
m→∞ lim

n→∞

∫
X
φn dμm

which concludes the proof that fr is well-defined.

We now prove naturality. Let f : (X,μ) � (Y, ν) be a Krn-morphism, ρ ∈
M�μ(X) and φ ∈ S∞(Y, ν) we then have

fr(Y,ν) ◦M�·f(ρ)(φ) =
∫
Y
φ d(M�·f(ρ)(φ))

=

∫
Y
(φ • f) dρ Theorem 2.6

= S∞(f)

(∫
Y
(−) dρ

)
(φ)

= S∞(f) ◦ fr(X,μ)(ρ)(φ)

�

Natural Isomorphisms

We have now defined the following four natural transformations:

T1

mr ��M�·
rn

��
fr ��

(S∞)σ
rr

��

In fact, both pairs form natural isomorphisms which can be restricted to arbitrary

Hölder conjugate pairs (p, q).

Theorem 4.10 rn and mr are inverse of one another, in particular there exists a

natural isomorphism between M�μ(X) and L1(X,μ).

Proof. The fact that rn(X,μ) and mr(X,μ) are inverse of each other is just a restate-

ment of the two well-known equalities for Radon-Nikodym derivatives:

d
∫
− φ dμ

dμ
= φ and

∫
BX

dρ

dμ
dμ = ρ(BX)
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�

Theorem 4.11 rr and fr are inverse of each other, in particular there exists a

natural isomorphism between M�μ(X) and (L∞(X,μ))σ.

Proof. Let (X,μ) be a Krn-object, let F ∈ (L∞(X,μ))σ and let φ ∈ L∞(X,μ).

We have

fr(X,μ) ◦ rr(X,μ)(F )(φ) =

∫
X
φ d(rr(X,μ)(F )) = F (φ)

where the last equality follows from Lemma 4.8. Similarly, we have

rr(X,μ) ◦ fr(X,μ)(ρ)(BX) = fr(X,μ)(ρ)(1BX) =

∫
X
1BX

dρ = ρ(BX)

�

We can now conclude that the isomorphism proved in Theorem 6 of [6] is in fact

natural.

Corollary 4.12 There exists a natural isomorphism between T1 := S1 ◦ (−)† and

(−)σ ◦ S∞.

We can in fact restrict this result to any Hölder conjugate pair (p, q):

Theorem 4.13 For 1 ≤ p ≤ ∞ with Hölder conjugate q, the natural transformation

rn ◦ rr restricts to a natural transformation (−)σ ◦ Sq → Tp.

Proof. The case p = 1 has been treated already, for the case of 1 < p < ∞, see

for example the proof of Theorem 4.4.1 of [3]. Finally for the case of p = ∞, see

Proposition 3.3 of [4]. �

The correspondence between the various categories and functors discussed in this

section are summarized by

BLσ

BLop
σ

(−)σ

��

rr
��

rn
��

fr�� Krnop

S1

		

mr��

Krn

(−)†

��

S∞

		

M�·



 (8)

5 Approximations

In this section we develop a scheme for approximating kernels which follows nat-

urally from the †-structure of Krn. Consider f : (X,μ) � (Y, ν) and a pair of

F. Dahlqvist et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 91–119 111



deterministic maps p : (X,μ) → (X ′, p∗μ) and q : (Y, ν) → (Y ′, q∗ν) (typically these

maps coarsen the spaces X and Y ).

(X,μ)
f � ��

fp,q
� ��

p

���

(Y, ν)

q

���
(X ′, p∗μ) � ��

p†μ

�

fp,q

� ��(Y ′, q∗ν)

q†ν

�
(9)

The †-structure of Krn allows us to define the new kernels

fp,q := q†ν • q • f • p†μ • p : X � Y (10)

fp,q := q • f • p†μ : X ′
� Y ′ (11)

The supscript notation is meant to indicate that the approximation lives ‘upstairs’

in Diagram (9) and conversely for the subscripts. Intuitively, fp,q and fp,q take the

average of f over the fibres given by p, q according to μ and ν (see §7 for concrete

calculations). The advantage of (11) is that we can approximate a kernel on a huge

space by a kernel on a, say, finite one. The advantage of (10) is that although it is

more complicated, it is morally equivalent and has the same type as f , which means

that we can compare it to f .

A very simple consequence of our definition is that Bayesian inversion commutes

with approximations. We shall use this in §7 to perform approximate Bayesian

inference.

Theorem 5.1 Let f : (X,μ) � (Y, ν), let p : X → X ′ and q : Y → Y ′n be a pair

of deterministic maps, then

(f †)q,p = (fp,q)† and (f †)q,p = (fp,q)
†

In practice we will often consider endo-kernels f : X � X with a single coars-

ening map p : X → X ′ to a finite space. In this case (10) simplifies greatly.

Proposition 5.2 Under the situation described above

fp := p†ν • p • f • p†μ • p = f • p†μ • p (12)

In the case covered by Proposition 5.2, the interpretation of fp is very natural:

for each x ∈ X the measure f(x) is approximated by its average over the fibre to

which x belongs, conditioned on being in the fibre. For fibres with strictly positive

μ-probability, this is simply

fp(x)(A) =

∫
y∈p−1(p(x)) f(y)(A) dμ

μ(p−1(p(x))
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However (12) also covers the case of μ-null fibres. Note also that in the case where

fp = f , the map p corresponds to what is known as a strong functional bisimulation

for f .

Approximating is non-expansive.

It is well-known that conditional expectations are non-expansive and we know

from Lemma 2.8 that pre-composing by p†μ • p as in (12) amounts to conditioning.

The following lemma is an easy consequence.

Lemma 5.3 Let f : (X,μ) � (Y, ν) and q : X → X ′ be a deterministic quotient,

then for all 1 ≤ p ≤ ∞ and φ ∈ Lp(Y, ν)

‖Spf q(φ)‖p ≤ ‖Spf(φ)‖p

Compositionality of approximations.

In the case where we wish to approximate a composite kernel g • f , it might

be convenient, for modularity reasons, to approximate f and g separately. This

does not entail any loss of information provided the quotient maps are hemi-

bisimulations, in the following sense. Let p : X → X ′, q : Y → Y ′, r : Z → Z ′

be deterministic quotients and let f : (X,μ) � (Y, ν), g : (Y, ν) � (Z, ρ) be com-

posable kernels. We say that q is a left hemi-bisimulation for f if f = q† • q • f , and
conversely that it is a right hemi-bisimulation for g if g = g • q† • q holds. In either

case, one can verify using Theorems 2.7 and 5.1 that approximation commutes with

composition, i.e. that (g • f)p,r = gq,r • fp,q.

Discretization schemes.

We will use (11) and (12) to build sequences of arbitrarily good approximations

of kernels. For this we introduce the following terminology.

Definition 5.4 We define a discretization scheme for an SB-space X to be a count-

able co-directed diagram (ccd) of finite spaces for which X is a cone (not necessarily

a limit).

If (Xi)i∈I is a discretization scheme of X and pi : X → Xi are the maps making X

a cone, then it follows from the definition that if i < j, σ(pi) ⊆ σ(pj) where σ(pi)

is the σ-algebra generated by pi. For each i ∈ I the finite quotient pi defines a

measurable partition of X whose disjoint components p−1
i ({k}), k ∈ Xi we will call

cells. By Theorem 2.1 every SB-space has a discretization scheme for which it is not

just a cone but a limit. In practice we will work with discretization schemes linearly

ordered by N. In this case the sequence (X,σ(pn))n∈N defines what probabilists call

a filtration and we will denote the approximation fpn given by (12) simply by fn.

6 Convergence

We now turn to the question of convergence of approximations. There appears to

be little literature on the subject of the convergence of approximations of Markov
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kernels. One rare reference is [5]. Via the functor Sp defined above in Sections 3

and 4 we can seek a topology in terms of the operators associated to a sequence

of kernels. Indeed, following [5], we will prove convergence results for the Strong

Operator Topology (SOT).

Definition 6.1 We will say that a sequence of kernels fn : X � Y converges to

f : X � Y in strong operator topology, and write fn−→sf , if S1f
n converges to

S1f in the strong operator topology, i.e. if

lim
n→∞ ‖S1fn(φ)− S1f(φ)‖1 = 0

Proving convergence.

The following key lemma is a consequence of Lévy’s upward convergence Theo-

rem ([23, Th. 14.2]) .

Lemma 6.2 Let f : (X,μ) � (Y, ν) be a Krn-morphism and let pn : X → Xn, n ∈
N be a discretization scheme such that for BX the Borel σ-algebra of X we have

BX = σ (
⋃

n σ(pn)), and let A ⊆ Y be measurable, then for fn := f • p†n • pn

lim
n→∞ fn(x)(A) = f(x)(A)

for μ-almost every x ∈ X. Moreover,

lim
n→∞ ‖S1fn(1A)− S1f(1A)‖1 = 0

Proof. The map f(−)(A) : X → R defines a random variable, and the discretiza-

tion scheme defines a filtration σ(pn) ⊆ σ(pn+1) whose union is BX . Following

Lemma 2.8 and Proposition 5.2 we have

fn(x)(A) := f(x)(A) • p†n • pn = E [f(x)(A) | σ(pn)]

We thus have a sequence fn(−)(A) of random variables X → R which is adapted

to the filtration σ(pn), n ∈ N by construction. We can now compute for any m < n

E [fn(x)(A) | σ(pm)]

=f(x)(A) • p†n • pn • p†m • pm
(1)
=f(x)(A) • p†n • pn • (pnm • pn)† • pm
(2)
=f(x)(A) • p†n • pn • p†n • p†nm • pm
(3)
=f(x)(A) • p†m • pm = fm(x)(A)

where (1) is by definition (5.4), (2) is by Thm (2.10) and (3) is by Theorem (2.7). We

have thus shown that fn(−)(A) is a martingale for the filtration generated by the

discretization scheme, and the result now follows from Lévy’s upward convergence

Theorem ([23, Th. 14.2]) since f(x)(A) = E [f(x)(A) | σ (
⋃

n σ(pn))]. �
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Theorem 6.3 (Convergence of Approximations Theorem) Under the con-

ditions of Lemma 6.2, for μ-almost every x ∈ X

lim
n→∞ fn(x)(A) = f(x)(A)

for all Borel subsets A. Moreover,

lim
n→∞ ‖S1fn(φ)− S1f(φ)‖1 = 0

for any φ ∈ L1(X, ν). In other words fn−→sf .

Proof. Let (Bn)n∈N be a countable basis for the Borel σ-algebra of X, which we

assume w.l.o.g. is closed under finite unions and intersections. It follows from

Lemma 6.2 that for each Bn, limk f
k(x)(Bn) = f(x)(Bn) for all x ∈ X \Nn where

μ(Nn) = 0. It follows that for every x ∈ X \
⋃

iNi

lim
k→∞

fk(x)(Bn) = f(x)(Bn)

for all basic Borel sets Bn, and μ(
⋃

iNi) = 0. Now we use the π − λ-lemma with

(Bn)n∈N as our π-system. We define

L := {C | fn(x)(C) → f(x)(C) for all x ∈ X \ ∪iNi}

and show that it is a λ-system. Clearly each Bn ∈ L. Suppose C ∈ L, it is then

immediate that Cc ∈ L. Now consider a sequence Ci ∈ L with Ci ⊆ Ci+1, and let

C∞ := ∪∞
i=1Ci. We want to show that

lim
n

fn(x)(C∞) = lim
n

lim
m

fn(x)(Cm)

(∗)
= lim

m
lim
n

fn(x)(Cm)

= lim
m

f(x)(Cm)

= f(x)(C∞)

where (∗) is the only step we need to justify. To show the iterated limits can be

switched, note first that since

|fn(x)(Cm)− f(x)(C∞)| = |fn(x)(Cm)− f(x)(Cm) + f(x)(Cm)− f(x)(C∞)|
≤ |fn(x)(Cm)− f(x)(Cm)|+ |f(x)(Cm)− f(x)(C∞)|

since the two terms converge separately, for any ε > 0 we can findN > 0 s. th. for all

m,n ≥ N , |fn(x)(Cm)− f(x)(C∞)| < ε/2 + ε/2 = ε. Thus lim(m,n)→∞ fn(x)(Cm) =

f(x)(C∞).

Now note also that for all m0 ∈ N the sequence fn(x)(Cm0) converges to

f(x)(Cm0) (by definition of L), and it is not hard to see that f(x)(Cm) converges

to f(x)(C∞). Conversely for all n0 ∈ N, the sequence fn0(x)(Cm) converges to
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fn0(C∞) (by virtue of fn0(x) being a measure). For ε/2 > 0 we can find N > 0 such

that for all m,n > N , |fn(x)(Cm)− f(x)(C∞)| < ε/2. We can also find M > 0 such

that for all m > M , |fn(x)(Cm)− fn(x)(C∞)| < ε/2. By taking the maximum of N

and M it is clear that for all m,n above this maximum

|fn(x)(C∞)− f(x)(C∞)|
≤ |fn(x)(C∞)− fn(x)(Cm)|+ |fn(x)(Cm)− f(x)(C∞)| < ε

We have thus shown that

lim
m→∞ lim

n→∞ fn(x)(Cm) = lim
(m,n)→∞

fn(x)(Cm)

= f(x)(C∞) = lim
n→∞ lim

m→∞ fn(x)(Cm).

Thus L is a λ-system, and it follows from the π − λ-lemma that σ((Bn)n∈N) ⊆ L
which concludes the proof of pointwise almost everywhere convergence.

For the proof of L1-convergence we start by showing that

lim
n→∞ ‖Spfn(1A)− Sp(1A)‖1 = 0 (13)

for any Borel subset A. For this we use exactly the same reasoning as above. The

only difference is that we need to check that

lim
n→∞

∫
X
|fn(x)(C∞)− f(x)(C∞)| dμ = 0

For this we use the fact that we have just shown fn(x)(C∞) → f(x)(C∞) pointwise

almost everywhere, and that |fn(x)(C∞) − f(x)(C∞)| ≤ 1 with 1 μ-integrable. It

follows by dominated convergence that

lim
n→∞

∫
X
|fn(x)(C∞)− f(x)(C∞)| dμ

=

∫
X

lim
n→∞ |fn(x)(C∞)− f(x)(C∞)| dμ = 0

which concludes the proof of (13). To extend the result to simple functions and

then to arbitrary functions φ ∈ L1(X, ν) is routine. �

Note that operators of the shape Spf
n obtained from a discretization scheme

are finite rank operators. Thus, we, in fact, also obtained a theorem to approximate

stochastic operators by stochastic operators of finite rank for the SOT topology. In

general, we cannot hope for convergence in the stronger norm topology since the

identity operator – which is stochastic – is a limit of operators of finite rank in the

norm topology iff the space is finite dimensional.

Note also that the various relationships established in Section 4 allow us to

move from an approximation of a kernel to an approximation of the corresponding

Markov operator. Since a discretization scheme making fn−→sf will also make
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inf2.930.86-1.21-3.28-inf
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2.93

0.86

-1.21

-3.28

-inf

Fig. 1. Log-likelihood of f5,3

inf3.581.16-1.26-3.68-inf

inf

3.58

1.16

-1.26

-3.68

-inf

Fig. 2. Log-likelihood of f6,10 Fig. 3. Approximate posteriors

(f †)n−→sf
†, it follows from Theorem 4.10 that we get a finite rank approximation

of the Markov operator M�·(f).

7 Application: Approximate Bayesian Inference

Consider again the inference problem from the introduction. There one needed to

invert f(x) = N (x, 1) with prior μ = N (0, 1). We can use Theorem 5.1 to see

how our approximate Bayesian inverse compares to the exact solution which in this

simple case is known to be f †
μ(0.5) = N (1/4, 1/2). To do this, we use a doubly

indexed discretization scheme:

qmn : R → 2×m× n+ 2

defining a window of width 2m centred at 0 divided in 2mn equal intervals; with

the remaining intervals (−∞,−m] and (m,∞) each sent to a point (hence the +2

above).

Since all classes induced by qmn have positive μ-mass, approximants can be

computed simply as:

fm,n([k])([l]) = μ[k]−1
∫
x∈[k]

N (x, 1)([l]) dμ

where [k], [l] range over classes of qmn. The corresponding stochastic matrices are

shown in Fig. 1 and 2 for m,n = 5, 3 and 6, 10 respectively.

Since these approximants are finite, their Bayesian inverse can be computed

directly by Bayes theorem (i.e. taking the adjoint of the stochastic matrices):

fm,n†([l])([k]) =
μ[k] · fm,n([k])([l])

ν[l]
(14)

with ν = f∗(μ). Commutation of inversion and approximation guarantees that the

fm,n† converge to f †.
Indeed, Fig. 3 shows the the Lebesgue density of fm,n†(0.5) for m,n = 3, 2

(in dashed blue) and 7, 5 (dashed red). The latter approximant is already hardly

distinguishable from the exact solution (solid black).

It must be emphasized that this example is meant only as an illustration and

does not constitute a universal solution to the irreducibly hard (not even computable
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in general [1]) problem of performing Bayesian inversion. Also, not all quotients are

equally convenient: what makes the approach computationally tractable is that the

fibres are easily described and the measure conveniently evaluated on such fibres.

8 Conclusion

We have presented a framework for the exact and approximate semantics of first-

order probabilistic programming. The semantics can be read off either in terms

of kernels between measured spaces, or in terms of operators between Lp spaces.

Either forms come with related involutive structures: Bayesian inversion for (mea-

sured) kernels between Standard Borel spaces, and Köthe duality for positive linear

and σ-continuous operators between Banach lattices. Functorial relations between

both forms can themselves be related by way of natural isomorphisms. Our main

result is the convergence of general systems of finite approximants in terms of the

strong operator topology (the SOT theorem). Thus, in principle, one can com-

pute arbitrarily good approximations of the semantics of a probabilistic program

of interest for any given (measurable) query. Future work may allow one to derive

stronger notions of convergences given additional Lipschitz control on kernels, or

to develop approximation schemes that are adapted to the measured kernel of in-

terest. More ambitiously perhaps, one could investigate whether MCMC sampling

schemes commonly used to perform approximate Bayesian inference in the context

of probabilistic programming could be seen as randomized approximations of the

type considered in this paper.
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