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Host resistance and infectivity are genetic traits affecting infectious disease transmission.

This Perspective discusses the potential exploitation of genetic variation in cattle

infectivity, in addition to resistance, to reduce the risk, and prevalence of bovine

tuberculosis (bTB). In bTB, variability in M. bovis shedding has been previously reported

in cattle and wildlife hosts (badgers and wild boars), but the observed differences

were attributed to dose and route of infection, rather than host genetics. This article

addresses the extent to which cattle infectivity may play a role in bTB transmission,

and discusses the feasibility, and potential benefits from incorporating infectivity into

breeding programmes. The underlying hypothesis is that bTB infectivity, like resistance,

is partly controlled by genetics. Identifying and reducing the number of cattle with

high genetic infectivity, could reduce further a major risk factor for herds exposed to

bTB. We outline evidence in support of this hypothesis and describe methodologies for

detecting and estimating genetic parameters for infectivity. Using genetic-epidemiological

predictionmodels we discuss the potential benefits of selection for reduced infectivity and

increased resistance in terms of practical field measures of epidemic risk and severity.

Simulations predict that adding infectivity to the breeding programme could enhance and

accelerate the reduction in breakdown risk compared to selection on resistance alone.

Therefore, given the recent launch of genetic evaluations for bTB resistance and the UK

government’s goal to eradicate bTB, it is timely to consider the potential of integrating

infectivity into breeding schemes.

Keywords: disease resistance, disease control, animal breeding, infectivity, bovine Tuberculosis

INTRODUCTION

Bovine tuberculosis (bTB) is a zoonotic disease, which can compromise both human health and
international livestock trade. Zoonotic TB caused by Mycobacterium bovis, is responsible for an
estimated 10–15% of human TB cases (1) and was estimated in 2016 as causing 12,500 deaths
globally (2, 3). Addressing bTB infection in humans has been embedded within the United Nations
Sustainable Development Goals 2016–2030 and World Health Organisation’s (WHO) End TB
Strategy framework, which employs a “OneHealth” approach aiming to end the global TB epidemic
by 2030 (2–4).
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In the UK, bTB has been the most pressing animal health
problem, with financial losses amounting to over £175m per
annum (5). Tackling bTB has been a persistent challenge for
the livestock industry, veterinary profession and policy-makers,
and also the research community. The current national bTB
eradication strategy involves the systematic testing of herds to
identify and then remove infected cattle, and uses the Single
Intradermal Comparative Cervical Test (SICCT), complemented
by abattoir carcass inspections and, with increasing frequency,
interferon-gamma testing. This surveillance regime has been
successful in reducing disease spread in areas where bTB
is prevalent and many EU countries and regions, including
Scotland, have achieved Officially bTB Free (OTF) status (6).
However, bTB persists in several regions (7) and herd incidence
has increased in Wales, and also in High Risk and Edge areas in
England (March 2018), despite the decrease in the overall herd
incidence in England (8). Therefore, the continuing difficulties
in eradicating bTB necessitate further exploration of additional
disease control interventions that can complement existing
strategies.

Selective breeding can complement classic disease control
strategies, reducing the requirement for biosecurity measures
and movement restrictions which have a major economic impact
for herds undergoing a bTB breakdown (9, 10). Within the
last few decades, breeding programmes (genetic and genomic
selection) in livestock have achieved a remarkable improvement
in production, e.g., milk yield in dairy cattle (11), and fitness
traits such as fertility (12). Expanding the breeding objectives
to include health and welfare traits offers new opportunities
for disease control (10). The focus of genetic disease control so
far has been on selection for improved resistance to becoming
infected or diseased after exposure to pathogens. For example,
by exploiting heritable genetic variation in disease resistance
it has been possible to reduce mastitis incidence in cattle (13,
14) and mortality caused by infectious pancreatic necrosis in
Atlantic salmon (15).Many studies have presented overwhelming
evidence for genetic variation in resistance to bTB in cattle (16–
19), which supports inclusion of bTB resistance in cattle breeding
objectives in countries where bTB is prevalent. Recent efforts to
combine national bTB surveillance and genetic data have enabled
the publication of cattle evaluations for resistance to bTB in the
UK (TB Advantage), which are currently used by farmers on a
voluntary basis (20).

Veterinarians and epidemiologists have long considered
reducing host infectiousness as an effective means to decrease
disease transmission (21, 22). Infectiousness can be defined as the
product of the contact rate between the infected individual and
non-infected individuals, the propensity to transmit infection
once infected (termed “infectivity” herein), and the duration of
the infectious period (23, 24). For bTB, the contact rate between
infected and non-infected herds is reduced by the movement
restrictions imposed on herds with a bTB breakdown status.
The duration of the infectious period is reduced by the test-
and-cull policy which removes detectable infected animals, albeit
with moderate animal-level sensitivity. In principle, infectivity
can be reduced by vaccination, however, currently there are
no vaccines (or subsequent tests) commercially available that

allow differentiating between naturally infected and vaccinated
individuals (i.e., a DIVA test) and would hence enable the
safe use of vaccination for bTB control. Phenotypic variation
in infectiousness is supported by numerous epidemiological
studies showing that the Pareto principle commonly applies in
epidemics, such that 20% of individuals are responsible for 80%
of transmission events (22, 25–28). The individual differences in
disease transmission are often attributed to different shedding
patterns which may indicate phenotypic variation in host
infectivity.

Emerging evidence suggests that infectivity can be, at least to
some extent, under host genetic control (21, 29–33). Resistance
and infectivity are thus two potentially distinct host genetic
traits affecting disease transmission (see Table 1 for definitions
and statistical and mechanistic distinctions between resistance
and infectivity). Hence, if genetic variation in infectivity exists,
can be estimated reliably, and has no significant impact on
other desired traits, reduced infectivity could be a target for
genetic improvement, in addition to disease resistance. Several
authors have previously proposed (29, 34, 35) or demonstrated
theoretically (36–39), that breeding livestock for both resistance
and reduced infectivity can be an effective approach to reduce
disease risk and prevalence.

In this Perspectives article, we (a) review existing evidence
that cattle may genetically differ in their bTB infectivity, (b)
outline data and methodology requirements for estimating
genetic infectivity for bTB, (c) discuss the benefits from
considering infectivity in genetic evaluations, and (d)
identify key challenges and future research opportunities
for incorporating infectivity, in addition to resistance,
in cattle breeding programmes aiming to reduce bTB
prevalence.

Emerging Evidence That Infectivity Is
Genetically Controlled
In bTB, differences in shedding patterns of M. bovis have
been reported in various studies, but those have been mostly
attributed to phenotypic variation rather than host genetics. For
example, the number and frequency of episodes of shedding
of M. bovis in cattle, were found to be dose- and infection
route-dependent (40). Even amongst controlled experimentally
infected calves, significant variation in shedding patterns have
been described amongst individuals when presented with
the same dose and infection route (41). In wild boars, the
intensity and shedding of mycobacteria from the M. tuberculosis
complex were found to affect the probability of new infections,
while shedding intensity was shedding-route-dependant (42).
In badgers, heterogeneity in shedding was found between
different social groups (43) which may indicate family, and
hence genetic, differences in shedding. Other studies found
that the type of tuberculous lesions developed can affect
the potential of infected individuals for transmitting infection
(44), while evidence suggests that cattle with and without
confirmed lesions may constitute, at least to some extent,
genetically different subpopulations (45). Heterogeneity in lesion
formation and stability of infected individuals suggests variation
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TABLE 1 | Mechanistic and statistical distinction between resistance and infectivity in the context of bTB.

Resistance Infectivity

Definition (generic) Propensity of an individual to become infected, given

exposure

Propensity of an individual, once infected, to transmit

infection to non-infected group members

Interpretation (bTB context) For a given uniform level of exposure, a more resistant cow

has lower risk of becoming M. bovis infected than a cow with

low resistance

Given uniform contact rates and duration of infectious

period, group members exposed to an infected cow with

high infectivity have a greater risk of becoming M. bovis

infected than when exposed to an infected cow with low

infectivity

Disease phenotypes used in statistical

models to infer trait estimates

Individuals’ bTB infection status, based on ante-mortem test results, measured at multiple time points

throughout a breakdown, possibly combined with post-mortem test results

Trait contribution to disease phenotype Only affects a cow’s own infection status (direct effect on own

disease phenotype)

Can only affect the infection status of group members

(indirect effect on disease phenotype of group member)

Underlying mechanisms Unknown; Speculated to be related to mechanisms affecting

bacterial entry, establishment and within-host replication

Unknown; Speculated to be related to mechanisms

controlling bacterial shedding patterns

in mechanisms underlying infectivity rather than resistance, as
less stable lesions are more prone to breaking open and thus to
higher bacterial shedding. Human tuberculosis epidemiology is
consistent with the existence of M. tuberculosis super-spreaders
(46, 47), which may indicate the existence of individuals with
high infectivity. In bTB epidemiological studies, the best model
fit has been observed when accounting for M. bovis super-
spreaders (48, 49), and super-spreading has been proposed for
badgers and other wildlife species (7, 50, 51). However, there
remains a controversy about the existence of super-spreaders in
bTB (52).

In other diseases, genetic variation in infectivity was found
to manifest itself in various ways, such as through genetic
differences in the potential for, quantity and type of infectious
material shed by infected hosts. For example, genetic variation
was found in the fecal egg count of sheep artificially infected
with the same gastro-intestinal parasite strain and dose (53, 54).
Furthermore, in cases of hosts infected with more than one
genotype of the same pathogen, host immune response can
affect pathogen strain competition and diversity with subsequent
effect on host infectivity (55). More direct evidence for genetic
differences in host infectivity has been recently obtained from
transmission experiments of viral and protozoal infections
in fish (31, 33). In these studies fish were found to differ
in their probability of becoming diseased depending on the
family or genotype of the initially infected fish that seeded the
infection.

In summary, phenotypic variation in host infectivity is
a common phenomenon, and for some diseases, this was
shown to encompass genetic variation. In bTB, phenotypic
variation in M. bovis shedding has been demonstrated by a
few studies, but the extent to which this variation is due to
cattle genetics is currently unknown. It is possible that host
disease resistance and infectivity share some common genetic
pathways controlling pathogen replication and consequently
shedding (Table 1). This raises the question as to what
extent bTB infectivity and resistance are genetically correlated,
and how combined resistance and infectivity can affect bTB
transmission.

Data and Methodology Requirements for
Estimating Genetic Effects for bTB
Infectivity
Infectivity, referring to an individual’s ability to transmit

infection (Table 1), is difficult to measure directly from field

data where transmission routes (who-infects-whom) are difficult
to trace and many transmissions are not observed or detected.

Infectivity phenotypes can be obtained by measuring individual
shedding rates (56). Measuring shedding has only been practical
in special cases, e.g., fecal egg count for nematodes, and is very
challenging if carried out routinely on the scale of sample sizes
needed to inform breeding programmes.

However, shedding is not the only phenotype that can be
used to track infectivity. Instead, it is possible to estimate
genetic variation in infectivity by monitoring the progression

of infection, i.e., the infection status of individuals, in different
herds over time. Recently, novel inference methods have been
developed to simultaneously estimate and untangle genetic
effects for resistance and infectivity from longitudinal data of
individual infection status (Table 1) (34, 36, 57, 58).

Common requirements for estimating genetic variation in
infectivity using these novel methods are that (i) genetically
related individuals are spread over different epidemics
(herds/breakdowns), (ii) individual epidemics occur in “closed”
groups with minimum between-group transmission, and (iii)
individual infection times differ, and are known or can be
inferred. These requirements appear to be satisfied by bTB. The

UK national bTB eradication scheme has generated systematic
repeated records of SICCT test results for a large number of
herds containing related animals. In addition, due to movement

restrictions imposed on herds undergoing a breakdown, herds
can be considered as closed groups during the breakdown period,
and data collected can be used to infer infectivity. Although
the exact time of cattle infection with M. bovis is unknown, the

repeated SICCT testing during this period provides longitudinal
measurements of individuals’ infection status, from which
infection times can be inferred using Bayesian inference and data
augmentation methods (34, 58).
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It remains to be tested with field bTB data, how various
sources of uncertainty affect genetic infectivity estimates. For
example, these methods assume knowledge of the true infection
status of an individual, which raises the question whether SICCT
and other monitoring records are appropriate for this purpose.
Of these, SICCT is the most commonly available measurement
but its relatively poor sensitivity is well documented, i.e.,
its ability to correctly identify infected individuals; published
sensitivity estimates range from 26 to 91% (59–63). Whether the
test result reflects the true infection status of an animal is under
on-going investigation within the bTB research community.
Nevertheless, the positive predictive value of the test, i.e., the
proportion of individuals that test positively and truly have the
disease, is sufficiently high that false positives are likely to be
few amongst the observed reactors. The specificity of SICCT
in officially tuberculosis free herds has been estimated to be
99.98% (64). Therefore, already recorded SICCT phenotypes can
provide information to search for genetic effects associated with
infectivity. Including information from culling associated with
SICCT testing has proven adequate for obtaining sufficiently
accurate estimated breeding values (EBVs) for bTB resistance
in the current bTB genetic evaluations (20). Expanding these
evaluations to consider both resistance and infectivity would be
expected to be beneficial primarily in high bTB risk areas, where
the positive predictive value of SICCT is higher due to the higher
disease prevalence (65).

Expected Benefits From Implementing
Infectivity as an Additional Disease
Phenotype in Genetic Evaluations for bTB
Control
bTB has been a seemingly intractable problem in the UK in recent
decades and understanding how cattle genetics influences bTB
spread is important for eradication. Under the hypothesis that
some cattle infected with bTB are genetically more infectious
than others, reducing the occurrence of cattle with higher
genetic infectivity through selective breeding would (i) reduce
bTB transmission between cattle by removing highly infectious
individuals comprising a major risk factor for herds, (ii) reduce
shedding ofM. bovis and hence reduce amajor source of infection
for the environment (30) and wildlife vectors, e.g., indirectly
reduce bTB spill over to badgers. Badgers are susceptible to
M. bovis infection and reducing infectivity in cattle should also
reduce the pathogen burden in the environment (shedding e.g.,
in milk, feces, air, etc.).

If we were to estimate infectivity effects, it would enable
breeders and farmers to select bulls whose offspring are not only
expected to be less likely to become infected (more resistant), but
also less likely to transmit bTB infection, if infected. Selection
on breeding values for resistance and infectivity is expected to
reduce the population R0 (37, 39), i.e., the expected number
of secondary cases produced by a typical infectious individual
in a completely susceptible population (66), hence contributing
to disease control. However, bTB transmission occurs within
and across different species. Hence the overall bTB R0 is
composed of R0cattle ,R0badgers , R0cattle−to−badgers

, and R0badgers−to−cattle

(67, 68), where the cross-species relationships warrant further
investigation. Reducing cattle infectivity would be expected to
reduce R0cattle and R0cattle−to−badgers

, as well as the infection feedback
loop from R0badgers−to−cattle

. A small reduction in each component
may suffice to bring the overall R0 to below 1 and make
the risk of new breakdowns negligible (10, 69). Investigating
individual differences in infectivity might shed light on the
variation observed in herd bTB prevalence and the relationship
of infectivity with detectable bTB status, and why in some herds
bTB persists with recurrent/chronic breakdowns, while other
herds appear to be able to rapidly clear infection. Investigating
variation in infectivity would also shed light on the weather bTB
super-spreaders exist, as animals at the tail of the distribution
would be “super spreaders” relative to all others, and what is their
role in bTB spread.

A genetic-epidemiological simulation model can be used
to assess the relative benefits of using a selection index
that includes both resistance and infectivity compared to
selecting on resistance alone. For this purpose we extended
a stochastic epidemiological Susceptible-Latent-Infectious-Test
sensitive model for bTB that originally assumed genetic variation
only in resistance (70) with parameter values from the British
genetic evaluations for bTB resistance (20) to incorporate
hypothetical additional variation in infectivity (34, 38). We
then used this model to simulate bTB spread in each herd
and predict the impact of selection on breakdown risk, defined
by the proportion of simulated bTB epidemics where infected
index cases generated secondary cases. This is pertinent as field
characteristics of epidemics often show curvilinear responses
to control strategies. We found that when adding infectivity
alongside resistance to the breeding objective, the reduction
of the risk of a bTB breakdown was substantial and more
pronounced in the early generations (Figure 1) (34, 38). For
example, assuming 50% selection on sires, moderate heritabilities
and prediction accuracies for resistance and infectivity, and
zero correlation between resistance and infectivity, the relative
epidemic risk at generation 5 was ∼0.2 with selection for
resistance alone, but <0.1 for combined selection for both
resistance and infectivity, even when external sources of infection
were included (Figure 1). These simulations designed as proof-
of-principle, provide a crude estimate of the predicted effects
which will depend on e.g., the magnitude of the genetic variance
in the objective traits and various demographic factors. However,
these findings are indicative that by targeting both resistance
and infectivity in combination, disease control benefits can be of
larger magnitude (i.e., more effective) and more responsive (i.e.,
quicker to see results) (38).

The epidemiological benefits and additional gain expected
from adding infectivity to the breeding goal depends on its
genetic correlation with other traits of economic interest. A
classic example of the impact of adverse correlated responses, is
the reduction of cattle fertility following selection on milk yield,
due to adverse genetic correlation with milk yield (12). Based on
estimated genetic correlations among traits, genetic selection for
enhanced bTB resistance is not expected to adversely affect other
traits in the breeding goal (16, 20), and was found to be unlikely
to change the probability of correctly identifying non-infected
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FIGURE 1 | Reduction in the predicted relative risk of bTB breakdown in a herd, following introduction of an infected cow, over 20 generations of selection for

resistance and lower infectivity, or for resistance alone. Predictions from a stochastic genetic-epidemiological simulation model incorporating genetic variation in

resistance and infectivity (38), comprising populations of 10,000 half-sib individuals randomly distributed into 100 herds of the same size. Means and standard errors

were obtained over 50 replicates. The parameter values were based on the British genetic evaluations for bTB resistance (20) and a previous genetic-epidemiological

model (70) as follows: bTB testing intervals of 60 days, SICCT sensitivity of 60%, 50% selection on the sires, accuracy of 0.5 and latent heritability of 0.6

[corresponding to heritability for the observed indicator traits of below 0.2 (70)] for both resistance and infectivity, economic values of one for both traits, and external

force of infection of 5 × 10−5 (70). Each breakdown was initiated by one infectious individual, and variance and accuracy were assumed constant over generations.

The correlation between resistance and infectivity was assumed to be zero, 0.5 or −0.5.

animals via the SICCT diagnostic test (71). However, genetic
correlations between resistance and infectivity may affect the
outcome of genetic bTB control. Indeed, based on the genetic-
epidemiological bTB model described above (38) the strongest
benefit of adding infectivity into the selection criterion compared
to selecting on resistance alone is observed in the case of an
adverse genetic correlation between the traits (Figure 1), and this
is because the progress achieved by breeding schemes targeting
only resistance would be delayed due to an indirect increase
in infectivity. Considering breeding values for infectivity can
help alleviate this delay and accelerate progress toward disease
eradication (38).

Future Opportunities and Challenges
In principle, bTB surveillance schemes such as those
implemented in the UK, RoI, and NZ, would permit researchers
to pioneer the estimation of infectivity genetic effects without
the need to collect new data. Current genetic evaluations for
bTB resistance (20) use phenotype and pedigree information,
with increasing amounts of genomic data. As the incidence of
bTB reduces, the information obtained from pedigrees will also
reduce. Therefore, genomic information becomes increasingly
vital, and high-density genomic data can now be obtained

cost-effectively by genotype imputation (72, 73). It has been
shown that genomic prediction for bTB resistance using genomic
information is feasible (18), and prediction accuracies can be
improved by using larger training sets of genotyped animals and
genome sequence information. This is pertinent for infectivity,
as it has been shown in simulation studies that the prediction
accuracy for infectivity is expected, at least initially, to be modest
(34). This genomic information also allows investigation of the
genetic architecture of bTB infectivity and the search for causal
variants.

Challenges arising in the analysis of bTB data to uncover
genetic infectivity include accounting for multiple and poorly
understood transmission routes of M. bovis, and obtaining
more reliable disease phenotypes. Separating the effects of the
infectious dose from host response is extremely challenging
in field situations where exposure may not be uniform (74).
However, sophisticated Bayesian inference methods, coupled
with phylodynamics andM. bovis genome sequence information,
can help to infer transmission routes and obtain information on
the networks of who-infects-whom (49, 75–78), which is useful
for predicting infectivity (79). More reliable disease phenotypes
could be obtained by quality control on individual tester
performance to improve the consistency of data recording on the
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farms (80), and by developing improved diagnostics. Machine
learning techniques (Deep Learning) hold the promise that
sufficiently accurate disease phenotypes can be obtained in a cost-
effective manner for large sample sizes using routinely collected
mid infra-red spectral data from milk recording (Coffey M.
personal communication October 2018). Together, continuous
development of improved diagnostic and modeling tools provide
promising prospects for genetic bTB control.

CONCLUSION

Host infectivity is an important trait for disease transmission
and emerging evidence suggests that it may be under genetic
control to some extent; however, the role of genetic infectivity
of cattle in bTB spread remains to be explored. Infectivity
might be difficult to capture from noisy field data; however, the
UK bTB surveillance database and newly developed statistical
methods provide the opportunity to estimate genetic effects
for infectivity. Exploiting genetic variation in infectivity as a
complementary bTB control method is a low-investment high-
return approach, as it can be developed at minimal cost using
data already available. Simulation studies suggest that breeding
for both disease resistance and infectivity can complement and

substantially enhance current disease control approaches toward
bTB eradication. Using UK data to determine genetic regulation
of disease transmission can create a platform for controlling bTB
in other countries and for controlling other infectious diseases.
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