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17 Abstract

18 Rapid technological advances have dramatically increased affordability and accessibility of 

19 Unmanned Aerial Vehicles (UAVs) and associated sensors. Compact multispectral drone 

20 sensors capture high-resolution imagery in visible and near-infrared parts of the 

21 electromagnetic spectrum, allowing for the calculation of vegetation indices such as the 

22 Normalised Difference Vegetation Index (NDVI) for productivity estimates and vegetation 

23 classification. Despite the technological advances, challenges remain in capturing high-

24 quality data, highlighting the need for standardized workflows. Here, we discuss challenges, 

25 technical aspects and practical considerations of vegetation monitoring using multispectral 

26 drone sensors and propose a workflow based on remote sensing principles and our field 

27 experience in high-latitude environments, using the Parrot Sequoia (Pairs, France) sensor 

28 as an example. We focus on the key error sources associated with solar angle, weather 

29 conditions, geolocation and radiometric calibration and estimate their relative contributions 
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30 that can lead to uncertainty of greater than ±10% in peak season NDVI estimates of our 

31 tundra field site. Our findings show that these errors can be accounted for by improved flight 

32 planning, meta-data collection, ground control point deployment, use of reflectance targets 

33 and quality control. With standardized best practice, multispectral sensors can provide 

34 meaningful spatial data that is reproducible and comparable across space and time.

35

36 Keywords: Ecological Monitoring, Drone, UAV, Multispectral Sensors, Parrot Sequoia, 

37 Arctic, Tundra.

38

39 Introduction

40 Aerial imagery collected with drones is increasingly recognised by the ecological research 

41 community as an important tool for monitoring vegetation and ecosystems (Anderson and 

42 Gaston 2013; Salamí et al. 2014; Cunliffe et al. 2016; Pádua et al. 2017; Torresan et al. 

43 2017; Manfreda et al. 2018). Rapid advances in technology have resulted in increasing 

44 affordability and use of light-weight multispectral sensors for drones for a variety of scientific 

45 applications. Despite the increased presence of drone-sensor derived products in the 

46 published literature, standardized protocols and best practices for fine-grain multispectral 

47 drone-based mapping have yet to be developed by the ecological research community 

48 (Manfreda et al. 2018). In this methods paper, we lay out the challenges of collecting and 

49 analysing multispectral data acquired with drone platforms and propose common protocols 

50 that could be implemented in the field, drawing from examples of applying drone technology 

51 to research in high-latitude ecosystems. The concepts developed herein are aimed at 

52 researchers with limited prior experience in remote sensing and spectroscopy, providing the 

53 tools and guidance needed to plan high quality drone-based multispectral data collection. 

54

55 Multispectral imagery is widely used in satellite- and airplane-based remote sensing and has 

56 many benefits for vegetation monitoring when compared to conventional broad band visible-

57 spectrum imagery. Including near-infrared parts of the spectrum, certain vegetation indices 
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58 (VIs) can be calculated that allow for more detailed spectral discrimination among plant 

59 types and development stages. Such VIs can be highly useful for estimating biological 

60 parameters such as vegetation productivity and the leaf-area index (LAI; e.g. see Aasen et 

61 al. 2015; Wehrhan et al. 2016), and for the purpose of vegetation classification (Juszak et al. 

62 2017; Ahmed et al. 2017; Müllerová et al. 2017; Samiappan et al. 2017; Dash et al. 2017). 

63 Particularly in remote high-latitude ecosystems, where satellite records suggest a ‘greening’ 

64 of tundra ecosystems from NDVI time series (Fraser et al. 2011; Guay et al. 2014; Ju and 

65 Masek 2016), multispectral drone monitoring could play an important role in validating 

66 satellite remotely-sensed productivity trends (Laliberte et al. 2011; Matese et al. 2015).

67

68 A variety of multispectral camera and sensor options are available and have been deployed 

69 with drones. These range from modified off-the-shelf digital cameras (Lebourgeois et al. 

70 2008; for examples see Berra et al. 2017; Müllerová et al. 2017), to compact purpose-built 

71 multi-band drone sensors such as the Parrot Sequoia (Ahmed et al. 2017; Fernández-

72 Guisuraga et al. 2018) and the MicaSense Red-Edge (Samiappan et al. 2017; Dash et al. 

73 2017). The Parrot Sequoia and MicaSense Red-Edge sensors are compact bundles (rigs) of 

74 4-5 cameras with Complementary Metal-Oxide-Semiconductor (CMOS) (Weste 2011) 

75 sensors, a type of imaging sensor commonly found in phones and digital single lens reflex 

76 (DSLRs) consumer cameras. Each camera in the rig is equipped with an individual narrow-

77 band filter that removes all but a discrete section of the visible and/or near-infrared parts of 

78 the spectrum (Table 1). New multispectral camera and sensor options continue to be 

79 released as technologies develop rapidly, yet many common considerations exist with the 

80 use of these type of sensors for the collection of vegetation monitoring data that we describe 

81 below.

82

83 The purpose-made design of the recent generation of multiband drone sensors provide 

84 many improvements that increase the ease of use, quality and accuracy of the collected 

85 multispectral aerial imagery. These include: precise co-registration of bands, characterised 
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86 sensor responses, well defined narrow bands, sensor attitude correction, ambient light 

87 sensors, geo-tagged imagery, and seamless integration into photogrammetry software such 

88 as Pix4Dmapper (Pix4D SA, Lausanne, Switzerland) and PhotoScan Pro (Aigsoft, St. 

89 Petersburg, Russia). Despite these advances, acquiring multispectral drone imagery that is 

90 comparable across sensors, space, and time requires careful planning and best practices to 

91 minimise the effect of measurement errors caused by three main sources 1) differences 

92 among sensors and sensor units, 2) changes in ambient light (weather and position of sun), 

93 and 3) spatially-constraining the imagery (Kelcey and Lucieer 2012; Turner et al. 2014; 

94 Salamí et al. 2014; Aasen et al. 2015; Pádua et al. 2017). 

95

96 With the goal of collecting comparable and reproducible drone imagery in mind, we discuss 

97 the fundamental technical background of multispectral drone sensors (Section 1), outline the 

98 proposed workflow for data collection and processing (Section 2) and conclude by reviewing 

99 the most important steps of the protocol in more detail (Section 3-6). These perspectives 

100 emerged from protocols originally developed for the High Latitude Drone Ecology Network 

101 (HiLDEN – arcticdrones.org) and build on examples drawn from data collected with a Parrot 

102 Sequoia at our focal study site Qikiqtaruk – Herschel Island (QHI), Yukon Territory, in north-

103 western Canada and processed in Pix4Dmapper. Nonetheless, much of the discussed 

104 content should transfer directly to other multispectral drone sensors, including the 

105 MicaSense RedEge and Tetracam products, as well as to a lesser degree modified 

106 conventional cameras.

107

108 Technical Background on Multispectral Drone Sensors (Section 1)

109 A fundamental aim of vegetation surveys with multispectral drone sensors is to measure 

110 surface reflectance across space for two or more specific bands of wavelengths (e.g. the red 

111 and near-infrared bands), which then serve as a base for calculating VIs (such as the NDVI) 

112 or to inform surface cover classifications. Reflectance is the fraction of incident light reflected 

113 at the interface of a surface. VIs enhance the characteristic electromagnetic reflectance 
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114 signatures of different surfaces (such as bare ground, sparse or dense vegetation), whereas 

115 classifications often partition images based on these differences. Leaf structure and 

116 chlorophyll content influence the spectral signatures of plants, and VIs transform spectra-

117 specific variability into single variables that can be related to other measures of vegetation 

118 productivity and leaf area index (LAI) (e.g. see Tucker 1979; Guay et al. 2014; Aasen et al. 

119 2015). In practice, drone-based reflectance maps are usually created by collecting many 

120 overlapping images of an area of interest, which are then combined into a single 

121 orthomosaic (map) with a photogrammetry software package (such as Pix4Dmapper or 

122 Agisoft PhotoScan).

123

124 Reflectance is not directly measured by multispectral imaging sensors, instead they 

125 measure at-sensor radiance, the radiant flux received by the sensor (Figure 1). Surface 

126 reflectance is a property of the surface independent on the incident radiation (ambient light), 

127 whereas at-sensor radiance is a function of surface radiance (flux of radiation from the 

128 surface) and atmospheric disturbance between surface and sensor (see Wang and Myint 

129 2015 for a detailed discussion). Surface radiance itself is highly dependent on the incident 

130 radiation, and disturbance between surface and sensors is often assumed to be negligible 

131 for drone-based surveys (Duffy et al. 2017). At-sensor radiance measurements are stored as 

132 arbitrary digital numbers (DN) in the image files for each band at a determined bit depth. 

133 Without modification, the DNs may serve as a proxy for relative differences of surface 

134 reflectance during the ambient light conditions of a particular survey, but if absolute surface 

135 reflectance measurements are desired - e.g. for cross site, sensor or time comparison - a 

136 conversion (“calibration”) of the digital numbers into absolute surface reflectance values is 

137 essential (Figure 1). 

138

139 There are several ways to convert image DNs into absolute surface reflectance, but the 

140 most common is the so-called empirical line approach: Images of surfaces with known 

141 reflectance are used to establish an assumed linear relationship (empirical line) between 

Page 5 of 51



6

142 image DNs and surface reflectance under the specific light conditions of the survey 

143 (Laliberte et al. 2011; Turner et al. 2014; Wang and Myint 2015; Aasen et al. 2015; Wehrhan 

144 et al. 2016; Ahmed et al. 2017; Crusiol et al. 2017; Dash et al. 2017). Additionally, 

145 information from incident light sensors, such as the Parrot Sequoia sunshine sensor may be 

146 incorporated to account for changes in irradiation during the flight. We would like to highlight 

147 here that this is not a calibration of the sensor itself, but a calibration of the output data. 

148 Practical aspects of radiometric calibration are discussed later in Section 6.

149

150 The relationship between DN and the surface reflectance value of a pixel is also influenced 

151 by the optical apparatus and the spectral response of the sensor, which require additional 

152 corrections (see Kelcey and Lucieer 2012 and Wang and Myint 2015 for in-depth 

153 discussions). For the latest generation of sensors (e.g. MicaSense RedEdge and Parrot 

154 Sequoia) the processing software packages (such as Pix4Dmapper) automatically apply 

155 these corrections and little input is required from the user in this respect. Instructions on how 

156 to carry out the calibrations manually has been made available by some manufacturers 

157 (Parrot 2017a; Agisoft 2018; MicaSense 2018c) and may be used by advanced users to 

158 develop their own processing workflow. However, understanding the principles of these 

159 corrections and why they are required can be helpful to all users when planning multispectral 

160 drone surveys and handling the data outputs. 

161

162 Firstly, the optical apparatus (i.e. filters and lenses) distort the light on its way to the sensor 

163 and therefore influence the relative amount of radiation reaching each pixel. Effects such as 

164 vignetting - pixels on the outsides of the images receive less light than those in the centre of 

165 the image (Kelcey and Lucieer 2012) – can produce desirable aesthetic effects in 

166 conventional photography, but bias data in different parts of the images when mapping 

167 surface reflectance. Converting the DNs of all pixels the same way would incorrectly 

168 estimate reflectance values towards the extremes of each image. This can be corrected for if 
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169 the effects of the optical apparatus of the sensor have been characterised sufficiently 

170 (Kelcey and Lucieer 2012; Salamí et al. 2014). 

171

172 Secondly, the relationship between DN and radiant flux is dependent on the sensitivity of the 

173 CMOS sensor unit in the specific band of the spectrum, the shutter speed, as well as the 

174 aperture and ISO value (signal current amplification at the sensor pixel level) settings during 

175 image capture. In the case of the Parrot Sequoia, this relationship is a linear function for 

176 which the parameters are characterised for each individual sensor unit at production. This is 

177 one of the major advantages of using purpose-built sensors such as the Parrot Sequoia and 

178 alike over modified consumer cameras. The relevant parameters of this relationship can be 

179 extracted from the image EXIF tags and applied to each image to obtain arbitrary reflectance 

180 values common to all Sequoias. These arbitrary reflectance values can then be converted 

181 into absolute reflectance using a standard of known reflectance (see Parrot 2017c). 

182

183 When using Pix4Dmapper for processing Parrot Sequoia or MicaSense RedEdge data these 

184 corrections are automatically carried out by the software (Pix4d Personal Communication 

185 June 2017). Apart from defining the radiometric calibration image to establish the empirical 

186 line relationship, no additional input is required. The exact algorithms of Pix4Dmapper are 

187 proprietary and will likely remain a black box to the scientific community and may change 

188 between software versions. To the best of our knowledge, at this time, there is no open 

189 source software currently available with the same scope and ease of handling of 

190 Pix4Dmapper for processing multispectral drone data. During the completion of this 

191 manuscript, radiometric calibration features have been added to recent releases of Agisoft 

192 PhotoScan Pro (St. Petersburg, Russia), a similar proprietary photogrammetric software 

193 (Agisoft 2018). 

194

195 Data collection and processing – Workflow overview (Section 2)
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196 Specific research questions and scientific objectives should be used to determine the exact 

197 methods used and the data outputs required from a multispectral drone survey (Figure 2). 

198 However, using a standardized workflow will help users avoid common pitfalls that affect 

199 data quality, and thus ensure repeatable and comparable data collection through time and 

200 across sites. We suggest starting by identifying the spatial and temporal scales required to 

201 address the research questions and scientific objectives (Step 1). Explicit consideration of 

202 scale is critical to the quantification and interpretation of any environmental pattern (Turner 

203 et al. 1989; Levin 1992), thus particular attention is required when planning drone surveys 

204 due to the scale-dependent nature of these inherently spatial data and its associated errors. 

205

206 The selected spatial and temporal scales, together with the capabilities of the drone platform 

207 form the basis for flight planning (Step 2). Flight paths and image overlap (Section 3), as well 

208 as weather conditions and solar position (Section 4) are especially important to consider 

209 when planning multispectral drone surveys because of their impact on mosaicking and 

210 radiometric calibration. Once the flight plan is established, ground control points (GCPs) and 

211 radiometric in-flight targets need to be deployed on site, their locations determined with a 

212 high-accuracy global navigation satellite systems (GNSS) device (e.g. a survey-grade GPS 

213 receiver), and radiometric calibration imagery taken (Steps 3 and 4). We will discuss 

214 practical aspects of GCPs deployment and radiometric calibration in the final two sections 

215 (Section 5 and 6, respectively). 

216

217 Once pre-flight preparations are completed, the drone is launched and the image data 

218 collected (Step 5). Though this may sound straight forward, in practice this can be 

219 challenging. Technical issues such as aircraft material failure, weather impacts on realized 

220 vs. planned flight path, and/or compass issues are not uncommon. Operator skill and 

221 logistical experience in the field should not be discounted, particularly when operating in 

222 extreme environments such as those found in the high latitudes (Duffy et al. 2017). 

223 Manufacturer guidance, online discussion boards and email lists (such as the HiLDEN 
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224 network: arcticdrones.org) can provide help and information on these technical problems. 

225 Upon completion of the flight, image data can be retrieved from the sensors and transferred 

226 to a computer for processing. We recommend backing up the drone / sensor memory after 

227 every flight to reduce the risk of data loss due to hardware failure and crashes. 

228

229 Processing will vary with the type of sensor / software that is used. Figure 2 outlines the core 

230 steps when processing Parrot Sequoia data with Pix4Dmapper Desktop. The initial 

231 processing step (Step 6) creates a rough model of the area surveyed using Structure from 

232 Motion – Multiview Stereo algorithms (SfM-MVS) (Westoby et al. 2012). The user then 

233 manually places GCP markers for improving estimates of the camera positions and lens 

234 model parameters (Step 7) and carries out the radiometric calibration (Step 8). These inputs 

235 are then incorporated by the software in a final processing step (Step 9), producing 

236 reflectance map and VI map outputs. 

237

238 We suggest a final quality control step (Step 10) to assess the accuracy of the geo-location 

239 and radiometric calibration of the outputs, before using them in the analysis to answer the 

240 research questions. We also highlight that drone surveys can produce large amounts of data 

241 that can create challenges for data handling and archiving. It is helpful to produce a storage 

242 and archiving plan before data collection begins, test flights can provide valuable insights on 

243 data volume expectations for the project. 

244

245 Flight planning and overlap (Section 3)

246 A well-designed flight plan ensures that the full extent of the area of interest is covered at the 

247 appropriate grain size to fulfil the scientific objectives of the survey. The capabilities of drone 

248 and sensor, the terrain and meteorological conditions, as well as local regulations will 

249 constrain what is practically achievable. Flight planning software and manufacture guidance 

250 can assist, and a wealth of information on flight planning and practise is available on the 

251 internet, including guidance on the legal aspects of operating drones in different jurisdictions. 
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252 Furthermore, pre-flight site visits (“recces”) can be highly valuable for identifying obstacles 

253 and can inform about topographic constraints that may affect flight planning and geolocation. 

254 Here, we will focus on two aspects of mission planning particularly important for 

255 multispectral surveys: 1) image overlap - the proportion of overlap between neighbouring 

256 individual images in the pool of images covering the area of interest; and 2) spatial grain size 

257 or ground sampling distance (GSD) - the width of the ground area represented by each pixel 

258 in the imagery. Both are closely linked to, and limited by, flight height and speed, as well as 

259 sensor size, resolution, focal length and trigger rate.

260

261 Image overlap influences the percentage of pixels captured near to nadir view angles 

262 (sensor at 90° above surface of interest). Vegetative surfaces do not have lambertian 

263 reflectance properties; i.e., they do not reflect light evenly in all directions, instead their 

264 reflectance is a function of both angle of incident light and angle of view. These relationships 

265 can be complex and are commonly described with so called bidirectional reflectance 

266 distribution functions (BRDFs) (for example Kimes 1983; Bicheron and Leroy 2000). For 

267 multispectral drone surveys, non-uniform reflectance functions pose a challenge as they 

268 hamper the comparison of pixels captured at different angles of view (Aasen and Bolten 

269 2018). 

270

271 When obtaining surface reflectance imagery with wide-angled lenses, as those employed in 

272 many drone sensors, pixels near to the edges of the image have viewing angles notably 

273 different from 90° (up to 32° different for the Parrot Sequoia and up to 23.6° for the 

274 MicaSense RedEdge-M). If a nadir angle of view (observer 90° above observed point) is 

275 assumed for these pixels the reflectance values in the extremes of the image maybe under 

276 or overestimated. High amounts of image overlap (75% - 90% front lap and side lap) ensure 

277 that the whole area of interest is captured by pixels taken at near-nadir view. During 

278 processing these pixels can then be preferentially selected as best estimates for surface 
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279 reflectance at nadir view. Pix4Dmapper carries out such a selection when creating 

280 reflectance maps (Pix4D Personal Communication, June 2017).

281

282 We recommend a minimum of 75% of for multispectral flights for both side- and front-lap 

283 (also recommended by MicaSense 2018a). Greater overlap might not always be better as 

284 there are penalties for very high amounts of overlap, affecting data storage and processing 

285 requirements. However, imagery can be thinned to reduce excessive overlap at the 

286 processing stage. We found that 80% overlap worked well for our data collection in low 

287 canopy tundra environments, in this case all parts of the area surveyed are within 10% of the 

288 image centre (near nadir-view for a stabilised sensor) in at least one image and support 

289 reliable reconstructions and good quality reflectance map outputs using Pix4Dmapper. 

290

291 If high amounts of side- and front-lap are not achievable due to limitations of the aircraft or 

292 shutter speed of the sensor (e.g., due to high flight speeds and wide turns required by fixed-

293 wing aircraft), adding cross-flight lines to the flight plan (Figure 3a) or repeating the flight 

294 plan twice with a slightly shifted grid of the same orientation may be two of the many 

295 possible solutions. This will allow the coverage of larger proportions of the surveyed area at 

296 near-nadir angles and may reduce BRDF effects. In the case of the Parrot Sequoia, the 

297 RGB camera can also be disabled to increase trigger rates for the monochromatic multiband 

298 imagery. If problems occur with reconstruction of uniform vegetated surfaces or because of 

299 complicated terrains, two diagonal cross-flight lines may be added to the flight plan (Figure 

300 3b), this provides additional coverage of the area and may result in improved 

301 reconstructions.

302

303 The ground sampling distance has a strong influence on the signal to noise ratio. GSD is a 

304 function of flight altitude, sensor resolution and optics. Imagery of vegetated surfaces at very 

305 small GSDs may contain a lot of noise due to non-uniform reflectance functions and 

306 movement of plant parts, such as leaves, between image acquisitions. High amounts of 
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307 noise hamper key-point matching during SfM-MVS model reconstructions and can reduce 

308 the quality of reflectance map outputs, resulting in artefacts, blurry patches and distorted 

309 geometry. Pix4D recommends a GSD of 10 cm or coarser for densely vegetated areas 

310 (Pix4D 2018a). Nonetheless, we obtained consistently good results with slightly finer (5 cm) 

311 and coarser (15 cm) GSDs for the tussock sedge and shrub tundra vegetation types at our 

312 field site QHI in Arctic Canada during the data collection campaigns in 2016 and 2017. 

313

314 When selecting a GSD it is particularly important to consider the scientific objectives of the 

315 survey and factor in the scale at which reflectance varies across the area of interest: If the 

316 objective is to monitor the distribution of large shrubs, then a larger GSD might be sufficient 

317 with the added benefits of reduced noise, the potential to cover larger areas due to higher 

318 flight altitudes, less required data storage and faster processing times. In contrast, if the 

319 objective is to monitor distribution of small grass tussocks, a smaller GSD might be required 

320 with potential penalties due to increased noise in the imagery and reduction in area that can 

321 be covered. 

322

323 Weather and Sun (Section 4)

324 Weather and sun are additional factors that influence drone-captured multispectral imagery 

325 quality. Most drones will be unable to operate in high winds and rain; but cloud cover and 

326 solar position also influence the spectral composition of the ambient light and shadows, thus 

327 affecting image acquisition with multispectral drone sensors (Salamí et al. 2014, Pádua et al. 

328 2017). Variation in solar angle may introduce variation in VI estimates even within a single 

329 day or flight period (Figure 4). Radiometric calibration of the imagery (Section 6) is a key tool 

330 to account for the majority of this variation, but additional steps during flight planning and in-

331 field data collection can be taken to control for some of these factors.

332

333 To minimise variations in solar angle, flights should be conducted as close to solar noon as 

334 possible. As a rule of thumb, we recommend a maximum of 2-3 hours before and after solar 
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335 noon. Seasonal and diurnal variation in solar angle and position can be calculated using 

336 solar calculators (such as https://www.esrl.noaa.gov/gmd/grad/solcalc/index.html). At high 

337 latitude sites, solar angle will vary across the year in more dramatic ways than at lower 

338 latitudes, whereas lower latitudes experience stronger variation in diurnal angle. On clear 

339 days, solar position also determines the size and direction of shadows cast on the landscape 

340 by micro- and macro-variation in topography (i.e. furrows and ridges, vegetation and hills) 

341 (Figure 5). 

342

343 Under clear sky conditions, sun glint and hotspots can be present in the imagery, creating 

344 radiometric inaccuracies and potential issues for photogrammetric processing. Some efforts 

345 have been made towards detecting and mitigating these effects through post-processing of 

346 the imagery, and the relative position of sun and aircraft can be incorporated during flight 

347 planning to reduce their impact (Ortega-Terol et al. 2017). However, due to the low solar 

348 angles, sun glint and hotspots are less of a problem at high latitudes. 

349

350 We recommend recording sky conditions during the flight (Table 2) to account for cloud-

351 induced changes in the spectral composition of light and avoiding days where scattered 

352 cumulus clouds (“popcorn-clouds”) are partially shading survey area(s) (Figure 5). The 

353 collection of additional meteorological observations such as wind speed (may impact 

354 movement of vegetation), temperature and presence of dew/snow may be helpful to account 

355 for additional sources of variation in surface reflectance estimates. 

356

357 Geolocation and Ground Control Points (Section 5)

358 Accurate geolocation is essential when the image data is: part of a time-series, combined 

359 with other sources of geo-referenced data such as satellite or ground-based observations, or 

360 used to build structural models. Photogrammetry software packages commonly use two 

361 sources of geolocation information: the coordinates of the of the camera during each image 

362 capture as recorded by the sensor or drone, and/or coordinates of ground control points 
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363 (GCPs) identified in the imagery. Two problems complicate the accurate geolocation of 

364 multispectral imagery products: 1) The accuracy of image geo-tags may be insufficient (at 

365 best ca. ± 2-3 m horizontally) for some applications, and 2) conventional GCP designs can 

366 be difficult to identify in the low-resolution monochromatic images.

367

368 The accuracy of geo-tags is limited by the low precision of common drone / sensor GNSS 

369 modules. On-board differential positioning systems can be deployed for high accuracy direct 

370 georeferencing of the images, but integration can be time consuming and the modules may 

371 increase the cost of the aircraft system considerably (Ribeiro-Gomes et al. 2016). A common 

372 and practical alternative for the generation of sub-meter geo-located reflectance maps is to 

373 incorporate GCPs in the photogrammetry process, whose location is determined in-field with 

374 a high accuracy survey grade GNSS. 

375

376 When mapping with the Parrot Sequoia and processing with Pix4D, we recommend the use 

377 of around five GCPs well distributed across the area of interest (Harwin et al. 2015; Pix4D 

378 2018b). More may be required for large sites (>1 ha) or sites with varying topography, but 

379 higher numbers might not substantially improve geolocation (Pix4D 2018b). We tested the 

380 influence of number of GCPs and marking effort (images marked per GCP) on 2D 

381 geolocation accuracy for small (1 ha) and flat tundra plots and found rapidly diminishing 

382 improvements in geolocation accuracy beyond 4 GCPs marked on 3 images each (Figure 

383 6a). Additional GCPs not included in constraining the photogrammetric reconstructions 

384 should be used to assess the accuracy of each reconstruction (Step 10), we recommend at 

385 least one additional independent GCP for this purpose.

386

387 The compact size and power requirements limit the spatial resolution of CMOS imaging 

388 sensors used in multi-camera rigs such as the Parrot Sequoia. This, combined with the 

389 reduced spectral bandwidth, can cause difficulties when identifying GCPs in the 

390 monochromatic single-band imagery. To achieve maximum visibility of the GCPs, we 
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391 suggest using square targets composed of four alternating black and white fields arranged in 

392 a checkerboard pattern (Figure 7a) with an overall side length of 7-10x the GSD. The choice 

393 of material is important, as white areas of the targets need to reflect strongly across the 

394 whole spectrum of the sensor independently of the angle of view (near-lambertian), while 

395 black areas should have a low reflectivity to provide a strong contrast. What appears 

396 distinctly black and white to the human eye may have similar reflectance properties in the 

397 NIR. In our experience, painted canvas and sailcloth are suitable materials that are 

398 affordable, readily available and reasonably light. We also achieved good results success 

399 with vinyl flooring tiles; however, these can be heavy and therefore impractical in remote 

400 field conditions. We strongly recommend testing the visibility of the targets using the 

401 multispectral sensors prior field deployment. 

402

403 Accurate co-registration of pixels among bands is essential when calculating VIs (Turner et 

404 al. 2014). Incorporating GCPs in the processing can aid in constraining the relative shifts 

405 between the bands. However, we found that increasing the effort in GCP placement (number 

406 of GCPs and images marked per GCP) in Pix4D for Parrot Sequoia imagery had little impact 

407 on constraining the co-registration between bands. High degrees of co-registration 

408 (1-2 pixels) were achieved even with the lowest effort of marker placement (Figure 6b). 

409 Turner et al. (2014) reported similar levels of co-registration accuracy between reflectance 

410 maps of bands collected with a multiband Tetracam mini-MCA (GSD 0.03 m / pixel) at moss 

411 sites in Antarctica.

412

413 Radiometric calibration (Section 6)

414 The aim of the radiometric calibration is to convert at-sensor radiance (in form of DNs) into 

415 absolute surface reflectance values, accounting for variation caused by differences in 

416 ambient light due to weather and sun, and between sensors types and units (Kelcey and 

417 Lucieer 2012). The relationship (empirical line) between image DN values and surface 

418 reflectance is established from a sample of pixels covering areas of known reflectance, 
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419 theoretically this could be a naturally occurring homogeneous area in the area of interest 

420 measured with a field spectrometer, but artificial standards (“reflectance targets”) of known 

421 reflectance are more commonly used to carry out the calibration.

422

423 When processing Parrot Sequoia outputs in Pix4Dmapper a single image is used to calibrate 

424 each band (Step 8). A single image is sufficient to establish the empirical line if the sensor 

425 response is known and linear (Wang and Myint 2015), as is the case for the Parrot Sequoia 

426 (Parrot 2017c). The calibration is carried out by manually selecting the area of the 

427 reflectance target on the calibration image (Figure 8) and assigning the known reflectance 

428 value of the target. In our experience, a larger sample of pixels produces better calibration 

429 results, i.e. the more pixels that are taken up by the reflectance target the better. Sample 

430 size is likely to be of importance here as it mitigates for variations caused by the inherent 

431 noise across the image stemming from the sensor, illumination of the target, and bleeding 

432 effects from adjacent non-target surfaces. These findings are consistent with advice from 

433 Pix4D (2018b) and MicaSense, who recommend at least 1/3 of the total image footprint to 

434 be covered by the calibration area of the reflectance target (MicaSense 2018b). 

435

436 Calibration images can be collected either before, after or during the flight. For pre- and 

437 post-flight calibration, drone and sensor are held manually above the target and images for 

438 all bands are acquired (Step 4). In-flight calibration targets are placed within the area of 

439 interest and calibration images acquired during the survey. In-flight targets need to be 

440 sufficiently large to ensure a good sample of pixels. Especially when operating in remote 

441 areas, weight and size of targets may be limited and quality in-fight calibration imagery can 

442 be difficult to obtain. Nonetheless, smaller in-flight reflectance targets (about 100+ pixels = 

443 10+ x 10+ GSD) can be of great use for quality control of the final reflectance map output 

444 (see for example Aasen et al. 2015) and may serve as an emergency back-up should pre-

445 /post-flight calibration imagery fail. It is important that both in-flight and pre-/post- flight 
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446 reflectance targets are placed as level as possible to ensure even illumination of the target 

447 surface.

448

449 We recommend always obtaining both pre-/post-flight calibration imagery of a reflectance 

450 target and, if possible, the use of at least two in-flight reflectance targets for quality control 

451 and redundancy. Avoiding overexposure (saturated sensor) and shading of all reflectance 

452 targets is critical as this will render the images unusable for radiometric calibration. The 

453 Parrot Sequoia has a calibration image acquisition feature for pre-/post-flight calibration 

454 accessible via the Wi-Fi interface, which obtains a bracketed exposure reducing the risk of 

455 over-exposure.

456

457 When taking pre-/post-flight calibration imagery, ensure that as little radiation as possible is 

458 reflected onto the target by surrounding objects, including the person taking the calibration 

459 picture. Avoiding bright clothing and taking the image with the sun to the photographer’s rear 

460 while stepping aside to avoid casting a shadow over the target may reduce the risk of 

461 contamination by light scattered from the body (see MicaSense 2018b and Pix4D 2018b for 

462 additional guidance). Aasen and Bolten (2018) observed notable errors introduced to their 

463 calibration imagery by the presence and position of the person / drone in the hemisphere 

464 above the target, suggesting that the development of reliable calibration methods requires 

465 further attention.

466

467 It is key that all reflectance targets employed have homogenous and near-lambertian 

468 reflectance properties. For pre-/post-flight imagery, we recommend medium sized (approx. 

469 15 x 15 cm) Polytetrafluoroethylene (PTFE) based targets, such as Spectralon (Labsphere 

470 2018), Zenith (Sphereoptics 2018) or similar, due to their durability, off-the shelf calibration 

471 and ease of maintenance. Durability and ease of maintenance are particularly important 

472 when working in environments with harsh climates. We experienced substantial degradation 

473 in commercially manufactured reflectance targets over a single field season (3 months), 
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474 likely due to exposure to dust, insects, moisture and temperature fluctuations experienced in 

475 the Arctic tundra (Figure 9). For larger targets used in-flight, we recommend tarpaulins made 

476 of canvas, sailcloth, felt or similar materials (see Ahmed et al. 2017; Crusiol et al. 2017; 

477 Mosaic Mill Ltd. 2018). A variety of other materials have also been successfully employed as 

478 reflectance targets (Laliberte et al. 2011; Turner et al. 2014; Wang and Myint 2015; Aasen et 

479 al. 2015; Wehrhan et al. 2016; Dash et al. 2017). 

480

481 Target maintenance and quality control is essential (also discussed by Wang and Myint 

482 2015). Changes in target reflectance can have notable effects on the calibration outputs 

483 (Figure 10). It is key to handle targets as carefully as possible to avoid surface degradation. 

484 We recommend regular cleaning according to manufacturers’ guidance and frequent re-

485 measurement of reflectance values. Field spectroscopy facilities can provide assistance and 

486 expertise in obtaining and maintaining targets. Re-measurement of the reflectance values 

487 can be carried out in-field prior each flight (e.g. Laliberte et al. 2011). However, this might 

488 not always be feasible when operating in remote areas, in which case careful handling, 

489 maintenance and measurements of reflectance values before and after a field season may 

490 have to suffice. 

491

492 Optical filters directly affect the radiation reaching the sensor and influence the relationship 

493 between surface radiance and image DN, see Kelcey and Lucieer (2012) for further 

494 discussion. It is therefore essential that all radiometric calibration imagery and survey 

495 photographs are consistently taken either with or without the removable filter. The Parrot 

496 Sequoia is shipped with a protective lens cover (a clear filter), which can be useful when 

497 operating in difficult terrains such as the tundra where rough landings are possible, which 

498 could scratch the sensor lenses. Parrot does not characterise the transmissivity of the 

499 protective lens covers shipped with the Sequoia. As the presence / absence of filters is 

500 difficult to detect post hoc during automated processing (such as online cloud services), 
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501 Parrot recommends refraining from using them during multispectral data acquisition flights 

502 (Parrot 2017b).

503

504 We measured the transmissivity of the filters shipped with two Sequoias obtained in 2016 

505 (Figure 11). We observed a small reduction in transmitted radiation across all four bands, 

506 and a small effect of angle of view across the horizontal field of view on the radiation 

507 transmitted in the near-infrared band. These findings suggest that the protective lens cover 

508 may be used with little to no effect on the final reflectance map outputs, if the filter is applied 

509 consistently for all flights under comparison (see also Figure 12).

510

511 Estimated combined error

512 We estimate that the combined effect of the main sources of error discussed in this 

513 manuscript – if not properly accounted for - could be as much as 0.094 in magnitude for 

514 landscape level estimates (1 ha mean) in NDVI for the drone surveys conducted with a 

515 Parrot Sequoia at 5 cm GSD at our Arctic research site Qikiqtaruk during the 2016 field 

516 campaign (Figure 13). This combined error equates to approximately 10-13% of the peak 

517 growing season NDIV (0.60 - 0.68) of the tussock-sedge and dryas-vetch tundra types at the 

518 site. These estimates highlight the importance of controlling for these sources of error, by 

519 carrying out radiometric calibration, surveying at constant solar angles, monitoring 

520 reflectance target degradation and using the protective lens cover consistently. Nonetheless, 

521 a notable error will remain even if everything except cloud conditions is controlled for, we 

522 estimate that our ability to then confidently detect change in landscape scale (1 ha) mean 

523 NDVI is limited to differences above 0.02 - 0.03 in absolute magnitude across space and 

524 time.

525

526 Conclusions

527 Vegetation monitoring using drones could provide key datasets to quantify vegetation 

528 responses to global change (Anderson and Gaston 2013; Salamí et al. 2014; Torresan et al. 
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529 2017). However, accurately quantifying and accounting for the common sources of error and 

530 variation in multispectral data collection is a key part of the workflow for scientific 

531 applications (Aasen et al. 2015; Manfreda et al. 2018). As technologies advance and our 

532 understanding of multispectral drone products increases we may be able to better quantify 

533 the sources of error and improve our measures to account for them; however, it is critical 

534 that the drone data collection of today is done as cautiously and rigorously as possible as it 

535 will provide the baseline for future ecological monitoring studies.

536

537 The rapid and ongoing development of drone and sensor technology (Anderson and Gaston 

538 2013; Pádua et al. 2017) has made the collection of multispectral imagery with drones 

539 accessible to many ecological research projects, even those operating with small budgets. 

540 Despite the plug-and-play nature of the latest generation of multispectral sensors, such as 

541 the Parrot Sequoia and the MicaSense RedEdge, a handful of factors require careful 

542 consideration if the aim is to collect high-quality multispectral data that is comparable across 

543 sensors, space and time. For example, variation in ambient light and sensors require 

544 radiometric calibration of the imagery, and ground control points may be necessary to 

545 achieve accurate geolocation of reflectance and vegetation index maps (Kelcey and Lucieer 

546 2012; Turner et al. 2014; Salamí et al. 2014; Aasen et al. 2015; Pádua et al. 2017). 

547

548 Standardized workflows for multispectral drone surveys that incorporate flight planning, the 

549 influence of weather and sun, as well as aspects of geolocation and radiometric calibration 

550 will produce data that is comparable across different study regions, plots, sensors and time. 

551 We encourage drone survey practitioners in the field of ecology and beyond to incorporate 

552 these methods and perspectives in their planning and data collection to promote higher data 

553 quality and allow for cross site comparisons. Standardised procedures and practises across 

554 research groups (e.g., those developed by the HiLDEN network) have the potential to 

555 provide highly-valuable baseline data that can be used to address urgent and emerging 
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556 topics, such as identifying the landscape patterns and processes of vegetation responses to 

557 global change at high latitudes and across the world’s biomes. 

558
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776
777 Figure Captions

778

779 Figure 1: Simplified flow of information from surface radiance to reflectance maps using 

780 multispectral drone sensors. Surface radiance is measured as at-sensor radiance for each 

781 band by the drone sensor and saved as digital numbers (DNs) in an image file. Image DNs 

782 are then converted (“calibrated”) into reflectance values using an image of a reflectance 

783 standard acquired at the time point of the survey. The resulting reflectance maps for each of 

784 the sensor’s bands can then be used to calculate vegetation indices or as direct inputs for 

785 classification. Drone symbol by Mike Rowe from the Noun Project (CC-BY, 

786 http://thenounproject.com). 

787
788 Figure 2: Overview of the proposed workflow for scientific data collection using multispectral 

789 drone sensors and guide to the sections of this publication. Flight planning is discussed in 

790 Sections 3 (Image Overlap and Ground Sampling Distance) and Section 4 (Weather and 

791 Sun) of this manuscript. Geo-location and use of ground control points (GCPs) in Section 5 

792 and Radiometric Calibration in Section 6. 

793
794 Figure 3: A) Lawn-mower flight pattern (black) with perpendicular flight lines (pink) to 

795 achieve higher overlap and reduce BRDF effects when overlap is limited by aircraft or 
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796 sensor triggering speed, and B) Lawn-mover pattern flight path (black) with additional 

797 diagonal flight lines (blue) that may aid reconstruction. 

798

799 Figure 4: Effect of diurnal solar variation on measured landscape scale mean NDVI. A) Time 

800 of day vs. solar elevation for Qikiqtaruk – Herschel Island on 3rd of August 2016 with time-

801 points of repeat surveys shown in B. Light-grey dashed line shows the solar elevation curve 

802 for the 18th September 2016, illustrating similar magnitudes of seasonal and diurnal variation 

803 across the season at high latitude studies sites such as Qikiqtaruk. B) Effect of solar 

804 elevation on mean NDVI for repeat flights of sites on the 3rd of August 2016 on Qikiqtaruk – 

805 Herschel Island, highlighting the impact of solar angle and clouds on the mean NDVI values 

806 despite radiometric calibration in Pix4D mapper. Bars represent the standard deviation from 

807 the mean NDVI (5 cm GSD), illustrating within-site variation at the two 1-ha sites. Absolute 

808 differences between highest and lowest solar elevation are just above 0.02 NDVI. Thin 

809 stratus cloud cover for all flights except for the flight closest to peak solar elevation (37.22°) 

810 at site 2, with low dense cloud, potentially explaining its outlier character.

811

812 Figure 5: RGB photographs of different cloud and sun angle conditions and their effect on 

813 scene illumination. A) “Popcorn” clouds casting well delimitated shadows across the 

814 landscape. B) Thin continuous stratus scattering light, resulting in even illumination of the 

815 scene and reduced shadows. C) Low solar angle interacting with microtopography, casting 

816 shadows across the landscape. D) Fog blurring the imagery and causing uneven 

817 illumination. 

818
819 Figure 6: A) Ground Control Point (GCP) marker placement effort and mean geolocation 

820 accuracy for eight reflectance maps (red and near-infrared bands) collected at four sites on 

821 Qikiqtaruk – Herschel Island. Insert shows data on finer scale excluding the “no GCPs” data 

822 point. Images were captured with a Parrot Sequoia at 5 cm per pixel GSD and processed in 

823 Pix4D. Error bars indicate standard deviation of the sites from the grand mean. Marking 
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824 effort was staggered by incorporating 0, 3, 4 or 10 GCPs and increasing the number of 

825 images marked per GCP from low (3 images per GCP) to high (8 images per GCP). The 

826 relationship suggests diminishing returns for efforts of more than 3 GCPs, with a potential 

827 optimum effort-return ratio for 4 GCPs marked at low effort (accuracy approx. 7 x GSD). 

828 Sites are 1 ha in size and composed of graminoid dominated tundra on predominantly flat 

829 terrain with medium amounts of variation in altitude (max 30 m). GCP locations were 

830 determined with a survey grade GNSS with a horizontal accuracy of 0.02 m. GCP marker 

831 dimensions were 0.265 m x 0.265 m (ca. 5 x 5 GSD) and made from soft plastic or plastic 

832 fibres with a black and white triangular sand-dial pattern. Marker contrast was uneven 

833 across the monochromatic imagery, resulting in sometimes difficult to distinguish markers. 

834 We estimate marker centres were manually identified to ca. two pixels (0.05-0.10 m). 

835 Geolocation accuracy of the reflectance maps was assessed by visually locating centre 

836 points of 13 GCPs on the final reflectance map outputs in QGIS (QGIS Development Team 

837 2017), this included all GCPs incorporated in the processing. For each reflectance map, the 

838 mean absolute distance between visually estimated and computed position was calculated. 

839 B) GCP marker placement effort and mean accuracy of co-registration of red and near-

840 infrared reflectance maps from the four sites as in A). The same methods were employed, 

841 except the co-registration accuracy was measured as the mean absolute distance between 

842 the visually determined locations of the 13 GCPs. The resulting relationship suggests a 

843 benefit of including GCPs, but we found no evidence for an improvement with effort of 

844 marker placement beyond three GCPs at this flat tundra site.

845
846 Figure 7: A) Parrot Sequoia near-infrared image of 0.6 m x 0.6 m GCP on grass. This GCP 

847 is made from self-adhesive vinyl tiles obtained in a local hardware store. Ground sampling 

848 distance: approx. 0.07 m per pixel. Image courtesy of Tom Wade and Charlie Moriarty, The 

849 University of Edinburgh. B) Chequerboard pattern suggested for improved visibility of GCP 

850 in coarse resolution Parrot Sequoia imagery. Aligning the chequerboard pattern with the 

851 sensor orientation can further aid visibility. 
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852
853 Figure 8: Parrot Sequoia pre-flight radiometric calibration image of a MicaSense Ltd. 

854 (Seattle, WA, USA) reflectance target in the near-infrared band. Red box: surface with 

855 known reflectance value used for calibration. 

856
857 Figure 9: Decrease in reflectance values of three reflectance targets before and after a 

858 three-month field season in the Arctic tundra on Qikiqtaruk – Herschel Island. Loss in 

859 reflectance is likely due to degradation in the harsh environmental conditions (dust, insect 

860 debris, moisture and temperature fluctuations). Across the field seasons in 2016 and 2017 

861 we saw 4-10% reduction in reflectance across targets from different suppliers, composed of 

862 different materials. 

863
864 Figure 10: Mean NDVI value for three graminoid tundra sites (1 ha each) on Qikiqtaruk – 

865 Herschel Island based on red and near-infrared reflectance maps calibrated with three 

866 different reflectance values for the reflectance target No. 1 (Figure 9): before and after 

867 degradation, and the average between the two values. Surveys where flown at the beginning 

868 of the season when little to no degradation of the target is expected to have occurred. Before 

869 and after values differ by about 0.015 in absolute NDVI, suggesting an overestimation of 

870 NDVI when after values are used for the early season surveys.

871
872 Figure 11: Transmissivity of Parrot Sequoia Lens-Protector filter across the a) horizontal and 

873 b) vertical field-of-view of the Sequoia Sensor. The overall small reductions in transmitted 

874 light and the small effect of angle across field-of-view suggest that little to no impact on 

875 reflectance map outputs acquired with the filter can be expected. 

876
877 Figure 12: Raster plot (A) and histogram (B) of pixel by pixel differences in NDVI values of a 

878 homogenously illuminated integrating sphere with and without the Parrot Sequoia protective 

879 lens cover. Margins in the raster plot show mean differences for the pixel columns and rows 

880 respectively.

881
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882 Figure 13: Estimated effects of the five main sources of errors discussed in this manuscript 

883 on the mean NDVI of 1 ha tundra plots on Qikiqtaruk surveyed in 2016 with a Parrot Sequoia 

884 at 50m flight altitude (5 cm GSD). The five sources of error are: 1) The estimated average 

885 deviation from the calibrated mean NDVI compared to a survey without radiometric 

886 calibration carried out. 2) The deviation in estimated mean NDVI when comparing clear sky 

887 to continuous cloud cover conditions (lower error bar: thick stratus, upper error bar: thick 

888 cumulus) even if radiometric calibration is carried out. 3) The estimated deviation of mean 

889 NDVI caused by changes in solar elevation from solar noon to evening during peak growing 

890 season at our field site in the Arctic (about 20° drop – roughly equivalent to the difference 

891 between start/end and mid growing season) even if radiometric calibration is carried out. 4) 

892 The estimated effect of target degradation on mean NDVI across a three-month field 

893 season. 5) The error introduced by the protective lens cover if used and removed 

894 inconsistently between flights in comparison. These estimates are based on both data 

895 presented in this manuscript and manuscripts in preparation. We would like to urge caution 

896 when transferring these estimates to other sensors / set ups and ecological systems. The 

897 estimates are presented here with the purpose of giving the reader a feel for the relative 

898 importance of the sources of error discussed in this manuscript. 

899
900
901
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Figure 1: Simplified flow of information from surface radiance to reflectance maps using multispectral drone 
sensors. Surface radiance is measured as at-sensor radiance for each band by the drone sensor and saved 

as digital numbers (DNs) in an image file. Image DNs are then converted (“calibrated”) into reflectance 
values using an image of a reflectance standard acquired at the time point of the survey. The resulting 

reflectance maps for each of the sensor’s bands can then be used to calculate vegetation indices or as direct 
inputs for classification. Drone symbol by Mike Rowe from the Noun Project (CC-BY, 

http://thenounproject.com). 
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Figure 2: Overview of the proposed workflow for scientific data collection using multispectral drone sensors 
and guide to the sections of this publication. Flight planning is discussed in Sections 3 (Image Overlap and 
Ground Sampling Distance) and Section 4 (Weather and Sun) of this manuscript. Geo-location and use of 

ground control points (GCPs) in Section 5 and Radiometric Calibration in Section 6. 
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Figure 3: A) Lawn-mower flight pattern (black) with perpendicular flight lines (pink) to achieve higher 
overlap and reduce BRDF effects when overlap is limited by aircraft or sensor triggering speed, and B) Lawn-

mover pattern flight path (black) with additional diagonal flight lines (blue) that may aid reconstruction. 
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Figure 4: Effect of diurnal solar variation on measured landscape scale mean NDVI. A) Time of day vs. solar 
elevation for Qikiqtaruk – Herschel Island on 3rd of August 2016 with time-points of repeat surveys shown 

in B. Light-grey dashed line shows the solar elevation curve for the 18th September 2016, illustrating similar 
magnitudes of seasonal and diurnal variation across the season at high latitude studies sites such as 

Qikiqtaruk. B) Effect of solar elevation on mean NDVI for repeat flights of sites on the 3rd of August 2016 on 
Qikiqtaruk – Herschel Island, highlighting the impact of solar angle and clouds on the mean NDVI values 

despite radiometric calibration in Pix4D mapper. Bars represent the standard deviation from the mean NDVI 
(5 cm GSD), illustrating within-site variation at the two 1-ha sites. Absolute differences between highest and 
lowest solar elevation are just above 0.02 NDVI. Thin stratus cloud cover for all flights except for the flight 

closest to peak solar elevation (37.22°) at site 2, with low dense cloud, potentially explaining its outlier 
character. 

Page 38 of 51



 

Figure 5: RGB photographs of different cloud and sun angle conditions and their effect on scene illumination. 
A) “Popcorn” clouds casting well delimitated shadows across the landscape. B) Thin continuous stratus 
scattering light, resulting in even illumination of the scene and reduced shadows. C) Low solar angle 

interacting with microtopography, casting shadows across the landscape. D) Fog blurring the imagery and 
causing uneven illumination. 
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Figure 6: A) Ground Control Point (GCP) marker placement effort and mean geolocation accuracy for eight 
reflectance maps (red and near-infrared bands) collected at four sites on Qikiqtaruk – Herschel Island. 

Insert shows data on finer scale excluding the “no GCPs” data point. Images were captured with a Parrot 
Sequoia at 5 cm per pixel GSD and processed in Pix4D. Error bars indicate standard deviation of the sites 

from the grand mean. Marking effort was staggered by incorporating 0, 3, 4 or 10 GCPs and increasing the 
number of images marked per GCP from low (3 images per GCP) to high (8 images per GCP). The 

relationship suggests diminishing returns for efforts of more than 3 GCPs, with a potential optimum effort-
return ratio for 4 GCPs marked at low effort (accuracy approx. 7x GSD). Sites are 1 ha in size and composed 
of graminoid dominated tundra on predominantly flat terrain with medium amounts of variation in altitude 
(max 30 m). GCP locations were determined with a survey grade GNSS with a horizontal accuracy of 0.02 
m. GCP marker dimensions were 0.265 m x 0.265 m (ca. 5 x 5 GSD) and made from soft plastic or plastic 

fibres with a black and white triangular sand-dial pattern. Marker contrast was uneven across the 
monochromatic imagery, resulting in sometimes difficult to distinguish markers. We estimate marker centres 
were manually identified to ca. two pixels (0.05-0.10 m). Geolocation accuracy of the reflectance maps was 
assessed by visually locating centre points of 13 GCPs on the final reflectance map outputs in QGIS (QGIS 
Development Team 2017), this included all GCPs incorporated in the processing. For each reflectance map, 

the mean absolute distance between visually estimated and computed position was calculated. B) GCP 
marker placement effort and mean accuracy of co-registration of red and near-infrared reflectance maps 
from the four sites as in A). The same methods were employed, except the co-registration accuracy was 
measured as the mean absolute distance between the visually determined locations of the 13 GCPs. The 
resulting relationship suggests a benefit of including GCPs, but we found no evidence for an improvement 

with effort of marker placement beyond three GCPs at this flat tundra site. 
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Figure 7: A) Parrot Sequoia near-infrared image of 0.6 m x 0.6 m GCP on grass. This GCP is made from self-
adhesive vinyl tiles obtained in a local hardware store. Ground sampling distance: approx. 0.07 m per pixel. 

Image curtsey of Tom Wade and Charlie Moriarty, The University of Edinburgh. B) Chequerboard pattern 
suggested for improved visibility of GCP in coarse resolution Parrot Sequoia imagery. Aligning the 

chequerboard pattern with the sensor orientation can further aid visibility. 

Page 41 of 51



 

Figure 8: Parrot Sequoia pre-flight radiometric calibration image of a MicaSense Ltd. (Seattle, WA, USA) 
reflectance target in the near-infrared band. Red box: surface with known reflectance value used for 

calibration. 
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Figure 9: Decrease in reflectance values of three reflectance targets before and after a three-month field 
season in the Arctic tundra on Qikiqtaruk – Herschel Island. Loss in reflectance is likely due to degradation 
in the harsh environmental conditions (dust, insect debris, moisture and temperature fluctuations). Across 
the field seasons in 2016 and 2017 we saw 4-10% reduction in reflectance across targets from different 

suppliers, composed of different materials. 
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Figure 10: Mean NDVI value for three graminoid tundra sites (1 ha each) on Qikiqtaruk – Herschel Island 
based on red and near-infrared reflectance maps calibrated with three different reflectance values for the 

reflectance target No. 1 (Figure 9): before and after degradation, and the average between the two values. 
Surveys where flown at the beginning of the season when little to no degradation of the target is expected 

to have occurred. Before and after values differ by about 0.015 in absolute NDVI, suggesting an 
overestimation of NDVI when after values are used for the early season surveys. 
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Figure 11: Transmissivity of Parrot Sequoia Lens-Protector filter across the a) horizontal and b) vertical 
field-of-view of the Sequoia Sensor. The overall small reductions in transmitted light and the small effect of 
angle across field-of-view suggest that little to no impact on reflectance map outputs acquired with the filter 

can be expected. 
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Figure 12: Raster plot (A) and histogram (B) of pixel by pixel differences in NDVI values of a homogenously 
illuminated integrating sphere with and without the Parrot Sequoia protective lens cover. Margins in the 

raster plot show mean differences for the pixel columns and rows respectively. 
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Figure 13: Estimated effects of the five main sources of errors discussed in this manuscript on the mean 
NDVI of 1 ha tundra plots on Qikiqtaruk surveyed in 2016 with a Parrot Sequoia at 50m flight altitude (5 cm 

GSD). The five sources of error are: 1) The estimated average deviation from the calibrated mean NDVI 
compared to a survey without radiometric calibration carried out. 2) The deviation in estimated mean NDVI 
when comparing clear sky to continuous cloud cover conditions (lower error bar: thick stratus, upper error 
bar: thick cumulus) even if radiometric calibration is carried out. 3) The estimated deviation of mean NDVI 

caused by changes in solar elevation from solar noon to evening during peak growing season at our field site 
in the Arctic (about 20° drop – roughly equivalent to the difference between start/end and mid growing 

season) even if radiometric calibration is carried out. 4) The estimated effect of target degradation on mean 
NDVI across a three-month field season. 5) The error introduced by the protective lens cover if used and 

removed inconsistently between flights in comparison. These estimates are based on both data presented in 
this manuscript and manuscripts in preparation. We would like to urge caution when transferring these 
estimates to other sensors / set ups and ecological systems. The estimates are presented here with the 
purpose of giving the reader a feel for the relative importance of the sources of error discussed in this 

manuscript. 
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Table 1: Band wavelengths (nm) of the Parrot Sequoia and MicaSense Red-Edge Sensors 

with comparable Sentinel, Landsat, MODIS and AVHRR bands (Barnes et al. 1998; NOAA 

2014; Barsi et al. 2014; European Space Agency 2015; MicaSense 2016a, 2016b). 

Vegetation indices such as the NDVI, derived from the read and near-infrared bands, can be 

notably affected by differences in spectral bandwidth. For the NDVI the position of the red 

band has been found to be of particular importance (Teillet 1997).  

Sensor Blue Green Red Red-Edge Near-Infrared
Parrot Sequoia - 530 - 570 640 - 680 730 - 740 770 - 810
Mica Sense 
RedEdge

465 - 485 550 - 570 663 - 673 712 - 722 820 - 660

Sentinel 2 (10 m) 457.5 - 522.5 542.5 - 577.5 650 - 680 784.5 - 899.5
Sentinel 2 (20 m) 697.5 - 

712.5 
(Band 5)
732.5 - 
747.5 
(Band 6)
773 - 793 
(Band 7)

838.75 -891.25 
(Band 8b)

Landsat 8 452 - 512 533 - 590 636 - 673 851 - 879

MODIS (250 m) 620 - 670 841 - 876

MODIS (500 m) 459 - 479 545 - 565

AVHRR (GIMMS) 580 - 680 725 - 1000
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Table 2: Sky-Codes for qualitative classification of cloud related ambient light conditions. 

Table courtesy of NERC Field Spectroscopy Facility, Edinburgh UK (2018) based on work 

by Milton et al. (2009). See also WMO Cloud Identification Guide (World Meteorological 

Association 2017). 

Sky-Code Condition 

0 Clear sky 
1 Haze 
2 Thin cirrus – sun not obscured 
3 Thin cirrus – sun obscured 
4 Scattered cumulus – sun not obscured 
5 Cumulus over most of sky – sun not obscured 
6 Cumulus – sun obscured 
7 Complete cumulus cover 
8 Stratus – sun obscured 
9 Drizzle 
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Box 1: Quick Glossary 

Multispectral Drone Sensor 

A light-weight camera rig with at least two digital imaging sensors that capture 

monochromatic imagery in well-characterised and narrow bands of the 

electromagnetic spectrum. Often include bands outside the visible spectrum. Used to 

determine surface reflectance across space. 

Surface Reflectance 

Proportion of electromagnetic radiation reflected by a surface. Here specifically, the 

proportion of electromagnetic radiation reflected by a surface within narrow bands of 

the electromagnetic spectrum. 

Vegetation Index (VI) 

Mathematical transformation of surface reflectance values across multiple bands to 

allow for the estimation of vegetation productivity and surface cover type 

classifications. 

Digital Number (DN) 

Sensor-specific value used to denote strength of radiant flux to a sensor pixel. 

Arbitrary in nature, it requires knowledge of sensor response, optical apparatus and 

ambient light conditions to allow for conversion into surface reflectance values.  

Ground Sampling Distance (GSD) 

Distance between pixel centres or pixel-width measured on the ground of a digital 

aerial image. 

Ground Control Points (GCPs) 

Artificial or natural features with (often very accurately) known locations used to geo-

rectify aerial imagery.  

Structure from Motion (SfM) 

Computational technique (computer vision) that uses relative positions of pixels from 

overlapping imagery of the same scene obtained at different angles to construct 3D 

models and composite orthomosaic images.  
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Orthomosaic 

Mosaic of geometrically corrected (orthorectified) images so that scale is uniform 

across the mosaic from a nadir perspective (viewer 90° above viewing plane). 

Reflectance Map 

Orthomosaic of monochromatic imagery in a specific spectral band obtained with a 

multiband drone sensor. Pixel values contain (often radiometrically calibrated) 

surface reflectance values (ranging from 0 to 1). Can be used to calculate maps of 

vegetation indices.  

 

Page 51 of 51


