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Figure 1: Four of the images above are rendered with measured BRDFs from the MERL dataset [MPBM03b]. The remaining 11 are rendered
with interpolated BRDFs generated from our parameterization of the non-linear manifold containing MERL materials. We explore this
manifold to produce high-quality BRDFs that retain the physical properties and perceptual aspect of the original measured materials.

Abstract
A popular approach for computing photorealistic images of virtual objects requires applying reflectance profiles measured from
real surfaces, introducing several challenges: the memory needed to faithfully capture realistic material reflectance is large, the
choice of materials is limited to the set of measurements, and image synthesis using the measured data is costly. Typically, this
data is either compressed by projecting it onto a subset of its linear principal components or by applying non-linear methods.
The former requires prohibitively large numbers of components to faithfully represent the input reflectance, whereas the latter
necessitates costly algorithms to extrapolate reflectance data. We learn an underlying, low-dimensional non-linear reflectance
manifold amenable to the rapid exploration and rendering of real-world materials. We show that interpolated materials can be
expressed as linear combinations of the measured data, despite lying on an inherently non-linear manifold. This allows us to
efficiently interpolate and extrapolate measured BRDFs, and to render directly from the manifold representation. To do so, we
rely on a Gaussian process latent variable model of reflectance. We demonstrate the utility of our representation in the context of
both high-performance and offline rendering with materials interpolated from real-world captured BRDFs [MPBM03b].

1 Introduction

Realistic image synthesis relies on having accurate representations
of the reflective characteristics of real-world surfaces. A powerful
method for obtaining this information is to acquire the bidirectional

reflectance distribution function (BRDF) profiles directly from real-
world materials. To do so typically requires capturing raw data and
exhaustively tabulating reflectance from many sampled incident
and reflected directions. While the dimensionality of the space of
BRDFs spanned by these measurements can be arbitrarily large

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



C. Soler, K. Subr & D.Nowrouzezahrai / A Versatile Parameterization for Measured Material Manifolds

(e.g. four million for the MERL dataset), it has been shown that the
subspace of real-world BRDFs is of substantially lower dimensional-
ity [MPBM03b]. Direct exploration of this subspace, which we call
the manifold of BRDFs, would lead to many exciting applications:
real-world BRDF interpolation for material design, BRDF infer-
ence, and data completion for partially-observed/sampled BRDFs,
to name a few.

Previous approaches apply dimensionality reduction techniques
to BRDF data. Linear dimensionality reduction (i.e. variants of
PCA) require high-dimensional linear spaces (e.g., about 45D for
the MERL dataset) in order to faithfully reproduce measured ma-
terials. The same applies to dictionary-based BRDFs representa-
tions [XNY∗16, ?]. When the dimension is low (namely 2 to 5
dimensions) neither kernel approximations [MPBM03b] nor projec-
tions on linear basis functions [SBN15] are sufficiently accurate for
rendering applications. This is unfortunate since linear approxima-
tions often yield fast rendering techniques. Standard methods for
non-linear dimensionality reduction are not very useful for reason-
ing about the BRDF manifold: these methods exploit local relations,
and so they tend to behave poorly at low sampling rates (i.e. few
measured BRDFs) and/or noisy measurements – two properties of
modern BRDF datasets. Charting methods have been used to learn
tighter (i.e. 10D) non-linear BRDF manifolds [MPBM03b], but
these approaches require complex algorithms for obtaining extrapo-
lated BRDFs. Euclidean embeddings can provide a latent space that
is useful for studying relationships between BRDFs, such as percep-
tual distances [WAKB09], but they do not permit interpolation and
exploration within the embedded space.

One common approach to addressing these shortcomings is to
fit non-linear low-dimensional analytic models to the acquired
reflectance data and to interpolate directly in the parametric
space [NDM05, WMLT07, BSH12, HP17]. Although identifying
such models is non-trivial, their parameterizations naturally permit
interpolation and also lead to low-dimensional manifolds: dimen-
sionality is pre-determined by the model’s degrees of freedom. Fit-
ting parametric models can however prove numerically unstable,
especially in the presence of multimodal reflectance profiles com-
mon to real-world materials. Another important drawback is that
these fits provide no smoothness guarantees in the mapping from the
parametric space to the measured BRDFs. This causes interpolated
BRDFs to suffer from abrupt appearance transitions, even when in-
terpolating between two similar BRDFs. Finally, realistic rendering
of images with parametric BRDFs still requires costly numerical
integration techniques for estimating the rendering (or reflection)
equation; typically, these methods propose and rely on importance
sampling schemes to accelerate this numerical integration, but the
integration task remains necessary. This is summarized in Figure 2.

We devise a manifold that spans measured reflectance using a
Gaussian Process Latent Variable Model (GPLVM). Our parameteri-
zation naturally yields a non-linear manifold that exactly interpolates
the input (measured) data. Moreover, as the GPLVM maintains a
linear relationship between training and interpolated samples, we
can quickly extrapolate BRDFs over the non-linear manifold. We
identify and leverage ties in the areas of dimensionality reduction,
material appearance and light transport, to allow us to:

1. Adapt GPLVM, a well-known probabilistic dimensionality re-

Method NL DR Stab. Map Intp. Eff.
PCA no poor good H→ L no good
Dict. no none good L→ H yes good

Kern. PCA yes good good H→ L no OK
MDS yes good good H→ L N/A OK

Isomap yes good good H→ L N/A poor
Param. yes good poor L→ H no good

Ours yes good yes L→ H yes good

Figure 2: Summary of dimensionality reduction approaches for
measured BRDFs. LEGEND: Parametric (Param.), ability to capture
non-linearity (NL), effectiveness of dimensionality reduction (DR),
stability (Stab.), mapping from low-to-high dimensions (L→ H),
interpolation capability (Intp.) and measurement efficiency (Eff.).

duction tool, to the problem of optimizing for a low-dimensional
latent space that maps to the space to measured BRDFs,

2. Use our mapping to efficiently traverse points on the non-linear
manifold of acquired BRDFs using a simple linear interpolation
of the original measured BRDFs data, and

3. Analyze the stability and physical correctness of interpo-
lated BRDFs, and assess the plausibility of the interpo-
lated/extrapolated BRDFs.

We demonstrate the utility of our BRDF manifold on interactive
rendering and approximate global illumination applications.

2 Related Work

BRDFs maps pairs of directions to real values: ρ : ωi×ωr→ℜ, for
each color channel. The BRDF is the ratio of the reflected radiance
towards ωr to the differential radiance from light incident from ωi,
at a shading point s on a surface. The area of material appearance
comprises over four decades of prior art, and we refer readers to
comprehensive surveys on the measurement, modelling, analysis
and rendering of materials [DRS08, WdBKK15, GGG∗16]. Here,
we instead focus on works that are most relevant to our problem.

Measurement and modelling acquired BRDFs: Marschner and
colleagues [MWL∗99] measure real-world materials at many in-
cident and reflected directions, sampled over the 4D domain. Ma-
tusik et al.’s dataset includes 100 materials, each sampled with
four million direction pairs [MPBM03b]. The size of these datasets
has motivated more compact representations that trade accuracy
for size, such as factorized tabulations [SM02], matrix decomposi-
tions [KM99], non-negative matrix factorisations [LRR04], inverse
shade trees [LBAD∗06b] and Tucker decompositions [BOK11]. Re-
cent methods capture material properties with impressively few
measurements [GVPG15, AAL16, NLW∗16, XNY∗16], however no
large datasets have been created using them.

Analysis: BRDF analysis has been approached from roughly two
directions: basis function approximations for individual BRDFs,
and the larger study of the entire space of BRDFs. In the for-
mer, bases used during analysis include the spherical harmonics
(SH) [WAT92], spherical wavelets [SS95], clustering-based empiri-
cal bases [LKG∗03], constrained basis decompositions [LBAD∗06b]
and rotated zonal harmonics [SBN15]. When only partial/sparse
observations of a single BRDF are available, Gaussian Process (GP)

c© 2018 The Author(s)
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regression has proven effective for BRDF completion [HLW15]
by interpolating a single BRDF in angular space (whereas we in-
terpolate accross BRDFs in a ad-hoc latent space). Radiometric
studies of the space of BRDFs apply dimensionality reduction tools
directly on the measured data. Linear approaches are unable to
identify sufficiently small subspaces [MPBM03b] to facilitate prac-
tical exploration, whereas many non-linear dimensionality reduc-
tion methods (e.g., MDS, ISoMap, LLE) yield compact embed-
dings without explicitly providing mappings between the measured
space and the manifold. Alternatively, one can fit parametric mod-
els [NDM05,AP07,BSH12,LKYU12] to the captured data to model
variation across measured BRDFs, however fitting can become nu-
merically unstable, especially for materials with multimodal re-
flectance distributions.

Perceptual space of BRDFs: Several works aim to understand the
perceptual properties of BRDFs, often driven by user studies. This
has led to reparameterizations of specific BRDFs with respect to per-
ceptual metrics, as well as identifying semantically meaningful axes
of variation for the BRDF manifold (e.g., color and gloss) [PFG00].
Furthermore, correspondences between parametric and perceptual
spaces have also been formed [WM01]. Wills et al. [WAKB09] show
that linear interpolation in BRDF space does not result in a linear
blend of materials in the perceptual space. They obtain an embed-
ding of BRDFs using MDS, rendering images by traversing their
embedding. Since MDS does not provide a mapping between the
two spaces, their method is unable to interpolate materials within the
embedded space. A recent technique identified an intuitive control
space for materials [SGM∗16], allowing for impressive exploration
of the manifold of acquired materials from a perceptually semantic
perspective (see Section 6).

Rendering: Although we focus on parameterizing the space of
measured BRDFs, we briefly discuss the state of the art in rendering
acquired materials since our model also enables rapid rendering.
Many methods can directly render acquired materials, from accurate
(but slow) physically-based methods to coarser (but faster) approxi-
mations. For interactive rendering, the compression and representa-
tion of an acquired BRDF is usually tightly coupled to a specialized
rendering algorithm. View-light factorization using SVD [KM99]
offers a simple rendering algorithm for a specific BRDF, and trilin-
ear tensor factorization extensions [SZC∗07] improve compression
and allow for interactive exploration BRDFs. By projecting BRDFs
onto SH, shading can be efficiently reformulated as a scalar product
in frequency space for arbitrary 4D BRDFs [SKS02, KSS02]. More
recently, an efficient spherical filtering approach using isotropic
spherical decompositions [SBN15] has enabled more accurate inter-
active rendering solutions for arbitrary BRDFs. We demonstrate the
versatility of our BRDF manifold by building atop this ISD to enable
efficient real-time rendering of interpolated materials. Some of the
aforementioned techniques treat visibility under certain constraints,
such as static view, geometry, or with costly precomputed represen-
tations. Sun et al [SZC∗07] additionally treat global illumination
using precomputed transfer tensors, and a large body of work on pre-
computed rendering [Ram09] demonstrate methods that trade speed
for accuracy in this domain. Xu et al [XCM∗14] render 1-bounce
interreflections, however it is unclear how their spherical-Gaussian
representation can be used to realistically render measured BRDFs.

2.1 A Overview of Gaussian Processes

A Gaussian process (GP) is a collection of random variables, any
finite number of which stem from a joint Gaussian distribution. If the
random values represent the evaluations of some function f : X→ℜ,
their associated GP implicitly models distributions over the space
of functions. Here, we overview how GPs can be used to perform
regression (interpolation) and to optimise low-dimensional latent
variables. We limit our review of GPs to the extent that is necessary
for understanding our problem, and we refer interested readers to a
comprehensive reference on this topic [RW06].

Regression: Our goal is to predict the value z∗ at arbitrary locations
x∗ ∈ X given pairs of observed values (xi,zi) at training locations
xi ∈ X , where i = 0,1, ..N−1. By definition, if we denote the vector
of values z = [z0,z1, ...,zN−1]

ᵀ of the Gaussian process, then it fol-
lows that z∼N (µz, K) where µz and K are the mean and covariance
of the Gaussian distribution. The elements of the covariance matrix
are Ki j = c(xi,x j) where c : X×X →ℜ is a covariance function of
the users specification. Here, c can be thought of as a kernel, and it
is key to modeling the non-linearity of the underlying function. Due
to the consistency (or marginalisation) property of the GPs, “slicing”
a GP along any 1D subspace of coordinates results in a 1D Gaussian
distribution. So, z∗ ∼N (µz∗, σ2

z∗) with mean and variance that can
be shown to satisfy [RW06]:

µz∗ = kᵀ
∗ K−1 z, (1)

σ
2
z∗ = c(x∗,x∗) − kᵀ

∗K−1k∗ and (2)

k∗ = [c(x0,x∗), c(x1,x∗), ..., c(xN−1,x∗)]ᵀ. (3)

Interpolation is formulated as a prediction of output values µz∗
which requires: evaluating k∗, the input covariance function between
each training (observed) and test location, solving for K−1z (a
linear system of dimension N), and computing an inner product
of two vectors. This method models non-linearities by virtue of
the non-linearity of the covariance function. The above may be
extended from the case of a single output variable z (resp. zi) to
a d-dimensional output, where the function being learned is f :
X → ℜd , by simply replacing the original observation vector z
by an observation matrix Z in Eq. 1, each column of which is
independently extrapolated (step 3 in fig. 3).

Latent Variable Model (LVM): In our situation, zi ∈ℜd are ob-
served but the corresponding xi are unknown: e.g., each zi could
have d = 4 million measurements of a single acquired BRDF. Al-
though xi ∈ℜq may be chosen arbitrarily and associated with cor-
responding zi, the interpolation at some x∗ ∈ℜq is not expected to
be useful since K (the covariance function evaluated at all-pairs of
the chosen xi) is implicitly dependent on the arbitrarily chosen xi.
Although the “kernel trick” may be used in conjunction with PCA
for learning non-linear mappings from observed to latent variables,
they are not easily invertible. For our application of exploring the
manifold of BRDFs, we seek a dual of kernel PCA, which learns
the mapping from the latent space to the space of measurements
(rather than the other way around). GPLVM [Law05] achieves this
by optimizing the likelihood of the latent variables xi given the
measured data, under a GP prior on the mapping (a given covariance
function). The non-linearity in the mapping is governed by the co-
variance function. A key property that we exploit in our work is that
the interpolations remain linear with respect to the observations.

c© 2018 The Author(s)
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2D latent space

observed 3D samples

predict interpolate

1

23

optimise

Figure 3: Illustration of a 2D latent space (grey surface) of 64 3D
measurements (red points); so N = 64, d = 3 and q = 2. Also shown
are the latent variables associated with the measurements (grey dot),
the interpolated latent variable (green dot) and the interpolated
measurement (purple dot).

Linearity of interpolation using GPLVM: Let ZN×d be the ma-
trix of N observations stacked so that the ith row is zᵀi and the jth

column is a vector composed of the jth dimensional components
of all N observations. The output of GPLVM is N optimised q-
dimensional latent variables xi. Then, the problem of traversing the
manifold (latent space) is identical to regression. Given some traver-
sal location x∗, the goal is to predict the corresponding extrapolated
observation z∗ (akin to Eq. 1)

zᵀ∗ = bᵀ
x∗ Z (4)

where bᵀ
x∗ = kᵀ

∗ K−1. Although bx∗ is non-linear with respect to the
latent variables xi, the extrapolated data is still linear with respect to
the observed data Z.

Properties: To summarize, we choose the latent space generated by
GPLVM because it offers the following key properties: non-linear
mapping from an optimized, low-dimensional latent space to high-
dimensional observations; linearity with respect to observations;
guaranteed interpolation of observed data regardless of the choice of
latent variables xi (if x∗ = xi, then Eq.4 yields z∗ = zi); continuity
in the interpolated observations as long as the covariance function is
continuous; flexibility in the choice of the dimension of the latent
variable space.

3 Parameterizing the BRDF Manifold

We learn the manifold of acquired BRDFs using GPLVM (reviewed
in sec. 2.1). The MERL dataset [MPBM03b] contains N = 100
materials, each with d = 4M (four million) measurements. Each
measurement records a scalar measurement of the reflectance for
a specific pair of incident and reflected directions. Thus, the size
of our observation matrix Z is 100× 4M. The whole training set
is first centered at 0, so that extrapolated values far from the input
data converge to the average of all input BRDFs (instead of 0). We
calculate optimized latent variables, obtaining a manifold where the
spacing between latent variables is in accordance to the variation
of the data. The output of this step is a matrix X of size 100× q
whose rows are the latent variables xᵀi . Best results are obtained

5D latent spaceGPLVM4M dimensional space

latent variables
interpolated l.v.

BRDF measurements
interpolated BRDF

low
medium

high
interp. error

predict

dim. reduction

Figure 4: We use GPLVM to identify a low-dimensional non-linear
manifold on which latent variables of the measured BRDF values
lie. We interpolate the latent variables and map the interpolated
vector to the data space to obtain interpolated BRDF z∗ which is a
linear combination of the observations zi.

with q = 5 for the full MERL database although q = 2 used in our
video, for easy illustration, yields excellent results. Smaller sets of
similar materials are very well approximated with q = 2.

Choice of covariance function: We use a shifted squared-
exponential function (widely used in the GP literature),

c(x,x′) = µδ(x,x′)+ e−‖x−x′‖2/2`2 , (5)

where ` and µ are hyperparameters that correspond to the character-
istic length scale and noise-filtering parameter respectively. Since
the expected number of level-zero upcrossings for a 1D stationnary
GP with this covariance function is (2π`)−1, a high value for `
leads to a smoother function (See e.g. [RW06] chapter 4). A small
value for µ (10−5) significantly improves numerical stability when
inverting K at the cost of introducing a negligible discontinuity in
the interpolant. We choose this covariance function because of its
smoothness and local support, which translates into both smooth
transitions across observed BRDFs (see sec. 4.1 for detailed dis-
cussion) and limited and controllable local influence of neighbor
BRDFs.

Optimization: We obtain optimised latent variables {xi}, by max-
imising the log-likelihood of the GP for a fixed choice of ` and µ:

L =−d
2

log |K|− 1
2

tr
(

K−1ZZT
)

(6)

We perform this optimisation using direct local search [HJ61] which
offers an efficient calculation scheme in our case since this only
requires evaluating the cost function L once per variable xi. We
maintain both the inverse and the determinant while changing each
row and column of K using the Sherman-Morisson [PTVF07] and
matrix determinant [Har97] formulas twice each. Figure 5 shows
the evolution of the log-likelihood, over successive iterations, when
fitting the full MERL database with q= 2. The corresponding map is
displayed in Figure 10. We do not perform complicated optimisation
methods such as scaled conjugate gradients (gradients of the log-
likelihood may be calculated using the chain rule), even though the
latent variables can be jointly optimised with the hyperparameter,
because the computational complexity of gradient-based methods
scales cubically with N. We initialise the latent variables using
truncated linear PCA. See sec. 6 for a discussion of these choices.

c© 2018 The Author(s)
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 1e+07

 1e+08

 0  10  20  30  40  50  60

Log likelihood cost-function (e.g. -L in Eq.6)

Figure 5: Convergence of the log-likelyhood when fitting the full
MERL database using a latent space of dimension 2

Note that in this setup, ` can be chosen arbitrarily, since simultane-
ously scaling ` and the latent points xi will keep the covariance and
the log-likelyhood unchanged. Therefore we set `= 1. The second
hyperparameter µ is only needed to maintain K well conditioned
and is set to µ = 10−4 in all our experiments.

Interpolating materials: Given the latent variables xi from the
previous step and a new location x∗, we calculate the interpolated
BRDF (observed) using eq. 4. The choice of x∗ depends on the
application for which the BRDF manifold needs to be traversed. For
interactive exploration of the space of acquired BRDFs, we either
limit ourselves to 2D latent spaces or display 2D slices of 5D latent
spaces along with their corresponding projections of xi. The user
then manually selects and drags a point within this subspace as x∗
with real-time interpolation of the BRDFs. Further, we also tested
interpolations between two chosen BRDFs along the 1D trajectory
between them in the latent space.

4 Evaluation

4.1 Behavior of the interpolant

In this section, we bound the variations of interpolated data z∗
when our mapping is applied to x∗ in latent space. Since we have
already established that z∗ interpolates measured data zi when x∗ =
xi, we study the interpolant at other regions in the latent space.
Equation 4 suggests that the quality of the interpolant depends on
the covariance function and the inverted matrix K−1. More precisely,
the behavior of the interpolant is dictated by two factors: the chosen
hyperparameters (` in our case) as well as the particular choice of
xi.

We derived, via a first order approximation of the Gaussian co-
variance functions, that for every choice of x∗ in the latent space
the mapping z∗ can be connected to at least one of the training data
points using (See proof in supplementary material):

‖z∗− z j‖ ≤ e−1/2√2N
`

κ(K) ‖Z‖ ‖x∗−x j‖. (7)

Here z j (where j = β(x∗) depends on x∗) is the latent variable
associated with one of the input measurements (most of the time
corresponding to the closest point in latent space), ‖.‖ the L2 norm
on vectors (Frobenius norm on matrices) and κ(K) the condition
number of K. Although we also provide a tightened bound using a

latent space

max/min envelopes

(a) (b) (c)

bound (eq.7)

Figure 6: Illustration of the bound on the behavior of the inter-
polant derived using a first order approximation.

second order approximation, eq. 7 already shows that it is desirable
to optimize the ratio between the density of latent variables and
hyperparameter `. We do this by keeping ` fixed and optimizing the
log-likelihood of the latent variables given the measured data under
the GP prior. The reason for this choice is that rhs of Equation 6
reduces the condition number since the eigenvalues of K are less
than 1.

The derived bound can be verified to be zero when x∗ is one of xi
since β(xi) = i. Another way to understand the role of j = β(x∗) in
Equation 7 is that the interpolant stays close to the value at training
data points in proportion ‖Z|κ(K)/`. Equation 7 also suggests that
choosing ` to be very small or very large causes the maximum
deviation to worsen. The bound can be tightened for the special case
that ` approaches zero. In this case, which is of purely academic
interest, the interpolated BRDF is the average of all measurements
everywhere in the domain except very close to the xi (See Fig.6). We
also show in the supplemental document that a much tighter bound
of the same nature can be derived if considering the next derivatives
of the covariance function.

4.2 Physical correctness

Since the interpolated data is linear in the measurement matrix Z
(eq. 4), any properties defined using linear operators of the measured
data are preserved after mapping from x∗. Therefore, the interpolated
BRDF (1) obeys Helmholtz reciprocity; (2) implicitly interpolates
albedo and (3) applies to reflectivity measurements along a fixed
direction of incidence.

The Gaussian process does not provide a theoretical guarrantee
that the albedo of interpolated BRDFs will be limited to [0,1]. How-
ever, the optimization of the log-likelyhood inherently limits the
oscillations of the interpolant in between observed data because it
tends to keep κ(K) as small as possible, tightenning the bound in
Eq. 7. To illustrate this, we visualize the albedo of the interpolated
BRDFs in the extreme case where we learned a 2D manifold of the
entire MERL database. Figure 7 shows a portion of the manifold (for
clarity) along with iso-lines of albedo. We define albedo as the ratio
between the total amount of radiance reflected by a material under a
uniform incident distribution and the irradiance of that distribution:

a(x) =
1
π

∫
Ω

∫
Ω

fx(ωi,ωo)(ωi.n) dωi dωo,

where fx is the interpolated brdf obtained by mapping x into the
observation space, n is the vertical axis, and Ω the upper hemisphere
of incident directions. Every pixel in figure 7 corresponds to the
albedo of the interpolated BRDF at the corresponding 2D point of
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the BRDF manifold. The albedo can be observed to remain stable
in the entire domain. For latent points x∗ that are far away from the
training data, the interpolated BRDF z∗ approaches the average of
all training data thus preventing unexpected oscillations.

Figure 7: Zoomed region of a 2D manifold of MERL BRDFs juxta-
posed on a map of the of the interpolated BRDFs and its iso-curves.
The albedo of our interpolated model is observed to be limited to
[0,1] and it smoothly interpolates the albedo of the input materials.

Unlike kernel PCA (or any linear decomposition over a set of
basis functions), our method linearly interpolates training data. Re-
gardless of the dimensionality of the latent space, our method will
always faithfully reproduce the measured (training) BRDF data.
Thus, even with a manifold of dimension 2, we can perfectly in-
terpolate the whole MERL database. A PCA approximation of the
same data with subspaces up to dimension 40 are unable to accu-
rately reproduce measured (input) BRDFs; a minimum of 50 to 60
eigenfunctions [MPBM03b] are required for most materials in this
database.

PCA, dim. 20 PCA, dim. 40 Ours, dim. 2 MERL data

Figure 8: Comparison between our technique and the kernel trick
method when it comes to reproducing the input data for a material in
the MERL database (color-changing-paint3). Our method
always reproduces the training materials to the last bit whatever the
dimension of the parameter space, which is not the case for kernel
approximations (here done with PCA at dimensions 20 and 40).

4.3 Plausibility of interpolated BRDFs

Our choice of the manifold is not perceptually motivated. Although
our main contribution is to present objective and empirical benefits
of the parameterization, we also assessed our interpolated BRDFs
using simple qualitative as well as quantitative experiments. The
accompanying video shows several objects rendered in real-time
with interpolated BRDFs corresponding to various points selected
interactively in our manifold. These experiments are consistent
with the behavior that we observed, that the resulting materials
remain plausible everywhere in the latent space. Figure 1 shows
images rendered using 11 materials chosen from randomly sampled
points in the latent space and 4 images corresponding to actual

BRDFs that were present in the MERL database. It is not obvious
that the 4 measured materials are: row 1, column 4 (two-layer
silver); row 2, column 1 (chrome-steel); row 2, column 3
(gold-paint); and row 3, column 2 (brass). Although a proper
evaluation of perceptual correctness would require a thorough user
study, which is beyond the scope of this work, this experiment serves
as another example that suggests that our interpolated materials are
plausible.

To study the behaviour of the interpolated BRDFs quantitatively,
we chose interpolating paths in our latent space between arbitrary
pairs of BRDFs and divided them into 20 equal intervals. At each
of these 20 keypoints, we computed the perceptual distance [PR12]
of the interpolated BRDF from the source and destination BRDFs.
Figure 9 shows three examples: (a) blue-metallic-paint to dark-
blue-paint; (b) teflon to silver-paint; and (c) black-oxidized-steel to
color-changing-paint3. The blue curves and red curves are distances
of the interpolated BRDfs to the source (BRDF A) and destination
(BRDF B), and ideal (perceptually uniform) behavior is shown
using dashed lines. Figure 9(c) is affected by the spectral behavior
of color-changing-paint3.
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Figure 9: Perceptual distances [PR12] (Y-axis) between interpo-
lated materials (data points) at regular distances in our latent space
(dimension 5), between BRDF A (blue curve) and BRDF B (red
curve). The X- and Y- axes are normalized by the distance between
A and B and the perceptual distance between BRDF A and BRDF B
respectively.

4.4 Computation time

The computational complexity of a single step of fitting the latent
variables is O(N2). For the full MERL database, the total fitting
time on a single core of an Intel i7 processor is 122 seconds. For
interpolation, we precompute and store K−1Z for the training data.
Therefore computing an interpolated BRDF amounts to calculating
the correlation vector k∗ (N evaluations of the covariance function)
followed by a matrix-vector multiplication K−1Z. Together this
takes less than 1 second on a single CPU. For rendering, we instead
interpolate data of much smaller size (such as zonal harmonic co-
efficients of the BRDF as described in section 5.1) for which the
computation time is negligible.

5 Use cases

In this section we demonstrate the utility of our BRDF manifold pa-
rameterisation in different scenarios. We show that our extrapolation
method integrates well with existing rendering techniques.
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5.1 Interactive BRDF manifold exploration

Estimation of the reflectance integral, which describes the radiance
arriving from a point r along a direction ωo towards the centre of
projection through pixel p, forms the crux of the rendering:

I(p,ωo) =
∫
S 2

L(r,ω) ρ(r,ωo,ω) v(r,ω) max(0,ω.n) dω , (8)

where L(r,ω) is the incident radiance at r along ω, ρ is the BRDF
at r, v(r,ω) is the visibility of the source of L at r along direction ω

and n is the normal at r.

Fixed view: For a given ωo, rendering a pixel p with a BRDF from
the manifold can therefore be computed as

I∗(p) =
N

∑
i=1

bi
x∗ Ii(p) (9)

due to the linearity of Equation 8 wrt ρ and because any material
generated by our manifold parameterization is a linear combination
of the N measured BRDFs (eq. 4): ρ∗ = ∑

N
i=1 bi

x∗ ρi, where Ii is
the image rendered with training material ρi. For some applications,
such as material design, pre-rendered images (one image for BRDF
in the training set) may be used to explore the interpolated appear-
ances on the BRDF manifold without recalculating the reflectance
integral for a fixed view. Images using interpolated materials can be
obtained by linear interpolation of the pre-rendered images using
bx∗ as coefficients.

Dynamic view/geometry/lighting: Using the above argument, any
algorithm that expresses the BRDF (and hence the image itself) by
projection onto a linear basis can be adapted to use our interpolated
BRDF with minimal implementational changes. We demonstrate this
using the example of a recent algorithm [SBN15] which expresses
the BRDF as a sum of rotated zonal harmonics (RZH) – special
spherical harmonics (SH) that are invariant to rotations through a
particular fixed axis. Their work exploits the property that a statically
chosen set of (lmax +1)2 ZH along 2lmax +1 fixed axes am, where
lmax is the degree, together form a basis that exactly spans the
space of SH. Using this, they compute the shading equation in
real time for large values of lmax. For directional (distant) lighting,
where L(.,ω) = E(ω) (temporarily ignoring the visibility term for
simplicity), they derived the reflectance equation

I(p,ω) =
lmax

∑
l=0

l

∑
m=−l

(E⊗Y 0
l )(R−1

n am) λ
m
l (R

−1
n ωo). (10)

Rn is a rotation that maps global into local directional coordinates
so that the up direction is aligned with the shading normal n, E⊗
Y 0

l denotes spherical convolution of the illumination and zonal
harmonic Y 0

l , and λm
l are coefficients of the BRDF projected onto

rotated ZH. Because λm
l linearly depends on the BRDF, there exists

a constant matrix Pa (that depends only on directions {am}), so
that the vector Λ

ᵀ
i of the (lmax + 1)2 zonal harmonic coefficients

associated with reflectance ρi is Λ
ᵀ
i = zᵀi Pa. The interpolated ZH

coefficients corresponding to ρ∗ are consequently

Λ
ᵀ
∗ = zᵀ∗Pa = bᵀ

x∗ Z Pa = bᵀ
x∗ Λ (11)

where the matrix Λ is formed by stacking the Λ
ᵀ
i as its rows. So

Λ∗ can be computed without the need for explicitly determining

Pa. Λ, which is used as Z in Eq.4, is N× (lmax +1)2. Given that Λ∗
is the set of ZH coefficients for the interpolated material, we use
the shader of Soler et al. [SBN15] without any implementational
changes by simply providing it with Λ∗ for real-time rendering of the
interpolated material. Due to this simplicity, our interpolation can
be used with either variant of their real-time shader: static geometry
with the visibility term or dynamic geometry but without visibility.
This technique was used to display the dragons in Figure 10 at 25
fps (See also our accompanying video for an interactive example)
using a 2D parameterization of the manifold from the full MERL
data set [MPBM03b].

5.2 Real-time material editing with global illumination

Let r be the point of last bounce to the eye, located anywhere in a
scene which contains an object whose material ρ we wish to modify.
We separate the paths of light arriving at r into two classes L(r,ω) =
L1−(r,ω) + L2+(r,ω) based on whether the paths bounce at most
once (L1−) on ρ or twice or more (L2+) as depicted in figure 11.
Since L1− contains paths with at most one interaction involving
ρ, its contribution to L(r,ωo) is linear (affine, to be precise) in ρ.
Substituting this in eq. 8 results in a separation of the image I, where
the material to be modified is ρ, into I = I1−+ I2+ where I1− is an
image that is entirely affine in ρ and I2+ contains the remainder of
the energy. Due to this linearity, by construction,

I1−
i (p,ω) = T zi (12)

where T corresponds to a non-conventional form of the transport
matrix. Rather than expressing the radiance at the image plane
through linear transport from the light source, eq. 12 represents the
image as a linear combination of the measured 4D reflectance data
for light bouncing at most once on ρi. T includes information about
the geometry and lighting in the scene. Note that this is different
from direct reflection because T includes multibounce paths to the
exception of paths that contain more than 1 reflection off the surface
with the changed material. Here again, leveraging linearity, the
image I1−

∗ where ρ is replaced with ρ∗ is obtained by interpolating
pre-rendered images:

I1−
∗ (p,ω) =

N

∑
i=1

bi
x∗ I1−

i (p,ω). (13)

In practice we expect L2+ � L1−, since the measure of multiple-
bounce paths for which more than one of the bounces on ρ is ex-
pected to be small. We observe that applying this interpolation to
calculate I∗ directly rather than I0

∗ produces plausible results. A
measurement of the approximation error is shown in Figure 13.

Further, figure 12 visualizes screenshots from a live session where
the user interpolates in the manifold between two BRDFs from
the training set. The images using interpolated materials (shown
alongside) are obtained in real time by blending images that were
pre-rendered using training data (measured materials) with global
illumination. Interpolation coefficients are computed in real time
and applied to the precomputed images, resulting in blended images
that are excellent approximations of images obtained by solving for
global illumination with the interpolated material.
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Figure 10: Real-time exploration of our BRDF manifold. 3 materials (circle points) are chosen manually, in the vicinity of blue-acrylic,
by clicking in the 2D latent space (top right). The latent variables were optimised using all 100 materials of the MERL database. Our proposed
construction of the BRDF manifold lends itself to real-time rendering (25 fps) using interpolated materials along with all combinations of
dynamic geometry, view points and lighting (see sec. 5.1) using zonal harmonics up to L = 40 [SBN15]. The slices of the interpolated BRDFs
are also visualised. Please see the accompanying video for a live demonstration.

object with 
material

eye

light

Figure 11: An illustration of multi-bounce paths contributing to the
reflectance integral at a point r on a material ρi which we wish to
modify. We seggregate contributions to L(r,ω), the radiance along
one incident direction ω at r, into L0 (green) and L1+ (red) based
on whether the paths contain a point on object with ρi before arrival
(!) at r or not respectively: L(r,ω) = L0(r,ω) + L1+(r,ω).

5.3 Importance sampling

Although the above use cases do not require numerical integration,
the ability to draw samples distributed according to 2D slices of
BRDF may be useful for general rendering approaches that wish to
use our representation of the BRDF manifold. There are multiple
ways of importance sampling from our interpolated BRDFs. The
straightforward way would be to exploit linearity and interpolate
precomputed cumulative distribution functions (CDFs) associated
with each of the materials. The CDF of the interpolated BRDF slice
is easily computed on-the-fly. This method, although straightfor-
ward to implement, would introduce the cost of numerical inversion
of the CDF while generating samples. Some renderers generate im-
portance samples by first fitting parametric models (with prescribed
importance sampling algorithms) to the acquired BRDFs. In that
case, the parameters for each zi could be set as the latent variables
xi. Instead of generating optimised latent variables we would then
optimise the hyperparameters. The resulting x∗ would correspond to
the parameters for the interpolated BRDF and importance sampling
could be performed as prescribed by the chosen parametric model.

6 Discussion

Comparison to BRDF interpolation methods: Existing point-to-
point BRDF interpolation methods [BvdPPH11] are excellent at
interpolating between pairs of materials. However they do not pro-
vide a full parameterization of the BRDF manifold, which makes
it impossible to explore the dataset outside the "optimal path" com-
puted by the interpolation method.

Other work using GPs: GPs are popular tools that have been
widely used. As explained in sec. 2 GPs have been explored for
regression to complete missing BRDF data [HLW15] for a sin-
gle BRDF. Georgoulis used GPs to overcome the problem of ill-
posedness while performing BRDF inference [GVPG15], by work-
ing in the (much smaller) latent space. In this paper, we exploit the
linearity of the interpolated variables with respect to the observed
data for computer graphics applications.

Editing multiple materials simultaneously: Our discussion
through the paper has been focused on modifying one of the BRDFs
in the scene. This trivially generalises to real-time rendering of
multiple materials using ZH, for materials either on the same mani-
fold or on different manifolds. For interpolation of pre-rendered GI
images, editing p materials requires a multi-linear interpolation of
dimension p, applying Equation 13 to compute intermediate points.

Anisotropic materials: Assuming that the measurement spaces are
consistent over the different measured data, there is no fundamental
difference in using anisotropic BRDFs. A larger set of measure-
ments would simply increase the size of vectors in Eq.4 and our
approach would consume more larger computational resources. Both
use-cases, the real-time applications as well as GI interpolations,
naturally extend to anisotropic BRDFs. The consequences of the
larger memory footprint of measurements is not a problem for the
former since the training data is never stored on the GPU; only the
ZH coefficients of the interpolated BRDF are stored.

Colored materials: There is no trivial way to separate
spectral behavior of measured BRDFs. Materials such as
color-changing-paint3, for instance, do not have a mean-
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Figure 12: Snapshots captured during a live material editing session where the material on the teapot was continuously interpolated between
MERL chrome and silver-paint, in a 5D latent space. Slices of the corresponding BRDFs are displayed as insets. Only the first (top
left) and last (bottom right) images were pre-rendered with full global illumination using Mitsuba [Jak10]. Other images were computed in
real-time using linear interpolation of pre-rendered images using our technique to compute blending weights. Note the consistent change
in the reflection of the teapot on the table. The bigger dot corresponds to the material used for the error test in Figure 13. Note: the albedo
displayed is for the 2D slice and therefore may not correspond to the materials which white dots are obtained after projection in 2D. Please
see the accopanying video for more. Note to reviewers: In this figure, and Fig.13 show white squares on MacOS, and need Acrobat to display
correctly.

Figure 13: Comparison of our blended image (left), against a
reference (right) computed with global illumination (using the cor-
responding interpolated reflectance data) for the midpoint along the
path shown in Fig.12. The differences, due to the absence of L2+
paths in our solution, are barely perceivable (and well below the
numerical convergence error between the two images in the scaled
difference inset).

ingful average color. We concatenate all three channels into the
observation (data) matrix Z, thus tripling the dimensionality of mea-
surements. We experimented with both RGB and CIE Lab without
significant differences and therefore used concatenated RGB mea-
surements for all experiments in this paper.

Use in material design: Our method inherently interpolates BRDFs
from the training database while retaining their physical properties
and perceptual aspects, producing very realistic results that we be-
lieve could easily fit material design. It is of course clear that the
interpolant will not "guess" accurate information about a missing
measured material that could not be expressed as a linear combina-
tion of the materials in the training data. Similarly, extrapolating far
from the training data points in an arbitrary direction will eventually
reproduce the average of the training data.

Since our goal is to identify the non-linear manifold of measured
data, we chose key-points for interpolated BRDFs arbitrarily with-

out addressing perceptual attributes. Recent work on exploring the
intuitive space of materials [SGM∗16] uses data from user-studies
to learn non-linear mappings from the top 5 principal components
to perceptually-meaningful attributes. They demonstrate impressive
applications such as artistic exploration of the space of plausible
materials. However, since their mapping to the perceptual attributes
is non-linear and their interpolated BRDFs are non-linear in the
measurements, their method does not lend itself to efficient render-
ing. We hope that our manifold will trigger future research towards
perceptually uniform traversal of measured BRDF manifolds.

Choice of dimensionality: While the training data is always repro-
duced exactly whatever the dimension of the latent space, consistent
interpolation of materials depend on whether the path between two
materials in latent space has other materials "nearby". While choos-
ing a low-dimensional space (e.g. 2D) is advantageous for interactive
editing, it also increases the probability of finding training points
near any chosen path. Latent point optimization will naturally try
to cluster materials that belong to a coherent class (e.g. metals),
with the benefit that interpolated materials will share some charac-
teristics of the materials at those nearby points. For the case where
the training data contains many different features (color, material
class, shininess,...), it is better to give enough dimensionality to the
optimizer to consistently cluster the input data. We advise to use
d = 5 for the entire MERL database.

Limitations: In some situations where the training data is noisy, it
might be desirable to use the low dimensionnality representation
to also “smooth” the input data. By construction, our manifold
approximation allows this, if using a non negligible parameter µ
in the covariance function of Equation 5. In this case however,
our derivations for stability (performed without µ) become very
conservative.
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7 Conclusion

We have presented a method for learning and traversing a non-linear
manifold of measured BRDFs. The input to our method is a set of
reflectivity measurements made at locations in the 4D domain of
BRDFs. The locations are obtained by densely sampling the space
composed of incident and exitant angles. First we obtain the map-
ping from the measurement space (d=4M) to a much smaller latent
space (q=2). For novel points in this latent space, obtained by inter-
polating the latent variables associated with the measured BRDFs,
we use the mapping to calculate the corresponding high-dimensional
point. The computed high-dimensional point corresponds to the vir-
tual measurements associated with the interpolated latent variable.
The key property of our method is that these virtual measurements
can be calculated as linear combinations of the measured data. We
combine this with existing techniques to enable real-time rendering
and fast blending of precomputed images with global illumination,
for objects with interpolated materials.

Although there is no guarranty that every possibly existing ma-
terial can be found in our manifold parameterisation, it is tempting
to use it to fit pictures of real word materials in the hope to "cap-
ture" the BRDF from a single image, or completing missing BRDF
measurements. A good image fit indeed is likely to produce a very
sensible candidate for the BRDF being displayed in the matched
picture.
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