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ABSTRACT

Constraints on cosmological parameters from large-scale structure have traditionally
been obtained from two-point statistics. However, non-linear structure formation ren-
ders these statistics insufficient in capturing the full information content available,
necessitating the measurement of higher-order moments to recover information which
would otherwise be lost. We construct quantities based on non-linear and non-local
transformations of weakly non-Gaussian fields that Gaussianize the full multivariate
distribution at a given order in perturbation theory. Our approach does not require
a model of the fields themselves and takes as input only the first few polyspectra,
which could be modelled or measured from simulations or data, making our method
particularly suited to observables lacking a robust perturbative description such as
the weak-lensing shear. We apply our method to simulated density fields, finding a
significantly reduced bispectrum and an enhanced correlation with the initial field.
We demonstrate that our method reconstructs a large proportion of the linear baryon
acoustic oscillations, improving the information content over the raw field by 35%.
We apply the transform to toy 21 cm intensity maps, showing that our method still
performs well in the presence of complications such as redshift-space distortions, beam
smoothing, pixel noise, and foreground subtraction. We discuss how this method might
provide a route to constructing a perturbative model of the fully non-Gaussian mul-
tivariate likelihood function.

Key words: cosmology: theory - gravitational lensing: weak - cosmology: observations
- methods: statistical

1 INTRODUCTION

Planned cosmological surveys will produce an abundance
of data which may be used to constrain cosmological mod-
els. In particular, surveys such as Euclid1, WFIRST2, the
Large Synoptic Survey Telescope3, the Square Kilometre Ar-
ray4, and the Dark Energy Spectroscopic Instrument5 aim
to make precise measurements of the properties of dark en-
ergy and other physics beyond the Standard Model, through
a combination of galaxy number counts, weak gravitational
lensing, and 21 cm intensity mapping.

In order to fully realize the potential of these probes, it

⋆ ahall@roe.ac.uk
1 http://sci.esa.int/euclid/
2 https://wfirst.gsfc.nasa.gov/
3 https://www.lsst.org/
4 http://skatelescope.org/
5 http://desi.lbl.gov/

is important to ensure that as much information as possible
is contained within statistics derived from the data. Mea-
surements of large-scale structure are usually made with
two-point statistics such as the power spectrum or corre-
lation function, but as the observables are generally non-
Gaussian distributed these quantities do not capture all the
available information. Instead, non-linear gravitational col-
lapse generates non-zero higher-order cumulants such as bis-
pectra and trispectra (Peebles 1980), as well as distinct sig-
natures in measures of topology such as the Minkowski func-
tionals (Platzöder & Buchert 1996; Wiegand & Eisenstein
2017). Ideally all these quantities should be measured by a
survey to maximize the information content on the cosmo-
logical parameters, but the high dimensionality of the prob-
lem and the difficulty of modelling their covariances renders
this an impractical task.

An alternative approach to capturing information con-
tained in the higher-order cumulants is provided by Gaus-
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2 Alex Hall and Alexander Mead

sianizing transforms. Typically, these involve either a local
transform of the observable at each point using a logarithm
or similar function (Neyrinck et al. 2009; Joachimi et al.
2011; McCullagh et al. 2013; Llinares & McCullagh 2017),
or remapping approaches which aim to undo non-linear
evolution (e.g. Eisenstein et al. 2007a; Zhu et al. 2016 for
galaxy surveys, Larsen et al. 2016 for cosmic microwave
background lensing, and Obuljen et al. 2017 for 21 cm
intensity mapping). Other approaches include iterative re-
construction (Nusser & Dekel 1992; Monaco & Efstathiou
1999; Kitaura & Angulo 2012), rank-order Gaussian-
ization (Weinberg 1992), clipping (Simpson et al.
2011), and wavelet transforms (Zhang et al. 2011;
Harnois-Déraps et al. 2013).

In this work we consider Gaussianization from a per-
turbative perspective by treating the first few non-Gaussian
moments as small quantities. Whilst this will inevitably re-
strict the range of scales on which our approach is valid, it
will give us a simple way to connect Gaussianization with
perturbative models for the fields themselves, and provides
a principled way to construct transforms without the use of
ad-hoc functions. Our aim is to Gaussianize the full mul-
tivariate distribution of the observable, which necessitates
the use of non-local transforms, i.e. transforms which mix
the field at different spatial locations. We will see that this
construction provides a generalization of the perturbative
local transform of Carron & Szapudi (2013).

The ultimate goal of Gaussianization is to enhance the
information content of power spectrum estimates by recov-
ering information contained in the higher-order moments. A
by-product of this is that the mean of these estimates should
be more linear, since there is strong evidence that the ini-
tial conditions for large-scale structure are Gaussian. Thus,
Gaussianization should both reduce error bars on power
spectrum estimates and allow for more straightforward mod-
elling of the signal6 .

In Section 2 we present the mathematical formalism of
our method and connect it cosmological fields. In Section 3
we apply our method to simulations of the dark matter den-
sity field and investigate its performance with a broad range
of diagnostics. In Section 4 we apply the method to toy
realizations of 21 cm maps, and we conclude in Section 5.
In Appendix A we provide an alternative derivation of our
transform based on the Edgeworth expansion.

2 GAUSSIANIZING TRANSFORMS

2.1 Polynomial expansion

In this section we derive general conditions on Gaus-
sianizing transforms using a perturbative approach follow-
ing McCullagh (1987). Let Xi be the ith element of a ran-
dom vector X having some weakly non-Gaussian distribu-

6 The caveat to this is that by focussing on cumulants we lose
sensitivity to information not contained in the moment hierar-
chy - the lognormal distribution for example cannot be entirely
expressed in terms of its cumulants (Coles & Jones 1991; Carron
2011). However the density field is not exactly lognormal, and
we restrict to large scales where the distribution is only weakly
non-Gaussian.

tion. Without loss of generality, we subtract off the mean
such that 〈Xi〉 = 0 and normalize by the covariance such
that 〈XiXj〉 = δij , where angle brackets denote expecta-
tions over the distribution of X and δij is the Kronecker
delta. We then introduce an order-counting parameter ǫ such
that 〈XiXjXk〉c = ǫκijk and 〈XiXjXkXm〉c = ǫ2κijkm

and similarly for higher moments, where 〈...〉c denotes the
fully-connected part or cumulant. The definition of weak
non-Gaussianity is then that ǫ ≪ 1. We denote with the
notation O(n) a quantity whose leading order ǫ-dependence
is ǫn, and by definition the objects κ are O(1) such that as
ǫ tends to zero Xi is Gaussian. The nth cumulant of Xi is
then O(n−2). For example, if Xi were the sum of N statisti-
cally independent random vectors each having zero mean we
would have ǫ ∼

√

1/N , and if Xi were a scalar field having
quadratic local non-Gaussianity we would have ǫ ∼ fNL.

We seek a vector Y i(X) whose distribution is Gaussian
at each order up to some given order in ǫ. An obvious place
to start would be to expand Y i(X) in a power series as

Y i = Xi + ǫ
(

mi
1,1 +mij

1,2X
j +mijk

1,3X
jXk + ...

)

+ ǫ2
(

mi
2,1 +mij

2,2X
j +mijk

2,3X
jXk +mijkm

2,4 XjXkXm + ...
)

+ ..., (1)

with repeated indices implicitly summed over. The problem
is highly underconstrained since there are infinitely many
choices for the number of non-zero unknown coefficients
ma,b. Once such a choice has been made however, we can de-
rive constraints on the ma,b by requiring the non-Gaussian
cumulants of Y i to vanish at each order. This requires that
ma,a+2 6= 0 for all a ≤ n when working to O(n). The sim-
plest construction then enforces a triangular condition such
thatma,b = 0 for all a ≤ n and b ≥ a+3 atO(n). AtO(2) for
example this would correspond to Equation (1) with terms
denoted by ellipses set to zero. Setting the third cumulant
of Y i to zero at this order then requires that

m
(ijk)
1,3 = −1

6
κijk,

m
(ijk)
2,3 = −1

2
m

(i|r
1,2 κ |jk)r − 2m

(i|r
1,2 m

|jk)r
1,3 , (2)

where round brackets denote total symmetrization on the
enclosed indices and vertical lines denote indices excluded
from the symmetrization. We can constrain mijkm

2,4 by re-
quiring a vanishing fourth cumulant at leading order, which
yields

m
(ijkm)
2,4 = − 1

24
κijkm −m

(ij|r
1,3 κ |km)r − 2m

(ij|r
1,3 m

|km)r
1,3 . (3)

Similarly mi
1,1 and mi

2,1 can be chosen to set the mean of Y i

to some desired value at each order, while mij
1,2 and mij

2,2 are

constrained by requiring the covariance of Y i to have some
desired value at each order. Finally, mijk

2,3 can be constrained

using Equation (2) once mij
1,2 has been chosen. Note that

when the dimensionality of X is greater than one the ma,b

coefficients are still not uniquely determined, since only the
totally symmetric parts are constrained in the above con-
struction.

A simple choice for the coefficients sets mijk
1,3 and mijk

2,3

equal to the right-hand sides of Equation (2) and mijkm
2,4 to

the right-hand side of Equation (3). Fixing the constant and
linear terms such that Y i has zero mean and unit diagonal

c© 2017 RAS, MNRAS 000, 1–15



Gaussianizing transforms 3

covariance (they can be chosen to give our Gaussian variate
a desired mean and covariance, as long as Equation 2 is
satisfied) yields

Y i = Xi − ǫ

6

(

κijkXjXk − κirr
)

− ǫ2
[(

1

24
κijkm − 1

9
κijrκkmr

)

XjXkXm

−
(

1

8
κijrr − 1

12
κirsκjrs − 1

9
κijrκrss

)

Xj

]

. (4)

In one dimension, this takes the simplified form

Y = X− κ3

6
(X2−1)− κ4

24
(X3−3X)+

κ2
3

36
(4X3 −7X), (5)

where κ3 and κ4 are the dimensionless skew and kurtosis
respectively, which agrees with the expression in McCullagh
(1987). Up to irrelevant constant and linear terms, Equa-
tion (5) is identical to the square-root of the ‘optimal ob-
servable’, o(δ), presented in Carron & Szapudi (2013) and
shown to capture all the information at this order in per-
turbation theory. The equivalence is not surprising, since
a zero-mean Gaussian variate may be described entirely in
terms of its variance, for which the quantity X2 is a suffi-
cient statistic. Equation (4) can be seen as a multivariate
generalization of the Carron & Szapudi (2013) observable.

In Appendix A we provide an alternative derivation of
Equation (5) based on the Edgeworth expansion.

2.2 Application to cosmological fields

The formalism presented so far is applicable to any weakly
non-Gaussian field. Specializing now to a statistically ho-
mogeneous and isotropic field in Fourier space, δ(k), the
standardized variate Xi introduced in the previous section
can be constructed as

Xi =

√

2

P (k)V
[Re δ(ki)Θ(ki) + Im δ(ki)Θ(−ki)] , (6)

where Θ(k) is the Heaviside step function. Note that there
are alternative constructions for Xi depending on how one
vectorizes the Fourier-space density field and the above
choice is arbitrary amongst these alternatives, but there is
no ambiguity in the final transform when written in terms
of δ(k). We can now plug this variate into the expressions of
the previous section to derive the necessary constraints for
a Gaussianizing transform. For example, the cumulant κijk

now becomes

ǫκijk =
1

√

2V P (ki)P (kj)P (kk)

{

B(ki,kj ,kk)δki+kj ,kk

×Θ(ki)Θ(kj)Θ(kk) +
[

B(ki,−kj ,kk)δkj−ki,kk

+B(ki,kj ,−kk)δkj+ki,kk
−B(ki,kj ,kk)δkj+ki,−kk

]

×Θ(ki)Θ(−kj)Θ(−kk)}+ perms., (7)

where B is the bispectrum and perms. refers to the two addi-
tional cyclic permutations of the indices {i, j, k}7. Adopting

7 Our ǫκijk is equivalent to the normalized cumulant p(3)V −1/2

of Matsubara (2007).

the transformation of Eq (4) gives

δ̃(k) = δ(k)− 1

6V

∑

q

B(k, q,−k− q)

P (q)P (|k+ q|) δ(q + k)δ(−q)

+
δ(k)

V P (k)

∑

q

[

T (k,−k, q,−q)

8P (q)
− B(k, q,−k − q)2

12P (q)P (|q + k|)

]

− 1

V 2

∑

q,r

[

T (k, q,r,−k− q − r)

24

−B(k, q,−k− q)B(k+ q,r,−k− q − r)

9P (|k+ q|)

]

× δ(−q)δ(r)δ(q + r + k)

P (q)P (r)P (|k+ q + r|) , (8)

where B is the bispectrum, T is the trispectrum, and P
is the power spectrum8. Equations (2), (3) and (8) are the
main results of this work, and provide explicit formulae for
Gaussianizing a weakly non-Gaussian field based only on
knowledge of the first few cumulants or polyspectra. An ex-
pression similar to Equation (8) arises when performing the
reverse construction, i.e. forming a non-Gaussian quantity
from a Gaussian variable. Equation (8) essentially undoes
such a construction, with the leading order term subtracted
identical to that added to a Gaussian field to obtain a quan-
tity having a given bispectrum (e.g., Wagner et al. 2010).

The expression Equation (8) produces a Gaussianized
field at order ∼ O(T ) ∼ O(B2) for any weakly non-Gaussian
field δ(k) satisfying statistical homogeneity and isotropy.
This could be the real-space dark matter density field or
21 cm brightness temperature on large spatial scales, or the
cosmic shear field from weak gravitational lensing; Equa-
tion (8) is applicable to fields of any spatial dimension.

We note finally that the general formalism of this sec-
tion may be used to Gaussianize observables for which a
perturbative expansion is difficult to write down, such as
the weak lensing convergence field. Using a numerical form
for the first few cumulants derived from simulations, our
method allows for non-Gaussian information to be moved
to the power spectrum at leading order, which should im-
prove on previous work that restricted to local transforms
(e.g. Joachimi et al. 2011). One may worry that misestima-
tion of these cumulants due to mismatches between the true
cosmological parameters and those used in the simulations
might degrade the performance of our Gaussianizing trans-
form. We note that the leading order dependence on both
the growth factor and σ8 in the polyspectra cancels with that
of the power spectra in the ratios of Equation (8). Higher-
order terms in the bispectrum and trispectrum bring fur-
ther cosmology dependence which does not cancel with the
power spectra, and although these should be suppressed in
the perturbative regime in which we work, further tests will
be necessary to precisely quantify the residual effects. The
cumulants could also be measured from data, although high
signal-to-noise measurements of all the configurations which
dominate the sums in Equation (8) are required. It is impor-
tant to note that these measurements should not come from
the same density field used for the Gaussianizing transform,

8 Formally P (k) is the non-linear power spectrum, but the dif-
ference is of higher order than Equation (8).

c© 2017 RAS, MNRAS 000, 1–15



4 Alex Hall and Alexander Mead

as the extra correlations introduced are not accounted for in
our formalism.

3 APPLICATION TO THE DARK MATTER

DENSITY FIELD

For a three dimensional field such as the dark matter density,
the right-hand side of Equation (8) can be slow to compute
since in general the large sums over wavevectors cannot be
written as convolutions. This can be remedied however by
making a different choice for the ma,b coefficients, suggested
by standard Eulerian perturbation theory. Note that we have
the freedom to do this as long as the conditions of Section 2.1
are satisfied. At leading order the choice

mijk
1,3 = −F

(s)
2 (kj ,kk)δkj−ki,kk

, (9)

where F
(s)
2 is the symmetrized second-order kernel of stan-

dard perturbation theory9, satisfies Equation (2) when the
bispectrum is replaced with its tree-level Einstein-de Sitter
(EdS) form10. The Gaussianized density field at leading or-
der (and in the continuum limit) is then

δ̃(k) = δ(k)−
∫

d3q

(2π)3
F

(s)
2 (q,k−q)δ(q)δ(k−q)− ..., (10)

which just amounts to subtracting off the leading-order non-
linear part of the EdS density field. This will remove the
leading order bispectrum, which is given by the expectation
of products of linear terms with second-order terms.

The above argument suggests a Gaussianizing trans-
form for the real-space dark matter density field is more
straightforwardly derived by first writing down a per-
turbative expansion of the non-linear field and then in-
verting it order-by-order (see Kitaura & Angulo 2012;
Schmittfull et al. 2017 for applications of this using iterative
approaches). Note that this approach runs against the main
motivation for deriving Equation (8) since it requires a per-
turbative model for the field, which is not available in gen-
eral. We chose this approach as it speeds up the computation
of the transforms, but we note that for a two-dimensional
field such as cosmic shear the sums in Equation (8) should
be much quicker to compute.

Since we are interested in linearizing cosmological power
spectra, it is necessary to work to third-order in the density
field in order to remove both the leading-order loop power
spectra (P22 and P13) and the leading-order non-Gaussian
contribution to the power spectrum variance (the tree-level
trispectrum). To third-order and assuming an EdS back-
ground, the expression to be inverted is

δ(k) = δL(k) +

∫

d3q1

(2π)3
F

(s)
2 (q1,k − q1)δL(q1)δL(k− q1)

+

∫

d3q1

(2π)3
d3q2

(2π)3
F

(s)
3 (q1, q2,k − q1 − q2)

× δL(q1)δL(q2)δL(k − q1 − q2), (11)

9 This is given by F
(s)
2 (k1,k2) =

5
7
+ 1

2
k̂1 · k̂2(

k1

k2

+ k2

k1

)+ 2
7
(k̂1 ·

k̂2)2, see e.g. Bernardeau et al. (2002).
10 Note that this form for the bispectrum only assumes EdS in
the mode-coupling kernels, for which the cosmology dependence
is weak (Bernardeau et al. 2002).

where δL is the linear field, and an explicit expression for
F

(s)
3 may be found in Bernardeau et al. (2002). Fourier

transforming this gives the corresponding expression in real
space δ(r) = δL(r)+ δ(2)(r) + δ(3)(r)+ ..., with the second-
order term given by

δ(2)[δL] =
17

21
δ2L −ΨL · ∇δL +

2

7
KL,ijKL,ij , (12)

where the linear displacement field in Fourier space is
ΨL(k) = i k

k2 δL(k) and the linear tidal tensor is given by

KL,ij(k) =
(

kikj

k2 − 1
3
δij

)

δL(k). The third-order part is

given by

δ(3)[δL] =
341

567
δ3L +

11

21
δLKL,ijKL,ij −

4

9
KL,ij∇jΨ

(2)
i

+
2

9
KL,ijKL,jkKL,ik +

1

2
ΨL,iΨL,j∇i∇jδL −Ψ

(2)
i ∇iδL

−ΨL,iKL,ij∇jδL − 41

21
δLΨL,i∇iδL − 4

7
KL,jkΨL,i∇iKL,jk,

(13)

where the second-order displacement field is given in Fourier
space by11

Ψ
(2)(k) = i

3

14

k

k2
F.T.

[

δL(r)
2

− F.T.−1

(

qiqj
q2

δL(q)

)

F.T.−1

(

qiqj
q2

δL(q)

)]

.

(14)

In Equation (14), F.T. denotes the Fourier transform and
F.T.−1 its inverse.

Inverting the series expansion Equation (11) to third-
order then yields an approximate expression for the linear
density field

δL ≈ δ − δ(2)
[

δ − δ(2)[δ]
]

− δ(3)[δ], (15)

where δ(3)[δ] denotes the third-order density field Equa-
tion (13) with the non-linear field used in place of the
linear field, and similarly for δ(2)[δ]. Note that this is a
non-local transform since the functionals δ(2)[·] and δ(3)[·]
mix up different spatial locations12 . To enhance the conver-
gence of this transform we could first derive an estimate for
the linear field and then recompute the second and third-
order terms in Equation (13) iteratively until convergence
was reached (Monaco & Efstathiou 1999; Kitaura & Angulo
2012). We choose not to do this however in order to speed
up the algorithm.

At leading order the field given by Equation (15) should
have a non-linear power spectrum of order (PL/V )3, a bis-
pectrum of order (PL/V )3, and a trispectrum of order
(PL/V )4. However, due to the mode-coupling integrals in
Equation (11) and the non-perturbative nature of δ(k) at
large k, the non-linear fields entering the right-hand side
of Equation (15) have to be smoothed to suppress the con-
tribution from small scales and ensure that the tree-level

11 Note that q is a wavevector and should not be confused with
the initial spatial position vector of fluid elements.
12 Keeping only second-order terms in Equation (15)
yields a transform equivalent to the ‘EF2’ reconstruction
of Schmittfull et al. (2015).

c© 2017 RAS, MNRAS 000, 1–15



Gaussianizing transforms 5

expressions for the cumulants dominate over their loop cor-
rections. Additional smoothing will occur if the density field
is observed at finite resolution. This inevitably worsens the
accuracy of Equation (15), since the high-k modes of the
non-linear density contain contributions from the linear den-
sity at a range of scales dictated by mode-coupling. Smooth-
ing the non-linear field on small scales destroys information
about the linear field at much larger scales, therefore we
do not expect the suppression of the non-linear power and
non-Gaussian cumulants to be as good as the PL/V scaling
indicated above.

Using the more general formalism of Section 2.1 we
could improve convergence of the transform with an expres-
sion for the bispectrum more accurate than the tree-level
form which led to Equation (9). This more general formal-
ism only requires that the dark matter density field is weakly
non-Gaussian, in the precise sense that its cumulants be-
come smaller at each order. It may well be the case that this
property holds at smaller scales than the regime in which
perturbation theory expressions for these cumulants are ac-
curate. If this were the case, numerical expressions for the
bispectrum and trispectrum derived from simulations could
be used in our formalism across this range of scales.

3.1 Tests on simulations

In order to test our linearization expression Equation (15),
we run a set of 40 dark-matter-only simulations differing
only via the random numbers used to generate mode phases
and amplitudes. The simulations use 5123 particles and were
run using the gadget-2 code (Springel 2005) in TreePM
mode. The simulations take place in cubes of side length
1000 h−1Mpc with gravitational softening set at 39 h−1kpc.
The cosmological parameters were set to Ωc = 0.25, Ωb =
0.05, Ωv = 0.7, h = 0.7, σ8 = 0.8 and ns = 0.96; neutri-
nos are considered massless and the effect of radiation on
the expansion is ignored. Initial conditions were generated
using the N-genIC package at an initial redshift of 99 us-
ing a matter power spectrum appropriate for this cosmology
from CAMB (Lewis et al. 2000). The simulations make no
distinction between baryonic and cold-dark matter. Density
fields were generated using cloud-in-cell interpolation of par-
ticles onto a 2563 grid. In this section we confine ourselves
to the real-space dark matter density field at z = 1.

We construct the right-hand side of Equation (15) us-
ing the FFTW algorithm to compute the required non-linear
combinations of the density field for each simulation realiza-
tion. The density fields entering into these non-linear terms
are first smoothed isotropically as δ(k) → S(k)δ(k). We
experimented with different functional forms for the kernel
S(k), and found that a Gaussian filter S(k) = exp(−k2/k2

s)
gave the best results. We test Equation (15) using both the
full third-order expression and a form valid at second-order
given by δL ≈ δ − δ(2)[δ]. The inverse smoothing scale ks
must be chosen to be small enough that non-perturbative
modes of δ(k) do not invalidate our perturbative approach,
but large enough that our expression has a non-zero im-
pact on the density field. We experimented with different
choices of ks and found that best results were obtained with
ks = 0.2 hMpc−1 when constructing the δ(2)[δ] part of the
second term on the right-hand side of Equation (15), and
ks = 0.3 hMpc−1 in the third-order term and the δ part of
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Figure 1. Upper panel : Average power spectrum from the sim-
ulations at z = 1 for the unmodified field (black, upper points
at k = 0.4h−1Mpc), the field corrected for second-order terms
(blue, middle points at k = 0.4h−1Mpc), the field corrected for
third-order terms (red, lower points at k = 0.4h−1Mpc) and the
linear power spectrum at z = 1 from CAMB (green solid). Lower
panel : Fractional differences of the power spectra from the linear
power spectrum. Error bars in both panels are derived from the
standard deviations of the 40 simulations.

the second term on the right-hand side of Equation (15).
We found the results to be fairly sensitive to these choices,
but improved performance over the unmodified field was ob-
tained in the Gaussianity tests for all choices of smoothing
scales and kernels with which we experimented. We plot
the results of this section to a maximum wavenumber of
kNy/2 ≈ 0.4hMpc−1 to mitigate the influence of aliasing on
small scales.

3.1.1 Power spectrum

In Fig. 1 we plot the mean power spectra of the second
and third-order transformed fields in the upper panel, and
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the fractional differences of these with respect to the power
spectrum of the initial conditions in the lower panel. Er-
ror bars are obtained from the standard deviation of the 40
simulation realizations. As this figure shows, the correction
terms of Equation (15) perform quite poorly in linearizing
the power spectrum, with both the second-order and third-
order corrections producing power spectra suppressed by
tens of percent compared to the linear P (k). The second-
order scheme performs slightly better than the third-order
transform, even showing improvement over the unmodified
field on the largest scales. That our simple perturbative cor-
rections fail to linearize the broadband power is probably a
consequence of the breakdown of perturbation theory in de-
scribing the power spectrum in the quasi-linear regime (see,
e.g. Carlson et al. 2009) and the loss of high-k modes which
contain linear power required at larger scales.

The residual bias will have to be modelled in order
to prevent biases in the inferred cosmological parameters.
We note however that modelling this bias with simulations
comes at no extra computational expense, since simulations
will have to be run anyway to model the non-linear field and
its covariance, and our Gaussianizing transform is quick to
compute. In contrast, information gain could only be other-
wise achieved by measuring the higher-order polyspectra or
increasing the survey volume, both of which are computa-
tionally and financially expensive. Whether our transforms
really do increase the signal-to-noise of power spectrum es-
timates will be assessed below when we compute the covari-
ance matrix.

We note finally that our method is applicable not
only to the dark matter density field but any weakly non-
Gaussian cosmological field, which may not generally have
well-understood physical properties.

3.1.2 Bispectrum and Trispectrum

A Gaussian field has zero bispectrum, and so as a first
test of Equation (15) we plot in Fig. 2 the normalized
folded-shape bispectrum of the density field measured from
simulations. The unnormalized folded bispectrum B(k) is
defined as B(k1,k2,k3) with k1 = k2 = −2k3 ≡ k,
and at leading-order (tree-level) this is given by the three-
point function of the second-order field δ(2) with two lin-
ear fields13. Since we effectively subtract off the second-
order term the resulting bispectrum should be proportional
to loop integral terms of the form 〈δLδLδ(4)〉 ∼ (PL/V )3.
We can define the normalized bispectrum as B(k1,k2,k3) ≡
B(k1,k2,k3)/

√

V P (k1)P (k2)P (k3), which has the advan-
tage of being invariant under the Fourier-space scaling
δ(k) → W (k)δ(k). Reduction of B is a better measure of
Gaussianity than B since smoothing with W (k) does not
change the information content of the field and represents
an uninteresting ‘trivial’ Gaussianizing transform.

The results plotted in Fig. 2 are encouraging. The bis-
pectrum has been significantly reduced by the Gaussian-
izing transforms across all scales where we have enough
simulations to enable firm conclusions to be drawn, with
a second-order transform resulting in a 40% reduction and

13 In practice we allow the angle between k1 and k3 to vary by
±20◦ to boost the signal-to-noise on the measurement.
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Figure 2. Average normalized folded bispectrum from the sim-
ulations at z = 1 for the unmodified field (black crosses), the

field corrected for second-order terms (blue circles) and the field
corrected for third-order terms (red squares). We only plot the
highest few k-bins here for clarity, as the signal-to-noise on the
measurements drops to zero at lower k.

a third-order transform in a 70% reduction. The unnor-
malized bispectrum is reduced by an order of magnitude
by the transforms, comparable to the performance of clip-
ping (Simpson et al. 2011), although this is largely due to
an effective smoothing of the field.

In Fig. 3 we plot the normalized degenerate-shape
trispectrum of the dark matter density field measured from
simulations for the second and third-order corrections of
Equation (15), and for the highest few k-bins where the
signal-to-noise is largest. The degenerate shape corresponds
to a trispectrum T (k1,k2,k3,k4) with k1 = k2 = −k3 =
−k4 ≡ k. Due to isotropy this depends only on the mag-
nitude of the wavevector, and can be computed simul-
taneously with the power spectrum at no extra compu-
tational cost. Furthermore since the non-Gaussian contri-
bution to the power spectrum variance is given by the
trispectrum, it is of pivotal interest in testing the capa-
bility of Gaussianizing transforms to reduce this quantity.
We define the normalized trispectrum T (k1,k2,k3,k4) ≡
T (k1,k2,k3,k4)/

√

V 2P (k1)P (k2)P (k3)P (k4), which is in-
variant under a Fourier-space scaling of the density field.

The noise on the trispectrum measurements in Fig. 3 is
large due to the finite number of simulation realizations, and
we see no significant difference between the different trans-
formed fields. In contrast, we observe reductions of roughly
30% and 45% in the unnormalized trispectrum of the second-
order and third-order transformed fields respectively. Most
of this reduction comes from an effective smoothing of the
density field, since there is no evidence of suppression in the
normalized trispectrum plotted in Fig. 3.

3.1.3 Correlation with initial field

We have seen that our Gaussianizing transforms reduce
the bispectrum of the non-linearly evolved density field,
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Figure 3. Average normalized degenerate trispectrum from the
simulations at z = 1 for the unmodified field (black crosses), the

field corrected for second-order terms (blue circles) and the field
corrected for third-order terms (red squares). We only plot the
highest few k-bins here for clarity, as the signal-to-noise on the
measurements drops to zero at lower k.

which hints at increased Gaussianity. However, it is unclear
whether this is really due to the field behaving more like the
initial Gaussian field or due to some other effect such as en-
hanced noise or the flow of information to higher moments.
Furthermore, it is unclear how to interpret any increase in
information contained in the power spectrum estimates that
our method may enable (see Harnois-Déraps et al. 2013 for
a detailed discussion of this point).

To elucidate the nature of the transformed fields, we
construct the dimensionless cross-correlation coefficient r(k)
between the transformed field δ̃(k) and the initial field
δL(k), given by

r(k) ≡ 〈δL(k)δ̃∗(k)〉
√

〈δL(k)δ∗L(k)〉〈δ̃(k)δ̃∗(k)〉
. (16)

For each simulation realization we use the same initial field
which was evolved under gravity to produce the density
fields at z = 1, which removes most of the cosmic variance
in r(k). We average the correlation coefficient over the 40
simulations to reduce this variance even further.

In Fig. 4 we plot correlation coefficient for each of our
Gaussianizing transforms. On large scales r(k) tends to unity
since the field is still in the linear regime and there is no
mode-coupling, whilst on small scales the correlation drops
to zero as mode-coupling from non-linear structure forma-
tion dominates any residual coherence with the initial field
at a given wavenumber. Encouragingly, our transforms en-
hance the correlation with the initial field, with a third-order
transform outperforming a second-order transform across all
scales. This indicates that the Gaussianizing behaviour of
our method observed in the normalized bispectrum is com-
ing from an enhanced correlation of the density fields with
the initial linear field.
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Figure 4. Dimensionless cross-correlation coefficient of the initial
Gaussian field with the unreconstructed field (black, lower curve),
the second-order reconstructed field (blue, middle curve) and the
third-order reconstructed field (red, upper curve). Note that the
leading order cosmic variance cancels in this ratio.

3.1.4 One-point probability density function

As a further test of the Gaussianizing transform Equa-
tion (15), we construct the one-point probability density
function (p.d.f.) of the unmodified, second-order trans-
formed and third-order transformed density field at z = 1.
Since the density field is constructed on a coarse grid with
a Nyquist frequency of kNy ∼ 0.8 hMpc−1, the density field
has been effectively smoothed on this scale prior to the con-
struction of the p.d.f. We also constructed distributions af-
ter smoothing the unmodified and transformed fields on a
scale ks = 0.2 hMpc−1 with a Gaussian filter. We refer to
these two smoothing scales as the high-ks and low-ks respec-
tively14.

In Fig. 5 we plot the unnormalized p.d.f. for the three
fields, with errors (smaller than the data points) estimated
from the standard deviation of the 40 simulations, and for
both smoothing scales. As expected, the unmodified field
is reasonably well approximated by a log-normal distribu-
tion with some additional skewness. After applying Gaus-
sianizing transforms this distribution becomes slightly more
Gaussian, with a third-order transform outperforming the
second-order transform.

In the high-ks field, most of the improvement comes
from the down-weighting of underdense regions (e.g. voids)
and strongly overdense regions having δ & 2, and the up-
weighting of mildly overdense regions having 0 . δ . 2.
Quantitatively, we find a Gaussian fit to the p.d.f. improves
after a second-order transform, reducing χ2 by 20%. A third-
order transform provides additional improvement, with χ2

reduced by 60%. This rough measure of Gaussianization sug-

14 Note that these smoothing scales should not be confused with
the scales on which the density field is smoothed prior to the
transforms being applied, since the operations do not commute.
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Figure 5. Left panel : One-point unnormalized p.d.f. of the unmodified density field smoothed on a scale ks = 0.8h/Mpc (black solid,
upper curve at δ = −0.3), the second-order transformed field (blue solid, middle curve at δ = −0.3), the third-order transformed field
(red solid, lower curve at δ = −0.3), and the initial conditions scaled to z = 1 with the linear growth factor (black dot-dashed). Error
bars are smaller than the thickness of the curves. Right panel : Same as left panel but with ks = 0.2h/Mpc. Note that the stronger
smoothing of non-linear scales has made all the distributions more Gaussian.

gest that most of the improvement arises from the subtrac-
tion of the third-order term in Equation (15), and a visual
inspection of Fig. 5 supports this. The Gaussianization is
extremely mild, not getting close to the one-point distribu-
tion of the linear field, whose p.d.f. (after scaling with the
linear growth factor to z = 1) we also plot in Fig. 5.15

In the high-ks case, we find that the dimensionless skew-
ness of the distribution reduces from 1.8 to 1.7 after apply-
ing a second-order transform, and to 1.5 after a third-order
transform, which should be compared with the more dra-
matic suppression of the large-scale folded bispectrum seen
in Section 3.1.2. The dimensionless excess kurtosis reduces
from 4.1 to 3.7 after applying a second-order transform, and
to 3.2 after a third-order transform. Note that since these
numbers are all & 1 our perturbative treatment would break
down if applied at the one-point level at this smoothing
scale.

In the low-ks case we see much better performance of
the Gaussianizing transforms, with a Gaussian fit to the
second-order transformed field reducing χ2 by 80% and the
third-order transformed field by almost 100%. The dimen-
sionless skewness of the distribution reduces from 1.2 to 0.5
after applying a second-order transform, and to 0.2 after
a third-order transform, a much more dramatic effect than
the high-ks case. Additionally, the dimensionless excess kur-
tosis reduces from 2.6 to 0.3 after applying a second-order
transform, and to 0.2 after a third-order transform. That the
transforms appear to work much more effectively when small
scales are filtered out suggests that these scales are contam-

15 Note that the fields here are permitted to have values δ < −1,
due to both the correction for the cloud-in-cell binning and, in
the case of the linear field, the scaling with the growth factor to
z = 1.

inated by the poor treatment of high-k modes in the raw
density field, which are incorrectly handled by our method.

The results of this section suggest that our transforms
provide only mild improvement in the Gaussianity of the
density field at the one-point level when including scales
k . 0.8 hMpc−1, but are much more effective when includ-
ing scales k . 0.2 hMpc−1, where the improvement is sig-
nificant. It is difficult to say if this comes from a genuine
enhancement of the coherence with the linear Gaussian field
or an effective smoothing of the non-linear modes of the
field, since we have seen that both effects are present in our
transformed fields.

3.1.5 Power spectrum variance

In the upper panel of Fig. 6 we plot the fractional differ-
ence of the variance of the unmodified and transformed
fields (σ2

NL) with respect to the Gaussian prediction (σ2
L =

2P 2
L/Nk, with Nk the number of modes contributing to the

k-bin). The scatter is large due to the finite number of sim-
ulations at our disposal, but some general trends can be
identified. Firstly, as expected, the unmodified field displays
enhanced variance on small scales due to non-linear struc-
ture formation. Secondly, there is tentative evidence that
the transformed fields indeed have lower variance than the
unmodified field, with a third-order transform generally out-
performing a second-order transform across the non-linear
scales. Note that there are no error bars on this figure, as
we do not have enough simulations to accurately quantify
the variance on these variance estimates. However, at lead-
ing order the points should be roughly uncorrelated between
different k-bins, so the scatter gives an approximate measure
of the errors on large scales.

How much of the decreased variance is down to an ef-
fective smoothing of the density field? To answer this, in

c© 2017 RAS, MNRAS 000, 1–15
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Figure 6. Upper panel : The fractional difference of the variance
of the power spectrum estimates estimated from our 40 simula-
tions at z = 1 compared to the Gaussian prediction with the
linear power spectrum, for the unmodified field (black crosses),
the second-order transformed field (blue circles), and the third-
order transformed field (red squares). Lower panel : Same as top
panel for the normalized variance σ̃2.

the lower panel of Fig. 6 we plot the fractional difference of
the normalized variances defined by σ̃2 = σ2/P 2, which (for
a diagonal covariance matrix) is proportional to the inverse
signal-to-noise-squared on the power spectrum in each k-bin.
The small reduction in variance is now below the scatter in
the measurements, with a potential increase in the variance
of the third-order transformed field on the smallest scales.
This tells us that any reduction in variance comes with a
reduction in the power spectrum, such that the signal-to-
noise is roughly unchanged. Any increase in signal-to-noise
brought by our transforms is therefore at least as small as
the (large) error bars on these variance measurements.

Ideally the transforms should also reduce the off-
diagonal terms of the power spectrum covariance matrix,

since these are sourced by the trispectrum of the field. We
computed these terms, but the number of simulations at
our disposal proved insufficient to measure any changes with
high enough statistical significance.

The results of this section suggest that our transforms
do indeed reduce the variance of power spectrum estimates,
although at a level similar to the suppression of the power
spectrum, suggesting that both signal and noise have ef-
fectively been reduced by transforms. We note however that
the enhancement of the correlation with the initial field sug-
gests the effective smoothing is accompanied by an increase
in information content.

3.1.6 Baryon Acoustic Oscillations

In order to make more quantitative statements from our
limited number of simulations, in this section we focus
on linearizing the wiggles in the real-space dark mat-
ter power spectrum imparted by baryon acoustic oscilla-
tions (BAO). Our perturbative approach should be of great
use here as BAO scales are in the linear or quasi-linear
regime, and the effects of non-linear structure formation
are mild and mostly of linear origin (Crocce & Scoccimarro
2006; Eisenstein et al. 2007b; Crocce & Scoccimarro 2008;
Sherwin & Zaldarriaga 2012; Sugiyama & Spergel 2014).

We apply the Gaussianization transform Equation (15)
to three pairs of simulated density fields. Each member of
a pair has the same initial random seed but different initial
power spectra, one having the fiducial linear PL(k) and the
other having the same broadband shape but with its BAO
wiggles removed with a low-pass filter16. Relative differences
between ‘wiggle’ and ‘no-wiggle’ power spectra are therefore
free of cosmic variance at leading order, greatly reducing the
number of simulations required to draw reliable quantitative
conclusions about our method. We confirmed that all our re-
sults were stable to increasing the number of paired density
fields from three to four. The input parameters of the simu-
lations were the same as in Section 3.1.1, and we again study
real-space density fields at z = 1 in this section.

In Fig. 7 we plot the fractional difference of the wiggle
and no-wiggle matter power spectrum for our second-order
and third-order Gaussianization schemes given by Equa-
tion (15). This figure clearly demonstrates that our method
reconstructs the linear BAOs on scales k . 0.3 hMpc−1, un-
doing a large fraction of the damping of the wiggles caused
by non-linearity. The frequency and phase of the wiggles
is preserved by the transformation on these scales, show-
ing that our transforms do not bias the signal, unlike the
case of the broadband power17. Furthermore, the third-
order transformation outperforms the second-order trans-

16 To create the wiggle-free spectrum we take the Fourier Trans-
form of PL(k) in log-space and apply a low-pass filter to re-
move the BAO before returning to real space. We then create
the smooth spectrum by stitching in the original spectrum above
and below the BAO scale in order to removed edge effects induced
by the Fourier Transform.
17 This also implies that the peak of the correlation function is
not significantly shifted by our transformation, which we con-
firmed qualitatively with a simple estimate for the correlation
function formed by Fourier transforming the power spectrum es-
timates.
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Figure 7. Fractional difference of the wiggle and no-wiggle power
spectrum in real space at z = 1 for the unreconstructed field
(black solid, lowest amplitude curve), linear field (black dashed),
the second-order reconstructed field (blue solid, middle amplitude
curve) and the third-order reconstructed field (red solid, highest
amplitude curve).

formation, suggesting that our perturbative expansions are
well-behaved in this regime.

To quantify this sharpening of the peaks, we compute
the cumulative squared signal-to-noise on the wiggles below
a given scale, (S/N)2(< k), defined as

(S/N)2(< k) ≡
∑

kb<k

N(kb)(Pw(kb)− Pnw(kb))
2

2Pnw(kb)2
, (17)

where N(kb) is the number of modes in a bin centred
at kb, and the sum is over bins. This definition assumes
Gaussian noise on the power spectrum estimates, which
should be accurate on these scales (Takahashi et al. 2009;
Schmittfull et al. 2015)18. Note that the paired simulations
with common initial conditions dramatically reduces the
noise in this statistic due to the ratio in Equation (17), and
our results change negligibly if we use two pairs instead of
three.

In Fig. 8 we plot the quantity (S/N)2(< k). The sharp-
ening of the peaks is now quantified as increase in the
S/N as a second-order and then a third-order reconstruc-
tion are applied. Most of the improvement occurs on scales
k . 0.25hMpc−1, since on smaller scales the significant non-
linear growth washes out the BAO wiggles to the extent that
our perturbative transforms cannot recover linear informa-
tion. The total increase in S/N (i.e. the square-root of the
asymptotic values in Fig. 8) is roughly 20% for the second-
order transform and 35% for the third-order transform. In
comparison, the Gaussian linear field has over 50% more in-
formation on the wiggles than the raw field, demonstrating

18 Even if this were not true in detail, the variance on the trans-
formed power spectrum should be more Gaussian than the raw
power spectrum estimates.
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Figure 8. Cumulative square signal-to-noise in real space at z =
1 for the unreconstructed field (black solid, lower curve), linear
field (black dashed), the second-order reconstructed field (blue
solid, middle curve) and the third-order reconstructed field (red
solid, upper curve).

that our linearizing transform captures a significant propor-
tion of the total information available.

We have thus seen that our Gaussianizing transform
successfully recovers a large fraction of the linear real-space
BAO signal washed out by non-linear structure formation.
The method produces broadband power spectrum estimates
which are biased with respect to the linear field, but we have
seen evidence that the variance of these estimates is reduced.
We have restricted to z = 1 where our perturbative approach
is expected to be reasonably accurate on BAO scales, but
note that worse or improved performance could be expected
at lower or higher redshifts respectively.

4 APPLICATION TO 21CM INTENSITY

MAPPING

We have seen that the Gaussianizing transform of Equa-
tion (15) successfully removes a large fraction of the non-
linear smoothing of the BAO wiggles in the real-space
matter power spectrum. In this section, we test our sim-
ple method further by applying it to mock realizations of
a 21 cm intensity map. Several 21 cm BAO reconstruction
methods based on perturbative models for the 21 cm bright-
ness temperature have recently been tested in the litera-
ture (Seo & Hirata 2016; Cohn et al. 2016; Obuljen et al.
2017). Since we have made the approximation that the bis-
pectrum and trispectrum of the dark matter density are
given by their tree-level expressions, our method is not ex-
pected to be as effective at reconstruction as those based on
Lagrangian perturbation theory such as the pixel remapping
approach of Obuljen et al. (2017). This is because the main
physical effects of BAO smoothing are captured by leading
order Lagrangian perturbation theory (i.e. the Zeldovich ap-
proximation) in a way which cannot be reproduced with a
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finite number of terms in the Eulerian framework in which
we work, due to the non-perturbative mapping between La-
grangian and Eulerian space. Nevertheless, it is useful to
compare the performance of Lagrangian methods applied to
21 cm pixels with an Eulerian approach to test this reasoning
quantitatively.

21 cm intensity maps have several complicating features
over the real-space dark matter density field considered in
Section 3. Firstly, since the field is now a continuous map
of brightness temperature fluctuations rather than discrete
number counts, we have to account for the loss of angu-
lar resolution due to the finite size of the interferometer or
receiving dish (see, e.g. Bull et al. 2015 for a discussion of
21 cm systematics). On the other hand, due to the clean
spectral signature of the 21 cm line, intensity maps typically
have excellent radial resolution allowing for accurate red-
shifts to be obtained. The caveat to this is a loss of large-
scale radial information due to the large foregrounds which
need to be subtracted. Foregrounds typically have structure
on frequency scales corresponding to small values of k‖, and
their removal leads to the loss of these modes. Secondly
21 cm intensity maps contain noise from the detector, which
renders the beam deconvolution non-trivial. Thirdly, as with
galaxy redshift surveys, observations of intensity maps occur
in redshift space rather than real space. Finally, since neu-
tral hydrogen on cosmological scales is expected to reside
within dark matter haloes, the distribution 21 cm bright-
ness temperature fluctuations is biased with respect to the
underlying dark matter.

To account for these complications, we build very sim-
ple mock intensity maps from our pairs of simulated dark
matter density fields at z = 1. We consider three separate
scenarios: a redshift-space density field, a real-space density
field with beam-smoothing, finite radial resolution and a cut
on k‖ to account for foregrounds, and a real-space density
field with uncorrelated statistically homogeneous Gaussian
noise added to each pixel. Finally we consider a scenario
in which all three of these effects are included (with the
noise added after beam smoothing, and the beam smooth-
ing added after the shift to redshift space). For simplicity we
do not include the effects of bias or more complicated sam-
pling of Fourier space due to scanning strategy or foreground
‘wedge’ effects (Seo & Hirata 2016). Our maps are thus
highly idealized, but allow for the evaluation of the major
complicating factors to be assessed individually. We choose
noise and smoothing specifications to be similar to those ex-
pected from near-term intensity mapping experiments such
as CHIME (Newburgh et al. 2014). Beam smoothing in the
angular direction is implemented with a Gaussian in the k⊥
direction having size 10Mpch−1, and the loss of radial in-
formation due to finite frequency resolution is achieved by
multiplying the Fourier-space density field with a Gaussian
in k‖ of size 3Mpch−1. We also apply a hard high-pass fil-
ter removing modes having k‖ < 0.02 hMpc−1 to account
for foregrounds. When adding noise to each Fourier space
pixel we generate a random Gaussian realization with power
spectrum PN = 330Mpc3 h−3, corresponding to an effective
source number density of n̄ = 3 × 10−3 h−3 Mpc−3, consis-
tent with that used in Cohn et al. (2016). To boost the sta-
tistical power of our BAO forecasts, we use the same noise
realization within each pair of wiggle/no-wiggle simulations.
Note that noise does not bias the signal since it contributes

equally to the wiggle and no-wiggle density fields, but it does
contribute to the variance.

Since some of our maps now contain noise, the Gaus-
sianizing transform Equation (8) must be modified to ac-
count for the fact that the power spectrum of the observ-
able has changed. Using the formalism of Section 2, it is
straightforward to show that all our expressions may be
generalized to include noise by modifying the power spec-
trum as PL(k) → PL(k)+PN , where we recall that PL(k) is
the linear power spectrum. This is equivalent to multiplying
the density field by the Wiener filter PL(k)/[PL(k) + PN ]
prior to constructing the non-linear combination required
to remove the leading-order non-Gaussianity. In the pres-
ence of noise, redshift-space distortions (RSDs) and beam
smoothing, the appropriate filter becomes PL(k)/[PL(k) +
(1 + fµ2)2B(k)PN ], where f is an estimate of the growth
factor, µ is the cosine of the angle between the wavevector
and the line of sight (Kaiser 1987) and B(k) is the beam
smoothing function in Fourier space.

In Fig. 9 we plot the fractional differences in the
monopole power spectra of the wiggle and no-wiggles in-
tensity maps at z = 1 for each of the four scenarios de-
tailed above. Reassuringly we see that in all cases a second-
order transform outperforms the unreconstructed field, with
a third-order transform performing even better. The pres-
ence of pixel noise boosts the broadband power and reduces
the contrast of the BAO wiggles, reducing the amplitude
of the curves in the top-left panel of Fig. 9. Noise is most
destructive on small spatial scales due to its white spectral
shape, and washes out linear modes which the reconstruction
methods need to capture linear power on larger scales. The
result of this is that a third-order reconstruction improves
little over a second-order reconstruction. The loss of small
scales is more detrimental in the case of beam smoothing
(top-right panel of Fig. 9), with the poor angular resolution
of our fiducial 21 cm experiment limiting the power of both
reconstruction methods to linearize the intensity maps. Our
tree-level expressions for the bispectrum and trispectrum
do not include RSDs, and instead we treat them as contam-
inants and assess their impact on the reconstructions. When
the fields are shifted to redshift space, the bottom-left panel
of Fig. 9 shows that a third-order reconstruction outper-
forms a second-order reconstruction, which barely improves
over the case of no reconstruction. When all three effects
are switched on, we find that our linearization routines still
offer improvements over the raw intensity map, but the ef-
fects are very small (bottom-right panel of Fig. 9). This sug-
gests that our method requires more detailed modelling of
redshift-space and beam effects. The difficulty of modelling
non-linear RSDs in Eulerian space exemplifies one of dis-
advantages of Eulerian BAO reconstruction methods over
Lagrangian techniques.

In Fig. 10 we plot the cumulative squared signal-to-
noise for the BAO wiggles from the intensity maps, along
with the linear (Gaussian) result. The modest improvement
of the third-order reconstruction over the second-order re-
construction is quantified as a small improvement over the
total signal-to-noise in the BAO wiggle, with the greatest
improvement being for the redshift-space field in the absence
of noise and beam smoothing. The top-right panel of Fig. 10
demonstrates that the loss of large-scale radial modes due
to foreground subtraction does not have a large impact on
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Figure 9. Top left : Fractional difference between the wiggle and no-wiggle power spectra at z = 1 in real-space with pixel noise for
the unreconstructed field (black solid, lowest amplitude curve), linear field (black dashed), second-order reconstructed field (blue solid,
middle amplitude curve) and third-order reconstructed field (red solid, highest amplitude curve). Top right : Same, for the real-space field
with k-space filters and smoothing applied (note the change in the range of the horizontal axis due to the high-pass filter). Bottom left :
Same, for the redshift-space field. Bottom right : Same, when all three effects are implemented.

the total signal-to-noise of the BAO wiggles, due to the mis-
match of the relevant scales. When we include noise, RSDs,
and beam smoothing, we find similar total signal-to-noise
from both our reconstruction methods, with a roughly 15%
increase over the unreconstructed field compared to the 50%
increase potentially available based on a Gaussian predic-
tion.

5 CONCLUSIONS

In this work we have derived conditions which non-linear
and non-local transformations of cosmological fields must
satisfy in order to possess Gaussian statistics. The funda-
mental assumption behind our formalism is that the field
is weakly non-Gaussian, in the sense that its cumulants or
polyspectra become successively smaller at each order. This
assumption is valid for most cosmological observables on suf-
ficiently large scales, where the non-Gaussianity induced by
non-linear structure formation has not yet become strong,
and is also valid at sufficiently high redshifts. The scales at
which our perturbative expansion breaks down is uncertain
however, and requires numerical simulations to be evaluated.

The constraints we derived suggest a Gaussianizing
transform with a particularly simple form, given by Equa-
tion (8). Unlike other linearizing or Gaussianizing trans-
forms in the literature, this expression is both non-local
and written entirely in terms of the polyspectra of the field.
Thus, we do not require a detailed perturbative model for
the observable, and these polyspectra could in principle be
estimated from simulations. Our formalism is therefore ex-
pected to be particularly useful for maps of the weak lensing
shear.

Although a perturbative model for the field is not re-
quired, quick and straightforward tests of our formalism can
be made when a choice of transform based on a further
perturbative expansion of the cumulants is made, Equa-
tion (15). We found that in this case our formalism effec-
tively subtracts off the leading non-linear parts of the ob-
servable. With N-body simulations we showed that the bis-
pectrum of the dark matter density field is reduced. We have
also shown that the one-point probability distribution of the
density field at z = 1 is closer to a Gaussian after apply-
ing the transforms, and that the correlation with the initial
Gaussian field is enhanced, suggesting that information gain
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Figure 10. Top left : Cumulative squared signal-to-noise of the BAO wiggles at z = 1 in real-space with pixel noise for the unreconstructed
field (black solid, lower curve), linear field (black dashed), second-order reconstructed field (blue solid, middle curve) and third-order
reconstructed field (red solid, upper curve). Top right : Same, for the real-space field with k-space filters and smoothing applied (note
the change in the range of the horizontal axis due to the high-pass filter). Bottom left : Same, for the redshift-space field. Bottom right :
Same, when all three effects are implemented.

is achieved by transforming the field to a form more coher-
ent with its initial linear state. We also saw that the power
spectrum mean and variance are suppressed by the trans-
forms such that the signal-to-noise is roughly unchanged,
although we did not have enough simulations to quantify
this rigourously.

The poor performance of our method in the broadband
power spectrum is somewhat surprising given the enhanced
Gaussianity and correlation with the initial field seen in the
previous sections. One possible explanation of these discrep-
ancies is that the various smoothing operations in our trans-
form and the mode-coupling it induces in the non-linear field
have conspired to produce a field of the approximate form
W (k)δL(k) instead of δL(k), where W (k) is a smooth func-
tion approximately independent of δL(k). Such a field would
display Gaussianized and linearized properties passing the
test of the previous sections, but would not have a linearized
power spectrum. A perturbative expansion of Equation (15)
suggests that W 2(k) is given by one-loop integrals over the
linear power, the smoothing kernel S(k), and the F2 per-
turbation theory kernel. This suggests that a more optimal
choice for S(k) could be found to minimize the difference be-

tween the transformed power and the linear power. Indeed,
choosing a logistic function for S(k) with a sharp transition
does improve the linearity of the power spectrum estimates,
but at the cost of increasing the variance. We defer a more
detailed investigation of this issue to a future work.

We also saw that our Gaussianizing transform does a
good job of reconstructing linear BAOs which are damped
by non-linear structure formation. We found that our third-
order transformation increases the total signal-to-noise of
the BAO wiggles by 35%, compared to the total available
information which is 50% greater than the unreconstructed
field in real-space at z = 1.

Since our transform works at the level of pixels rather
than galaxies or discrete tracers, it is interesting to investi-
gate observable for which the positions of individual tracers
are not available, such as a 21 cm intensity map. We created
toy realizations of intensity maps by shifting the particles
in our dark-matter-only simulations to redshift space, cre-
ating density fields, smoothing with beams to mimic the
finite angular and frequency resolution of a near-term ex-
periment, removing large-scale radial modes to account for
foreground subtraction, and finally adding Gaussian pixel
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noise. We found that this final stage required the maps to
be Wiener filtered prior to being Gaussianized, and saw that
linear BAO information can still be obtained even when all
these complicating effects were switched on. However, im-
provement was very modest (15% increase in total signal-to-
noise), suggesting that more detailed modelling of redshift-
space distortions is required for this method to improve. We
also restricted tests to z = 1, noting that non-linearity in the
maps is greater at lower redshifts, although an experiment
such as CHIME cannot observe at wavelengths correspond-
ing to redshifts below z = 0.8, so our choice of redshift is
justified. The formalism of this work could equally well be
applied to low-redshift surveys.

Despite the simplifying assumptions detailed above, our
results are encouraging and suggest that the transform of
Equation (8) be tested in more detail. In particular, it would
be interesting to investigate its performance on mock weak
lensing shear maps for comparison with more ad-hoc local
transformation such as Joachimi et al. (2011). Complicating
factors such as masking and inhomogeneous noise would also
have to be incorporated, although these could be handled by
applying the relevant mixing matrices to the Fourier-space
fields.

One interesting consequence of our Gaussianizing trans-
form is that it provides a route to modelling the fully
non-Gaussian multivariate likelihood function. This quan-
tity is usually modelled as a Gaussian (justified on large
scales) or log-normal (Coles & Jones 1991; Colombi 1994;
Kayo et al. 2001; Clerkin et al. 2017). However, a prin-
cipled and physically-motivated expression for the likeli-
hood has so far proved elusive (see Bernardeau et al. 2015;
Uhlemann et al. 2016; Seljak et al. 2017 for recent progress).
Modelling this distribution is of high importance, since mea-
suring it from simulations is extremely challenging due to
the high dimensionality of the problem. It is also not known
how accurate the likelihood function needs to be for future
Stage-IV surveys to obtain precision constraints on dark en-
ergy - incorrectly imposing Gaussianity on the likelihood
could bias parameter inferences. Furthermore, a Bayesian
approach to inferring constraints on cosmological parame-
ters requires a functional form for the likelihood to be speci-
fied (see, e.g. Alsing et al. 2016), which motivates more accu-
rate modelling including bispectrum and trispectrum terms.

By transforming a Gaussian distribution using the
transform of Equation (8), we can form a non-Gaussian, mul-
tivariate distribution which is everywhere finite and positive-
definite, and which should converge to the true likelihood
on sufficiently large scales. Such a distribution would model
the probability of the density field given the power spec-
trum, bispectrum and trispectrum, and could thus be used
to form a joint posterior on these polyspectra which could
be sampled from. In the one-dimensional case and return-
ing to the notation of Section 2.1, this distribution would
be given by PX(X) = PY [Y (X)]|dY/dX|, and taking PY as

Gaussian and using Equation (5) we find

PX(X) ≈
∣

∣

∣

∣

1− κ3

3
X − κ4

8
(X2 − 1) +

κ2
3

36
(12X2 − 7)

∣

∣

∣

∣

× exp

{

−1

2

[

X − κ3

6
(X2 − 1)

−κ4

24
(X3 − 3X) +

κ2
3

36
(4X3 − 7X)

]2
}

. (18)

The multivariate generalization of Equation (18) should pro-
vide a likelihood suitable for simultaneously inferring power
spectra and maps in a Bayesian hierarchical framework. We
defer detailed investigation of this distribution to a future
work.
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APPENDIX A: GAUSSIANIZING TRANSFORM

FROM THE EDGEWORTH EXPANSION

In this section we derive Equation (5) from an Edgeworth
expansion. We specialize to one dimension for simplicity,
noting that the transform is unique in this scenario.

Denote by FX(x) the cumulative distribution function

(c.d.f.) of X. The Probability Integral Transform Theorem
(PITF) tells us that the quantity Z = FX(X) is uniformly
distributed on the interval [0, 1]. Denoting by Φ the c.d.f. of
the standard normal distribution and using the PITF again,
the quantity Y = Φ−1[FX (X)] has a standard normal dis-
tribution. Thus we can always find a transformation that
Gaussianizes any non-Gaussian quantity, with the exception
of distributions which cannot be completely described by
their cumulants such as the lognormal (Carron 2011).

Now assume that the probability distribution function
PX of X can be written as an Edgeworth expansion

PX =

(

1 +
κ3

6
H3 +

κ4

24
H4 +

κ2
3

72
H6 + ...

)

PG, (A1)

where PG(X) is the standard normal distribution, and
the Hn are Hermite polynomials. The c.d.f. is defined by
FX(X) =

∫X

−∞
PX(X ′)dX ′, requiring us to evaluate terms

of the form
∫ X

−∞

Hn(X
′)PG(X

′)dX ′ =

∫ X

−∞

(−1)n
dn

dX ′n
PG(X

′)dX ′

= (−1)n
dn−1

dXn−1
PG(X)

= −Hn−1(X)PG(X). (A2)

Using the explicit form Φ(x) = 1
2

[

1 + erf
(

x/
√
2
)]

and its

inverse Φ−1(x) =
√
2 erf−1(2x− 1), we have

Y (X) =
√
2 erf−1

[

erf

(

X√
2

)

− 2

(

κ3H2(X)

6
+

κ4H3(X)

24

+
κ2
3H5(X)

72
+ ...

)

PG(X)

]

. (A3)

If all terms in the Edgeworth series were included, the above
formula would be the exact Gaussianization transform of X.
For weak non-Gaussianity, we can truncate the Edgeworth
expansion at some order, then Taylor expand the inverse
error function retaining terms of the same order to get the
desired result. Doing this at O(κ4), and using the result

d

dx
erf−1(x) =

√
π

2
exp

{

[

erf−1(x)
]2
}

, (A4)

we get the result of Equation (5) for the Gaussianized vari-
able.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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