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ABSTRACT
E-science of photometric data requires automatic procedures and a precise recognition of
periodic patterns to perform science as well as possible on large data. Analytical equations
that enable us to set the best constraints to properly reduce processing time and hence optimize
signal searches play a crucial role in this matter. These are increasingly important because the
production of unbiased samples from variability indices and statistical parameters has not been
achievable so far. We discuss the constraints used in periodic signals detection methods as
well as the uncertainties in the estimation of periods and amplitudes. The frequency resolution
necessary to investigate a time series is assessed with a new approach that estimates the
necessary sampling resolution from shifts on the phase diagrams for successive frequency
grid points. We demonstrate the underlying meaning of the oversampling factor. We reassess
the frequency resolutions required to find the variability periods of EA stars and use the new
resolutions to analyse a small sample of EAup Catalina stars, i.e. EA stars previously classified
as having insufficient number of observations at the eclipses. As a result, the variability
periods of four EAup stars were determined. Moreover, we have a new approach to estimate
the amplitude and period variations. From these estimations, information about the intrinsic
variations of the sources is obtained. For a complete characterization of the light-curve signal,
the period uncertainty and period variation must be determined. Constraints on periodic signal
searches were analysed and delimited.

Key words: methods: data analysis – methods: statistical – techniques: photometric –
astronomical data bases: miscellaneous – binaries: general – stars: variables: general.

1 IN T RO D U C T I O N

Some time series are stochastic (or random) in the sense that they
do not contain underlying information other than noise. The anal-
ysis of large data bases requires automatic and efficient classifiers
to provide the identification of genuine features. This is crucial to
reduce the number of misclassifications, to narrow the boundaries
between classes, to provide better training sets as well as to diminish
the total processing time (Eyer 2006). Large volumes of data con-
taining potentially interesting scientific results are left unexplored
or have their analysis delayed due to the current limited inventory
of tools that are unable to produce clean samples, despite big efforts
having been undertaken. In fact, we risk underusing a large part
of these data. In order to improve the efficiency of variability in-
dices, we propose discriminating variable sources in correlated and
non-correlated data. The correlated data have several measurements
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close in time, from that accurate correlated indices are computed.
On the other hand, the non-correlated data are those sources having
too few measurements close in time, and so they must be analysed
using statistical parameters only. The use of correlated and non-
correlated indices (see section 4.3 in Ferreira Lopes & Cross 2016),
produces a substantially smaller number of time series that have to
be further analysed. However, the resulting selection is still three
or more times larger than just the well-defined signals, according
to Ferreira Lopes & Cross (2016, 2017). This means that the set
of preliminary selection criteria is unable to produce samples com-
prised only of variable stars, and so, it would be desirable that the
following steps of signal searching methods would provide reliable
identifications and accurate estimates of periods (frequencies) and
amplitudes, even in cases where the preliminary analysis failed to
give a confident indicator that the signal was truly variable and not
just a noisy time series. Indeed, ∼75 per cent of parameters used
to characterize light curves are derived from the folded light curve
using the variability periods (Richards et al. 2011). This led to a
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∼11 per cent misclassification rate for non-eclipsing variable stars,
for instance, Dubath et al. (2011). Nowadays, reliable samples, i.e.
samples composed only of variable stars, are increasingly becom-
ing more important than complete samples, i.e. samples having all
variable stars but also having a large number of misclassified non-
variable stars, since visual inspection of all sources is unfeasible.
Therefore, an approach that allows us to get unbiased samples hav-
ing correct periods is mandatory to return quicker scientific results.
Therefore, as a continuation of the ‘New Insights into Time Series
Analysis’ project, the frequency-finding methods are reviewed and
improved.

The periodic signals finding methods can be separated into three
main groups if we consider how each component of the figure of
merit in the frequency grid is computed: MS – each epoch provides a
single term; MP – each term is computed using a pair of epochs; MB

– each term is computed by binning the phase diagram. The Lomb–
Scargle and its generalization (LS – Lomb 1976, Scargle 1982; LSG
– Zechmeister & Kürster 2009) belong to the MS group. Each epoch
is regarded as a single power spectrum term and the periodogram is
equivalent to a least-squares fit of the folded data at each frequency
by a sine wave. Indeed, Fourier methods and their branches are the
simplest methods belonging to the MS group. On the other hand,
the string length method (STR – Dworetsky 1983) and the anal-
ysis of variance (AOV and AOVMHW – Schwarzenberg-Czerny
1989, 1996) belong to the MP group. However, they follow differ-
ent approaches since the STR power spectrum is computed using
pairs of epochs in the phase diagram, while AOV pairs epochs in
time. Phase dispersion minimization (PDM and PDM2 – Stelling-
werf 1978, 2011), conditional entropy (CE – Graham et al. 2013),
supersmoother (SS – Reimann 1994), and correntropy kernel peri-
odogram (CKP – Huijse et al. 2012) belong to the MB group, where
the power spectrum is computed by binning the phase diagram.
Wavelet analysis also has been used to study time series (e.g. Fos-
ter 1996; Bravo et al. 2014). However, it is more suitable to study
the evolution of a signal overtime, and it requires continuous ob-
servation. Currently, these are the main frequency-finding methods
but there are many others (e.g. Huijse et al. 2011; Kato & Uemura
2012).

The efficiency of the frequency-finding methods has been tested
in the last few years (e.g. Heck, Manfroid & Mersch 1985; Swingler
1989; Schwarzenberg et al. 1999; Distefano et al. 2012; Graham
et al. 2013). Usually, the authors analyse the sensitivity as well as the
fraction of true periods recovered within a defined accuracy limit.
Indeed, research using real data, including for instance irregular
sampling, gaps, outliers, and errors, may provide more reliable
results. Currently, the most complete of these studies was performed
by Graham et al. (2013). The authors analysed 11 different methods
using light curves of 78 variable star types. The CE-based algorithm
is the most optimal in terms of completeness and speed according
to the authors. However, most frequency-finding methods have a
selection effect for the identification of weak periodic signals (de
Jager, Raubenheimer & Swanepoel 1989; Schwarzenberg-Czerny
1999). Therefore a combination of all methods could potentially
increase the recovery rate close to 100 per cent according to Dubath
et al. (2011). However, which method leads to the correct period
for a specific light curve within an automated strategy is an open
question. Moreover, the main frequencies computed by different
methods can be dissimilar, and so two questions must be answered
to determine the best way to analyse a time series, i.e. how many
frequency-finding methods should be combined, and how to work
out which period should be chosen when two or more methods
provide different results?

The frequency-finding methods adopt, as the true frequency
(ftrue), one that defines the main periodic variation displayed by
the time series, based on a minimum or maximum of the quantity
being tested. However, the main frequency can be a harmonic of ftrue

or related to an instrumental or spurious variation. It means that only
using the period-finding method is not enough to set a reliable pe-
riod, so additional analyses are required. For example, the harmonic
fits can be used to set models and, using the χ2 distribution, estab-
lish ftrue and its reliability (Ferreira Lopes et al. 2015a). However,
what is χ2 threshold, below which a time series may be considered
to have a reliable signal, and if the χ2 alone is enough to do that
are open questions. Theoretically, any signal having an amplitude
greater than the noise could be detected using a suitable method.
The false alarm probability (FAP) has been used to determine the
typical power spectrum values of the noise and to discard variability
due to noise alone. However, sources lacking a periodic signal, such
as aperiodic variations and pulses, will also be discarded using this
approach. All the period-finding methods that depend on the phase
diagram are unfit to detect these signals because no frequency will
return a smooth phase diagram. Therefore, classifying a time series
as noisy requires an investigation of all signal types. On the other
hand, correlated noise, seasonal variations, the cadence, or the phase
coverage can lead to power values above the FAP indicating an ap-
plicability limit to using this approach to determine the reliability
of selections. Indeed, a large number of Monte–Carlo simulations
are usually performed to determine the FAP, and hence the running
time required should also be taken into account. Then, our required
list of improvements towards an efficient automation of the variabil-
ity analysis should include: how to use the current period-finding
methods to determine the reliability of signals? How to discrimi-
nate aperiodic from stochastic variations? Is it possible to study all
variation types using a single approach or are different strategies
required for different purposes? How to provide a standard cut-off
to determine reliable signals?

Currently, any frequency-finding method is able to compute ftrue

using a single computation. Therefore, the determination of ftrue is
performed after computing several times a function that is suscep-
tible to the smoothness of the phase diagrams depending on the
method that is used. The phase values are given by

φi = ti × ftest − G [ti × ftest], (1)

where ti is the time, ftest is a test frequency, and the function G
returns the integer part of ti × ftest. This equation provides an in-
terval of values ranging 0 ≤ � ≤ 1, where ftrue is the frequency
that returns the smoothest phase diagram. The minimum (fmin) and
maximum (fmax) frequency as well as the resolution (�f) or number
of frequencies (Nf) are required as inputs to search periods in all
unevenly spaced time series for all frequency-finding methods. The
fmin is usually defined as 2/Ttot, where Ttot is the total time span of
the observations. This definition is commonly used as a requirement
to enclose at least two variability cycles in the time series. How-
ever, variations having fewer than two cycles can be considered
with caution when biases have been identified and removed (e.g.
De Medeiros et al. 2013; Ferreira Lopes et al. 2015b). On the other
hand, fmax will be linked with the time interval between the obser-
vations δt. The Nyquist frequency (fmax = 0.5/δt) must be assumed
for evenly spaced time series since this constitutes an upper limit
to the frequency range over which a periodogram can be uniquely
calculated. Otherwise, for irregularly sampled cases, the frequency
limit becomes dominated by the exposure time (Eyer & Bartholdi
1999).
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The frequency sampling strategy is crucial to determine ftrue using
any frequency-finding algorithm. A small variation on ftrue provides
a big variation in the phase diagram mainly when ftrue × Ttot >> 1
(see Section 2). It means that ftrue can be missed if the periodogram
is not computed for a sufficiently large number of test frequencies.
A reasonable criterion (see previous paragraph) has been used to
determine fmin, while an empirical criterion has been applied to
set fmax and �f. For instance, fmin = 0, fmax = 10 d−1, and �f =
0.1/Ttot were adopted by Debosscher et al. (2007) and Richards
et al. (2012). In this case, the authors assumed an empirical cut-off
on the maximum frequency below which any reliable frequency
could be found: the frequency-finding method is able to detect all
reliable frequencies in a range of f ± �f/2. On the other hand,
Schwarzenberg-Czerny (1996) assumes fmin = 0, fmax = 1/2 τmed,
and an optimal grid �f = 1/(A × Ttot), where τmed is the median dif-
ference between successively ordered observation times and A is a
factor, typically ranging 10−15, which takes into account oversam-
pling and binning or the number of harmonics used in the Fourier
fit. Graham et al. (2013) tested �f values of 0.0001, 0.001, and
0.01, and the optimal grid over a frequency range from fmin = 0 to
fmax = 20 for standard frequency-finding methods; LS, LSG, AOVs,
PDMs, STR, FC, CE, SS, and CKP methods. The data test used by
the authors has a number of observations ranging from 105 to 966
and a total baseline ranging from 2182 to 2721 d. The performance
found for �f = 0.0001 and the optimal �f (the median optimal �f
is 2.5 × 10−5) is quite similar for all methods analysed according
to the authors. Indeed, these results can only be used as a guide
for samples that mimic those tested by the authors since the sam-
ples tested do not cover all possible intervals of measurements and
baselines. Therefore, what is the optimal resolution able to detect
all periodic variations, and how much finer grain is necessary to
get a more accurate period estimation, if ftrue is found since an ini-
tial value can be found with a coarser grain resolution, are open
questions.

The majority of frequency-finding methods were designed for
single time series. Such methods are in accordance with past sur-
veys since they were usually from observations in a single photo-
metric waveband (e.g. VVV – Minniti et al. 2010; LINEAR – Sesar
et al. 2011; CoRoT – Baglin et al. 2007; Kepler – Borucki et al.
2010). However, in the last few years there are multiwavelength
surveys such as Gaia (Bailer-Jones et al. 2013), where the main
catalogue is multi-epoch using a wide G filter, but it also contains
colour information from simultaneous multi-epoch low-resolution
spectra. Period finding could be done on G band and forthcoming
surveys such as LSST (Ivezic et al. 2008) require multiwavelength
frequency-finding methods in order to optimize the period searches.
Usually, each waveband is analysed separately and posteriorly the
results are combined (e.g. Oluseyi et al. 2012; Ferreira Lopes et al.
2015a). However, the combination of different data sets allows us
to increase the number of measurements that are extremely im-
portant to signal detection. Süveges et al. (2012) used principal
component analysis to extract the best period from analysis of the
Welch–Stetson variability index (Welch & Stetson 1993). However,
the method requires observations taken simultaneously. VanderPlas
& Ivezić (2015) introduce a multiband periodogram by extending
the LS approach. For that, the authors modelled each waveband as
an arbitrary truncated Fourier series using the Tikhonov regulariza-
tion in order to provide a common model at all wavebands. Such
methods and new insights into multiwavelength frequency-finding
methods are required to take full advantage of the multiwavelength
observations.

The discussion above provokes questions that must be addressed
in the challenge to analyse large amount of photometric data au-
tomatically. Some of these questions are addressed in the current
paper (III) and the forthcoming papers of this series will address
the remaining questions. Sections 2 and 3 assess the frequency sam-
pling and frequency uncertainties. Section 4 establishes an approach
to compute period and amplitude variations. In Section 5, we show
our results on estimating frequency resolution and uncertainties and
discuss them. We address our final remarks in Section 6.

2 FREQU ENCY SAMPLI NG

Consider a periodic signal modelled by function F
having frequency ftrue (being a real, positive con-
stant), where F = [F( t1 ), F( t2 ), · · · , F( tn )]. From which
F( ti ) = F( ti + nc/ftrue ), where nc (number of cycles) is a positive
integer ranging from zero to G[Ttot × ftrue]. This relationship is also
true for phase values, i.e. φi( ti ) = φ( ti + nc/ftrue ) = φj( tj ) and
therefore

∣∣φj − φi

∣∣ = 0. The phase difference between them for a
frequency given by f = ftrue + δf is written as∣∣φj − φi

∣∣ =
∣∣∣tj × (ftrue + δf) − G

[
tj × (ftrue + δf)

]
− ti × (ftrue + δf) + G [ti × (ftrue + δf)]

∣∣∣∣∣φj − φi

∣∣ =
∣∣∣(tj − ti

) × δf +
{

tj × ftrue − G
[
tj × (ftrue + δf)

]}
−
{

ti × ftrue − G [ti × (ftrue + δf)]
}∣∣∣. (2)

Having δf < < f implies that G[t × (f + δf)] = G[t × f]. Indeed,
this is reasonable since the frequency sampling is usually set as fn =
fmin + n × δf. For instance, n = 100 implies that there is a frequency
at least hundred times greater than δf. Considering this limit, the
two last terms (in curly brackets) of equation (2) are cancelled and
so∣∣φj − φi

∣∣ �∣∣tj − ti

∣∣ × δf ⇒ δf � δφj,i∣∣tj − ti

∣∣ . (3)

The maximum variation on δφ is found for |tj − ti| = Ttot, i.e.
from the comparison among the measurements at the ends of the
time series. Indeed, equation (3) was found only assuming that δf <

< f, and hence this expression can be used as an analytical definition
of the frequency rate limit, where the number of frequencies is given
by

Nf = fmax − fmin

δf
= (fmax − fmin) × Ttot

δφ

Nf � fmax × Ttot

δφ

, (4)

where fmax > > fmin was assumed when deriving the expression.
This expression enables us to determine Nf from the phase shift δφ

since Ttot is a feature of a time series. On the other hand, fmax can
be assumed to be the same for different time series, in the same set
of observations, since the upper limit of frequencies, for those time
series having evenly spaced data, is given by the Nyquist frequency
(e.g. Eyer & Bartholdi 1999). Therefore, the frequency search will
be performed with the same resolution in the phase diagram if we
assume the same δφ for different time series. Moreover, it facilitates
a strict comparison of frequency-finding searches performed by
different surveys.

Equation (4) was defined only by considering the phase dia-
gram. Therefore, this relation is general, and it can be used as an
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accurate determination of the frequency grid required to find any
signal. Indeed, a similar equation has been used to estimate the fre-
quency grid (e.g. Schwarzenberg-Czerny 1996; Debosscher et al.
2007; Richards et al. 2012; VanderPlas & Ivezić 2015; VanderPlas
2018), where the 1/δφ is called the oversampling factor. However,
no meaning had been provided for the oversampling factor so far.
Values ranging from 5 to 15 have been adopted empirically only
to ensure that the frequency grid is sufficient to sample each peri-
odogram peak. The proper meaning of the oversampling factor is
defined in equation (4) from which a suitable frequency grid for any
kind of signal can be determined.

3 FR E QU E N C Y U N C E RTA I N T I E S

Frequency uncertainties were analytically defined from Fourier
analysis (e.g. Kovacs 1981; Gregory 2001; Stecchini et al. 2017):

σf ∝ 1

Ttot

√
1

n × 

, (5)

where n is the number of measurements, 
 is the signal-to-noise
ratio, and Ttot is the total baseline of the observations. The uncer-
tainty provided by a well-defined periodic signal will be limited by
the exposure time, and hence equation (5) is not a suitable definition
since it assumes an infinite accuracy. On the other hand, phenomena
that result in small variations on the period can be mistaken for an
increased uncertainty. Indeed, the uncertainties computed using a
time series are given by the sum of intrinsic plus instrumental limi-
tations. The uncertainties related with instrumental limitations can
be estimated using a noise model (e.g. Ferreira Lopes & Cross 2017)
and by including this we can thus estimate the intrinsic variation.
Some inconsistencies are found when the frequency uncertainty (σ f

– see equation 5) estimation is related with Ttot, n, and 
. For in-
stance, a signal having an intrinsic variation in the frequency (σ f �=
0), such as light curves of rotational variables, may return a similar
estimation of the uncertainty for time series having 100 or 1000
measurements. On the other hand, for periodic signals a reduction
in the dispersion about the model naturally occurs for a longer base-
line and its accuracy is limited by instrumental properties instead for
large Ttot or 
. Indeed, the power spectrum of ftrue tends to a delta
function with increasing Ttot, while increasing n and 
 improves the
signal reliability since the probability of a signal being detected in-
creases when the noise is reduced. These properties characterize the
signal, but they are not directly related with the period variations.

The CoRoT and Kepler data bases have in common a large num-
ber of measurements and wide coverage time that provide unre-
liable uncertainty estimations using equation (5). Therefore, new
approaches have been used to compute frequency uncertainties for
semiperiodic signals. For the Kepler time series, Reinhold, Rein-
ers & Basri (2013) compute the frequency uncertainty by fitting a
parabola to the peak of the LS power spectrum (Reinhold, private
communication). On the other hand, for the CoRoT time series, De
Medeiros et al. (2013) used a similar equation to that proposed by
Lamm et al. (2004) to estimate the period uncertainty, given by

δP = δν × P 2

2
,

where δν is about 1/Ttot for non-uniform sampling according to
the authors. Ferreira Lopes et al. (2015b,c) also used the CoRoT
time series to study non-radial pulsation and stellar activity, where
the period uncertainties were estimated as the FWHM (δP (STR)

(FWHM))
of the STR power spectrum (Dworetsky 1983). In particular, the
amplitudes and periods vary for light curves of rotational variables
that have differential rotation and spot evolution (e.g. Lanza, Das

Figure 1. The logarithmic of FWHM as a function of logarithmic of Ttot/P
for the Generalized LS (LSG – upper left-hand panel) and for the STR meth-
ods (upper right-hand panel) using four (ABCD) sinusoidal signal having
models of variation and noise, shown in Fig. 2 and described in Section 4.
The models are set by colours, and the solid black line marks the linear fits
for LSG and STR methods. The per cent relative errors (η) for both results
are shown in the lower panels.

Chagas & De Medeiros 2014; Reinhold & Gizon 2015; Das Chagas
et al. 2016). The analytical expression given by equation (5) or the
analysis of the power spectrum are half-way to computing period
variations in order to get new clues about physical phenomena that
account for such variations.

Fig. 1 shows δP(FWHM) as a function of the number of cycles
(N(cycles) = Ttot/P) for the LSG (Zechmeister & Kürster 2009) and
for the STR (Dworetsky 1983) methods using the sinusoidal signal
described in Section 4. The best-fitting models found for the LSG
and STR methods are given by

Log
(
δP

(LSG)
(FWHM)

)
= −1.00 − 0.44 × Log

(
Ttot

P

)
(6)

and

Log
(
δP

(STR)
(FWHM)

)
= −0.97 − 0.54 × Log

(
Ttot

P

)
. (7)

We create four different sinusoidal models that are a single sinu-
soid (A), sinusoid plus amplitude variation (B), sinusoid plus period
variation (C), and a sinusoid plus amplitude and period variations
(D), see Section 4 and Fig. 2 for more details. However, the results
are quite similar for all ABCD models, i.e. the δP(FWHM) estimation
is mainly defined by the N(cycles) instead of the time series properties.
Indeed, it is highlighted for N(cycles) > 10 where the per cent relative
error (i.e. η = 100 × (theoretical − experimental)/‖theoretical‖)
is always smaller than 4 per cent, see lower panels of Fig. 1. Equa-
tion (6) is slightly different from equation (7) (see the solid lines in
the two upper panels of Fig. 1) but the LSG method shows smaller
relative errors (η). The approach using the FWHM of the power
spectrum and any frequency-finding method does not provide a
trustworthy estimation of the period variation (for more detail see
Section 5.4).

To summarize, the uncertainty computed using the power spec-
trum gives us a period interval about the variability period that
leads to similar phase diagrams. Indeed, the main period and its
uncertainty can vary for different period-finding methods since the
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(A)

(B)

(C)

(D)

Figure 2. Sinusoidal light curves, with a fixed period and amplitude (A);
with a varying period (δφ = 0.02) and constant amplitude (B); varying
amplitude (δy = 0.05) and constant period (C); and both amplitude and
period variations (D). The black line shows the model, while the red crosses
show the measurements. The dark and light grey regions are expanded in
the right-hand panels.

susceptibility to measuring phase diagram variations is not the same
(e.g. Eyer 2006; Graham et al. 2013). Moreover, the main period
is assumed to be one that leads to the highest peak of periodogram
that, a priori, gives the smoothest phase diagram and also the small-
est residuals (σ r), i.e. the standard deviation of observed data minus
model (or predicted value). However, these assumptions have not
been analysed so far, but this empirical criteria has been used all the
time. In the sections next, these questions are addressed.

4 FR E QU E N C Y A N D A M P L I T U D E
VA R I AT I O N S

Equation (5) is an analytical expression that saves computational
time. However, computational methods can be used to perform non-

analytical approaches to compute frequency and amplitude varia-
tions in order to accurately choose the main variability period as well
as give additional information about the phenomena observed. In-
deed, any time series can be modelled using Fourier decomposition
(Y(φ) – see Fig. 3). In order to determine the suitable measure-
ments or light-curve regions to compute these variations, consider
the following example:

t (o) = t (m) + δt and y(o) = sin
(
2 × π × t (m) × ftrue

) + δy, (8)

where (o) and (m) are the mean observed and modelled values,
respectively. Indeed, t(o) = t(m) if δφ = 0 and y(o) = y(m) if δy = 0. Four
cases are displayed in Fig. 2; (A) constant period and amplitude,
(B) period variation for constant amplitude, (C) amplitude variation
for constant period, and (D) period and amplitude variation. It is
easier to understand these cases if a linear fit is calculated in the
light and dark grey regions in Fig. 2, given by

y(o) = α ×
(
φ + δ

(e)
φ

)
+ (

β + δ(e)
y

)
, (9)

where (e) means expected value and (α, β) becomes (αy, βy) or (αφ ,
βφ) to indicate the region used to estimate the amplitude or period
variations, respectively. Moreover, y(o) = y(m) if δ

(e)
φ = 0 and δ(e)

y =
0. The linear fit only takes into account the first-order contribution.
However, this allows us to determine a simple analytical equation
to analyse the contributions of δ

(e)
φ on δ(e)

y . For real data, the fitting
function, which may have a more complex shape, can be used. The
main features derived from Fig. 2 are summarized next:

(i) The computed amplitude variation (δ(c)
y ) is defined as the dif-

ference between the observed (o) and modelled (m) amplitude at
the same phase, i.e. [φ(o), y(o)] implied from y(m) = Y(φ(o)), given by

δ(c)
y = y(o) − y(m) = αy × δ

(e)
φ + δ(e)

y . (10)

δ(c)
y can be different from zero if δ(e)

y = 0 according to equation (10),

i.e. a phase variation δ
(e)
φ can appear as an amplitude variation if αy

�= 0. On the other hand, the ideal case will be found when δ(c)
y = δ(e)

y

that implies that αy × δ
(e)
φ � 0. For the cases where δ(e)

y �= 0, the
ratio of computed to expected values is written as

R(δy ) =
∣∣∣∣∣ δ

(c)
y

δ
(e)
y

∣∣∣∣∣ =
∣∣∣∣∣αy × δ

(e)
φ

δ
(e)
y

+ 1

∣∣∣∣∣ (11)

that indicates whether the computed value is overestimated (R(δy ) >

1), equal (R(δy ) = 1), or underestimated (R(δy ) < 1). Therefore, the
estimation of δ(e)

y will be improved if the αy × δ
(e)
φ << δ(e)

y . δ
(e)
φ

is a time series property that cannot be modified. However, those
light-curve regions having αy � 0 provide a better estimation of
the amplitude variation. The light-grey region of Fig. 2 indicates a
suitable region to measure amplitude variation since this contains
the smallest αy values.

(ii) The computed phase variation (δ(c)
φ ) is given by the difference

between the observed and modelled value for the same amplitude,
i.e. for each pair of observed measurements [φ(o), y(o)] implies that
y(o) = Y(φ(m)), which can be written as

δ
(c)
φ = φ(o) − φ(m) = δ(e)

y

αφ

+ δ
(e)
φ , (12)

where δ
(c)
φ will return values different to zero even if δ

(e)
φ = 0 in

the same fashion as the amplitude variation (see item i). Indeed,
the amplitude and phase variations are coupled equations, i.e. δ(c)

y

depends on δ
(e)
φ , while δ

(c)
φ depends on δ(e)

y (see equations 10 and 12).
Moreover, not all observed measurements can be used to compute
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Figure 3. Ceph (purple – CoRoT-211626074), RR (blue – CoRoT-101370131), RRblz (yellow – CoRoT-100689962), EA (red – CoRoT-102738809), and Rot
(green – CoRoT-110843734) phase diagrams. The dark dots in the first panels indicate the original data, while the solid lines set the Fourier models M(φ). The
next panels were built from the models where half of them are set by squares (measurements at t > t0 + 1./f) and another half by crosses (measurements at t >

Ttot − 1./f). The frequencies used to build the phase diagram from left-hand to right-hand panels are ftrue + δf to δφ = [0, 0.05, 0.1, 0.2], respectively.

δφ since those having values bigger or smaller than the maximum
and minimum Y values cannot be written as y(o) = Y(φ(e)). There-
fore, only the observed measurements having values between the
minimum (Ymin) and maximum (Ymax) model values can be used to
estimate δ

(c)
φ , i.e. for all y(o) since Ymin < y(o) < Ymax. The number

of measurements used to compute δ
(c)
φ will depend on the signal

type (see Fig. 3 first panels). However, these measurements do not
provide a good information of time variation about the model. Us-
ing the ratio of computed and expected values is a suitable way to
examine agreement between them, given by

R(δφ ) =
∣∣∣∣∣ δ

(c)
φ

δ
(e)
φ

∣∣∣∣∣ =
∣∣∣∣∣∣α−1

φ ×
(

δ
(e)
φ

δ
(e)
y

)−1

+ 1

∣∣∣∣∣∣ . (13)

The opposite result of R(δy ) is found since the dispersion of δφ values
are proportional to the inverse of the angular coefficient and to the
inverse of the relation δ

(e)
φ /δ(e)

y . This means that the weight of δ(e)
y

on δ
(c)
φ and δ

(e)
φ on δ(c)

y will be the same only if δ
(e)
φ /δ(e)

y = 1. The
regions of the light curve where the highest αφ values are found will
be better to compute δ

(c)
φ since the weight of δ

(e)
φ /δ(e)

y is minimized.
For instance, the highest αφ values for the sinusoidal variation will
be found in the dark-grey region of Fig. 2.

(iii) Fig. 2(B) shows a sinusoidal light curve considering δ
(e)
φ =

0.02 and δ(e)
y = 0. As expected, δ(c)

y � 0 is in the flattest region of
the light curve. A note of caution, these regions are not well mod-
elled by a straight line and non-linear effects, different from those
analysed in items (i) and (ii), can be found. Therefore, a fit to the
whole light curve rather than a linear fit is necessary. The best esti-
mation of the amplitude variation will be found if the region is small
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enough, so that the model and linear fit are in agreement. Indeed,
the periodic variation region can be approximately described by a
linear model, but the estimation of δ

(c)
φ is computed using the time

series model (see Section 5.2). The size and complexity of regions
used to measure the period and amplitude variations are strongly de-
pendent on the time series signal. To summarize, there is a non-zero
contribution to the phase variation of the estimation of amplitude
variations, if the region cannot be modelled by a horizontal line. On
the other hand, δ(c)

φ is accurately estimated from equation (12) since

for this example δ
(c)
φ = δ

(e)
φ .

(iv) A sinusoidal light curve considering δ
(e)
φ = 0 and δ(e)

y = 0.05
is shown in Fig. 2(C). From the approach described in item (i) the
estimation of δ(c)

y is accurately estimated from equation (10) since

for this example δ(c)
y = δ(e)

y . On the other hand, δφ �= 0 despite δ
(e)
φ =

0 for the dark grey region in Fig. 2. Indeed, δφ will be equal to δ
(e)
φ

for the case where δ(e)
y �= 0 only when αφ = ∞, i.e. a perpendicular

line to the phase axis. Indeed, the phase variation is dominated by
the amplitude variation in these cases since δ(e)

y /αφ >> δ
(e)
φ .

(v) Fig. 2(D) shows the sinusoidal light curve when δ
(e)
φ = 0.02

and δ(e)
y = 0.05. It exemplifies a real time series where some vari-

ation in time and flux is always found. However, the ratio of
δ

(e)
φ /δ(e)

y will determine the relative weights of each other (see equa-
tions 11 and 13). For the current example, R(δy ) = ∣∣1 + 0.4 × αy

∣∣
and R(δφ ) = ∣∣1 + 2.5 × α−1

φ

∣∣. Therefore, the best scenario to com-
pute period and amplitude variations is the one where αy = 0 and
αφ = ∞. However, this is usually not the case, and hence such
variations will not be computed precisely. Therefore, Monte–Carlo
simulations are performed in Section 5 in order to estimate the
inaccuracy of δ(c)

y and δ
(c)
φ as proxies for the variation on δ(e)

y and

δ
(e)
φ .

The discussion above does not take into account any particular
light-curve shape, and hence this argument can be applied to all
types of light curves. Moreover, multiple regions of the phase dia-
gram can be used to compute the amplitude and period variations.
Indeed, these regions must be chosen following the discussion above
in order to minimize the amplitude on period variations and vice
versa, i.e. use the flattest regions to compute the amplitude variation
and the regions with the largest gradients (positive or negative) for
the period variations. Indeed, time series having saddle regions also
are suitable to compute the amplitude variation for the same reason
discussed above (see panel A in Fig. 4). A more detailed description
about how to compute the δ(c)

y and δ
(c)
φ is presented in Section 4.1.

4.1 Computing period and amplitude variations

Consider a generic light curve modelled by Y(φ) for [φ1, φ2, , φN]
where φi are in ascending order. The tangent angles to the model
can be written as

θi = arctan

(
Y (φi+1) − Y (φi)

φi+1 − φi

)
. (14)

The angles are better to use than the α values to determine suit-
able regions to compute the period and amplitude variations because
they can be assessed from the model without making any additional
computation (see Section 4). The largest θ i values are associated
with the largest α values and the smallest θ i values are associated
with the smallest α values. The regions having smaller or bigger
angles will be better to compute δy and δφ , respectively (see Sec-
tion 4). After defining the region to compute these variations the
following procedures should be performed:

(i) Calculate the amplitude variation (σ y): consider the region(s)
that enclose the majority of measurements having |θ | < θy. Next,
for each [φ(o)

i , y
(o)
i ] we find its respective [φ(m)

i , y
(m)
i ] from which

the vector δy =
[
y

(o)
i − y

(m)
i , · · · , y

(o)
N − y

(m)
N‘

]
is obtained. Lastly,

the amplitude variation is computed as

σy = γ × eMAD
(
δyi

)
, (15)

where eMAD is the even-median absolute deviation of the even-
median (Ferreira Lopes & Cross 2017) and γ is a correction factor
(for more detail see Section 5.2.1). The eMAD is a slight modifica-
tion to the MAD (the median absolute deviation of median). Indeed,
σ y becomes a robust estimate of the standard deviation to outliers
if γ = 1.48 according to Hoaglin, Mosteller & Tukey (1983). A
note of caution, δy is computed using y

(m)
i instead of y

(e)
i since the

first one provides better estimations of expected values if the region
cannot be well modelled by a line. Indeed, y

(m)
i � y

(e)
i only if θ i ≈

0.
(ii) Calculate the period variation (σ P): consider the region that

encloses the majority of measurements having |θ | > θP. For each
[φ(o)

i , y
(o)
i ], we find its respective [φ(e)

i , y
(e)
i ], from which the vector

δφ =
[
φ

(o)
i − φ

(e)
i , · · · , φ

(o)
N − φ

(e)
N

]
is obtained. Lastly, the period

variation is computed as

σP = γ × P × eMAD
(
δφi

)
. (16)

The current approach estimates the period and amplitude uncer-
tainties taking into account the variations about a model. Equa-
tions (15) and (16) are computed using only those measurements
suitable to reduce the weight of either δy or δφ . However, the accu-
racy of σ y and σ P are extremely dependent on θ y and θP, respec-
tively. For instance, values of θ = [0.1◦, 1◦, 5◦, 10◦, 70◦, 80◦, 89◦,
89.9◦] return α(φ) = [∼0.002, ∼0.02, ∼0.09, ∼0.2, ∼2.8, ∼5.7,
∼57, ∼573]. Indeed, the optimal choice of θ values is a compro-
mise between the number of measurements enclosed for each limit
and the usefulness of these measurements. Moreover, the statistical
significance increases with the number of measurements, while a
higher signal-to-noise reduces the weight of δy on δφ . Therefore, the
number of measurements and signal to noise is indirectly implicated
in the period and amplitude variations.

5 R ESULTS AND D I SCUSSI ON

Setting correct inputs using either method to select variable stars
or to perform frequency-finding searches is mandatory to get ac-
curate outputs. The variability indices used to select variable star
candidates were studied deeply in the first two papers of this series,
Ferreira Lopes & Cross (2016, 2017). These studies enabled us to
provide the optimal constraints on noise models and establish well-
defined criteria to settle the best approach to discriminate variable
stars from noise as well as to affirm that the selection of a reliable
sample is unfeasible using variability indices. Therefore, frequency
analysis may also be used to select out untrustworthy variations,
but all constraints must be properly delimited and understood to
avoid mistakes. For instance, the interquartile range can provide
an incorrect list of variable star candidates if the time sampling
is not taken into account. Therefore, all the relevant points about
frequency-finding methods were discussed in Section 1. The fmin

and fmax are limited by the time series and the maximum reliable
frequency, respectively. On the other hand, the sampling frequency
was addressed in Section 2 in order to facilitate making a decision
about the frequency resolution taking into account the effects on the
frequency search. The frequency sampling and a new approach to
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Figure 4. A single period (in contrast to Fig. 3 where two periods are shown) of the same models as shown in the Fig. 3. The phase diagrams were built
assuming different values of δφ and δy that are displayed at the top of each column of panels unless to EA B∗ and D∗ panels that was assumed a δφ = 0.025.
Indeed, the eclipse is missed for larger δφ values. The regions used to compute the amplitude and period uncertainties are indicated by light grey and dark grey
shading in all panels (for more details, see Sections 4 and 5.3).

computing period and amplitude variations are outlined in sections
next.

5.1 Optimal frequency sampling

An optimal determination of fmax is critical to reducing running time
since it leads to the determination of the resolution and thus the
number of frequencies or loops performed by the frequency-finding
algorithm (see equation 4). Estimation of fmax using the Nyquist fre-
quency for oversampled data returns an overestimated frequency,
i.e. frequencies that are this high are not reliably measured using
the available data. Indeed, for unevenly and poorly sampled time
series, the Nyquist frequency can be under or overestimated what-
ever the estimation of the time interval from the measurements (as a

mean or median value). For instance, long and short cadence CoRoT
light curves have fmax of about 169 d−1 and 2790 d−1, respectively.
These frequencies imply that the search for periodic variations at
higher frequencies will not be productive. Therefore, empirical
values have been adopted as the frequency limit. fmax = 10 d−1

has been generally adopted (e.g. Debosscher et al. 2007; Richards
et al. 2012; De Medeiros et al. 2013) but higher values also can be
found (e.g. Schwarzenberg-Czerny 1996; Damerdji, Klotz & Boër
2007; Ferreira Lopes et al. 2015a). The parameters used to perform
frequency searches for variable star catalogs for some surveys are
listed in Table 1; the WFCAM multiwavelength variable star catalog
(WFCAM – Ferreira Lopes et al. 2015a), the Optical Gravitational
Lensing Experiment (OGLE – Soszyński et al. 2009), the TAROT
suspected variable star catalog (TAROT – Damerdji et al. 2007),
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Table 1. Constraints on the frequency search analysis performed by differ-
ent surveys. The designation, fmin, fmax, mean total time span Ttot, and Nf

of each survey are shown. The frequency unit is d−1 and Ttot is in days (d).
Moreover, δφ equation (3) is given in the last column.

Survey fmin(d−1) fmax(d−1) Ttot(d) Nf δφ

CoRoT 2/Ttot 3 ∼136 2 × 103 0.20
GAIA 2/Ttot 3.9 ∼1700 ∼3 × 103 0.19
Kepler ∼3/Ttot 1 ∼90 1300 0.07
OGLE 0 24 ∼2780 104 >1
TAROT1 2/Ttot fmax ∼900 105 ∼0.22
WFCAM2 2/Ttot fmax ∼1058 105 ∼0.25

1The frequency step is taken as described in Akerlof et al. (1994) and Larsson
(1996).
2fmax computed according to Eyer & Bartholdi (1999).

GAIA1 data release 1 documentation, the semisinusoidal variables
in the CoRoT mission (SR-CoRoT – De Medeiros et al. 2013), rota-
tion periods of 12 000 main-sequence Kepler stars (Kepler – Nielsen
et al. 2013), and the WFCAM multiwavelength Variable Star Cat-
alog (WFCAM – Ferreira Lopes et al. 2015a). The fmax adopted
by OGLE was used to estimate δφ for the WFCAM and TAROT
catalogs. Indeed, fmax values given by analytical expressions in Eyer
& Bartholdi (1999) depend on each time series and such values are
usually much higher than those empirically adopted.

The frequency sampling defined by equation (4) was designed
without taking into account any particular criteria and hence this
expression may work for any signal type. Indeed, the number of con-
straints is not reduced, but the frequency sampling given by shifts on
the phase δφ instead of shifts in frequency is clearer to read. More-
over, equation (3) also enables us to determine how much finer grain
resolution is required to get a more accurate frequency estimation
if the variability frequency is found since an initial value can be
found with a coarser grain resolution. The frequencies not included
in the frequency sampling may be detected or not, depending on
the response to the frequency-finding method for frequencies given
by f ± δf/2, for instance. Indeed, the resolution of frequency sam-
pling is critical for a large Ttot since we find larger variations in the
phase diagram for nearby frequencies. Moreover, as highlighted in
previous sections, δφ standardizes the criteria to perform frequency
searches for time series having different total time spans. It allows
us to compare straightforwardly the frequency analysis performed
in different photometric surveys.

5.2 Visualizing frequency sampling effects

Consider a periodic signal of 1d−1 with measurements covering a
variability cycle from t = 0 to t = 0 + 1/f and another from t = Ttot −
1/f to t = Ttot. Five simulated time series that mimic pulsating stars
(Y(Ceph), Y(RR), Y(RRblz)), eclipsing binary stars (Y(EA)), and rotational
variables (Y(Rot)) were chosen to illustrate our approach (for more
details see Section 5.4). Fig. 3 shows phase diagrams of simulated
light curves where the first column of panels show the results for ftrue.
The grey dots indicate the original light curve, while the models are
indicated by purple (Ceph), blue (RR), yellow (RRblz), red (EA),
and green (Rot) colours. The measurements located at t = 0 to t
= 0 + 1/f are indicated by squares, while those at t = Ttot − 1/f
to t = Ttot by crosses. The second, third, and fourth columns show
phase diagrams using ftrue + δf (see equation 3) for δφ = [0.05,

1https://gaia.esac.esa.int/documentation/GDR1

0.1, 0.2], respectively. The crosses and squares limit the region
where all measurements may be arranged considering that phase
values computed at the beginning and end of the light curve set the
largest variation from the model in the phase diagram as discussed
in Section 2. As one can see, the largest distortion of the model is
found for binary stars, where the main variation is concentrated in a
small part of the phase diagram. These aspects become increasingly
important in the presence of noise or poorly sampled time series,
when almost all measurements are required to adequately cover all
variability phases. On the other hand, a low signal to noise is found
for small frequency variations about ftrue for those models where the
variability is observed along the whole phase diagram such as Ceph
and RR. Indeed, the phase diagram dispersion is larger for those
phenomena whose root variability causes period and/or amplitude
variations such as RRLyrae with the Blazhko effect (RRblz) and
rotational variables (e.g. Buchler & Kolláth 2011; Ferreira Lopes
et al. 2015c). Indeed, non-radial pulsation, exoplanets, and different
types of eclipsing and rotational variability enlarge the zoo of phase
diagrams that can be produced by astrophysical phenomena (e.g.
Prša et al. 2011; De Medeiros et al. 2013; Ferreira Lopes et al.
2015b; Paz-Chinchón et al. 2015).

To summarize, the phase diagrams of well-defined signals (fixed
period and amplitude) only produce slight variations on the true
frequency, and hence these signals are easily identified compared to
those ones with variable period or amplitude where the signal can be
completely lost. Of course, the detection of these stars depends on
the susceptibility to each frequency-finding method. These matters
will be addressed in a forthcoming paper of this project. The main
conclusion provided by equation (4) is a clear limit to the variations
in which a smooth phase diagram can be found.

5.2.1 Sorting out θ y , θ P , and correction factors

The same models described in Section 5.2 were used to test our
assumptions. Fig. 4 shows the phase diagrams of five typical light
curves where the A panels show the model; the B panels show a
variation in the period with a constant amplitude; constant period
with amplitude variation (C panels), and both amplitude and period
variations (D panels). These variations were added to the model
using a random uniform distribution, that mimics a non-instrumental
variation, while an instrumental variation may appear like a normal
distribution. Indeed, the real non-instrumental variation is more
complicated and may include variations with normal, uniform and
perhaps more complicated distributions. For instance, the RR and
Rot models at the maximum seem to be composed of normal and
uniform variations that are not necessarily symmetric about the
model, indicating a more complex variation (see Fig. 3 first panels).

Equations (15) and (16) can be considered as a particular case
where the noise or variation of amplitude or period is provided
by a normal distribution since 1.48 × MAD is approximately the
standard deviation value (Hoaglin et al. 1983). A uniform distribu-
tion has a different spread of values. Therefore, a correction factor
(γ ) may be considered in order to take account of the distribution
type. The percentage of values of 68.27 per cent, 95.45 per cent,
and 99.73 per cent that lie within a band around the mean of a nor-
mal distribution is given by γ = 1.48, γ = 2.96, and γ = 4.44,
respectively. However, γ � 1.37, γ � 1.92, and γ � 2.00 contain
the same fraction of values if a uniform distribution is considered.
This factor improves our capability to measure an accurate estima-
tion of the amplitude variation. For our simulation, this factor is
not important since the ratio of computed and expected values are
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Table 2. Angles (θ ) and angular coefficient (α) values found for Ceph, RR,
RRblz, EA, and Rot models. The angle limits θ y and θP with their respective
αy and αφ values used to set the regions to compute the period and amplitude
variations as well as the maximum angle found in each model are displayed
next.

Model ‖θ‖max θ y ‖αy‖ θP ‖αφ‖
Ceph 79.02o 31.05o 0.18 76.73o 4.68
RR 85.52o 28.77o 0.37 83.67o 10.99
RRblz 81.30o 18.94o 0.10 76.25o 4.74
EA 88.39o 7.87o 0.04 87.94o 32.00
Rot 74.82o 34.87o 0.20 72.90o 3.48

analysed (Section 5.3). On the other hand, γ = 1.48 was used to
estimate amplitude variation on real data (Sections 5.4 and 5.5). The
period and amplitude variations computed are given by the sum of
intrinsic and acquired variations. Acquired variations are those that
come from the environment or instrument, while intrinsic variations
come from the source itself. Indeed, low values for the uncertain-
ties are limited by the instrument properties and for constraints
related with observability such as the sky background, noise from
background sources, and blending. For instance, the period and am-
plitude variations can reveal particularities of phenomena observed
if the acquired uncertainties can be deducted from a noise model
(e.g. Aigrain et al. 2009; Cross et al. 2009; Ferreira Lopes & Cross
2017). However, the reliability of the period and amplitude varia-
tions measured will depend on the ratio δφ /δy as well as the regions
used to compute them (see Section 4 for more detail).

5.3 Testing frequency uncertainties

The models described in Section 5.2 (see A panels of Fig. 3) were
used to perform the simulations. The regions chosen to compute
the amplitude and period uncertainties are shown in Fig. 4. The
measurements in these regions have angles within the defined angle
limits that were set to best compute the uncertainties (see Section 4
for more details). Indeed, on average the maximum angle values are
reduced and the minimum angle values are increased when the noise
contribution is increased. Table 2 shows the main parameter values
found in each model. Next, 106 Monte–Carlo simulations were
performed setting in the range from 0.1 to 10 and were introduced
using a uniform distribution or a normal distribution. Finally, the
amplitude and period uncertainties were computed according to
equations (15) and (16). The ratio of the computed and expected
uncertainty values for period (R(σP )) and amplitude (R(σy )) was used
to estimate the reliability of computed values. Fig. 5 shows the main
results obtained in the simulations, which are summarized next:

(i) The results found using uniform and normal distributions
are quite similar except for EA models. This happens because
the eclipse is ‘missed’ more quickly when the uncertainty is in-
troduced by normal distributions than with uniform distributions.
Considering the same sigma value for both distributions, a nor-
mal distribution of errors provides a larger dispersion of simula-
tions than a uniform distribution. For instance, ∼4.44 × eMAD is
required to enclose ∼99.7 per cent of observed measurements for a
normal distribution, while ∼2.00 × eMAD is required for a uniform
distribution (see Section 5.2.1).

(ii) R(σP ) � R(σy ) � 1 is found for σ
(e)
P /σ (e)

y ranging from ∼0.5
to ∼2 for all models as well as for both uniform and normal distri-
butions. Indeed, the EA model has R(σP ) � R(σy ) � 1 for almost all
values of the ratio. αy is smaller than 0.1, while αφ is bigger than

Figure 5. The ratio of computed and expected uncertainty values for period
(R(σP ) – blue crosses) and amplitude (R(σy ) – yellow squares) as function of
σ

(e)
P /σ

(e)
y for EA, RRblz, RR, Ceph, and Rot models. The results where the

noise was introduced using a uniform and normal distribution are displayed
in the left-hand and right-hand panels, respectively.

10 for EA model and hence the weight of σ
(e)
P /σ (e)

y on the computed
uncertainties is reduced (see Table 2).

(iii) The greatest difference between computed and expected
values (R) is found at extreme ratios, i.e. those regions where
σ

(e)
P >> σ (e)

y or σ
(e)
P << σ (e)

y .
(iv) The discussion above can be summarized if the equa-

tions (11) and (13) are extrapolated, thus

R(σy ) = σ (c)
y

σ
(e)
y

� ∣∣αy

∣∣ × σ
(e)
P

σ
(e)
y

+ 1 (17)

and

R(σP ) = σ
(c)
P

σ
(e)
P

� ∣∣α−1
φ

∣∣ ×
(

σ
(e)
P

σ
(e)
y

)−1

+ 1. (18)

R(σy ) and R(σP )have opposite behaviour since they vary with
(σ (e)

P /σ (e)
y )±1, respectively. R(σy ) implies a rational function if

σ
(e)
P /σ (e)

y has values smaller than 1, while the opposite is found
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Figure 6. Per cent relative error for σ P and σ y as a function of the number of
measurements using a uniform (left-hand panels) and a normal (right-hand
panels) distribution. The colours indicate the result for different models in
the same way as Figs 3 and 4.

for R(σP ). However, both functions depend on an angular coefficient
(|αy| or |αP|) that will determine the trend variation.

The simulations are in agreement with the analysis in Sec-
tion 4. The amplitude and period variations can bias the uncer-
tainty estimations of one another, mainly when σ

(e)
P /σ (e)

y << 1 or

σ
(e)
P /σ (e)

y >> 1. Indeed, equations (17) and (18) can be used to es-

timate the reliability of uncertainties if σ
(e)
P /σ (e)

y can be estimated
somehow.

The relative errors of the uncertainties were also analysed as
function of the number of measurements (see Fig. 6). As result, a
decrease in the error with the number of measurements is found, as
expected. This means that the number of measurements is an im-
plicit parameter in equations (15) and (16) that improve the statistic
significance of uncertainties.

5.4 Describing models and testing the approach on observed
data

Ceph, RR, RRblz, EA, and Rot models were based on
the CoRoT light curves CoRoT-211626074, CoRoT-101370131,
CoRoT-100689962, CoRoT-102738809, and CoRoT-110843734,
respectively. The variability types were previously identified by
Debosscher et al. (2007), Poretti et al. (2015), Paparó et al. (2009),
Chadid et al. (2010), Maciel et al. 2011, Carone et al. 2012, and
De Medeiros et al. (2013). Table 3 shows the main parameters of
these sources that were obtained in the literature (L). These light
curves were modelled using a harmonic fit with 12, 12, 12, 24, and 4
harmonics for Ceph, RR, RRblz, EA, and Rot variable stars, respec-

tively. Higher number of harmonics can be used, however, this also
increases the processing time necessary to model and to perform
simulations. The Y(RRblz) and Y(Rot) variable stars present variations
in the amplitude and a period-amplitude variation. The Y(RRblz) has
a Blazhko effect that is a long-period modulation or a variation in
period and amplitude of RR Lyrae stars (e.g. Szabó 2014). On the
other hand, the Y(Rot) displays amplitude variation due to the mag-
netic activity cycles and period variation due to differential rotation
(e.g. Ferreira Lopes et al. 2015c; Das Chagas et al. 2016). The ex-
posure time (Texp) provided by CoRoT mission and the empirical
noise relation (σ 2h) described by Aigrain et al. (2009) was used to
analyse the period and amplitude variation.

The tests performed in the Sections 4, 5.2, and 5.2.1 used models
scaled to unit amplitude. It is useful to test our approaches for
different signal types. For instance, the Ceph, RR, RRblz, EA,
EB, and Rot models have similar angles (see Table 2), but a wide
difference among them is found when the real data are considered
(see Fig. 7) since they have different typical amplitudes. Therefore,
the angles found in the real data are not the same as those found
for the models tested in the previous sections, as expected. These
variations occur because tan (θ ) = δy/δφ, i.e. a bigger δy for the same
δφ implies a larger angle. Fig. 7 shows the CoRoT light curves (first
row of panels), the angles as a function of phase along the light
curve (second row of panels), the observed minus modelled values
(third row of panels), and finally the δφ values for the region used do
compute the period variation. For example, the θmax for Rot models
is about twelve times bigger than those found when amplitude is
scaled to unit amplitude. On the other hand, the θmax of the Ceph,
RR, RRblz, EA, and EB decreases by factors smaller than 0.5.

Fig. 7 displays, step by step, the procedure that must be used to
compute period and amplitude variations: the variability period is
computed and the light curve is folded; next, a model is obtained
using harmonic fits (see the solid lines in the upper panels); from the
models the angles are determined (see second row of panels) from
where the regions used to compute period and amplitude variations
are established; the amplitude variation is given by the standard
deviation of the residuals in the region of phase diagram where
|θ | < θ y; and the period variation is found by multiplying the
variability period by eMAD of δ

(c)
φ (given by equation 16). The

periods and amplitudes as well as their uncertainties and variations
were computed as described in Section 4.1 (see Table 4). The results
were compared with previous ones (see Table 3) where the main
remarks are summarized next:

(i) The period that leads to the smallest σ P is not always related
with the smallest σ r (see Fig. 8).

(ii) All σ A values are bigger than those given by σ 2h. This indi-
cates an underestimation of σ 2h or that all sources have an intrinsic
amplitude variation. A note of caution, the noise values decrease
with Log(Ttot/P), and hence such a comparison cannot be performed
straightforwardly.

(iii) CoRoT-100689962, CoRoT-110843734, and CoRoT-
102738809 have σ P values larger than the exposure time (Texp).
However, CoRoT-101370131 has σ P ten times smaller than Texp.

(iv) The σ P/σ A values for all sources are smaller than ∼0.5 or
bigger than 2 (see Section 5.3). It indicates that all σ P and σ A values
are biased by amplitude or period variation, respectively. Indeed, the
intrinsic variation is not known a priori, and hence the information
provided by the ratio σ P/σ A will only be accurate if ‖αy‖ < < 0
and ‖αφ‖ > > 1 (see Section 4).

(v) The variability periods determined by us are in agreement
with those found in the literature. Indeed, the literature periods are
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Table 3. Parameters for CoRoT stars used to test the approach proposed in this work. The L indicates the parameters obtained in the literature for which the
references are indicated in the last column. Indeed, the values of Ra, Dec., R magnitude, and the exposure time (Texp) were obtained from the CoRoT data base.

CoRoT-ID Var. Type RA Dec. R σ (2h) P(L)(d) δP(d) Texp(d) A(L)(mag) eA(L)(mag) Ref

211626074 Ceph 285.469 3.277 12.60 1.41 × 10−4 5.470600 – 5.93 × 10−3 2.96 × 10−1 1.44 × 10−3 1
101370131 RR 292.060 0.101 15.28 6.60 × 10−4 6.19332 × 10−1 – 5.93 × 10−3 – – 2
100689962 RRblz 291.000 1.697 14.65 4.60 × 10−4 3.55997 × 10−1 – 5.93 × 10−3 – – 3
102738809 EA 101.131 0.832 12.29 1.18 × 10−4 2.035701 – 3.70 × 10−4 – – 4
110843734 Rot 102.918 − 3.748 14.81 5.03 × 10−4 8.186000 4.94 × 10−2 5.93 × 10−3 5.66 × 10−2 1.42 × 10−2 5

Note. The last column is regarding the references that provide the following parameters above: (1) Poretti et al. (2015), (2) Paparó et al. (2009), (3) Chadid et al.
(2010), (4) Maciel, Osorio & De Medeiros (2011); Carone et al. (2012), and (5) De Medeiros et al. (2013). Moreover, the noise level (σ 2h) were computed using
the equation (1) described by Aigrain et al. (2009), where z was computed as the mean value of CoRoT run analysed by the authors.

Figure 7. Ceph (purple – CoRoT-211626074), RR (blue – CoRoT-101370131), RRblz (yellow – CoRoT-100689962), EA (red – CoRoT-102738809), and Rot
(green – CoRoT-110843734) phase diagrams in normalized flux shown in the top row of panels. The angles found for each models (second row of panels), the
δy (third row of panels), and δφ values (bottom row of panels) are also shown. Indeed, the last panel only shows the results for the region used to compute the
period variation.

Table 4. Parameters for CoRoT stars computed from the approaches proposed in this work.

CoRoT-ID P(d) δP
(LSG)
(FWHM)(d) δP

(STR)
(FWHM)(d) σ P(d) A(mag) σ A(mag) σ r(mag) σ P/σ A Log(Ttot/P)

211626074 5.47073174 4.55 × 10−1 3.33 × 10−1 5.27 × 10−3 2.99 × 10−1 1.58 × 10−3 1.87 × 10−3 2.86 6.69 × 10−1

101370131 6.19331408 × 10−1 9.15 × 10−4 7.46 × 10−4 5.80 × 10−4 7.98 × 10−1 7.53 × 10−3 8.14 × 10−3 0.06 2.39
100689962 3.56090879 × 10−1 3.27 × 10−4 2.93 × 10−4 2.23 × 10−2 4.50 × 10−1 3.82 × 10−2 6.19 × 10−2 0.52 2.60
102738809 2.03569293 1.17 × 10−2 3.02 × 10−3 7.02 × 10−4 3.30 × 10−1 3.47 × 10−3 3.52 × 10−3 0.25 1.81
110843734 8.21895695 1.74 × 10−1 1.70 × 10−1 1.71 × 10−1 2.68 × 10−2 6.06 × 10−3 7.76 × 10−3 30.01 1.13

determined as the highest power spectrum peak, while those found
by us are calculated by minimizing σ P.

(vi) The period uncertainty δP
(STR)
(FWHM) method is always smaller

than δP
(LSG)
(FWHM) that indicates that STR is more sensitive to variation

in the phase diagram than the LSG method.
(vii) CoRoT-211626074 – The amplitude (A(L)) found in the lit-

erature is about 1 per cent smaller than that found by us. However,
the authors used the DR2 release, while our data come from the
DR4 release. Indeed, the amplitudes are in agreement within the
error bars. The σ A is at least nine times bigger than σ 2h. More-
over, σ P/σ A = 2.86 indicates that the weight of σ P in σ A is not
strong and vice versa. It indicates that some of the amplitude vari-
ation comes from the sources. This result is supported by the de-
tection of overtone pulsation reported by Poretti et al. (2015). In-

deed, the determination of amplitude variation reported by us was
only settled by determination of σ A, while the authors use complex
analysis.

(viii) CoRoT-101370131 – The σ P is smaller than Texp indicating
a non-intrinsic variation related with the period. On the other hand,
the amplitude variation σ A is about nine times bigger than σ 2h.
Moreover, σ P/σ A = 0.06 also indicates that σ A is not biased by σ P.
Therefore, an intrinsic variation of the CoRoT-101370131 can be
real if the noise level estimation is reliable.

(ix) CoRoT-100689962 – The period and amplitude variation is
clearly observed in the phase diagram. Moreover, it has the largest
Log(Ttot/P) and hence the smallest δP(FWHM) in agreement with the
discussion performed in Section 3. Moreover, σ P/σ A = 0.52 indi-
cates that the period variation is not strongly biased by amplitude
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Figure 8. The normalized standard deviation scaled between 0 and 1 as function of the per cent relative error of PL. The results for the residuals and period
are shown as the black and blue dots, respectively. The red line sets the location of the variability period determined in literature PL.

variation and vice versa. Therefore, the σ P and σ A mean that in-
trinsic variations come from the source since these variations are
∼3.8 times bigger than Texp and ∼12 times bigger than σ 2h, respec-
tively.

(x) CoRoT-102738809 – The σ P is the smallest value among the
sources analysed. Indeed, this aspect is caused by the large angles
and the shape of the light curve. Moreover, this source has the
shortest exposure time (see Table 3). The σ P does not show strong
evidence of a period variation since it is smaller than twice Texp.
On the other hand, σ A is three times larger than σ 2h that indicates
a small intrinsic variation related with the amplitude. Indeed, the
region used to compute the amplitude variation is related with the
eclipse phase where both stars are side by side. Therefore, σ A can
be related to one or both stars.

(xi) CoRoT-110843734 – The δP(FWHM) is bigger than δP and
hence the empirical relation given by Lamm et al. (2004) can provide
values smaller than those found for the δP(FWHM) estimations. A(L)

is about twice that estimated by us. Such a difference can only be
achieved by a typing error. On the other hand, the period computed
by the authors is in agreement with that found for us. θmax ∼ 6o and
hence the period variation is biased by amplitude variation. Indeed,
σ P/σ A = 30.0 indicates an unreliable estimation of σ P using the
phase diagram. Therefore, σ P or σ A is not useful as indicators of
intrinsic variation for rotational variables having small amplitudes.
However, the estimation of period and amplitude variation with time
instead of phase can reveal important clues about stellar activity
cycles (e.g. Ferreira Lopes et al. 2015c).

In summary, the period and amplitude variation can provide im-
portant information about the intrinsic variation of the source. How-
ever, it is trustworthy only if θmax > > θmin since the capability to
discriminate period and amplitude variation decreases. For a com-
plete characterization of a light curve, the period uncertainty as well
as period variation must be determined.

5.5 Testing frequency sampling on observed data

The Catalina Real Time Survey found about ∼47 000 periodic vari-
able stars in Data Release-1 (Drake et al. 2014). The authors re-
ported a sample of EA variable stars where the period determina-
tion was not possible due an insufficient number of observations
at the eclipses. These stars were reported as EA variables hav-
ing unknown-period (EAup). The LS method (Lomb 1976; Scargle
1982) was used to perform a period search, but the frequency range
and frequency sampling are not given by the authors. Therefore, a

mean value of those shown in the Table 1 were assumed, i.e. Fmin =
2/Ttot, Fmax = 10, and Nfreq = 104. These constraints were assumed
as those used by the authors to review a small sample of EAup stars.

Indeed, EA stars require a high frequency sampling to allow us
to determine the variability period otherwise the eclipse region will
not be smoothly folded (see Y(EA) panel Fig. 3). Section 2 discussed
the frequency sampling in detail where the δφ required to find the
variability periods for EA stars is smaller than 0.05 in order to be
able to fold the eclipse properly. Therefore, four EAup Catalina stars
(see Table 5) were reviewed using the frequency sampling given
by δφ = 0.01. Indeed, the sample analysed has Ttot � 3000 d that
implies a number of frequencies ∼3 × 106 (see equation 4).

Fig. 9 shows four EAup stars where the variability period was
determined. In the right-hand panel of each phase diagram is shown
the LS power spectrum about the variability period using Nfreq =
104 (blue crosses) and a number of frequencies obtained from equa-
tion (4) assuming δφ = 0.01 and Fmax = 10. As one can verify the
highest peak of the black lines is related to the maximum power
of the periodogram. On the other hand, these peaks are not found
when the sampling frequency is reduced (blue crosses). Therefore,
the variability periods of EAup stars were not identified due to low
frequency sampling. The main parameters of the four EAup stars
analysed in this work are presented in Table 5.

Indeed, from a methodology viewpoint, the identification of
variability periods of EAup stars requires a suitable period-finding
method and high frequency sampling (see Section 2) to detect the
signal. Moreover, the susceptibility of the period-finding methods
varies for different signal shapes (see Fig. 3). Therefore, a deeper
analysis of all EAup stars will be performed in a forthcoming pa-
per where other methods besides LS will also be used. As a result,
we will define limits on what constitutes an insufficient number of
observations.

6 C O N C L U S I O N S

Frequency analysis constraints as well as the period and amplitude
variations were analysed in this work. A new approach to compute
frequency sampling was introduced. This analysis is fundamental
to providing a precise number of frequencies required to perform
period-finding searches. It also enables us to identify optimal values
for searching for particular variable types as well as how much
resolution is required to increase the accuracy of the periods found.
We consider that this approach is fundamental to efficiently face
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Table 5. Parameters for EAup Catalina stars computed from the approaches proposed in this work.

Catalina-ID P(d) δP
(LSG)
(FWHM)(d) δP

(STR)
(FWHM)(d) σ P V A σ A σ R Log(Ttot/P)

CSS J053059.3-102647 1.16265491 1.32 × 10−4 7.69 × 10−5 2.08 × 10−3 13.350 7.50 × 10−1 2.83 × 10−2 2.17 × 10−2 3.40
CSS J180743.0+502014 9.92055466 × 10−1 8.20 × 10−5 6.99 × 10−5 1.22 × 10−3 15.810 1.14 2.71 × 10−2 1.09 × 10−1 3.49
CSS J090355.3+533131 3.31637448 × 10−1 1.33 × 10−5 2.49 × 10−5 2.27 × 10−3 15.095 6.32 × 10−1 2.06 × 10−2 3.01 × 10−2 3.94
CSS J164404.4+574227 4.92343069 × 10−1 1.14 × 10−5 4.56 × 10−5 1.18 × 10−3 15.088 9.92 × 10−1 1.64 × 10−2 2.91 × 10−2 3.74

Figure 9. Phase diagram of four EAup Catalina stars where we also display the LS periodogram about the variability period (top right-hand panel for each star)
and about half the variability period (bottom right-hand panel for each star). The name and the variability period are shown in each diagram. The solid black
line shows the power spectrum considering a number of frequencies obtained from equation (4) assuming δφ = 0.01, while those values found using Nfreq =
104 are marked by the blue crosses. Moreover, the maximum power found for both methods of frequency sampling is displayed in the upper right corner.

the challenges of big data science since analytical equations are
imposed.

The period and amplitude variation of light curves were also
reviewed. We show that a complete characterization of a light
curve requires separating period uncertainty and period variation,
from which important information about the variability nature can
be estimated. On the other hand, the noise and amplitude varia-
tion also provide new clues about intrinsic variations that come
from the source. The analyses performed in this project are very
useful since all aspects of the analyses of large photometric surveys
are being studied in order to maximize the probability of finding
variable stars, reduce the running time, and reduce the number of
misclassifications. The current paper is the second step towards un-
biased samples, i.e. samples that only enclose reliable variations
since this is unfeasible using correlated or non-correlated indices
alone. Moreover, in this project we try to standardize the analysis
criteria for variable stars in photometric surveys. In spite of this,
the dependence of variability indices on the instrumental proper-

ties has been reduced and now, we also propose an estimation of
frequency sampling that reduces the dependence on the total time
span or time sampling of the data. Moreover, an approach to study
the amplitude and period variation is presented. We consider that
these estimations provide better information about the phenomena
observed than previous ones since these estimations are limited by
instrument properties or signal features. These must be taken into
account for a realistic estimation.

This paper concludes our studies about the constraints used to
perform frequency searches. A new frequency-finding method and
new insights to detect aperiodic variations and to determine the FAP
will be addressed in a forthcoming paper of this series.
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