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1 Introduction

Over the last few years the Sachdev-Ye-Kitaev (SYK) model [1–5] has attracted consider-

able attention as a model of quantum qravity which exhibits the correct chaotic behaviour.

The SYK model at large N turns out to be solvable, in the IR and other limits, and
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exhibits several interesting features like conformal regime [1] and maximal chaos expo-

nent [2–4, 6]. Its pattern of symmetry breaking is encoded by the Schwarzian low energy

effective action [3, 7, 8], which is the effective dynamics of gravity on AdS2, coupled to a

scalar field [9].

There are many interesting generalizations of this model, starting from the original

work of [1], like those in higher dimensions [10–14]. Models without disorder with SYK

like physics have also been proposed in [15–17]. The long time scales of the SYK model

have been discussed and connections to random matrix theory pointed out in [18–20].

Higher point functions in the model have been computed in [21, 22]. For work beyond

large N , see [23–25]. The near AdS2 spacetime interpretation was elaborated in [7, 26–33]

(see [34, 35] for related work on bilocal fields).

In this work, we will be interested in a particular class of spin glass models introduced

in [36], which are close relatives of the SYK model, and derive a formula for the exact 2-pt

function of certain operators. The model is the following. Consider n sites with a spin 1
2

degree of freedom on each. Denote the Pauli matrices acting on site i = 1, 2, . . . , n by σ
(a)
i ,

with a = 1, 2, 3. Given an integer p, we define a random Hamiltonian H(p) as follows. Let

e = (i1, . . . ip) be a vector of length p of distinct integers defining a subset of the n sites,

and let a = (a1, . . . ap) be a second vector of length p, with entries being either 1,2 or 3.

Denoting the pair (a, e) by J, we define

σJ = σ(a,e) = σ
(a1)
i1

σ
(a2)
i2

. . . σ
(ap)
ip

(1.1)

and the spin glass Hamiltonian is

H(p) = 3−p/2
(
n

p

)−1/2∑
J

αJσJ (1.2)

where the sum runs over all possible J ’s, and αJ are independent Gaussian variables with

zero mean and unit standard deviation (we will drop the superscript p from now on). The

relevant parameter controlling the asymptotic density of states is [36]

q = e−λ with λ =
4

3

p2

n
, (1.3)

and the exact asymptotic density of states of the model (1.2) was computed in [36] in

the limit

λ fixed, n→∞ (1.4)

We will refer to this as the λ-scaling limit. We will be interested in the limit of λ → 0,

where the distribution of eigenvalues approaches a Gaussian distribution (point-wise) and

hence we will refer to these models as “Almost Gaussian” spin glass models.

The spin glass model (1.2) is quite similar to the SYK model. Apart from replacing

Majorana fermions with Pauli matrices, the more critical difference is that in the λ-scaling

limit (1.4) p is scaled with
√
n, leaving λ as a parameter, whereas in SYK, p is held fixed

as n→∞, while scaling the energies properly to obtain a solution of the model. However,

the λ-scaling model with Majorana fermions was discussed in [18] where it was shown to

– 2 –
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have a low energy limit λ → 0, E → 0, (dubbed “double scaled SYK” model) where the

density of states is that of the Schwarzian theory. Hence, models (1.2) can just as well

be used to study the physics of AdS2. In this work, we discuss the full Almost Gaussian

model and use the “double scaled limit” to check our results.

The main results in the paper are

• We motivate why random operator observables are relevant for black hole physics,

i.e., not just random Hamiltonians. This is done in section 2, where we also survey

existing results and state the new result on the 2-pt function.

• A new method of computing the distribution of eigenvalues of the Hamiltonian (1.2)

in the λ-scaling limit. The new method relies on the reduction in [36] of the spin

glass Hamiltonian to chord diagrams but then takes a different route in evaluating

the latter. This is done in section 3. Section 4 is an analysis of the λ→ 0 limit which

parallels appendix B of [18] in our notation.

• The derivation in section 3 relies on an auxiliary Hilbert space and a Hamiltonian

acting on it, which we denote by T . This new Hamiltonian is equivalent1 to the full

Hamiltonian of the spin glass in that whenever the unitary operator eiHt appears,

acting on the original Hilbert space, it can be replaced by eiT t acting on the aux-

iliary Hilbert space. In section 5 we suggest that this is the analogue of the bulk

Hamiltonian and show in what limit it reduces to the Schwarzian effective action in

its Liouville form.

• In section 6 we compute the exact time dependent 2-pt function of an additional

random operator of length p′ ∼
√
n. This can be reduced to another chord partition

function in which one chord is marked. We use the technique developed in section 3

to evaluate it.

2 Motivation, setup and summary of results

We will analyse the spin glass Hamiltonian model (1.1)–(1.2). However, we will probe it

using a random operator. The latter will be of a similar statistical type as the Hamiltonian,

i.e. it will be defined by the same equation (1.1)–(1.2) but with

• a different length parameter p′ 6= p, and

• a new set of independently drawn coefficients.

In subsection 2.1 we motivate this specific choice of operator. The rest of the section is an

“executive summary” of the setup of the model and known results in 2.2, and a summary

of the new results in 2.3.

1With one important exception: the trace is replaced by some choice of initial and final states.

– 3 –
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2.1 Motivation — random observables and factorization

2.1.1 Why random operator probes?

Since black holes share some properties with chaotic systems [37–40], they can be thought

of as described by a suitable random Hamiltonian. In particular, for AdS black holes, we

might want to think about some core of states in the spectrum governed by a random

Hamiltonian, describing the near horizon black hole physics, dressed by a “structured”

non-random Hamiltonian describing excitations well separated from the horizon. In this

picture, one needs to specify the statistical class of the random Hamiltonian. This is

precisely what the SYK model achieves, as the relevant class for nearly-AdS2 spacetimes.

The next step is to probe the black hole (BH) using the available bulk probes, such as

single trace operators or their analogues. The Hamiltonian in quantum mechanics, or the

local energy-momentum tensor in higher dimensions, is one such operator. Probing with

the full Hamiltonian does not provide any more information beyond the partition function,

but the local energy momentum operator does. In practice, it is another massless field for

which we can put sources on the boundary. Just as the full Hamiltonian is indistinguishable

from a random operator when acting on the BH states, we can expect that the local energy

momentum operator will also be effectively described by some random (local) operator

acting on the Hilbert space of the states of the black hole.

But the local energy-momentum tensor is just one of a tower of single trace operators

with which we can probe the system. In N = 4 SYM we can use its primary tr(X2) to

probe the black hole, or we can just as well use any other of the tr(Xn) operators. If the

former is a random operator on the states of the black hole, why should we not expect

that all single trace operators be of a similar nature? We would like to suggest that the

relevant probes appearing in General Relativity are random operators on the BH states.2

The main issue would then be from what ensemble these operators are drawn. If we have

some idea about the statistical ensemble of the Hamiltonian, we can try and guess what is

the ensemble for the other single trace operators.

Another way to phrase the argument is that the SYK model is dual to AdS2 in an

appropriate large N and energy regimes. But there are other models which realize the same

universality class (for example, the one discussed in this paper is based on different spin

matrices). So there may be many ways of defining the statistics of the random Hamilto-

nian which give rise to the same physics — some may be similar to SYK and others may

be different. Focusing on the computation of specific operators used to define a specific

realization, such as χi in the SYK model, certainly yields the maximal amount of informa-

tion about the model but it may not be universal enough throughout the different models.

Rather, motivated by the fact that the local energy-momentum tensor is a one “single trace

operator” out of many, we would like to suggest that useful probes are random operators

appropriately made out of the basic constituents of the theory, just like the Hamiltonian

is. The statistical class of these random operators may be more universal throughout the

different ways of building models (as we will see in our case).

2A similar suggestion was made in [41] for a different ensemble, and a related discussion for long time

scales appears in [42].
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Yet another argument is the following. In the SYK model, the Hamiltonian is a sum

of finite rank polynomials of the χ fields with random couplings. Viewing the χ’s as the

analogues of the single trace operators in higher dimensions (which is anyhow problematic

since they live in SO(N) representations) implies that the Hamiltonian in the black hole

regime can be written as a sum of polynomials of single trace operators. This seems to

be a very strong assumption for the higher dimensional AdS/CFT dualities. A weaker

assumption is that both the local energy momentum tensor and all other single trace

operators can be written using some other operators which act on the BH states, which are

just used to define the statistical class of the operator and probes. These operators need

not be asymptotic observables outside the black hole but rather they just need to be a rich

enough set to allow for the correct definition of the statistical class of the observables.

This is somewhat against the usual application of the AdS/CFT correspondence where,

in this context, the SYK model is taken to be the microscopic theory which defines all of

spacetime. In this approach, one is committed to all the operators defined in the model.

However, in practice if one is interested in the AdS2 part, one glues it to an external

region in order to break conformal invariance (and the gluing might eventually vary if, for

example, one thinks about an AdS2 near horizon of an object in higher dimensions). It is

not clear to what extent the full SYK provides an extension which has an adequate gravity

dual outside the AdS2 region, and even if it does, it is not clear whether it is universal.

The right probes on AdS2 are determined just as much by this outside-of-AdS2 region since

the probe must be defined on the boundary. This means the choice of right probes in the

AdS2 region, within a given model, might be ambiguous in general.

2.1.2 What random operator probes?

Having argued that random operators are suitable probes, with ensembles related to the

one from which the Hamiltonian is taken, in this subsection we would like to discuss

another constraint on the ensemble from which probes are drawn, originating from requiring

factorization of correlation functions. We will see that it again points us in the direction

of almost Gaussian random operators, similar to H(p).

Within the AdS/CFT correspondence correlation functions of single trace operators

factorize at leading order when evaluated in the ground state or in any other state well

described by a semiclassical background. This is usually taken to include black holes,

although this assertion is on less solid footing there, as the detailed quantum state of the

black hole may matter (and surely does over long enough time scales). So the extent to

which correlation functions do not factorize will teach us about the role of the quantum

state of the black hole, and may also teach us about deviations from the standard Einstein-

Hilbert low energy effective action.

In the field theory side of the AdS/CFT correspondence, factorization is a consequence

of the large N limit when evaluated around the ground state. Around the black hole

background it implies a non-trivial constraint on the statistics of probe operators [41].

Consider a microcanonical ensemble with a small enough energy spread, and consider the

– 5 –
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4-pt function3

Tr
(
MM †M †M

)
, (2.1)

where the trace is over the states in this energy band. Since black holes are strongly mixing

systems, one might have expected that M — when acting in this energy band — will be

described by one of the ordinary random matrix ensembles. An example of this is the often

assumed strong form of ETH

M j
iM

†l
k ∝ δliδ

j
k. (2.2)

where the most straightforward interpretation of this formula is as a statement about

statistics of the matrix elements.4 This relation actually comes about by a minimal set of

assumptions — that A) only pairwise contraction of the operators matter — after all, we

would like to obtain factorization, and B) that all the states in the microcanonical energy

band are equivalent and hence the statistics should have full unitary invariance in this

energy band — this is also an assumption often made in statistical physics.

However, under these circumstances correlation functions do not factorize properly.

The ansatz in (2.2) is the same as drawing the operator M from a distribution with measure

e−NTr(MM†), (2.3)

whereN is the number of states in the energy band. So we only need to compute a Gaussian

integral. With this measure, in the large N limit, the 4-pt function (2.1) receives only one

(planar) contribution. However, factorization implies that there are two contractions. It

seems difficult to remedy this within the ordinary ensembles (for example, by changing the

measure to e−NV (M,M†) for a more general V ).

Since there are restrictions to implementing factorization in the simplest ensembles,

it is interesting to find additional examples in which correlators factorize. More precisely

we would like them to almost factorize — the deviation from exact factorization is then

interpreted as bulk interactions. At the level of a single operator, the most naive indicator

of factorization — neglecting for the moment the issue of time dependence — is that

E
(
〈M2k〉

)
∼ A2k(2k − 1)!! (2.4)

for an hermitian operator M, where E() is the statistical average over the ensemble from

which the operator is drawn (and A is a factor set by the normalization of the operator).

The ensembles in [36] are precisely of this type. For any operator of the form (1.1)–(1.2),

the distribution of eigenvalues approaches the Gaussian one in the limit λ → 0, so all op-

erators with p√
n
� 1 will be approximately Gaussian. If the Hamiltonian has a specific

(small) λ, then operators for all other values of (small) λ are in qualitatively a similar

statistical class and approximately factorize. We will use them as our probes.

3We will insert the operators at distinct but close enough times. The argument does not hinge on these

details.
4We will assume that the operator has no 1-pt function, and in any case we can shift it away.

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
2

Figure 1. A sample Chord diagram.

2.2 Set up of the model and summary of known results

The model discussed in [36] is defined in equations (1.1) to (1.4). One of the main results

in that paper is that the asymptotic distribution of eigenvalues, in the limit

n→∞ λ fixed, (2.5)

is given by (recall q = e−λ)

v(E|q) =

√
1− q

π

√
1−

√
1−q
4 E2

∞∏
k=0

[
1− q2k+2

1− q2k+1

(
1− (1− q)qk

(1 + qk)2
E2

)]
(2.6)

in the range E ∈
[
− 2√

1−e−λ
, 2√

1−e−λ

]
, and vanishes outside this region.

The proof proceeds by computing the moments

mL =
1

2n
E
(
Tr(HL)

)
(2.7)

in the following steps:

1) For the first step one needs to define what are chord diagrams. Consider L = 2n dots

on a circle — a chord diagram is a pairing of these dots into n pairs. We draw a line

connecting each paired dots, i.e., a total of n lines. Denote a specific chord diagram

by π. We then denote by k(π) the number of crossings of lines (when we draw the

diagram such that each pair of lines intersects at most once). An example of a chord

diagram is shown in figure 1 with n = 8 and with number of crossings k = 2.

In the first step one shows that

mL =
∑
π

e−λk(π) (2.8)

where the sum is over all the chord diagrams. The expression on the r.h.s. is called

the chord partition function, and q = e−λ was defined before in (1.3) in terms of the

parameters of the spin glass. For example, the contribution to the sum by the chord

diagram shown in figure 1 would be e−2λ. Chord diagrams were also used in [24] for

computing 1/N corrections in the SYK model.

– 7 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
2

In section 3.1 we review this step of the proof in more details since that part of the

proof will not change. Furthermore, we will also need to slightly temper with it when

computing the 2-pt function.

2) In step 2, one uses the Riordan and Touchard formulae [43, 44] and the results of [45]

to show that (2.8) are the moments of the distribution (2.6) and further give an

explicit formulae for the moments as

mL =
1

(1− e−λ)
L
2

L
2∑

j=−L
2

(−1)je−
j(j−1)λ

2

(
L

L/2 + j

)
(2.9)

2.3 Summary of new results

In this paper we discuss a new proof for the value of mL and the energy eigenvalue distri-

bution of the spin glass. We use this to compute the exact two point function for random

operators, in the limit λ fixed, n → ∞. Denoting a new random operator by M , it has

the form (1.1)–(1.2) (with new randomly chosen coefficients, uncorrelated with those of the

Hamiltonian as mentioned in the beginning of section 2) but with a new parameter length

parameter p′ ∝
√
n.

More precisely we show that

2−nE
[
Tr
(
e−

βH
2 M(t)e−

βH
2 M(0)

)]
=

(q; q)2
∞(q̃2; q)∞
(2π)2

∫ π

0
dθ1dθ2e

2 cos(θ1)(−
β
2 +it)√

(1−q) e
2 cos(θ2)(−

β
2−it)√

(1−q)

× (e2iθ1 , q)∞(e−2iθ1 , q)∞(e2iθ2 , q)∞(e−2iθ2 , q)∞

(q̃ei(θ1+θ2), q̃ei(−θ1+θ2), q̃ei(θ1−θ2), q̃ei(−θ1−θ2); q)∞
, (2.10)

where q̃ ≡ e−
4
3
pp′
n and (a, q)∞ is the q-Pochammer symbol (see (A.2)).

To prove this one evaluates

mk1k2 = 2nE
[
Tr
(
MHk1MHk2

)]
. (2.11)

We show that the relevant chord diagram which computes this two point function is a

chord diagram in which one of the lines is marked, and intersections with this chord are

assigned a different weight. An example of a marked chord diagram is given in figure 2.

More precisely:

• Given 2n+2 points on a circle, two specific points are connected. This is the “marked”

chord. The thick line in figure 2 connecting the red dots represents the marked chord.

• Between the special points at the ends of the marked chord there are k1 regular points

on one side, and k2 regular points on the other side (k1 + k2 = 2n).

• These remaining 2n points are paired. These will be called “regular” chords.

– 8 –
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Figure 2. A sample marked Chord diagram.

• Intersection between regular chords is assigned weight q, and the intersection between

the regular and marked chords is assigned weight q̃.

• The marked chord partition function is defined as a sum over pairings of the 2n

regular points, with k1 and k2 fixed and with weights as above, i.e.,

Zk1k2 =
∑

π∈marked chord diagram

qkregular(π)q̃kmarked(π) (2.12)

where kregular (kmarked) is the number of regular-regular (regular-marked) intersec-

tions. For example the 1-marked chord diagram in figure 2 contributes qq̃ to the m1,5.

• Similar to [36] we show that

mk1k2 = Zk1k2 (2.13)

and evaluate the right hand side to obtain (2.10)

The evaluation of the various chord partition functions in this work relies on an auxil-

iary Hilbert space space where there is a natural Hamiltonian whose action is equivalent,

in a sense that will be made precise below, to the one of the full Hamiltonian acting on the

spin glass Hilbert space. We interpret this auxiliary structure as the bulk dual to the spin

glass. Furthermore, we suggest how it reduces to the Schwarzian action in its Liouville

form at low energies.5

3 A new derivation of eigenvalue distribution

Given a random Hamiltonian as in (1.1), the authors in [36] compute the asymptotic

distribution of eigenvalues in the λ-limit (1.4), by evaluating the moments

mL ≡ lim
n→∞,λ fixed

1

2n
E
(
TrHL

)
(3.1)

and by finding the unique distribution compatible with them. E
()

stands for an ensemble

average. In section 3.1 we review how [36] reduces the moments (3.1) to evaluating the

5This new Hamiltonian is proportional to aq + a†q where the latter are the creation and annihilation

operators of the q-deformed harmonic oscillator.

– 9 –
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chord partition function (2.8). Ref. [36] then uses the results of [45], and also the formulae of

Touchard and Riordan [43, 44], to show that the moments (2.8) arise from the distribution

given in (2.6), and to give the explicit formulae (2.9) for the moments. Our proof, in

section 3.2, replaces this second step, as well as generalizes it to other Chord diagrams, as

the one that will appear in the exact 2-pt function in section 6.

3.1 From spin glasses to chord diagrams

Given the Hamiltonian (1.2), the computation of the moments

E

(
Tr(HL)

)
=

∑
J1,...JL

E
(
αJ1 . . . ..αJL

)
Tr
(
σJ1 . . . σJL

)
(3.2)

proceeds by evaluating the ensemble average of the αJ ’s first. Any non-vanishing contri-

bution requires at least two insertions of each αJ . Moreover, Lemma (4) in [36] shows that

the dominant contribution, in the λ-scaling limit (1.4), is when J1, . . . JL appear exactly

in pairs, with higher multiplicities being subleading in n in the large n limit. This gives

us the basic structure of chord diagrams where pairing in the chord is defined by having

the same J on two different nodes as in figure 1. Summing over all the relevant values of

J amounts to summing over all chord diagrams (i.e. all possible pairings of J ’s), and then

sum over all value of J (i.e., both ~e and ~a) for each chord.

Given a chord diagram we therefore need to evaluate what is the weight that is asso-

ciated with it, i.e., ∑
paired J ′s

Tr
(
σJ1 . . . σJL

)
(3.3)

where there are only L/2 independent J ’s and the pairing is determined by the chord

diagram. The obstruction to immediate evaluation is that σai for the same site index i can

appear in different J ’s. However, [36] shows that with probability 1, in the λ-scaling limit,

each node can appear in at most two of the chords, enabling the evaluation of the weight.

More precisely, define the intersection of J’s by the intersection of the site index, i.e.

Ji
⋂
Jj = ei

⋂
ej . (3.4)

Ref. [36] shows that, for a given Ji and Jj the size of the overlap is Poisson distributed,

and that there is, with probability 1, no triple intersections. I.e., we can assume

Ji
⋂
Jj
⋂
Jk = 0, i 6= j 6= k . (3.5)

This statement is summarized in lemma (9) there, and subsequent discussion. Given two

sets a and b of integers drawn out of the set {1, 2, . . . n} (without repetition in each set),

we can think about it as |a| independent processes in which the overlap between the sets

increasing by 1 with probability |b|n (in the limit n → ∞). This is a Poisson distribution

with mean size of overlap 3λ
4 = |a||b|

n . Recall that we scale the size of the set with
√
n so this

remains finite in the limit n→∞. The average size of an overlap with an additional index

set — say c — is the latter times |c|n → 0, so with probability 1, triple overlaps are empty.
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The interplay of chord intersections and overlap of the index sets is the key for evalu-

ating the weight of each chord diagram. As we sum over the J ’s of the chords, then if two

chords do not intersect they will contribute

Tr
(
σJ1σJ1σJ2σJ2

)
(3.6)

whereas if the chords intersect they give a factor proportional to

Tr
(
σJ1σJ2σJ1σJ2

)
(3.7)

If there is a non-trivial overlap J1
⋂
J2 6= 0, then these factors will be different. So there

is some “penalty” that we pay for each intersection.

More precisely, given a chord diagram (i.e. a pairing π), recall that k(π) is the number

of pairwise chord intersection. Each chord intersection has a Poisson distributed overlap

of sites. Each overlap is independent of the overlap of the other chord intersection. Each

overlap of sites (for a given intersection) comes with a factor

3−2
3∑

a,b=1

1

2
Tr
(
σ(a)σ(b)σ(a)σ(b)

)
= −1

3
, (3.8)

relative to 1 when the ordering is (aabb) which originates from an overlap in a pair of

non-intersecting chords. Therefore, the size, m, of each overlap is Poisson distributed with

expectation value 3λ
4 and comes with a weight

(
−1

3

)m
. The expectation value of the weight

for each chord intersection is therefore e−λ, and the total weight associated with each chord

diagram is e−λk(π). Hence, one finally obtains (2.8).

3.2 Evaluation of the Chord partition function

In this subsection, we will provide a alternative derivation of the chord partition function

reproducing the expression for v(E|q) in (2.6). The proof is rather compact, generalizes

to more complicated chord partition functions, such as the ones discussed in section 66

and suggests a bulk interpretation that we develop in section 5. The evaluation of (2.8)

is based on a “hopscotch” recursion relation satisfied by the concept of a partial, or open,

chord partition function as follows:

• 2−nTr(HL) involves L points in a chord diagram, as indicated in figure 1. Choose

one point, i.e. choose one of the H factors, to be the first and begin moving clockwise

in the chord diagram. Each time one reaches an extra point and hop over it, we shall

refer to it as “a step”. As we go along, denote the number of such steps by i, i.e. the

number of H factors that were hopped over. In step 1 we hopped over the factor of

H that we chose to be the first.

• At the i’th step, a chord can end on the new i’th point, or a new chord can emanate

from it. The collection of these decisions defines a chord history. Denote the number

of chords that remain opened at this point (open chords) by l. This number ranges

between 0 and L.
6Which are not evaluated in the mathematical literature, to the best of our knowledge.
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Figure 3. Chord Diagram Recursions: A previous line closes.

Figure 4. Chord Diagram Recursions: A new line begins.

• Each open chord is assigned a vertical position relative to the other open chords.

Chords emanating from a point further from the left are higher than chords emanating

to their right (of course, all chords have emanated left of where we are at right now

in the diagram). This book keeping guarantees that open chords have not intersected

yet. However, since in previous steps chords have already emanated and ended on

various points, our procedure may have taken us through chord configurations of

many chords that have already closed to the left of our current position.

• Define Π(i, l) as the set of chord histories ending with l open chords at step i, and

define the partial, or open, chord partition function v
(i)
l as

v
(i)
l =

∑
π∈Π(i,l)

q−kp(π) with v
(0)
l = δl,0. (3.9)

Here kp(π) refers to the number of chord intersections to the left, in the past of our

“hopscotch” process. It is convenient to think about v(i) as a column vector and l as

its index.

Given this set-up, one can write down a recursion relation for vi. At each step, one

can either close a chord (as in figure 3) or start a new one (as in figure 4) at the point one

is hopping over. If one starts a new line, l changes to l + 1 and the new line enters at the

bottom. If one closes a line, it can be either of the l open chords with height between 1 and

l. If one closes the line at height p, it crosses (p− 1) lines on its way down. This crossing

generates a weight qp−1 when evaluating its contribution to the partial chord partition

function. Altogether, the vector of such partition functions satisfies the following recursion

relation

v
(i+1)
l = v

(i)
l−1 + (1 + q + . . .+ ql)v

(i)
l+1 (3.10)
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with initial condition v
(0)
l = δl,0. The latter can be rewritten in terms of an (L+1)×(L+1)

transfer matrix T(L) propagating the partial chord partition function forward

v(i+1) = T(L)v
(i) , (3.11)

with matrix elements (indices running from 0 to L, l1 (l2) is the row (column) index)

[ T(L) ] l2l1 = δl2l1−1 + ηl1δ
l2
l1+1, ηl = 1 + q + . . .+ ql =

1− ql+1

1− q
(3.12)

describing a matrix with 1’s and ηl’s on the diagonal below and above the main diagonal,

respectively, i.e.

T(L) =



0 1−q
1−q 0 0 0 . . .

1 0 1−q2
1−q 0 0 . . .

0 1 0 1−q3
1−q 0 . . .

...
. . .

. . .
. . .

. . .
. . .


(L+1)×(L+1)

(3.13)

To compute the chord partition function (2.8), define the vector

|0〉L = v(0) = (1,0 . . . , 0︸ ︷︷ ︸
L entries

)ᵀ (3.14)

of length L+ 1, and then

mL = L〈0|TL(L)|0〉L . (3.15)

The initial condition v
(0)
l = δl,0 dictates the use of the initial state |0〉L. Ensuring our

procedure counts only chord diagrams that close by the time we reach the L-th point, such

that we are computing the usual chord partition function in which all lines are paired,

determines the final state.

Notice that we are computing the trace of HL in the original 2n dimensional Hilbert

space, using some auxiliary space based on partial chord diagrams. We shall develop a

“bulk” interpretation for the latter in section 5.

Next, given some fixed L, one can always consider a larger L’-sized Hilbert space

(L < L′) such that

mL = L′〈0|TL(L′)|0〉L′ , L′ ≥ L (3.16)

This allows us to take L′ →∞, keeping L fixed. In this infinite dimensional Hilbert space,

one can define

T ≡ lim
L′→∞

T(L′), |0〉 ≡ (1, 0, 0, . . .)ᵀ. (3.17)

Hence, T is the infinite dimensional extension of (3.13). This provides an auxiliary Hilbert

space and a single matrix T in which one can evaluate all traces as

mL = 〈0|TL|0〉 (3.18)

– 13 –
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Figure 5. Chord Diagram for L = 4 case.

The problem of computing the moments (2.8) reduces to the problem of computing the

eigenvalues α of the operator T and expanding the vector |0〉 in terms of these eigenvectors

|α〉, in an expression

mL =

∫
Spec(T )

dα αL ρ(α) |ψ0(α)|2 , (3.19)

where Spec(T ) is the set of eigenvalues, ρ(α) is its density and ψ0(α) ≡ 〈0|α〉 is the overlap

of |0〉 with the |α〉 eigenvector of T . Fortunately, Spec(T ) and the density are very easy to

compute and the overlap is given by specific q-Hermite polynomials, as we will see below.

In the notation of the spin glass model, comparing the L dependence in the original

moment (3.1) with αL in equation (3.19), suggests the identification

α = E (3.20)

where E is the energy of the system, properly interpreted. The asymptotic distribution of

the energies should then be identified as

v(E|q) = ρ(E)|ψ0(E)|2 . (3.21)

A short example. It is worth while carrying out the procedure above in an explicit, low

L case, and compare the result with (2.9). For example m4(q) = 2 + q, which can obtained

also from the three chord diagrams in figure 5. In our approach we start with v(0), act on

it 4 times with T(4) (or T ), and project on v(0). Keeping track of chord histories give the

following partial chord partition functions:

v(0) =



1

0

0

0

0


v(1) =



0

1

0

0

0


v(2) =



1

0

1

0

0


v(3) =



0

2 + q

0

1

0


v(4) =



2 + q

0

3 + 2q + q2

0

1


(3.22)

The symmetric form of the transfer matrix T. The matrix T in (3.13) is not

Hermitian, but one can conjugate it to a symmetric version by defining a new matrix T̂

T̂ ≡ PTP−1 (3.23)

where P is a diagonal matrix with entries (P0, P1, P2 . . . ) satisfying

Pl =

l−1∏
i=0

√
ηi =

√
(q; q)l

(1− q)
l
2

, l 6= 0 P0 = 1 , (3.24)
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where (a; q)l is the q-Pochammer symbol (see (A.1)). T̂ has matrix elements

(T̂ ) l2
l1

=
√
ηl2δ

l2
l1−1 +

√
ηl1δ

l2
l1+1. (3.25)

Thus, it is manifestly symmetric,

T̂ =



0 1 0 0 0 . . .

1 0
√
η1 0 0 . . .

0
√
η1 0

√
η2 0 . . .

...
. . .

. . .
. . .

. . .
. . .


(3.26)

and has the same original moments (3.18) since

mL = 〈0|TL|0〉 = 〈0|P−1T̂LP |0〉 = 〈0|T̂L|0〉 . (3.27)

We will switch between the two transfer matrix descriptions depending on which is more

convenient at each stage.

3.2.1 The spectrum of T

Obtaining the spectrum of T is straightforward. The matrix T asymptotes, down the

diagonal, to a matrix with 1 one diagonal below the main diagonal and η∞ = 1
1−q one

diagonal above the main diagonal, i.e.

Tasymp ≡



0 1
1−q 0 0 0 . . .

1 0 1
1−q 0 0 . . .

0 1 0 1
1−q 0 . . .

...
. . .

. . .
. . .

. . .
. . .


, δT ≡ T − Tasymp (3.28)

We can think about the eigenvalue problem of T

Tψ = Eψ (3.29)

as a scattering problem with the distance along the diagonal playing the role of position.

In this interpretation, infinity is captured by the asymptotic form of the operator T far

down the diagonal. Hence, this is a scattering problem on the half line with δT acting as a

scatterer close to the origin. Indeed, up to an overall rescaling, by conjugating the matrix

Tasymp, and adding the identity matrix with an appropriate weight, we can bring it to the

form with -2 on the diagonal and 1 on the diagonals below and above the main. It is then

an approximation to the 2nd derivative operator, making the asymptotic behaviour more

familiar in the continuum limit. This interpretation is elaborated in section 5, where the

connection between this eigenvalue problem and the Liouville equation is described.
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However, as far as the spectrum and its density is concerned, the details of the scatterer

are not important as both can be read from the behaviour at infinity.7 So the spectrum of

T is the same as that of Tasymp which is a Toeplitz tridiagonal matrix (i.e. with constant

elements one diagonal above and below the main diagonal [46]), for which there is a simple

formula for the eigenvalues, which in this case is

− 2√
1− q

· cos
sπ

L′ + 1
, s = 1, . . . L′

L′→∞−−−−→
(
−2√
1− q

,
2√

1− q

)
(3.30)

as was found in [36]. This formula gives us both the spectrum of the T and the density of

states on it. Denote θ = sπ
n+1 , then in the limit n → ∞ it covers the interval [0, π] with

uniform distribution, i.e., inserting a complete set of energy eigenstates is simply done by

the replacement ∑
E

→
∫ π

0
dθ (3.31)

3.2.2 Eigensystem of T matrix

The previous asymptotic discussion suggests to parametrise the eigenvalues of the matrix T

as E(µ) ≡ 2µ√
1−q . Let v(µ) be the corresponding eigenvector.8 This allows us to write (3.11)

together with the recursion relation (3.10) as

T · v(µ) =
2µ√
1− q

v(µ) → 2µ√
1− q

v
(µ)
l = v

(µ)
l−1 +

(1− ql+1)

(1− q)
v

(µ)
l+1 , v

(µ)
0 = 1 (3.32)

Just for this subsection, we will allow l = −1 and define v
(µ)
−1 = 0. The recursion relation

is simplified by working with the new vectors u
(µ)
l

v
(µ)
l =

(1− q)
l
2

(q; q)l
u

(µ)
l (3.33)

so that (3.32) becomes

2µu
(µ)
l = (1− ql)u(µ)

l−1 + u
(µ)
l+1 u

(µ)
−1 = 0, u

(µ)
0 = 1 (3.34)

Comparing with the recursion relations satisfied by continuous q-Hermite polynomials given

in (B.3), we can identify u
(µ)
l with a q-Hermite polynomial Hl(µ|q) and µ with cos θ, with

θ ∈ [0, π]. Hence, the eigenvector of the transfer matrix T equals

v
(µ)
l =

(1− q)
l
2

(q; q)l
Hl(µ|q) − 1 ≤ µ ≡ cos(θ) ≤ 1 (3.35)

Using the full range θ is dictated by the the discussion of the spectrum in section 3.2.1.

7For the wave functions, or form factors, we will be more specific below. Also, reading the spectrum and

density from infinity also assumes that there are no bound states near the origin.
8v(µ) ∝ ψ(α) of section 3. For now the normalization is different though.
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At this point, it is more useful to switch to T̂ , since we need to conjugate the form

factor. The eigenvectors of symmetric transfer matrix T̂ are just Pvµ. In components, the

eigenvectors are

ψ̂l(θ) = N(µ, q) Plv
(µ)
l = N(µ, q)

Hl(µ|q)√
(q; q)l

. µ = cos θ (3.36)

where N(µ, q) is a normalization which is fixed by the requirement that the states are delta

function normalized in θ, which gives (see appendix B) N(µ, q) =

√
(q;q)∞|(e2iθ;q)∞|√

2π
. With

this one can easily write down the matrix element9

〈l|T̂L|m〉 =

∫ π

0
dθ ψ̂l(θ)ψ̂m(θ)E(θ)L (3.37)

The moments of the distribution eq. (3.19) can then be computed to be

mL(q) =

∫ π

0
dθ

(q; q)∞|(e2iθ; q)∞|2

2π
E(θ)L =

∫ π

0
dθ Ψ(θ, q)E(θ)L (3.38)

where we have defined the distribution

Ψ(θ, q) ≡ |ψ̂0(θ)|2 =
(q; q)∞|(e2iθ; q)∞|2

2π
(3.39)

Below we will show that this formula is the same distribution given in (2.6).

Matching to the result in [36]. Recall that [36] obtained the moments mL(q) as

moments of distribution v(E|q) given in (2.6), i.e.

mL =

∫ 2√
1−q

− 2√
1−q

dE v(E|q)Ek (3.40)

Switching to angular variables via E = E(θ) ≡ 2 cos θ√
1−q , we write v(E|q) as

v(E(θ)|q) =

√
1− q
π sin θ

∞∏
k=0

(1− q2k+2)

(1− q2k+1)(1 + qk)2

{
(1− e2iθqk)(1− e−2iθqk)

}
=

√
1− q

4π sin θ
(q; q)∞|(e2iθ; q)∞|2

(3.41)

followed by a change of variables as

dθ Ψ(θ, q) = dE v(E(θ)|q) (3.42)

to obtain that (3.40) matches our result (3.38).

9Recall that the density of states ρ(θ) is uniform.
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4 The q → 1 limit of the distribution

Our interest in approximately factorized correlators, suggests to work in the regime λ→ 0

or q → 1. The analysis is most easily done by arranging the Pochhammer symbols into

Jacobi Theta functions and performing modular transformations. The results in this section

are similar to appendix B in [18] and [25] after a suitable substitution that takes us between

our model and the SYK model in the same scaling as above.

To study the λ→ 0 limit of the distribution Ψ(θ, q) (3.39), it is convenient to rewrite

it in terms of Jacobi Theta functions. Using (A.4),

Ψ(θ, q) =
sin θ ϑ1

(
θ
π |

iλ
2π

)
πq

1
8

(4.1)

Using the modular transformation (A.5) we rewrite it as

ϑ1

(
θ

π

∣∣∣∣ iλ2π
)

= ϑ1

(
2iθ

λ

∣∣∣∣2πiλ
)
e−

2θ2

λ
1

i

√
2π

λ
. (4.2)

and the λ→ 0 limit becomes

ϑ1

(
2iθ

λ

∣∣∣∣2πiλ
)

= 2e−
π2

2λ sin

(
2πiθ

λ

) ∞∏
m=1

(
1− e−

4mπ2

λ

)(
1− 2 cos

(
4πiθ

λ

)
e−

4mπ2

λ + e−
8mπ2

λ

)
λ→0−−−→ 2ie−

π2

2λ sinh

(
2πθ

λ

) ∞∏
m=1

(
1− 2 cosh

(
4πθ

λ

)
e
−4π2m

λ

)
= 2ie−

π2

2λ sinh

(
2πθ

λ

)(
1− 2 cosh

(
4πθ

λ

)
e
−4π2

λ

)
. (4.3)

The last equality follows since the exponential overcomes the hyperbolic cosine factor for

m ≥ 1 given that θ ≤ π. Plugging the above λ→ 0 expansion in (4.2), one gets

ϑ1

(
θ

π
| iλ
2π

)
= 2

√
2π

λ
e−

2θ2

λ
−π

2

2λ sinh

(
2πθ

λ

)(
1− 2 cosh

(
4πθ

λ

)
e
−4π2

λ

)

≈ 4

√
2π

λ
e−

2π2

λ e−
2
λ(θ−π2 )

2

sinh

(
2πθ

λ

)
sinh

(
2π(π − θ)

λ

) (4.4)

where in the last step we used θ ≥ 0. This determines the dominant contribution to the

distribution (3.39) to be

Ψ(θ, q) ≈ 4

√
2

πλ
e−

2π2

λ e−
2
λ(θ−π2 )

2

sin(θ) sinh

(
2πθ

λ

)
sinh

(
2π(π − θ)

λ

)
(4.5)

Notice this function is symmetric under E → −E, and vanishes at the edges Emax =

−Emin = 2√
λ

, which correspond to θ = 0 and θ = π, respectively, since E = 2 cos(θ)√
1−q .

The distribution (4.5) has several interesting regimes:

• The λ→ 0 with E fixed regime. As highlighted in [36], pointwise,

Ψ(θ, q) ∝ e−
E2

2 , E =
−2√
λ

(
θ − π

2

)
, (4.6)

which is the Gaussian limit of the distribution (4.5).
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• The other interesting behaviour is close to edges. Setting ϕ = π − θ, we begin with

the limit

ϕ = π − θ ∝ λ (4.7)

(where by this we also include ϕ
λ � 1 fixed, λ → 0). In this case the distribution

becomes

Ψ(θ, q) = 2

√
2

πλ
e−

2
λ(π2−ϕ)

2− 2πϕ
λ sin(ϕ) sinh

(
2πϕ

λ

)
= 2

√
2

πλ
e−

π2

2λ
− 2ϕ2

λ sin(ϕ) sinh

(
2πϕ

λ

)
≡ Ψ(ϕ; q) ,

(4.8)

The quadratic term in the exponential can also be neglected in this regime, giving

rise to the density of states of the Schwarzian theory
(
∝ sinh

(
2π

√
(E − Emin)/λ

3
2

))
after recalling that near the edge

E − Emin =
ϕ2

√
λ

(4.9)

• Note that we can actually neglect the quadratic term in the exponential already at

λ� ϕ�
√
λ, and extend the Schwarzian regime. This points to another simplifica-

tion of the spectrum which actually covers the bulk of the spectrum at λ� ϕ� π−λ.

In this range we can also expand the second sinh, and obtain that the distribution

is just a gaussian in (ϕ − π/2). The center of this range includes the Gaussian-in-

energy distribution, and its edges overlaps with the Schwarzian distribution. It would

be interesting to find a symmetry argument for this entire range.

4.1 The canonical ensemble in the q → 1 limit

Similarly one can analyze the canonical partition function in the limit q → 1. Using the

variable ϕ ≡ π − θ as before

Z(β) =

∫ π

0
dϕ e

2β cosϕ√
λ Ψ(ϕ; q) . (4.10)

We can treat most of the spectrum using the discussion in bullet 3 above, leaving

out only a very low temperature regime where φ ∼ λ. We will prefer however to split the

discussion according to first two bullets, i.e., to a high temperature phase and a Schwarzian

phase which then splits into a low temperature and a very low temperature phase. Both

of the latter are obtained from the Schwarzian density of states and go smoothly into each

other, and we make this division mainly for the sake of the discussion of the 2-pt function

in section 6, for which the difference between these regimes is more meaningful.

• High Temperature phase (when λ−
1
2 � β): localizing in the region |ϕ− π

2 | � 1,

reduces the partition function to a Gaussian around E = 0, and the partition function

can then be written as

Z(β) =

√
2

πλ

∫ π

0
dϕe

2β cosϕ√
λ e−

2
λ(π2−ϕ)

2

sinϕ (4.11)
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It is clear that the gaussian cuts off the integral if ϕ deviates from π
2 . To evaluate

Z(β), we set π
2 − ϕ ≡ x. The limit above translates to x � 1, in which case we

approximate the cosine by x2 to obtain Z(β) ∼ e
β2

2 and the integral is supported at

x = β
√
λ

2 with a width of order
√
λ.

• Low Temperature phase (when λ−
3
2 � β � λ−

1
2 ): generically, one expects ϕ �

1, but the thermodynamic behaviour of the system is sensitive to how small ϕ is

compared to λ, due to the argument in the sinh factor in (4.8). Consider the regime

λ� ϕ� 1, where the distribution is approximated by

Ψ(ϕ; q) ≈
√

2

πλ
e−

2
λ(π2−ϕ)

2

ϕ (4.12)

Expanding the Boltzmann factor, the partition function reduces to10

Z(β) =

√
2

πλ

∫ π

0
dϕ e

2β cosϕ√
λ e−

2
λ(π2−ϕ)

2

ϕ

≈
√

2

πλ
e

2β√
λ
−π

2

2λ

∫ π

0
dϕ e

−βϕ
2

√
λ

+ 2πϕ
λ ϕ ≈

√
2π

β
3
2λ

3
4

e

2β√
λ
−π

2

2λ
+ π2

βλ
3
2

(4.13)

Notice the integral is mainly supported near ϕ = π
β
√
λ

with a width of λ
1
4√
β

. The

consistency with the assumption λ � ϕ � 1 requires β � λ−
3
2 . This regime, along

with the next one, are part of the conformal low energy limit of the theory.

• Very Low Temperature phase (when β � λ−
3
2 ): consider the regime ϕ � λ.

After linearising both the sin and sinh factors, the distribution (4.8) simplifies to

Ψ(ϕ; q) ≈ 4

λ

√
2π

λ
e−

π2

2λ
− 2ϕ2

λ ϕ2 (4.14)

The Boltzmann factor in the partition function cuts off the integral around ϕ ∼ λ
1
4√
β

.

This is consistent with our regime ϕ � λ, since β � λ−
3
2 . The partition function

can then be evaluated as

Z(β) =
4

λ

√
2π

λ
e

2β√
λ
−π

2

2λ

∫ π

0
dϕ e

−βϕ
2

√
λ ϕ2 ≈ π

√
2

β
3
2λ

3
4

e
2β√
λ
−π

2

2λ (4.15)

where in evaluating the integral, we have replaced the upper limit by ∞.

Relation to previous work. The low energy behaviour identified in (4.8) is the one

discussed in appendix B in [18] and in [25]. To make the comparison with [18] easier, notice

the density of states (3.41) can be written as

v(E(µ)|q) = N 1√
1− µ2

∞∏
k=0

(
1− µ2

cosh2
(
kλ
2

)) (4.16)

10The term − 2ϕ2

λ
in the exponent is negligible compared to −βϕ

2
√
λ

due to β
√
λ� 1.
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where µ = cos θ and N =
√

1−q
π

∏∞
k=0

1−q2k+2

1−q2k+1 . This matches equation (81) in [18] by

identifying their parameters a, λs,J as

a = µ , J =
√
λ eλ/8 , λs =

λ

2
(4.17)

whereas both energies are the same.11 The second matching follows from the observation

that our variances equal unity, as in [36], whereas our normalisation was TrH2/TrI = 1 (see

equation (80) in [18]). The third matching is due to the Majorana nature of the fermions

in the SYK model.

Thus the density of states in [36] is exactly the same as the doubled scaled SYK, up

to these identifications. The further triple scaled limit,

λ→ 0
2(E − Emin)

λ
3
2

fixed , (4.18)

isolating the Schwarzian action in SYK, corresponds to the low energy behaviour captured

by the density of states (4.8) in our set-up.

5 Bulk reconstruction

In section 3 we presented a new derivation of the density of energies in v(E|q) in the

λ-scaling limit (1.4)

2−nE
(

Tr(e−βH)
)

=

∫ Emax

Emin

dEv(E|q)e−βE (5.1)

keeping β finite and where E() on the left hand side is the average over the ensemble of

Hamiltonians. The range of integration on the right hand side is the spectrum of the random

Hamiltonian, and its “randomness” now hides in the 1/n corrections which are neglected

in this limit. Loosely, one can hope that for a specific realization of the Hamiltonian H,

one can write

Tr(e−βH) =

∫ Emax

Emin

dEv(E|q)e−βE
(

1 +O
(

1

n

))
, (5.2)

with probability 1 (or 1 − O(1/n)) on the space of random Hamiltonians, in the large n

limit. In this case one is dealing with a specific Hamiltonian on the left hand side. This

single Hamiltonian realization corresponds to the boundary field theory Hamiltonian in the

AdS/CFT written in terms of the fundamental field theory objects — in our case the spin

operators. The operator is random and only in the n→∞ limit its spectrum converges to

anything universal.

In this section, we suggest that the operator T (or T̂ ) is the bulk Hamiltonian, i.e.

the analogue of the bulk Hamiltonian for the near-AdS background — whose low energy

limit is given by the Schwarzian action — but extended to the full model. Recall that the

parameter E appearing in the right hand side of (5.1) and (5.2) can be reinterpreted as

11Our normalizations are different from [18] since their distribution ρs(E) integrates to 2
N
2 whereas our

v(E|q) integrates to 1.

– 21 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
2

the energy of the field theory Hamiltonian, but it is also the eigenvalue of the operator

T (or T̂ ) which acts on the (altogether different) Hilbert space of weights of open chord

lines. Whereas the spectrum of H changes from realization to realization, the matrix T̂ is

fixed. There is no contradiction since we work in the limit n → ∞, fixed λ limit, where

the spectrum of H is universal.

Furthermore, the operator T̂ can be used as the Hamiltonian not only for the partition

function, but for a much broader set of computations. It should be clear that the insertion

of any finite polynomial of H in expectation values involving density matrices of the form∑
eigenvalues E

|E〉f(E)〈E| (5.3)

for any analytic weight function f(E), can be turned into the insertion of the same poly-

nomial with T̂ as its argument, following the procedure described in section 3. In other

words, the insertion of e−itH in expectation values involving (5.3) can be exactly replaced

by e−itT̂ , while the density matrix itself is mapped into the density matrix (as an operator

in the Hilbert space defined on the chord diagram side)

f(T̂ )|v0〉〈v0|. (5.4)

Having two different Hamiltonians, acting on different Hilbert spaces but propagating the

system in exactly the same way, supports the dual interpretation we suggest for T̂ .

This means that we can access a large set of weights on the energy eigenstates as

long as the function is smoother than the energy spacing (actually smoother than 1
n for

the entire energy band). This is not in contradiction with what we know about the bulk

Hamiltonian (anything which extends the low energy effective action), since it is not clear

that it should be able to capture states whose support on close by energy states is rapidly

varying.12

Phrased differently we regard E, when used as the eigenvalue of T̂ , as a parameter

which scans over the allowed energy range only after taking the limit n → ∞. It is

not the discrete spectrum of energies of the finite n system. It should be viewed as a

coarse grained version of the latter, very much like the energy measured in gravity is a

coarse grained version of the discrete set of energies of the field theory (when defined on a

compact space). Going from the eigenvalues of T̂ to the eigenvalues of H at finite n is an

interesting problem, and it is similar to seeing — in General Relativity — the discreteness

in energies of a black hole.

The above discussion, together with the behaviour of the partition function in the low

temperature regime, suggests the low energy physics for q → 1 should be governed by the

Schwarzian action (in the gravity dual), as in the SYK model. In the following, we derive

this connection by matching the continuum limit of the equation determining the spectrum

of T̂ with Liouville quantum mechanics,13 which can be written as the Schwarzian action,

as discussed in [47, 48].14

12Unless, for example, one believes in the microstate program in its strongest form where one can choose

a specific energy eigenstate in the most extreme case.
13We would like to thank D. Bagrets for a discussion of this point.
14See [49] for a 2d CFT perspective on this matter.
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To take the continuum limit, it is convenient to define the matrix T̃ ≡ ST̂S−1 where

S is a diagonal matrix with entries Sii = (−1)i. Notice that solving for the eigenvalues of

the T̃ matrix still resembles a scattering problem on the half line, with the index i of the

vector measuring the distance from the origin, just like it did for the T̂ , T matrices. The

asymptotic form of the T̃ matrix is

T̃ =
1√

1− q



0 −1 0 0 0 . . .

−1 0 −1 0 0 . . .

0 −1 0 −1 0 . . .

...
. . .

. . .
. . .

. . .
. . .


(5.5)

In the continuum limit, the above matrix includes the second derivative operator. To make

this more precise, define

φ = log(q)i (5.6)

Using the form of the T̂ operator in (3.25), its continuum limit equals

T̃ → 1√
1− q

(
−2− (log q)2∂2

φ +
q

2
eφ
)

(5.7)

Notice the potential term comes from the expansion
√

1−qi+1

1−q = 1√
1−q

(
1− qi+1

2 + . . .
)

in

ηi, as defined in (3.12), which is accurate since i is large and q → 1, from below.

The eigenvalue problem then reduces to the quantum mechanical eigenvalue problem(
−(log q)2∂2

φ +
q

2
eφ
)

Ψ =
√

1− q(E − E0)Ψ . (5.8)

This is equivalent to the Liouville form of the Schwarzian action in equation 32 in [48],

given by

H = −
∂2
φ

2M
+ γeφ (5.9)

after a constant shift of φ. In [48] M was the scale M = N logN
64J
√
π

(for the SYK model with

quartic interactions). For us it is set by | log(q)|−2 ∼ λ−2.

The prescription in [47, 48] (and in [49] for 2D case) requires that, in the path integral,

we sum over trajectories that begin and end in the strong coupling region φ → ∞. This

is in qualitative agreement with our prescription since we place the state v0 as initial and

final states. Recall that v0 = (1, 0, 0, 0 . . .), i.e., only the i = 0 term is turned on, which

where the term qi is the largest. In terms of φ, eφ is largest which is indeed the analogue of

the Liouville strong coupling region. The models are of course not exactly the same since

the model in [47] captures the low energy and the T̂ matrix captures the full dynamics.

This also gives an interpretation of the index i via its relation to φ. φ(t) measures

where the AdS2 space is glued to whatever non-universal UV we have (the leading effect

being the Schwarzian action), i.e., φ(t) parametrizes the length of the AdS2 throat. We see

that in the full model the size of AdS2 is actually quantized, giving rise to a minimal size

AdS which corresponds to the state v0.
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It is worth reiterating that the density of states for the H Hamiltonian is different

than the density of states for the matrix T̂ , even in the large n limit. Rather the density

of states in the former is related to the density of states in the latter H by equation (3.21)

or, equivalently, by

E
(
TrH(e−βH)

)
= v†0e

−βT v0 (5.10)

which means that we have to put a specific initial and final states for T̂ in order to compute

the partition function. It is tempting to interpret this in Minkowski space as a computation

with initial and final states at the past and future singularities of the black hole.

6 The two point function

6.1 The exact 2-pt function

As explained in section 2, we want to compute correlators of random operators M taken

from the same universality class as the Hamiltonian (1.2). Hence, these are defined by

M = 3−pm/2
(
n

pm

)−1/2∑
J

mJσJ , (6.1)

where J is now a string of pm distinct sites and Pauli matrices. The sum runs over all

such possible J ’s, and mJ are independent Gaussian variables with zero mean and unit

standard deviation (in particular they are also independent of the coefficients αJ in H).

There are two relevant parameters that we will keep fixed in the limit n → ∞. The

first is the analogue of λ (see (1.3)) for the random operator (6.1)

λm =
3

4

p2
m

n
, qm = e−λm . (6.2)

The second is

λ̃ =
√
λλm =

3

4

ppm
n
, q̃ = e−λ̃ . (6.3)

We want to evaluate the exact thermal 2-pt function for the random operator M

2−n · E
[
Tr
(
e−βHM(t)M(0)

)]
, or 2−n · E

[
Tr
(
e−

βH
2 M(t)e−

βH
2 M(0)

)]
(6.4)

for any value of β and t. The formalism developed below, based on the set-up in section 3,

proceeds by evaluating, and then resumming, expressions of the form

2−n · E
[
Tr
(
Hk1MHk2M

)]
. (6.5)

This formalism can be extended to compute any n-pt function [50].

The strategy is to reduce the computation to some relevant chord partition function,

and then to evaluate it. The identification of the relevant partition function follows the

discussion in section 3. The Gaussian integration over the random coefficients of the

operators still pairs them. Hence, one can still think in terms of chord diagrams. The

only difference is that the Gaussian integral over mJ ’s pairs the two M insertions, whereas
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Figure 6. Marked chord diagram for a two point function.

the Gaussian integral over αJ ’s pairs the k1 + k2 insertions of H. To take into account

the index sets of the different chords and their intersections, one must evaluate the trace

over the Pauli matrices. The arguments leading to only pairwise intersection and to the

length of the intersections being Poisson distributed remain the same. The only difference

is that intersections between two H-lines are determined by the length parameter of the

H operator, giving a factor of q to their intersection, whereas the intersection of an H-line

with M -line is determined by both the length of M and the length of H, giving a factor

of q̃ to their intersection. The net result is that one is left with a marked chord diagram

where one chord is distinguished — an example is given in figure 2 — and the partition

function that we are interested in is the marked chord partition function, as promised in

section 2.3.

To evaluate the marked chord diagram, we need to modify the “hopscotch” procedure

described in section 3.2 to include the marked chord. Given the distinguished nature of the

pair of M insertions, it is convenient to choose where to open the circular chord diagram in

such a way that one M appears to the rightmost of the line, and the other M somewhere

in the interior, as in figure 6. The two operators M are denoted by red dots and are paired

by the bold faced line. The procedure now consists in pairing the remaining H’s starting

with the rightmost insertion of H. Propagating the system through the first k2 steps, i.e.

the k2 H’s between the two M operators, gives the same contribution as before. However,

when we hop over the second insertion of M , the open H-lines cross the M -line picking up

an additional factor of q̃no. of lines. The last step is to propagate for the remaining k1 steps.

The expression for the marked chord diagram, or the 2-pt function of M, is therefore

2−n · E
[
Tr
(
Hk1MHk2M

)]
= 〈0|T k1W (q̃)T k2 |0〉 (6.6)

where

W (q̃) = Diag(1, q̃, q̃2, . . .) (6.7)

encodes the intersection of an H-line with an M -line, when the former hops over the latter.

Recalling that T = P−1T̂P and noticing that [P,W ] = 0, we can also write the two point

function as

2−n · E
[
Tr
(
Hk1MHk2M

)]
= 〈0|T̂ k1W (q̃)T̂ k2 |0〉 . (6.8)
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The 2-pt function can be written in terms of the matrix elements of T̂ defined in (3.37)

by inserting a complete set of states

〈0|T̂ k1W (q̃)T̂ k2 |0〉 =

∞∑
l=0

〈0|T̂ k1 |l〉q̃l〈l|T̂ k2 |0〉

=

∫
dθ1dθ2ψ̂0(θ1)ψ̂0(θ2)E(θ1)k1E(θ2)k2

∑
l

ψ̂l(θ1)q̃lψ̂l(θ2)

(6.9)

where |l〉 stands for a vector having 1 in the l’th place and E(θ) = 2 cos θ√
1−q . Using the ψ̂

wavefunctions in (B.12), the infinite sum (6.9) reduces to∑
l

ψ̂l(θ1)q̃lψ̂l(θ2) = ψ̂0(θ1)ψ̂0(θ2)
∑
l

Hl(cos(θ1)|q)Hl(cos(θ2)|q) q̃l

(q; q)l
(6.10)

= ψ̂0(θ1)ψ̂0(θ2)
(q̃2; q)∞

(q̃ei(θ1+θ2), q̃ei(−θ1+θ2), q̃ei(θ1−θ2), q̃ei(−θ1−θ2); q)∞

where we used the identity (B.5).

To evaluate Tr[e−
βH
2 M(t)e−

βH
2 M(0)], we expand the exponentials insert (6.8), and re-

sum the power of the eigenvalues T̂ matrices (which now appear twice) into an exponential.

One then gets

E
[
Tr
(
e−

βH
2 M(t)e−

βH
2 M(0)

) ]
=

(q; q)2
∞(q̃2; q)∞
(2π)2

∫ π

0
dθ1dθ2e

2cos(θ1)(−
β
2 +it)√

(1−q) e
2cos(θ2)(−

β
2−it)√

(1−q)

× (e2iθ1 , q)∞(e−2iθ1 , q)∞(e2iθ2 , q)∞(e−2iθ2 , q)∞

(q̃ei(θ1+θ2), q̃ei(−θ1+θ2), q̃ei(θ1−θ2), q̃ei(−θ1−θ2); q)∞
(6.11)

where the value (B.12) of ψ̂0(θ)2 was inserted.

In the next subsection we will evaluate this expression for a special case of q and q̃.

But before we do that, we will perform a quick check on our results above.

A check. Before evaluating (6.11) for a special case of q and q̃, one can perform a check

by taking the q̃ → 1 limit. There should be no cost for the H lines crossing the M lines in

this limit. Hence, it must be that

E
[
Tr(Hk1MHk2M)

]
= E

[
Tr(Hk1+k2)

]
when q̃ → 1 (6.12)

To check (6.11) is compatible with this behaviour, notice that near q̃ → 1, (q̃2; q)∞ → 0,

due to the first term in the product. Hence (6.11) vanishes, unless θ1 → θ2, since an

additional zero in the denominator occurs then.15 Hence, the integrand in (6.11) behaves

like a delta function whose strength is given by

(q̃2; q)∞

|(q̃ei(θ1−θ2); q)∞|2
=

2(1− q̃)
(1− q̃)2 + (θ1 − θ2)2

× (q; q)∞
(q; q)2

∞
= 2πδ(θ1 − θ2)× 1

(q; q)∞
(6.13)

15Another zero may appear in the denominator when θ1 + θ2 = π but this appears in a co-dimension 2

in the range of integration.
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Thus, in the q̃ → 1 limit, the correlator (6.11) equals

(q; q)∞
(2π)

∫
dθ1E

k1+k2(θ1) |(e2iθ1 ; q)∞|2 =

∫
dθEk1+k2(θ)Ψ(θ, q) = mk1+k2(q) , (6.14)

where we used (3.38) in the last step, in agreement with (6.12).

6.2 The q → 1 limit with q̃ = qm

The exact 2-pt function of M (6.11) holds for all ranges of time (which are held fixed in the

n → ∞ limit). In the remainder of this section we will compute the formula in a specific

case, which is the low energy regime where conformal symmetry is expected to appear, as

discussed in section 4 and in appendix B of [18].

We will work in the limit q, q̃ → 1 since we want to work in the limit in which the

correlators of each operator separately approximately factorize. However, more and more

terms contribute in the Pochammer symbols in this limit, similar to what we had for the

partition function, and hence it is important how we take this limit. Since in gravity

non-factorization of correlation functions for different operators is governed by the same

parameters (e.g. the same 1/N), then the rates of q → 1 and q̃ → 1 should be related.

A particularly simple case to analyze is q̃ = qm with m an integer. This has technical

advantages, but it is also physically interesting because it corresponds to

pm = m p . (6.15)

That is, if the Hamiltonian is made out of a sum of strings of p spin operators (with random

coefficients), then the random operator M is made out of a string of m · p spin operators.

This is reminiscent of the statement that, say for 4D, N = 4 SYM, the Hamiltonian is a

descendant of Tr(X2), yet we can probe the system with low energy fields, which correspond

to single trace operators of the form Tr(Xn), n > 2, and their conformal descendants.

As discussed in [18] and section 4, our model has a conformal low energy limit. Hence,

conformal symmetry should assign a dimension one to the Hamiltonian. If the fundamental

fields (in this case the spin operators) can be assigned a specific conformal dimension, and

if this conformal dimension is additive in composite operators — as in the SYK model

on both counts — then one expects the conformal dimension of M to be m. We will see

how our exact formula matches this, up to the existence of mixing with operators of lower

dimension when we work at finite temperature. Despite this, our exact formula always has

an overlap with an operator of the right dimension.

Before doing the computation we would like to recall an additional formula to which

we will compare our result. We will actually be computing the “two sided correlator”

2−nE
[
Tr
(
e−

βH
2 M(t)e−

βH
2 M(0)

)]
. (6.16)

This computation is slightly easier than the ordinary thermal correlator. We refer to this as

the two sided correlator since, in an eternal black hole in AdS, it is the relevant correlator

when there is one operator on each of the boundaries. For an particle of mass M in the
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BTZ black hole this correlator is (see for example [38] in the Eikonal approximation, with

a shock wave there)

∝ 1

cosh
(
πβ(tR − tL)

)2Ml
(6.17)

where l is the AdS3 radius, M is the mass of the particle and Ml is the conformal dimension

of the associated operator. This is what is expected from conformal invariance. In the

single sided correlator the cosh is replaced by a sinh, to obtain the expected short distance

behaviour of 1/t2Ml, and the correct Euclidean time periodicity.

6.2.1 The reduced formula

When q̃ = qm, the identity

|(q̃eiφ; q)∞|2 =
|(eiφ; q)∞|2

4 sin2 φ
2

∏m−1
l=1 |1− eiφql|2

, (6.18)

allows to write the 2-pt function (6.11) as

16(q2m; q)∞
(q; q)2

∞
(2π)2

×
∫ π

0
dθ1dθ2e

2cos(θ1)(−β2 +it)√
(1−q) e

2cos(θ2)(−β2−it)√
(1−q) sin2

(
θ1 + θ2

2

)
sin2

(
θ1 − θ2

2

)
×
m−1∏
l=1

|(1− qlei(θ1+θ2))|2|(1− qlei(θ1−θ2))|2 × |(e2iθ1 , q)∞|2|(e2iθ2 , q)2
∞

|(ei(θ1+θ2); q)∞|2|(ei(θ1−θ2); q)∞|2

(6.19)

Notice the finite product can be rewritten, within the integral, as

Dm(t, β) ≡
m−1∏
l=1

|(1− qlei(θ1+θ2))|2|(1− qlei(θ1−θ2))|2

=

m−1∏
l=1

[
(1− q2l)2 + ql

(
1 + ql

2

)2

(1− q)(−i∂t)2 − ql(1− ql)2(1− q)(∂β)2

]

≡
m−1∏
l=1

Dl(t, β)
q→1−−−→ (1− q)m−1(−i∂t)2m−2 .

(6.20)

Taking the derivatives outside of the integral, allows to write the integrand in terms of ϑ

functions (see (A.4)) depending only on q,

16(q2m; q)∞
(q; q)2

∞
(2π)2

Dm(t, β)

∫ π

0
dθ1dθ2e

2cos(θ1)(−β2 +it)√
(1−q) e

2cos(θ2)(−β2−it)√
(1−q)

× sin(
θ1 + θ2

2
) sin

(
θ1 − θ2

2

)
sin θ1 sin θ2

ϑ1( θ1π |
iλ
2π )ϑ1

(
θ2
π |

iλ
2π

)
ϑ1

(
θ1+θ2

2π |
iλ
2π

)
ϑ1

(
θ1−θ2

2π |
iλ
2π

) (6.21)
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The q → 1 limit of the Jacobi Theta functions is evaluated as in (4.4), bringing the 2-pt

function to the form

32(q2m; q)∞
(q; q)2

∞
(2π)2

Dm(t, β)

∫ π

0
dθ1

∫ π

0
dθ2e

2cos(θ1)(−β2 +it)
√
λ e

2cos(θ2)(−β2−it)√
λ

× sin

(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
sin θ1 sin θ2 e−

3π2

2λ
− 1
λ(θ1−π2 )

2− 1
λ(θ2−π2 )

2

×
sinh

(
2πθ1
λ

)
sinh

(
2π(π−θ1)

λ

)
sinh

(
2π

(
θ1+θ2

2

)
λ

)
sinh

(
2π

(
π− θ1+θ2

2

)
λ

) sinh
(

2πθ2
λ

)
sinh

(
2π(π−θ2)

λ

)
sinh

(
2π

(
θ1−θ2

2

)
λ

)(
1−2 cosh

(
2π(θ1−θ2)

λ

)
e−4π2/λ

)
≡ 32(q2m; q)∞

(q; q)2
∞

(2π)2
Dm(t, β) · I(β, t, q)

(6.22)

This is the exact 2-pt function for q = q̃m in the limit λ→ 0. In the next subsections, we

study the function I(β, t, q), from which all m > 1 correlators can be extracted, in the low

temperature and very low temperature regimes (or long time, and very long time regimes).

6.3 Low and very low temperature regimes

Since the integral I(β, t, q) localizes near the edges at low energies, we define φi = π − θi.
Expanding the integral near φi ∼ 0,

I(β, t, q) =
1

8
e

2β√
λ

∫ π

0
dφ1

∫ π

0
dφ2 e

φ21

(
−β2 +it− 1√

λ

)
√
λ e

φ22

(
−β2−it−

1√
λ

)
√
λ

× (φ1 + φ2)(φ2 − φ1)φ1φ2 ×
sinh

(
2πφ1
λ

)
sinh

(
2π

(
φ1+φ2

2

)
λ

) sinh
(

2πφ2
λ

)
sinh

(
2π

(
φ2−φ1

2

)
λ

) (6.23)

As explained in section 4.1, the low energy (and very low energy) regime satisfies β
√
λ� 1.

To study the behaviour of the Gaussian factors in the above integral, it is convenient to

rescale the integration variable ϕi ≡ φi
λ together with the time and temperature parameters

β̃ ≡ λ3/2β, t̃ ≡ λ3/2t. The low energy regime is equivalently described by

β
√
λ� 1 ⇔ β̃ � λ (6.24)

allowing to approximate (6.23) by

I(β, t, q) =
λ6

8
e

2β√
λ

∫ π/λ

0
dϕ1

∫ π/λ

0
dϕ2 e

ϕ2
1

(
− β̃

2
+it̃

)
e
ϕ2
2

(
− β̃

2
−it̃

)

× (ϕ1 + ϕ2)(ϕ2 − ϕ1)ϕ1ϕ2 ×
sinh(2πϕ1)

sinh
(
2π(ϕ1+ϕ2

2 )
) sinh(2πϕ2)

sinh
(
2π(ϕ2−ϕ1

2 )
) (6.25)

This integral has two regimes, following a similar discussion for the partition function

in section 4.1:
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• The low energy-long time regime characterised by β̃, t̃ � 1, where the integral re-

ceives contributions from the range ϕi � 1.

• The very low temperature regime, or very long time scale regime, characterised by

β̃ � 1 or t̃� 1, where the integral receives contributions primarily from ϕi � 1.

6.3.1 Low temperature regime

The low energy-long time regime β̃, t̃ � 1 allows to extend the range of integration to ∞
since the gaussian in the integrand cuts off the integral well before the limits in (6.25).

Notice also the integral is supported at large values of ϕ1, ϕ2, allowing us to approximate

three of the sinh functions by their larger exponentials

I(β, t, q) =
λ6e

2β√
λ

2

∫ ∞
0

dϕ

∫ ϕ

−ϕ
dσe−β̃ϕ

2−β̃σ2−4it̃ϕσϕσ(ϕ2 − σ2)
e2πϕ

sinh 2πσ
(6.26)

where we changed variables to ϕ = ϕ1+ϕ2

2 , σ = ϕ2−ϕ1

2 . Due to the 1
sinh(2πσ) term, the σ

integral receives contributions from finite σ, whereas its limit of integration is ±ϕ, much

larger quantities. This means we can trade the σ limits by ±∞. Furthermore, we can also

neglect the e−β̃σ
2

term and the σ2 term relative to ϕ2 in the (ϕ2 − σ2) term. After these

approximations, our integral reduces to

I =
λ6e

2β√
λ

2

∫ ∞
0

dϕe−β̃ϕ
2
ϕ3e2πϕ

∫ ∞
−∞

dσe−4it̃ϕσ σ

sinh 2πσ
(6.27)

Using the identity ∫ ∞
−∞

dσe−4it̃σϕ σ

sinh(2πσ)
=

1

8 cosh2(t̃ϕ)
, (6.28)

and introducing a further variable of integration ϕ ≡ ϕs√
β̃

+ π
β̃

, we finally get

I(β, t, q) =
λ6e

2β√
λ

16

∫ ∞
0

dϕ
ϕ3e−β̃ϕ

2+2πϕ

cosh2 (t̃ϕ)

=
π3λ6e

2β√
λ

+π2

β̃

16β̃3

√
β̃

∫ ∞
− π√

β̃

dϕse
−ϕ2

s

(
1 +

√
β̃ϕs
π

)3

cosh2

[
πt̃
β̃

(
1 +

√
β̃ϕs
π

)] (6.29)

Since β̃ � 1 we can in any case neglect the ϕs dependence in the numerator. The integral

shows different behaviours depending on the scaling of t̃:

• When t̃√
β̃
� 1, the ϕs dependence in the denominator can be neglected and, to

leading order in β̃, the result is

I(β, t, q) =
λ

3
4

16

(
π

β

) 7
2

e

2β√
λ

+ π2

βλ
3
2

1

cosh2
(
πt
β

) , 1�
√
β̃ � t̃ (6.30)
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• When t̃ �
√
β̃(� β̃), the cosh in the denominator contributes. Keeping only the

larger exponential due to the latter, the integral becomes

I(β, t, q) =
λ6e

2β√
λ

4

∫ ∞
0

dϕe−β̃ϕ
2+2πϕ−2t̃ϕϕ3

=
λ6e

2β√
λ

4
e

(π−t̃)2

β̃
(π − t̃)3

β̃3

√
β̃

∫ ∞
−π−t̃√

β̃

dϕs e
−ϕ2

s

(
1 +

√
β̃ϕs

π − t̃

)3

∼ λ3/4

16

(
π

β

) 7
2

e
2β√
λ 4e

(π−t̃)2

β̃ , 1� t̃�
√
β̃

(6.31)

where we changed the integration variable to ϕ ≡ ϕs√
β̃

+ π−t̃
β̃

in the second step. Due

to the large t/β, or t̃/β̃, (6.31) differs from (6.30) by an additional e
t̃2

β̃ .

6.3.2 Very low temperature

When β̃ = βλ3/2 � 1, the angles ϕ1 and ϕ2 are localized to a range much smaller than 1.

This allows to expand the sinh functions in (6.25) to obtain

I(β, t, q) =
λ6

2
e

2β√
λ

∫ ∞
0

dϕ1

∫ ∞
0

dϕ2 e
ϕ2
1

(
− β̃

2
+it̃

)
+ϕ2

2

(
− β̃

2
−it̃

)
ϕ2

1ϕ
2
2 =

πλ6e
2β√
λ

4(β̃2 + 4t̃2)
3
2

(6.32)

where we traded the upper limit with ∞. This may have the following interpretation. This

quantity equals ∫
dE1dE2ρ(E1)ρ(E2)e−β1E1−β2E2E

(
|〈E2|M |E1〉|2

)
(6.33)

where E() is the statistical average and β1, β2 are related to β, t. This means that

E

(
|〈E2|M |E1〉|2

)
∼ ϕ2

1ϕ
2
2 ∼ E1E2 (6.34)

where Ei measures the energy of the state above the ground state. We can interpret this

as if the operator M acts as an underlying gaussian random matrix which couples to low

energy states with form factors ϕ2, i.e. consider a set of random vectors

|vα〉 =
∑
i

√
Eici,α|Ei〉, (6.35)

where the sum is up to some energy higher than the scale set by the very low temperature,

and ci,α are independent complex Gaussian random variables with mean zero and unit

standard deviation. Take M to be a random Gaussian Hermitian matrix in terms of these

variables

M =
∑
α,β

|vα〉M̂α,β〈vβ | (6.36)

where and M̂ are independent complex Gaussian variables with mean zero and standard

deviation 1. In this case (6.34) is satisfied.
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6.4 The final correlator

The evaluation of the exact 2-pt function (6.22) requires to compute the action of the

operator Dm(t, β) in (6.20) on I(β, t, q) and interpret the result. It is easy to read the

results without actually having to worry about the details of Dm(t, β).

• The low temperature regime corresponds to the conformal regime, when the fluctu-

ations of the pseudo-Goldstone modes are still small. Assigning the Hamiltonian H

the conformal dimension 1, one would expect an operator made of m spin operators

to have dimension m.

This is exactly what happens in our formulas. For m = 1, the operator D1(t, β)

reduces to the identity. Hence, our result (6.30) is the correlator for an operator of

dimension 1 i.e., ∼ 1
cosh2(πt

β
)
.

For m > 1, there exists operator mixing, but we can extract the operator content from

the correlator as follows. To isolate the conformal dimensions of the participating

operators, first insert the operators on the same side, or equivalently take t = iβ/2+t′.

This turns the cosh into a sinh. Second, take the limit t′ � β. In this case the leading

contribution16 in Dm(t, β) acts on it with ∂2m−2
t turning the correlator into 1/t2m

which is the 2-pt function for an operator of dimension m.

• For the very low temperature/long time regime we can compare (6.32) with equation

(67) in [48]. Although their discussion is for SYK model with quartic interactions,

it is within the Liouville description of the Schwarzian action. Since our spin glass

model reproduces the latter in this very low temperature regime, both results should

be similar. The finite temperature 2-pt function of a pair of Majorana fermions in the

SYK model at long times/low temperatures (in the conventions used in [48]) equals

G(τ) ∼ −M
2β1/2

√
J

sgn(τ)

τ3/2(β − τ)3/2
, τ �M ≡ N logN

64
√
π J

(6.37)

For a 2-pt function of higher dimension operators, the time dependence (at long time

and low temperature) remains with the same power, except that the coefficient of

power of M in front of the expression increases.

To match with (6.32), one needs to work with Lorentzian time, τ = it and to shift

the time imaginary axis by t→ t− iβ2 . Altogether,

τ3/2(β − τ)3/2 →
(
β2

4
− τ2

)3/2

→
(
β2

4
+ t2

)3/2

.

where we analytically continued back to lorentzian time in the last step.

16This can be seen from (6.20). More precisely ∂t appears as λ∂2
t and ∂β appears as λ3∂2

β . Acting with

them on a function of the form βA

tB
we obtain an expression

(
λ3

β2

)nβ ( λ
t2

)nt βA
tB

. For a fixed power of t, an

addition derivative with respect to β adds a power of λ3

β2 � 1.
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This is to be compared with our expression following from (6.32)

G(m)(t) = − 2

π
(q2m; q)∞(q; q)2

∞Dm(t, β)
λ

3
2 e

2β√
λ

4
(
β2

4 + t2
)3/2

. (6.38)

in the limit β2

4 + t2 → ∞. For m = 1, the t dependence agrees. For m > 1, the

leading long time behaviour also agrees, and arises from the terms in Dm(t, β) which

either have no derivatives, or have the ∂2
β terms acting on the e2β/

√
λ. Note, however,

that these are not strictly reliable results as this expression is multiplied by λ2(m−1),

and we dropped terms of similar order throughout our discussion. However, within

the terms that we kept, the leading very low temperature/very long time expressions

agrees with that of [48].

Acknowledgments

We would like to thank O. Aharony, A. Altland, D. Bagrets, M. Isachenkov, N. Itzhaki,

D. Kutasov, V. Narovlansky, M. Rozali, S. Shenker and G. Torrents for useful discussions.

The work of MB is supported by an ISF center of excellence grant (1989/14). The work of

JS is supported by the Science and Technology Facilities Council (STFC) [grant number

ST/L000458/1]. PN is grateful for support provided by International Centre for Theorec-

tical Sciences, India where part of this work was done. MB holds the Charles and David

Wolfson Professorial chair of Theoretical Physics.

A q-Pochammer symbols and Jacobi ϑ functions

The q-Pochammer symbol is defined as

(a; q)n ≡
n−1∏
k=0

(1− a qk) . (A.1)

It allows an extension to an infinite product

(a; q)∞ ≡
∞∏
k=0

(1− a qk) . (A.2)

The Jacobi ϑ1 function is defined as (see equation (8.A.2) in [51])

ϑ1(θ|τ) ≡ 2q̄
1
4 sinπθ

∞∏
m=1

[(1− q̄2m)(1− 2 cos(2πθ)q̄2m + q̄4m)] , with q̄ = eiπτ (A.3)

It is convenient for our discussion in section 4 to write products of q-Pochammer symbols

in terms of the Jacobi ϑ1 function. To do this, note that with q = e−λ,

ϑ1

(
θ

π

∣∣∣ iλ
2π

)
= 2q

1
8 sin θ (q; q)∞(e2iθq; q)∞(e−2iθq; q)∞

=
q

1
8

2 sin θ
(q; q)∞(e2iθ; q)∞(e−2iθ; q)∞

(A.4)
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Modular Transformations of Jacobi Theta functions. ϑ functions obey modular

transformation properties. The one relevant for our purposes is (see (8.A.20) in [51])

ϑ1(z|τ) = ϑ1

(
−z
τ

∣∣∣∣− 1

τ

)
1

η (τ)
1
2

e−iπz
2/τ , with η = eiπ/4 . (A.5)

B Some properties of continuous q-hermite polynomials

Continuous q-hermite polynomials are defined as

Hn(x|q) ≡
n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

ei(n−k)θ , x = cos θ (B.1)

They can equivalently be defined using the generating function.17

∞∑
n=0

Hn(x|q) tn

(q; q)n
=

1

(teiθ, te−iθ; q)∞
(B.2)

Hn(x|q) turns out to be a polynomial in x, q. We list its relevant properties for our work

below (see [52] for example):

• Hn(x|q) satisfies a recursion relation (wikipedia)

2xHn(x|q) = Hn+1(x|q) + (1− qn)Hn−1(x|q) H−1(x|q) = 0, H0(x|q) = 1, (B.3)

• Hn(x|q) satisfies x-orthogonality of the form∫ π

0
Hm(cos θ|q)Hn(cos θ|q)|(e2iθ; q)∞|2dθ = 2π

(q; q)n
(q; q)∞

δmn (B.4)

• Hn(x|q) satisfies n-orthogonality of the form

∞∑
n=0

Hn(x|q)Hn(y|q) tn

(q; q)n
=

(t2; q)∞

(tei(θ+φ), tei(θ−φ), te−i(θ−φ), te−i(θ+φ); q)∞
(B.5)

To normalize the eigenfunctions of T̂ in section 3.2.2 (see (3.36)), we need the t→ 1

limit of the above identity. In this limit, the right hand side above can be expanded as

(t2; q)∞

|(tei(θ+φ); q)∞|2|(tei(θ−φ); q)∞|2
=

(1− t2)

|1− tei(θ+φ)|2|1− tei(θ−φ)|2

· (qt2; q)∞

|(qtei(θ+φ); q)∞|2|(qtei(θ−φ); q)∞|2

(B.6)

Since this expression vanishes for t = 1 at generic values of θ, φ, but blows up for

θ = ±φ, it is proportional to δ(θ ± φ). To determine the strength of the δ function,

one notes that if t ≡ 1− ε, in the ε→ 0, θ → φ limit the expression above becomes18

2ε

(ε2 + (θ − φ)2)

(q, q)∞
|(e2iθ; q)∞|2|(q; q)∞|2

= 2πδ(θ − φ)
1

|(e2iθ; q)∞|2|(q; q)∞|
, (B.7)

17(a1, a2, . . . ; q)∞ ≡ (a1; q)∞(a2; q)∞ . . . .
18We need to use δ(t) = limε→0

1
π

ε
ε2+t2

and the identity (q e2iθ; q)∞ = (e2iθ ;q)∞
1−e2iθ .
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Hence, the t = 1 limit of the formulae (B.5) reads∑
n

Hn(x|q)Hn(y|q)
(q; q)n

=
2π (δ(θ − φ) + δ(θ + φ))

|(e2iθ; q)∞|2(q; q)∞
(B.8)

Using these identities, one can fix the normalization constant in (3.36). Define

ψ̂l(x|q) ≡
√

(q; q)∞|(e2iθ; q)∞|
Hl(x|q)√
2π(q; q)l

(B.9)

The latter satisfies both the unit normalized n-orthogonality and x-orthogonality relation19

∞∑
n=0

ψ̂n(cos θ|q)ψ̂n(cosφ|q) = δ(θ − φ) (B.10)∫ π

0
ψ̂m(cos θ|q)ψ̂n(cos θ|q)dθ = δmn (B.11)

Finally, note that (B.9) can also be rewritten as

ψl(x|q) = ψ0(x|q) Hl(x|q)√
(q; q)l

, ψ0(x|q) =

√
(q; q)∞

2π
|(e2iθ; q)∞| (B.12)
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