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Data Provenance: What next?

Peter Buneman
University of Edinburgh
opb@inf.ed.ad.uk

ABSTRACT

Research into data provenance has been active for al-
most twenty years. What has it delivered and where will
it go next? What practical impact has it had and what
might it have? We provide speculative answers to these
questions which may be somewhat biased by our initial
motivation for studying the topic: the need for prove-
nance information in curated databases. Such databases
involve extensive human interaction with data; and we
argue that the need continues in other forms of human
interaction such as those that take place in social media.

1. INTRODUCTION

The purpose of this paper is neither to define prove-
nance nor to provide a survey of the relevant research;
there are numerous contributions to the literature that
do this [19, 18, 25, 45, 49, 71, 28]. What we hope to do
here is to draw out new strands of research and to indi-
cate what we can do practically on the basis of what we
now know about provenance. A good starting point is
to state two generally held but conflicting observations:
first that the more provenance information one can col-
lect the better; second that it is impossible in practice to
record all relevant provenance information.

Before narrowing our discussion to data provenance,
let us look at these two observations. Imagining the im-
possible, suppose we could record all the provenance
associated with some process or artefact (digital or oth-
erwise). In what would be a massive amount of prove-
nance data, would we be able to answer simple ques-
tions such as where some data was copied from or whether
a process invoked a particular piece of software? Such
questions may involve the querying of huge data sets
and complex code. So simply recording total prove-
nance, even if it were possible, still requires complex
analysis. It requires us to extract simple explanations
from a massive and complex structure of data and code.
What are those explanations?

Being more realistic, in practice, we only have re-
sources to record a limited amount of provenance in-
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formation. So what do we record? We may — as is the
case with physical artefacts — have some standard at-
tributes (ownership, location etc.) but for computational
processes and data can we predict what will be asked of
provenance? Again we have to understand what kinds
of explanation we are likely to want. Is there any min-
imal requirement on what we should record or how we
should record it?

For most purposes, what we should record is applica-
tion dependent. For example, if an application is target-
ing to answer the provenance of a sales figure reported
in a company earnings report, then the data provenance
that consists of the source data and the program or query
that was used to generate the report are likely to be suf-
ficient. However, sometimes, intermediate sales results
from specific regions are combined with other data sources
or results from other regions to generate the final report.
In this case, to provide a comprehensive understanding
of the sales figure in the company earnings report, it may
also be necessary to track the programs that were used
to generate the intermediate results.

In yet another type of application, it is important that
the results are repeatable and reproducible. This is true
of experiments in chemistry and physics where it is not
only crucial that one can obtain the same results by re-
running the experiments but also by running it at other
locations. Software repeatability and reproducibility have
also become an important topic. To enable software re-
producibility, it is typically necessary to document the
hardware, the version of operating system and software
libraries used, in addition to the program and data used
to execute the experiment.

Insofar as data provenance is separable from other
forms of provenance [8, 26] we focus on provenance
that has to do with data: databases, data sets, file sys-
tems etc. In the Background section that follows, we
summarise some of the important research contributions
to data provenance, the motivation behind the research
and the practical applications of it. In Section 3, we then
look at possible applications of provenance in other ar-
eas of computer science.



2. BACKGROUND

As often happens, the first paper that addressed prove-
nance [78] in databases had to be “rediscovered” sev-
eral years after it was written. This paper introduced
a form of tagging or annotation to describe the source
of elements of a relational database, a form of where-
provenance. Then in the later 1990s under various names
the study started in earnest. In [79] a method based
on inverse functions was used to visualize the lineage
of data in scientific programming; and in [21, 22], in
the context of data warehouses, an operational defini-
tion was given of what tuples in some source data “con-
tributed to” a tuple in the output of a relational query —
perhaps a form of why-provenance.

The authors’ interest in the topic was sparked by their
collaboration with biologists [44] involved in the Hu-

man Genome Project who were building curated databases

of molecular sequence data. While a curated database
resembles a data warehouse in the integration of exist-
ing databases, it also involves the manual correction and
augmentation of the source data, and it cannot simply
be characterized as a data warehouse or view. The biol-
ogists complained that they were losing track of where
their data had come from. Now biologists are, by train-
ing, quite meticulous in keeping a record of what they
have done — in this case what queries they have made
or what manual additions or corrections were made, SoO
in some sense the provenance of some small element of
data — a number or a tuple — was available. However
extracting the information they needed from a complex
workflow of updates and queries on other databases was
proving difficult. What they appeared to need was a sim-
ple explanation e.g.: “this number was entered by ... on
..> (where-provenance); or “this tuple was formed by
joining tuple ¢; from Ry to tuple to from Rs” (how-
provenance); or “this tuple is in the result because some
other tuple was in the input” (why-provenance).

The example in Figure 1 illustrates the types of prove-
nance described above. Consider a Friend relation, a
Profile relation, and a query that joins the two rela-
tions to find pairs of friends with identical occupations
(shown below).

select f.namel, f.name2
from
where f.namel = pl.name and
f.name2 = p2.name and

pl.occupation = p2.occupation

The value “Carl” in the result is derived from the value
“Carl” in the Friend relation. Hence, if there were an
annotation on who entered that information and when,
this information can propagate to the result according
to where-provenance. The figure also illustrates that
the how-provenance of the output tuple is the result of

Friend f, Profile pl, Profile p2

joining three tuples (Carl, Bob), (Bob, 30, analyst), and
(Carl, 50, analyst) from the input. The why-provenance
of the output consists of the same three source tuples.
We will discuss the finer differences between the latter
two types of provenance in Section 2.1. However, it is
important to note that to fully explain why the output tu-
ple exists, one must also account for the query. That is,
these three tuples satisfy all the equality condition in the
where clause of the query.

What we should again emphasize is that the purpose
of data provenance is to extract relatively simple expla-
nations for the existence of some piece of data from
some complex workflow of data manipulation. In this
sense it has a similar purpose to program slicing which
seeks to provide an explanation for a part of the output
of some complex program to a small part of the input
— an explanation that is much simpler than the program
itself.

Given that provenance is about explanation of some
part of a complex process, it is natural to ask whether
there is a unified language or model for describing prove-
nance. PROV is a W3C recommendation for a model
or ontology in which one can describe provenance [60,
58]. The intention is to produce a general model for
any kind of provenance such as that associated with arte-
facts or some general computational process. Atits core,
PROV can be used to describe causal relationships be-
tween entities and activities, and in doing this can nat-
urally describe the evaluation of a workflow. Because
of this the term “workflow provenance” has sometimes
been used to distinguish the ambit of PROV from that of
data provenance. Worse, the terms “fine-grained” and
“coarse-grained” have been used for this distinction. We
do not believe these distinctions to be helpful. While
it is straightforward to use PROV to describe some ba-
sic aspects of data provenance, we do not do so in this
paper because it does not add much to the formalisms
that have been found useful in the context of databases.
Conversely, there is no reason why the formalisms de-
veloped for “fine-grained” data manipulation cannot be
used in a larger context as we shall see in Section 3.1.

2.1 Annotation and provenance

From the beginning it was recognized that provenance
should be expressed as a form of annotation. This was
precisely the purpose of the Polygen model [78]: to
annotate data elements with their provenance. How-
ever, there is a much more fundamental connection be-
tween the two topics, which again shows up in curated
databases. Much of curated data is about annotation of
existing data structures. Sometimes this annotation is
expressed in the primary tables in a relational database,
but sometimes important information about the currency
or validity of some data is held in an auxiliary table or —



Friend (F) | namel | name2
Ann Bob

Bob —
Frank Dan ®

Profile (P) | name | age | occupation

Ann 32
Bob 30 analyst

Carl 50 analyst
U

researcher

mel | name2

——— [Carl >| Bob

“how”

Figure 1: An illustration of where, how, and why-provenance.

in the case of semistructured data — some additional sub-
trees in a hierarchy or some additional edges in a graph
representation. In fact, annotation data is semistructured
by nature and often lives in some kind of auxiliary data-
base. Queries over the “core” data often do not recog-
nize this annotation, and this is one of the main sources
of misleading or dirty data in both data warehouses and
curated databases.

The basic question is then how do annotations prop-
agate through database queries? This is a question that
is closely related to data provenance and one that has
driven much of the most interesting research on data
provenance since its inception.

Annotation. The Polygen model [78] inspired the sub-
sequent system DBNotes [6, 20] and other following
work (e.g., [35, 10]). For each relational algebra oper-
ator, DBNotes provided a rule to propagate annotations
based on where data is copied from. These rules are sen-
sitive to the way the query is formulated: even though
two queries are equivalent in the normal sense of always
producing the same result the way the rules propagate
annotations through the two queries may differ. Another
propagation scheme that is agnostic to the way equiva-
lent queries are formulated was also proposed to propa-
gate the same annotations to the result.

That provenance may be sensitive to query formula-
tion is seen in [10] which discusses update languages
and uses a propagation scheme that is an extension of
that in DBNotes. From a theoretical perspective, rela-
tional update languages, such as the update fragment of
SQL, are often regarded as uninteresting because they
are no more expressive than query languages. Consider
the action of an SQL update: it replaces a version of
the database with a new version. If we think of the old
version as the input and the new version of the output,
then that transformation from input to output can be ex-
pressed as a query in relational algebra. For example,
Figure 2.1 shows a simple update query and an equiv-
alent — in the sense that it produces the same output —
query that doesn’t involve updates. The backwards ar-

rows show where all components of the table, values
tuples and the table itself, come from. While the two
queries produce the same answer, the provenance is dif-
ferent. The first update query only affects the where-
provenance of the cell that the number “5” belongs to in
the output. All the other components of the result table
“come from” the corresponding component of the input
table. On the other hand the more complicated query not
only creates a new value 5, but a new tuple containing
that value and a new table. In the figure the components
that are created by the query are outlined in dotted red;
the components that are copied are outlined on black.
The interesting observation is that if we take prove-
nance into account, that is the query or update is a func-
tion that not only produces a result but also produces
where-provenance associated with the values and tuples
in a table, update languages become more expressive
than query languages. Moreover [10] provides a com-
pleteness result: if the where-provenance can be expressed
in (nested) relational algebra, then there is an update
query in which the same where-provenance is implicit.

Semiring provenance The seminal work of [40] de-
scribes a formalism of data provenance that captures and
extends previous formalisms such as why-provenance
of [14] and lineage described in the Trio system [5].

A commutative semiring is a quintuple (,0, 1, ®, ®).
Here, K is a set of elements containing the distinguished
elements 0 and 1, & and ® are two binary operators that
are both commutative and associative and 0 and 1 are
the identities of & and ® respectively. In addition, ® is
distributive over ® and 0 ® t =t @ 0 =0.

We assume that every tuple in the source database has
a tuple identifier, and I C K is the set of all such source
tuple identifiers. The provenance of an element in an
output table is expressed as a polynomial, an expres-
sion built up from 7,0,7,® and ®. The provenance
of an output tuple for each relational operator (select,
project, cross product, union, rename) is obtained from
the provenance polynomial of each input tuple. The sim-
plest case is selection in which the provenance of an out-



update R set B = 5 where A =1

select * from R where A <>1
union

Figure 2: How updates affect provenance

put tuple is the same as the provenance of the (unique)
corresponding input tuple. For join, suppose that ¢; €
Ry and t2 € Ro combine to produce t € Ry X Ro. If
e1, es are the provenance polynomials of ¢1, ¢5 then the
polynomial for ¢ is the polynomial e; ® e,. For union, if
t € R; has provenance e; and the same tuple ¢ € R has
provenance es then the provenance of ¢ in Ry U R; is the
polynomial e; & es. For a tuple ¢ in the output of a pro-
jection, the provenance is the polynomiale; & ... B e,
where eq, . .., e, are the polynomials of the tuples in the
input that “project onto” t. The polynomials attached to
the tuples in the output of a query are built up induc-
tively by these rules and others described in [40]. We
can think of the polynomial as a description of how each
tuple was constructed — by “joining” (®) and “merging”
() other tuples.

The example below shows a query in SQL over the
Friend relation of Figure 1. The query finds all people
who share a friend with someone. In some sense the
query is trivial because everyone shares a friend with
themselves, however the provenance is interesting.

Query:

select fl.namel
from Friend fl1, Friend f2
where fl.name2 = f2.name2

Assume that the tuples (Ann, Bob), (Carl, Bob), and
(Frank, Dan) are annotated with ¢1, i3, and respectively,
i3. The result of the query is shown below alongside

with annotations of the corresponding provenance poly-
nomials and why-provenance.

namel provenance

Ann ’il ®Zl@21 ®22
Carl 12 ®i2 Dt @i
Frank i3 ® 13

why-provenance
{{in}, {ir,i2}}
{{io}, {i1,i2}}
{{ist}

For example, the provenance polynomial for Ann is
11 ® 11 D11 Q1o showing that ¢; and ¢, itself is one way
of deriving the output tuple and another uses ¢; and 2o.

The remarkable property of these polynomials is that
they unify many other generalizations of relational al-
gebra such as bag semantics, C-tables and probabilistic
databases. For bag semantics simply assign the “iden-
tifier” 1 to each tuple in the input and use the semir-
ing (N,0,1,+, x). The evaluation of the polynomial
attached to a tuple gives the multiplicity of that tuple.

These polynomials also capture why-provenance with
the semiring (Why(K), 0, {0}, U, V), where z U y de-
notes the pairwise union of all sets in the two collections
z and y. The evaluation of the provenance polynomial
will give rise to the set of sets shown on the rightmost
column above. Indeed, if we interpret each tuple identi-
fier as a set of a singleton set, then the provenance poly-
nomial of Ann iy ® iy @ i1 @igis {{i1}} ® {{i1}} @
{{i1}} @ {{i2}} whichis {{i1}} ® {{i1,42}} and gives
rise to the why-provenance {{%1 }, {i1,i2}}.

Observe that the why-provenance describes what tu-
ples in the source are sufficient for deriving the output
according to the query. Indeed, either ¢; alone or both 2,
and 79 are sufficient for generating the output tuple Ann
according to the query. It is easy to see that the why-
provenance can be derived from the provenance polyno-
mial but not the other way round; the provenance poly-
nomial is more informative.

Semirings for propagating comments or beliefs can
also be derived from the semiring framework. For exam-
ple, the semiring (Lin(K), L,®,U,l) which captures
the lineage described in [22] can also be used to model
how comments should propagate. Intuitively, the ele-
ment | denotes no lineage while () denotes empty lin-
eage, and U is the usual union operator U except that
luX=Xul=.1.

Friend (F) | namel | name2 | C%:Bobis namel
an excellent C2

| Am | Bob = analyst —
C3: Ann likes Carl
programming.
L g Frank

Bob ) Carl
Dun ﬁ Fm%
The figure above exemplifies the “comments” semir-
ing. The first source tuple (Ann, Bob) has two com-
ments C'1 and C3 and the second source tuple (Carl,
Bob) has a single comment C'2. Each of the first two
tuples has all three comments in the result.
On the other hand, the belief of an output tuple can be

captured with the following semiring (Belief(K), L, 0, U, N)



which takes the intersection of the beliefs of the source
tuples on a relational join.

Friend (F) | namel | nam@@ namel
Ann Bob Sue Ann “m
Carl Bob<= Carl
Frank | Dan Zoe Frank

Hence, {Jane, Sue} are the only remaining believers
after the relational join operation.

Today, several database systems have been developed
to support the propagation and querying of provenance
such as Perm [37], LogicBlox, and Orchestra [39]. More
recent implementations such as [2] provides a provenance-
aware middleware implementation which can be used
with different database back-ends and also supports prove-
nance for transactions. Provenance support has also
been implemented outside database systems. For ex-
ample, in network provenance [82, 81], provenance is

maintained and queryable at Internet-scale for diagnos-
ing network errors in a distributed setting.

W s

2.2 Provenance, repeatability, versioning

The ability to reproduce an experiment is essential to
the credibility of the results of that experiment. The
same is true for any kind of computational analysis or
workflow that has been used to derive some data: the
analysis must be repeatable. Whatever is needed to en-
sure repeatability is often regarded as provenance. The
ability to record, reproduce, and query some computa-
tional process underlies “system-level” provenance [62],
the provenance “challenge” [61] and at least one view
of data citation [66]. Now almost all such analyses use
some kind of external data source — this is obvious in the
case of data citation, where the data source is the source
being cited. The problem in all these cases is that the
data source, and even its structure, is likely to evolve
over time.

In curated databases we see a similar problem. When
external data is incorporated, it is common to provide
a link to source data as part of the provenance. While
this requirement seems rather straightforward, there are
at least two caveats to ensure a proper “implementation”
that meets this requirement. First, the link should be a
stable reference to the correct version of the database
even if the database evolves. Most curated databases
have a link which serves as a citation to its entire data-
base. Web pages follow a similar organization where its
URL refers to the latest version of the web page. When
the database changes, the new database replaces the old
database and hence, the link, which now refers to the
new database, is no longer a valid reference for the pre-
vious database. The second issue is that the link is typ-
ically a coarse-grain approximation to a specific part of
the database where the reference is typically intended

for. While the HTML structure of web pages can be ex-
ploited to pinpoint to specific portions of the website, it
is less obvious how specific portions of a database can
be precisely referenced.

Data Versioning To ensure proper citation, some cu-
rated databases simply keep all past versions of the data.
The onus is on the user to cite the correct (portions of
the) version and to answer queries over multiple ver-
sions of data. For example, longitudinal queries such
as “what are all the changes in the last five versions?”,
or “when was this entry made?” would be difficult to
answer without going through each of the relevant data-
base versions at least once.

Another approach, which is more economical on stor-
age, stores only the changes (or deltas) between consec-
utive versions. However, the need to go through every
relevant version for certain types of longitudinal queries
such as “return all versions where a particular entry ex-
ists” is still unavoidable.

The archiving method of [13] strikes a balance be-
tween the two approaches described above; it keeps all
database versions intact and economically by “merging”,
to the extent possible, different database versions to-
gether. Conceptually, every version is assumed to be
in a hierarchical format such as in a JSON file format
or XML. Every node has an associated set of intervals
which captures the versions by which the node exists
(the fat node method of persistent data structures [32]).
Furthermore, if, as frequently happens, a node’s inter-
val set is identical to that of its parent one can save
storage by taking the lack of an interval set to indicate
that the interval set should be inherited. For biologi-
cal databases such as those described in [13], it was ob-
served that the dominant change is the addition of a node
in the hierarchy, and that node modifications are rela-
tively infrequent. This allows significant space savings,
and a year’s history of a database typically requires only
a small percentage overhead in storage.

The main challenge with the archiving strategy is that
it is not obvious how to match and merge nodes of a ver-
sion into nodes of an existing database archive. In [13],
a critical assumption is that there are keys for nodes in a
hierarchical structure [12]. The keys are paths of labels
or values and identify nodes in a version. Hence, they
also help identify which nodes in the database archive
to match and merge into. If a node in the version does
not exist in the database archive, then it is a node that
is new to the version and will be created as a new node
in the database archive with a new interval. Conversely,
if a node in the database archive has no corresponding
node in the database version, then that node no longer
exists and its interval of versions is terminated accord-
ingly. Otherwise, the node is merged into the node in the
database archive and its interval of versions is extended,



Versions of data

Day 1 Day 24
name | gender | age primary interest = name | gender | age primary interest
Anna F 35 swimming Anna F 35 swimming
Bob M 28 weight lifting Bob M 28  weight lifting
Carol F 20  kickboxing
Storing only the changes
Day 24

Day 1

name | gender | age primary interest | | Name gender age primary interest

Anna F 35 swimming Carol  F 20 kickboxing
Bob M 28 weight lifting

Archiving the data

Day 1 Day 24

[1-today] [1-today]

name  gender | age primary interest name gender age primary interest
Ama | F | 35 swimming Anna 35 swimming

Bob | M | 28 weightlifting Bob M 28 weight lifting

Carol  F 20  kickboxing
[24-today]

Day 40 Day 44
name gender | age primary interest | name | gender | age primary interest
Amna | F | 35 swimming Ama| F | 35 swimming
Carol  F | 20 kickboxing Carol  F | 20 weightlifting
Dan M 38 (cardio
Day 40 Day 45
name  gender age primary interest | name  gender  age primary interest
---— Carol F 20 weight lifting
Dan M 38 cardio
Day 40 Day 45
[1-today] [1-today]
name gender age primary interest name gender age primary interest
Anna  F 35  swimming Anna F 35  swimming
[1-39Bob M 28 weightliing  [1-39Bob M 28 weight lifting
arol F 20  kickboxing Carol F 20  [24-44] Kickboxing
[24-today [24-today] [45-today] weight
lifting
38  [cardio

(51008 M

Figure 3: Three approaches to keeping all versions of data. Added tuples are shown in green, deleted tuples in

red and modified values in orange.

denoting that the node continues to exist in the archive.

The assumption of a hierarchical key structure is rea-
sonable for many curated databases and for scientific
data formats [13]. Moreover the same technique can be
applied to relational databases either by casting relations
in a hierarchical format or performing archiving in the
database engine by adding an interval to each tuple of
each column of the relation schema to model the inter-
val of versions. Figure 3 shows the three approaches in
the relational context.

More recent work has directly tackled the problem of
versioning relational databases [46, 57]. For example,
[57] is a version-oriented storage engine designed from
scratch to support versioning while [46] adds a version-
ing module on top of a relational database system. The
latter architecture allows one to continue to exploit the
advanced querying capabilities provided by a relational
database system while adding efficient versioning capa-
bility to the system.

There is also a large body of work on temporal databases,

which also support versioning as a special case. See [50]
for a summary. In most versioning work, the notion
of when a tuple has changed coincides with when the
change is recorded in the database. Bi-temporal databases
distinguishes these two types of time; transaction time
and valid time. Transaction time denotes the time at
which updates are applied to the database (hence, they
can only “increase”) which may be different from when
the tuple is actually valid in the real world (valid time).
In temporal databases, much of the effort is dedicated to

managing and querying [52] these two notions of time
efficiently.

Most versioning work and temporal databases has fo-
cused on recording data changes and there are relatively
little that directly tackles the problem of managing both
data and schema changes [68, 59, 23]. When the schema
changes, can we easily query which data has changed
(or not) across different versions? Can we effectively
answer longitudinal queries across the versions? Can we
seamlessly answer and even visualize the provenance of
data that may consist of tuples from different versions,
which may in turn be the result of another query on a
database and so on?

3. WHAT IS NEXT?

So far, we have described, and asked questions about,
existing work on data provenance that was largely mo-
tivated by curated databases. Next, we look at potential
applications of provenance in data citation and in other
areas of computer science, such as machine learning, so-
cial media, blockchain technology and privacy.

3.1 Provenance and data citation

Because so much knowledge is now disseminated through

some form of database, there has been an increasing de-
mand [34, 67] for these databases to be properly cited
for the same reasons that we use citations for conven-
tional publications. There is a problem in that data of
interest is usually extracted from the database by some
form of query. What citation should one associate with



the query or with the results of the query? There have
been two general approaches to this. One is to treat ci-
tation and provenance as synonymous. To this end [66]
have developed a system that carefully records what one
might call the complete provenance associated with the
evaluation of a database query. In particular they want
to guarantee that the evaluation of the query is repro-
ducible at a later stage. Critical to their approach is some
form of database archiving of the kind we described in
the previous section.

In contrast [11] have taken citation to mean the ex-
traction of “snippets” of information, such as author-
ship, title, date etc. that one sees in a conventional cita-
tion. In fact [24] has a specification of the snippets that
are appropriate for data. The problem is particularly in-
teresting for curated databases which closely resemble,
and often replace, conventional publications. In curated
databases, there may be hundreds of “authors” who have
contributed data. How does one extract the authors ap-
propriate to the result of a specific query? [11] propose
that by associating views with (groups of) authors, one
can solve this problem using the well studied techniques
of rewriting through views [30, 43, 54]. Conventional
citations are, of course, a rather weak form of prove-
nance, but techniques from the study of data provenance
are nevertheless useful. [27] gives an interesting appli-
cation of semiring provenance to generate and combine
appropriate citations from views.

3.2 Provenance and machine learning

Machine learning and artificial intelligence have be-
come an indispensable part in our daily lives. Machine
learning methods are commonly used to automate every-
day decision making in all aspects of our lives; from pre-
dicting email spams [42] to predicting crop yields [76],
loan application, autonomous driving [17], disease iden-
tification and recommendation of medical treatments [51].
Even if machine learning models perform very well in
practice, it is natural to question why a certain decision
or prediction has been made, especially when decisions
are critical. Explanations of a model’s output can help
build further trust in the system’s performance and un-
derstand the foundations by which a decision has been
made.

In machine learning research, the problem of deriving
explanations of machine learning models is called inter-
pretability. Somewhat ironically, there is less consensus
on what the exact interpretation of interpretability [31,
64] should be. However, the reason for the lack of con-
sensus should not be surprising. Like the situation in
provenance, different users have different requirements
of interpretability. For example, the requirements for in-
terpretability so that a programmer can debug the model
is quite different from interpretability of the predication

of a crop yield. In the latter, one may only need to ex-
plain that it is because the estimated rainfall is high/low
but in the former, one may need to understand how many
rounds of simulation have been applied, the parameters
and software modules used.

While some models lend themselves well to some form
of interpretability (e.g., generalized additive models [15]),
other models, especially neural networks, are opaque.
An approach to overcome the opaque nature of neural
networks is to learn another less opaque model based on
the predictions of the original model.

The goals of data provenance and interpretability are
clearly similar. Both seek to find explanations, at differ-
ent levels of granularity, for the output of a program or
a process. A major difference is that in database prove-
nance, the program and process that have been consid-
ered by researchers are typically not opaque as in ma-
chine learning models.

A promising area of cross-fertilization between prove-
nance and interpretability is the following: Instead of
learning models that are interpretable based on the pre-
dictions of the original model, one can learn rules or
program (in some language) that can approximate a ma-
chine learning model or special cases of it. The problem
of deriving rules from the model predictions is closely
related to the problem of reverse engineering queries,
which is to derive the specification from known behav-
iors such as known input and output mappings (e.g., [7,
75, 48] to name some recent work). These rules can
be further abstracted to provide human friendly expla-
nations for the model [74]. Interestingly, the process
of reverse engineering often involves developing a ma-
chine learning model to learn a query for the given input
and output data, which itself may require explanations.

3.3 Provenance and social media

Social media, such as Facebook, Instagram, Twitter
etc., are an effective vehicle for disseminating news at
scale. They provide an easy platform for users to contin-
uously communicate and network with one another. The
continuity and scale are critical characteristics that set it
apart from traditional forms of communications such as
phones, television, or newspapers. Unfortunately, its ef-
fectiveness for disseminating information has also been
exploited for disseminating fake news and fake claims.

There has been substantial interest lately in how to de-
tect fake news articles or fake claims (e.g., see [1, 4, 16,
47, 80, 77]), and having adequate provenance is seen as
an essential part of this process. We discuss some poten-
tial directions for further work and argue that building a
mechanism for understanding the provenance of news
obtained through the social network is an important part
of determining fake news or fake claims.

As with data provenance, the provenance of a piece



of information found in an article or statement in so-
cial media should explain why that information is there
and how it was created. One method of achieving this
is to ensure that provenance is disseminated along with
news propagation. We should also discredit news with-
out mechanisms for authenticating its provenance. When
an article is first created, it should include information
such as the authorship and attribution to sources. The
social network software responsible for disseminating
the news should add the identity of the receiver into the
chain of provenance information. Furthermore, there
should be tamper-proof mechanisms built into the soft-
ware to prevent the identity from being modified.

If provenance information may not be immediately
available from an article, can we infer the provenance
with social media network? For example, [72] identi-
fies the source of rumor when all recipients are known
(rumor-centrality). In [53], the effectors are determined
under the independent cascade propagation model and
in [65], the NetSleuth approach [65] estimates the sources
under the assumption of the Susceptible Infected infor-
mation propagation model. As shown in [33, 41], some
provenance attributes can also be recovered from vari-
ous social media websites and can lead to better knowl-
edge of the sources.

A promising area for further research is to incorpo-
rate provenance into the fact checking problem. Fact
checking originated from the data journalism commu-
nity and refers to the problem of determining whether
or not factual claims in media content are true. Today,
there are websites! dedicated to analyzing and reasoning
about facts. Google also supports an API for reviewing
claims?. Note that whether a fact is true or not is actually
independent of its provenance. However, since a trusted
source tends to produce articles that are free of wrong
facts, a property for judging whether a claimed fact is
true or not can be based on the trustworthiness of the
sources. In turn, this requires knowledge of the prove-
nance attributes of these sources. Can we use prove-
nance to as a reliable signal for determining whether a
fact is true or not? Some recent work has begun to in-
corporate such information in determining the truth of
news/facts [69]. Another promising direction is to in-
corporate trust and reputation management into social
media. Can we maintain a reputation rating for different
sources based on their history of the authenticity of news
articles and correct facts that are wrongly reported and
shared. In turn, these reputation ratings can be used as
another signal for fact checking and checking for fake
news [29]. Regardless of the method used to deter-
mine sources of fake news or fake claims, it is crucial

"https://www.factcheck.org, https://www.truthvalue.org
Zhttps://developers.google.com/search/docs/data-
types/factcheck

that provenance about the sources can be obtained or in-
ferred. It is also critical to create standards to institute
a minimum set of attributes that should be provided be-
fore an author can publish or responsibly propagate an
article on any social media platform.

3.4 Provenance and blockchain technology

Blockchain technology, or more generally, Distributed
Ledger Technology (DLT) has been developed to keep a
distributed immutable ledger of financial transactions.
The ledger can be seen as a provenance record of, say,
bitcoins; and it is therefore entirely unsurprising that
DLT could be used to record provenance in other set-
tings. There is some commercial interest in using DLT
to record supply side provenance — for example the farm
from which a lamb chop originated [56, 73], and there
have been suggestions that it could be used for valued
artefacts [70]. Superficially this kind of provenance looks
rather like where-provenance for digital artefacts. In-
deed there is at least one system [55] that has been de-
veloped to record data provenance at the level of file sys-
tems. The system-level provenance [62] operations on
files such as read, write, share and modify are recorded
using DLT.

Whether the cost of current DLT justifies its use for
these applications or whether there are sufficient finan-
cial incentives to maintain a distributed ledger for the
provenance of artefacts are questions well beyond the
scope of this paper. However there is one interesting
observation regarding data provenance. DLT was devel-
oped [63] in part to prevent “double spending”: the same
coin cannot be given to two parties, and a similar con-
straint holds for the provenance of artefacts. In nearly all
forms of data provenance, it is understood that data gets
copied, thus we do not need this constraint. Whether
this will allow us to to develop simpler or less costly
distributed ledgers for data provenance is an open ques-
tion.

3.5 Provenance and privacy

On the face of it, provenance negates privacy. Gain-
ing knowledge of where some piece of clinical data has
come from is exactly what techniques such as differen-
tial privacy are designed to prevent. This contradiction
itself poses some interesting questions because there are
many situations in which we want both provenance and
privacy. Imagine, for example that we have some clin-
ical patient records provided by a hospital H and a re-
search group R that wants to analyze some of the data in
those records. H writes programs to export anonymized
data to R and R writes some analysis programs. H and
R interact, and both H and R keep provenance associ-
ated with their activities perhaps for repeatability as de-
scribed in Section 2.2. In what sense have they kept



enough provenance to describe the combined interac-
tion?

This raises some interesting issues with provenance
models. In what sense can we compose the provenance
descriptions of two interacting activities. In the simple
world of database queries, composition is a natural re-
quirement and is usually satisfied. The provenance of
the composition of two queries can be easily derived
from the provenance of each of those queries. How-
ever, it is not clear how in, for example, PROV [60] one
might glue together two provenance graphs of interact-
ing activities, and whether this would be a satisfactory
model of the combined activity. In our example of med-
ical records, supposed R discovered some anomaly that
indicated that H had a patient at risk. Would one have
enough information to identify that patient? Also, sup-
pose that neither R nor H wanted to reveal their indi-
vidual provenance data, could some secure multi-party
computation algorithm be used to identify the patient?

4. CONCLUSIONS

We have attempted to describe some areas in which
data provenance is finding applications and is opening
up new lines of research. There is no doubt that the the-
ory of provenance, annotation in relational databases,
and versioning will continue to develop and will be de-
veloped for other data models. Some examples of recent
work in these areas include [36], where semirings are
extended to capture the semantics of SPARQL queries
(with OPTIONAL) on annotated RDF data and [38] where
semirings are extended to deal with negation.

However the developments that will have the most
impact will, we believe, stem from the public under-
standing of provenance. For example, we have seen how
provenance can be understood and exploited in the so-
cial media, but there are even simpler situations in which
one could develop useful applications of provenance.
Consider the apparently innocuous copy and paste oper-
ations and how much provenance has been lost in their
use. It would surely be a relatively simple matter to in-
strument these operations to carry some kind of prove-
nance token that is generated for the source data (docu-
ment, spreadsheet etc.) and for this to be carried across,
along with the data being copied into a provenance repos-
itory associated with the target. In experimental envi-
ronments for curated databases, such a mechanism has
already been shown to be workable [9] and not at all
costly in resources.

Today, the prevalence of open data [3] makes it even
more compelling for data providers and consumers alike

to instrument such provenance-aware generation and copy-

paste mechanisms. Just as we prefer to read documents
with proper authorship and from trusted sources, shouldn’t
we place higher value on documents that contain prove-

nance or are generated by editors that are provenance-
aware? Isn’t it time to instrument good ‘“provenance
manners” to practice for the mass market by enabling
documents to generate provenance tokens and editors to
be provenance-aware?
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