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Abstract. We consider information-theoretic secure two-party computation in the plain model where
no reliable channels are assumed, and all communication is performed over the binary symmetric channel
(BSC) that flips each bit with fixed probability. In this reality-driven setting we investigate feasibility of
communication-optimal noise-resilient semi-honest two-party computation i.e., efficient computation
which is both private and correct despite channel noise.
We devise an information-theoretic technique that converts any correct, but not necessarily private,
two-party protocol that assumes reliable channels, into a protocol which is both correct and private
against semi-honest adversaries, assuming BSC channels alone. Our results also apply to other types of
noisy-channels such as the elastic-channel.
Our construction combines tools from the cryptographic literature with tools from the literature
on interactive coding, and achieves, to our knowledge, the best known communication overhead.
Specifically, if f is given as a circuit of size s, our scheme communicates O(s+ κ) bits for κ a security
parameter. This improves the state of the art (Ishai et al., CRYPTO’ 11) where the communication is
O(s) + poly(κ · depth(s)).

1 Introduction

Secure two-party computation (2PC) allows two parties, Alice and Bob, to securely evaluate any given
function on their private inputs. Informally, security corresponds to satisfying two properties: (correctness)
every party should compute its correct output of the function; (privacy) any adversary corrupting a party
should learn nothing more than the input and output of the party it corrupts.

The problem of secure 2PC in its full generality, as well as first solutions, were introduced by Yao [Yao82]
and has since received a lot of attention in the cryptographic literature. Typically, one considers either a
malicious adversary, who has full control over the corrupted parties, or a semi-honest one, who allows the
parties to faithfully execute their protocol on their actual inputs but might try to extract information from
their protocol view. Another distinction considers computationally bounded adversaries—that are limited to
efficient computation—vs. computationally unbounded adversaries. The security in the former case is usually
referred to as computational or cryptographic, while the latter is known as the unconditional or statistical or
information-theoretic.1 In this work we focus on semi-honest, information-theoretic security.

Despite the massive attention that 2PC has attracted, most of the existing literature assumes that
the parties communicate using reliable (noiseless) channels: when Alice sends a message m to Bob, he
receives exactly the information m. However, since modern communication networks might be affected by
environmental (or even adversarial) interference, a more realistic case is that Bob actually receives a message
m′ 6= m, subject to some bounded type of noise. A natural question then is what happens when we execute
2PC protocols assuming such unreliable (noisy) communication channels.

Clearly, given a protocol π0 that is designed to work (and proven secure) over reliable channels, the
execution of π0 over noisy channels may no longer be private, nor correct (see, e.g. [CPT13, GSW15]). One
may näıvly believe that if π0 is secure against a malicious adversary over reliable channels, then it would
be at least semi-honest secure over (simple) noisy channels, because the “noise” in the latter setting can be

? Supported in part by the Israel Science Foundation (grant No. 1078/17).
1 Statistical security allows for some small (negligible) error probability; when this error is 0 we speak of perfect

security.



reduced to the malicious activity of the adversary in the first setting. However, not even this is the case.
Intuitively, the reason is that security against a malicious adversary does not guarantee that the protocol
outputs the correct f(x, y) to a deviating corrupted party. In contrast, when the party is just semi-honest,
then it should receive the correct output even when the channel is noisy.

In this work we put forth the question of devising secure two-party computation protocols over unreliable
communication channels, while keeping the communication complexity of such protocols to a minimum. We
note that a natural approach to cope with the channels’ interference is to wrap every message in π0 with a
good error-correcting code (ECC) [Sha48]. This has the effect of reducing the noisy channel into a channel that
is essentially noiseless (i.e., it delivers the correct m with overwhelming probability per channel’s instance),
thus the execution of π0 should preserve its security guarantees. Unfortunately, as simple and elegant as the
above solution might be, it typically incurs a heavy overhead on the communication-complexity. In the worst
case, every message m is very small compared to the length of the protocol (i.e., to its round-complexity),
and the blowup the ECC imposes would be at least poly-logarithmic in the protocol’s length.2 Our goal is to
devise secure protocols with only a constant multiplicative overhead, independent of the protocol’s length.

The “overhead” discussed in the above paragraph compares the communication of the secure protocol π0

that assumes reliable channels with the communication of π that assumes a binary symmetric channel (BSCε)
where each bit is flipped with independent probability ε, yet it ignores a fundamental issue: without additional
cryptographic assumptions, most functions f don’t have any secure protocol π0 that evaluates them [Kus89,
Bea91]. On the other hand, the BSCε channel can be used as a cryptographic resource/setup [CK88], implying
any function f could have a secure protocol π evaluating it [Kil88]. In that case, it is not even clear how to
define the “overhead” of π with respect to π0, as for many functions f , no secure π0 even exists.

Our main result is a compiler that takes any boolean circuit C for some function f(x, y) and outputs a
semi-honest secure two-party protocol π for f() that assumes that all the communication is sent over BSCε
channels.3 The protocol π has a “small” communication overhead, namely, linear in the size of the circuit C

Theorem 1 (main, informal). Let ε ∈ (0, 1/2) be a given constant and let κ be a security parameter. For
any circuit C : {0, 1}n1 ×{0, 1}n2 → {0, 1}m there exists a two-party (semi-honest) statistically secure protocol
πC that evaluates C(x, y) over BSCε. Furthermore, it holds that CC(πC) = Oε(|C|+ κ).

When considering previous work for secure 2PC protocols over noisy channels, the state of the art is a compiler
by Ishai et al. [IKO+11] that converts a circuit of size |C| into a two-party protocol that communicates only
O(|C|) + poly(κ ·depth(|C|)) bits assuming all communication is performed over BSC channels, where κ is the
security parameter. Their protocol works in the malicious setting (with abort) and achieves statistical security
by utilizing the strong machinery of the IPS compiler [IPS08]. In contrast, our result takes a completely
different approach (namely, using techniques from interactive coding, which are fairly more simple), and
achieves a reduced communication overhead, namely, O(|C|+ κ). On the other hand, our result applies only
to the semi-honest setting, however contrast to [IKO+11], we do not allow the parties to abort—they must
complete the protocol while maintaining its security.

Converting (noiseless, non-private) protocols into noise-resilient secure protocols. At times,
the computation to be conducted is given as an interactive protocol, rather than an optimal circuit that
implements the same functionality. Via relatively standard techniques we can extend our results so that they
apply to any protocol π0 which is correct over reliable channels (but not necessarily secure!), and convert it
into a semi-honest statistically-secure protocol π over BSCε.

Specifically, assume π0 is given as a branching program BP0 (see Definition 7 for discussion on branching
program representations of protocols), then we get

2 While in the crypto community it is common to allow the error to be negligible (in a security parameter, typically
taken to be at least as large as the protocol length), we will follow the standards of the coding community and
insist on obtaining exponentially small error probability. In this case, the overhead implied by the näıve approach is
in fact linear in the protocol’s length, rather than poly-logarithmic.

3 Using a recent result by Khurana et al. [KMS16] we are able to extend our result also to other types of noisy
channels, such as the elastic channel. We defer the proof to the full version of this paper.
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Theorem 2 (informal). Let π0 be a protocol that is not necessarily private over noiseless channels, and let
BP0 denote a branching program representation of π0. There exists a compiler mapping π0 into a semi-honest
statistically secure protocol π over BSCε channels. The communication complexity of the obtained protocol is
CC(π) = Õ(width(BP0)) · CC(π0) +O(κ), where κ is a security parameter.

While it is unknown whether such a overhead of Õ(width(BP0)) is optimal or even required, to our knowledge,
the above factor is present in the state-of-the-art work and may be an inherent property of the conversion
from protocols to circuits. Indeed, the trivial conversion (GMW [GMW87], see also Section 1.2) converts BP0

into a boolean circuit (e.g., by Proposition 10) with |BP0|polylog(width(BP0)) gates. A different approach
which directly (securely) evaluates each step of BP0 without converting it first into a boolean circuit [NN01],
yields an overhead of

Õ(width(BP0)) · len(BP0) ≈ Õ(width(BP0)) · CC(π0),

which is similar to the overhead we obtain in Theorem 2.
Notably, our result is asymptotically optimal when the protocol has an efficient, i.e., constant-width,

branching program representation.

Extensions to other unreliable channels. We furthermore extend our results (Theorems 1 and 2)
to other types of unreliable channels, namely, elastic channels (see, e.g., [DFMS04, Wul09, KMS16]). The
(α, β)-elastic channel resemble to the binary symmetric channel in the sense that every bit is flipped with
some independent probability α. However, one of the parties, either the receiver or the sender, but not both,
can increase their knowledge of the other party’s inputs and outputs to the channel. This is modelled by
reducing the flipping probability of each bit received by that party to β < α.

The work of Khurana et al. [KMS16] fully parametrize the conditions for which an (α, β)-elastic channel
can be used in order to perform secure computations. Combining their result into our coding scheme allows
secure computation over (α, β)-elastic channel with linear overhead, extending our results to this setting as
well.

1.1 Overview of Techniques

As mentioned above, our result is two-folded: (i) secure simulation of circuits over noisy channels; (ii) secure
simulation of (insecure, non-resilient) protocols over noisy channels.

The second result consists of converting the input protocol (specified as a branching program, BP ) into a
boolean circuit of size |C| = |BP0|polylog(width(BP0)) that contains NAND gates and computes the same
function as the protocol. The conversion is quite straightforward: every node of the branching program can
be implemented as a multiplexer where one party’s input selects the next node to transition to. Additionally,
some preprocessing of the inputs and the outputs is required, however these can be done locally and requires
no communication. See Section 3.1 for further details. Once we obtain a circuit, we simply apply the simulation
for circuits described below.

The more technically involved part is a secure simulation of boolean circuits over BSC channels (Section 3.2).
Here, we are given a circuit C(x, y) and the goal is to construct a two-party protocol π that evaluates C on
the parties inputs (x, y) in a semi-honest, information-theoretic secure way, assuming only BSC channels and
no other cryptographic assumption.

The immediate approach is to perform GMW—i.e., compute the circuit gate-by-gate where each gate is
securely evaluated via a query to an OT oracle—yet replacing each OT oracle call with an OT implementation
from noisy channel, e.g. [CK88, Cré97, DFMS04, Wul09, KMS16]. However, this still falls short of reaching
our goal, as the above works treat the noisy channel as a resource rather than as the main communication
channel; in particular, all the above works assume the parties share a reliable channel in addition to the noisy
channel. Again we stress that simulating a reliable channel over a BSCε by wrapping each message with a
standard ECC incurs a high communication overhead. A possible remedy would be to “group” many instances
of OT together and encode their communication as a single message. For instance, group together each layer
in the evaluated circuit. This approach potentially allows a constant blowup, however the blowup is higher for
various circuit families, e.g., when the width of each layer in the circuit is smaller than the security parameter.
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Our solution to this conundrum is to employ a technique of precomputed OT, first suggested by
Beaver [Bea95]. This method allows the parties to “perform” OT before its inputs are known: in a pre-
computation step the parties perform OT on random bits and end up with correlated randomness which later
allows them to simulate an OT functionality on their real inputs by exchanging messages. Following this
idea our protocol begins by performing many OT instances on random inputs, generating a large string of
correlated randomness, where all these instances are grouped and encoded together using standard ECC. We
keep the communication of this step low (i.e., with a constant blowup): ` OT instances can be computed
with communication O(`) using a result by Harnik et al. [HIKN08]. Then, our protocol “consumes” parts of
the correlated randomness for each OT simulation used by the GMW procedure.

The last step takes care of channel-errors that may happen at the second part of each precomputed OT
instantiation, i.e., when the parties exchange messages in order to simulate OT on the real input. Luckily, we
prove that each such noise causes a very specific leakage. When simulating OT(b, x0, x1) the receiver might
learn the incorrect input, x1−b, but if that happens, the receiver learns nothing about xb. Intuitively, this
may compromise the correctness of the computation, but not its privacy (recall that all computations in
GMW are performed on inputs that are secretly shared by the parties. The above error in the OT translates
to learning one share of a (wrong) gate output).

Then, in order to solve this breach in the correctness, we employ techniques from the literature of interactive
coding (see [Gel17] for a survey). In particular, we use an interactive coding schemes by Haeupler [Hae14]
with linear overhead and exponentially small error probability, assuming BSC channels. In a nutshell, the
scheme of [Hae14] works by executing a constant number of rounds from of the input protocol π0 without any
coding, after which the parties exchange information that allows them to reveal inconsistencies, specifically,
the parties exchange hash values of their observed transcripts. Based on these exchanges, the parties decide
whether to continue with running π0 (if everything seems correct), or delete a certain amount of rounds (if
some error is observed), hopefully, reverting the protocol into a state where both the observed transcripts are
consistent. Repeating the above enough times guarantees that both parties end up with a correct transcript
of π0 with overwhelming probability while communicating only Oε(CC(π0)) bits over a BSCε.

Finally, we show how to tweak the above coding so it doesn’t compromise the privacy of the computation.
The main issue here is back-tracking: the noise may cause the coding scheme to progress in one way, then
back-track to a previous round and progress in a different way—this is usually a source for privacy leakage.
We avoid such leakage and make the scheme secure via the common technique of re-sharing intermediate
values with fresh randomness every time the simulation reverts to a previous point.

1.2 Related Literature

In his seminal paper, Yao [Yao82] provided a semi-honest computationally secure protocol, which can
efficiently evaluate any given boolean circuit in a constant number of rounds. Yao’s protocol assumes that
the parties can access an Oblivious-Transfer (OT) functionality [Rab81] (see Appendix 2.3 for the definition
of OT). This result was later extended to the information-theoretic (IT) setting by Goldreich, Micali, and
Wigderson [GMW87]. Their so called GMW protocol for the semi-honest case also assumes that parties
have ideal access to an OT functionality (cf. Section 2.3).4 In a nutshell, GMW works as follows given the
representation of the function f as an arithmetic circuit over a finite field. The parties compute the given
circuit for f in a gate-by-gate fashion, from leaves to root. First, the inputs for each gate are secret-shared
between the parties. Then, using OT the parties can compute a secret-share of the output of the gate. This
progresses along the circuit until the parties hold a secret-sharing of the last gate, i.e., of the output.

Kilian [Kil88] proved that OT is in-fact a complete primitive even against malicious adversaries, a
result made more efficient by Ishai et al. [IPS08]. Crépeau and Kilian [CK88] proved that OT can be
implemented by an information-theoretic protocol using different types of channels, including the BSCε.
Beaver [Bea95] showed how OT can be precomputed, i.e., how parties can, in an offline phase, compute

4 In fact, the original GMW paper claims only computational security, even for the semi-honest case, as it uses a
computational instantiation of OT; however, its is proved to achieve IT security when given ideal access to an OT
functionality [Gol04].
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correlated randomness that allows, during the online phase, to implement OT by simply communicating
two messages (cf. Section 3.2.1). A fair amount of work has been devoted to so-called OT combiners namely
protocols that can access several OT protocols out of which ` might be insecure, and combine them into
a secure OT protocol, e.g., [HKN+05, MPW07, HIKN08, IKO+11]. Furthermore, [HIKN08] showed how to
evaluate `-parallel OT’s (denoted OT `) in the semi-honest setting with linear communication complexity
O(`) and exponentially small error in `.

Closer in spirit to our work, Naor and Nissim [NN01] considered the task of converting a (correct)
protocol π0 into a secure (both correct and private) protocol π (over noiseless channels), with minimal
overhead. Similar to our result, their compiler takes as an input a branching-program BP0 that represents π0,
rather than an arithmetic circuit for f . Also similar to our result, their obtained overhead is dominated by
Õ(width(BP0)); for the computational setting their obtained overhead is polylogarithmic in width(BP0).
On the other hand, while our protocol works over noisy channels, the machinery of [NN01] assumes reliable
channels. Furthermore, their compiler uses OT while ours does not assume any cryptographic setup assumptions
(indeed, the BSC resource implies OT, so no other assumptions are needed).

Secure Computation Over Noisy Channels. For some functions f , none of the above cryptographic
tools is needed in order to obtain a secure protocol for f (assuming reliable channels). Indeed, Kushile-
vitz [Kus89] (also, Beaver [Bea91]) gave a complete specification of the class G of two-party functions that can
be unconditionally securely computed by a semi-honest 2PC protocol over reliable channels. More recently,
the question of secure 2PC over noisy channels was addressed, for noisy all-powerful adversarial channels.
In this case, a strong impossibility was shown [CPT13, GSW15]. Specifically, it was shown that for any
µ > 0, there exists f ∈ G, for which there exists an adversarial channel that corrupts up to µ fraction of the
transmissions, over which f does not have a statistically secure protocol (despite the fact that f ∈ G, so it can
be privately computed over noiseless channels). In addition to the above impossibility, Chung et al. [CPT13]
give a positive result for the computational setting. Specifically, they demonstrate a tradeoff between the
communication of a secure protocol and the noise level µ of the computationally bounded channel.

2 Model and Preliminaries

Throughout this paper we use (standard) asymptotical notations, in particular, for functions f, g : R→ R+,
we say that f = Õ(g) if f = O(g · logc(g)) for some constant c > 0. We say that a function is negligible if it is
sub-inverse-polynomial, i.e., negl(x) = o(1/poly(x)). We denote x ∼ Ber(ε) for a random variable x that is
distrebuted according to the Bernoulli distribution with parameter 0 ≤ ε ≤ 1, i.e., Pr(x = 0) = 1− ε and
Pr(x = 1) = ε. Addition and multiplication of bits are always to be interpreted as addition and multiplication
over GF (2).

2.1 Protocols, Correctness and Security.

We consider interactive computations between two parties, Alice and Bob with inputs xA ∈ {0, 1}n and
xB ∈ {0, 1}n, respectively. The parties wish to compute a given (deterministic) function f : {0, 1}n×{0, 1}n →
{0, 1}ν .5 For simplicity, we assume |xA| = |xB | throughout this work; however our results trivially apply
to |xA| 6= |xB | as well. To compute the function f , the parties execute a (potentially randomized) protocol
π = (πA, πB) which defines, for each party, the next message to send as a function of the party’s input, the
party’s private randomness, and all the messages received so far. The protocol, also determines the output of
each party (again, as a function of the party’s input and received messages), denoted by outA, and outB for
Alice and Bob, respectively. We will denote by rA and rB the random coins of Alice and Bob, respectively,
in π. The view of Alice, viewA = (xA, rA, TA) consists of her input xA, randomness, rA, and transcript TA;
similarly, the view of Bob is viewB = (y, rB , TB).

5 As usual in the MPC literature, we restrict our handling to deterministic functions; the more general case of
randomized functions can be easily treated by standard techniques (each of Alice and Bob inputs, in addition to
their input xA and xB , a random string and their sum is used as the random coins.).
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The total number of bits that are sent throughout the protocol π, i.e., the number of bits that Alice sends
to Bob plus the bits that Bob sends to Alice, is the protocol’s communication complexity, denoted as CC(π).
The length of a protocol π, denoted |π|, is the number of rounds in the longest instance of the protocol. For
simplicity, each round is assumed to be a transmission of a single bit, therefore the length of the protocol
equals its communication complexity, |π| = CC(π).

We consider two types of protocols. Protocols that are only correct, i.e., compute the correct input (but
not necessarily private), and protocols that are secure against a semi-honest adversary (i.e., both correct and
private). The correctness definition is rather straightforward:

Definition 3 (Correctness). A (randomized) protocol π for evaluating f(x, y) : {0, 1}n×{0, 1}n → {0, 1}ν
is δ-correct if at the end of π both parties output f(x, y) with probability ≥ 1− δ. The protocol is statistically
correct (in a given security parameter κ) if is negl(κ)-correct for some negligible function negl(·).

Clearly, correctness without privacy is easy to achieve in the reliable network setting: a simple protocol
which is always correct is to have Alice send her input to Bob who performs the computation and returns
the output. But this is not always the case when the network is unreliable, especially when communication
complexity is an issue. Indeed, although the above simple protocol might be easily transformed to be correct
when executed over an unreliable network (e.g., by employing standard error correction), doing so for an
arbitrary protocol while keeping its total communication complexity low is typically a challenging task.

Semi-Honest Security. Our final protocols are proved secure according to the standard simulation-based
security notion against semi-honest adversaries. We will use the formulation of [Can00] which follows the
real-world/ideal-world paradigm.6 In a nutshell, the protocol execution in the real-world is compared to an
ideal evaluation of the function the protocol is supposed to compute. In this ideal evaluation, a trusted party,
usually called an ideal functionality, receives the inputs from the parties, performs the computation, and
hands the outputs to the parties as well as the adversary.

Definition 4 (Closeness of Distributions). For two distributions U and V we say that they are ε-close,
and denote U ≈ε V if,

1

2

∑
ω

|U(ω)− V (ω)| ≤ ε.

The notion of ε-closeness is easily extendible to probability ensembles (i.e., families of distributions)
U = {Uκ}κ and V = {Vκ}κ parameterized by a security parameter κ.

Informally, we say that a protocol π is ε-secure (in the semi-honest setting), where ε can be a function
of the security parameter κ, if every party outputs the correct value of the function evaluated on the given
inputs, and no (adversarial) party learns more than his intended output. The latter property is captured by
requiring that for every adversary attacking the real-world protocol execution, there exists a simulator, also
referred to as an ideal adversary, and the view of every party in the real world can be simulated in the ideal
world with statistical distance ε.

Definition 5 (statistical, semi-honest security). Let π = (πA, πB) denote a protocol for evaluating
a function f(x, y) = (fA(x, y), fB(x, y)). For a given x, y let V IEWA, V IEWB, OUTA, OUTB be the
distribution of viewA, viewB, outA, outB in π given those inputs (over the randomness of the parties and the
noise), when running over Ch.

We say that π is a statistically secure protocol for computing f(x, y) over Ch against semi-honest adversaries
if there exist (possibly inefficient) simulators SimA, SimB for Alice and Bob, respectively, such that for all
x, y, and κ a security parameter

(SimA(1κ, x, fA(x, y)), fB(x, y)) ≈exp(−κ) (V IEWA, OUTB), and

(SimB(1κ, y, fB(x, y)), fA(x, y)) ≈exp(−κ) (V IEWB , OUTA).

6 Since we are only considering semi-honest security, our results can be easily adapted to work in the universal
composition framework of Canetti [Can01].
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Observe that the definition above captures both privacy and correctness. This is so since the ideal
functionality’s output to the honest party in the ideal world is indeed f(x, y). We require a simulation error of
exp(−κ) (as opposed to the traditional negl(κ) for some negligible function negl(·)). This is because lowering
the error (even if it remains negligible) may affect the rate, so we want to carefully control this parameter
(setting it to exp(−κ) is sufficiently low for most applications). As common in the setting of coding for
interactive communication, κ will typically equal `, the number of rounds in the protocol, but can be set
higher, if needed. Another difference between our definition and the MPC definition is that the simulator, as
well as π0 and the encoding scheme, do not need to be efficient.

In Appendix A We give several further notions of security used in our proofs.

2.2 Noisy Networks, Coding Schemes, and Error Correction Codes

Protocols over Noisy Channels. We assume the communication channel connecting the parties is
private—i.e., the adversary might only read messages transferred through the channel by corrupting the
sender or the receiver and observing the corrupted party’s channel interface—but is not reliable and
might modify arbitrary many of the transmitted bits but without reordering. Concretely, the channel we
assume stochastically flips each transmitted bit with a given constant probability ε, independent of other
bits. This corresponds to the multi-use extension of the well-known, binary symmetric channel BSCε (see,
e.g., [CT06, Rot06]).

The notion of a protocol needs to be augmented to the above noisy-communication model. One must
keep in mind that in this case Alice and Bob might have inconsistent views of the transmitted messages,

which depend on the noise. For instance, if Alice inputs to the channel a sequence m
(A)
A,1, . . . ,m

(A)
A,` of messages

to send to Bob, then the sequence m
(B)
A,1, . . . ,m

(B)
A,` which Bob receives might be different than the original

sequence, and vice versa for messages sent by Bob and received by Alice. Hence, Alice’s view of the transcript

corresponds to a sequence TA = (m
(A)
pid1,1

, . . . ,m
(A)
pid`,`

), where each pidi is A or B depending on whether the i-th

bit mpidi,i was sent from Alice or Bob, respectively; Bob’s (view of the) transcript TB = (m
(B)
pid1,1

, . . . ,m
(B)
pid`,`

)

is defined analogously and may be different. The (noisy) joint transcript7 of a given instance of the protocol
consists of all messages sent and received during that given instance T = (TA, TB). We denote a prefix of
Alice’s transcript of length `, by TA[1, `] (resp., Bob’s by TB[1, `]). Throughout this work we will assume
without loss of generality that the length of the protocol and the order of speaking is fixed, and in particular
that Alice and Bob sends messages in alternating rounds, where Alice is the first to speak (in Round 1).

Error Correcting Codes for BSC channels. We use standard error correction codes implied by the
work of Shannon (see, e.g., [CT06, Rot06]). Formally,

Lemma 6 (Shannon Coding Theorem [Sha48]). For any discrete memoryless channel Ch with capacity C
and any k, there exists a code ECC : {0, 1}k → {0, 1}n and ECC−1 : {0, 1}n → {0, 1}k with n = O( 1

Ck) such
that for any m ∈ {0, 1}k it holds that,

Pr
[
ECC−1(Ch(ECC(m))) 6= m

]
< 2−Ω(n).

Recall that the capacity of the BSCε channel is CBSCε
= 1 + ε log ε + (1− ε)log(1− ε) = Oε(1). Also note

that efficient constructions of such codes are well known (e.g., [Spi95, GI05]).

Coding Schemes for Interactive Protocols. An interactive coding scheme C [Gel17] for a given
unreliable channel Ch, e.g., over BSCε, transforms any correct protocol π0 over noiseless channels, into a
correct protocol π = C(π0) over the channel Ch, that computes the same functionality as π0 with high
probability (usually, 1− 2−Ω(|π0|)). The rate of a coding scheme C is defined as

rate(C) = lim inf
n→∞

inf
π0

s.t. |π0|=n

CC(π0)

CC(C(π0))
.

7 For notational simplicity we will refer to the joint transcript simply as the transcript.
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2.3 Cryptographic Primitives, Boolean Circuits, and Branching Programs

Oblivious Transfer. Oblivious Transfer (OT) [Rab81] is a two-party functionality FOT (b, (x0, x1)) taking
a pair of bits x0, x1 from Bob, and a bit b ∈ {0, 1} from Alice. It outputs xb to Alice and nothing to Bob. A
String-OT with string length s (shortly s-OT ), is a functionality similar to OT , with the difference that x0, x1

are s-bit strings rather than bits. OT ` is a functionality evaluating ` instances of OT on independent inputs.
We say that a protocol π operates in the OT-hybrid model, and denote πFOT if it is augmented to have

(fixed) rounds where both parties query an ideal OT functionality FOT and receive the corresponding outputs
at the end of the same round.

Branching Programs. In this paper we use a specific variant of Branching Programs (BPs) that are
particularly convenient for representing 2-party protocols, defined as follows.

Definition 7. A (layered) BP on inputs (x, y) with depth t and width w is represented as a directed acyclic
graph in which the vertices are partitioned into t disjoint sets V1, V2, . . . , Vt and edges go only from Vi to Vi+1.
For any i, it holds that wi = |Vi| ≤ w, and for the initial layer, V1 = {start}.

Every node v ∈ Vi in i < t is assigned to either Alice or Bob, and has a transition function fv : {0, 1}n →
Vi+1. The nodes of the last layer Vt are labeled using some alphabet Σ. Without loss of generality, we assume
|Vt| = |Σ|.

The output, BP (x, y), is evaluated by starting at v = start and following the path induced by applying
fv(·)’s on either x or y according to the party that owns the current node, until reaching the last layer. The
output is the label of the node in Vt reached by the above process.

Using standard notation, we denote by |BP | the size of the BP, i.e., the number of nodes in the BP graph.
We also refer to w = maxiwi as the width of the BP, and denote it as width(BP ). We note in passing that a
BP representation of a protocol π is a generalization of π’s protocol tree. This representation may be more
compact in certain cases, for instance, when parties store only limited amount of information at any point of
the protocol (in this case, the amount of information corresponds to the logarithm of the BP’s width).

Importantly, a BP representation of some protocol π allows an efficient emulation of π, i.e., we can
efficiently generate an execution of π given its BP representation as above. However, for a given protocol,
computing such a BP might not necessarily be efficient. It is also easy to verify that the communication of π
is connected to the branching program by CC(π) =

∑
1<i≤tdlogwie, hence,

depth(BP ) ≤ CC(π) ≤ depth(BP ) · dlog(width(BP ))e (1)

Boolean Circuits. We use standard Boolean circuits consisting only of NAND gates8 with fan-in 2 and
unbounded fan-out [AB09]. We assume all literals depend on the input, i.e., we don’t allow constant inputs.9

We denote by |C| the size of C, i.e, the number of its nodes/gates, and by depth(C) its depth.

Definition 8 (Boolean Circuits). For every n, ν ∈ N a boolean circuit C(x) with n inputs and ν outputs
is a directed acyclic graph. It contains n nodes with no incoming edges; called the input nodes, and ν nodes
with no outgoing edges, called the output nodes. Each input node is labeled by an input bit xi. All other nodes
are called NAND gates. Each gate node has fan-in (indegree) 2 and unbounded fan-out (outdegree). The size
of C, denoted by |C|, is the number of nodes in it, depth(C) is the length of the longest directed path in C.

3 Deterministic 2PC over BSCε with linear rate

In this section we prove our main results, Theorem 1 and Theorem 2, and show how to simulate any (possibly
non-private) protocol that assumes reliable communication over a BSCε. Let us first re-state Theorem 2 in a
more formal manner.
8 Recall that NAND gates are universal logic gates, i.e., functionally complete.
9 This is without loss of generality since we only consider semi-honest security (any of the two parties can be requested

to contribute any needed constants as part of its input.)
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Theorem 9. Let f : {0, 1}n × {0, 1}n → {0, 1}ν , κ be a security parameter, and ε ∈ (0, 1/2). Let π0 be
a deterministic correct protocol for evaluating f over noiseless channels, and let BP0 denote a branching
program representation of π0. Then, there exists a compiler mapping π0 into a (semi-honest) statistically
secure protocol π over BSCε channels. The communication complexity of the obtained protocol is CC(π) =
Õ(width(BP0)) · CC(π0) +O(κ).

Note that the above theorem considers only deterministic protocols. In Section 4 we show how our compiler
can be extended to randomized protocols (Theorem 19).

Theorem 9 is proved in two steps. First, in Section 3.1 we show how to convert a protocol π0 for which we
know a branching-program representation BP0, into a Boolean circuit C0 of size |BP0| · polylog(width(BP0)).
From Equation (1), we conclude that

|C0| ≤ width(BP0)depth(BP0)polylog(width(BP0))

≤ width(BP0)CC(π0)polylog(width(BP0))

= CC(π0)Õ(width(BP0)).

Second, in Section 3.2 we show how to securely evaluate C0 over (only) a BSCε channel. Our circuit-evaluation
method has communication O(|C0|) +O(κ).

3.1 Reducing protocols to circuit evaluation

Our first step is converting a protocol π0 given as the branching program BP0, into a boolean circuit C0 of
size |C0| = |BP0|polylog(width(BP0)), that implements the same functionality.

Proposition 10. Let f(x, y) : {0, 1}n×{0, 1}n → {0, 1}ν be a function, and let π0 be a deterministic protocol
for f over noiseless channels. The protocol π0 is assumed to have perfect correctness (i.e., π0(x, y) = f(x, y)
for all x, y ∈ {0, 1}n) but no privacy guarantees. Furthermore, let BP0 be a branching program representation
of π0.

Then, for some nA, nB , νAB there exists a circuit C0 : {0, 1}nA+nB → {0, 1}νAB of size |C0| =
|BP0|polylog(width(BP0)), and “translation” functions τA : {0, 1}n → {0, 1}nA , τB : {0, 1}n → {0, 1}nA ,
and τout : {0, 1}νAB → {0, 1}ν , such that for all x, y ∈ {0, 1}n it holds that

τout (C0 (τA(x), τB(y))) = f(x, y).

We defer the proof to Appendix B.1.

3.2 Secure evaluation of circuits over a BSCε

We proceed to the second part of the proof of theorem 9 and describe a protocol for secure evaluation of
circuits over a BSCε with communication complexity O(|C|+ κ). Formally,

Proposition 11. Let ε ∈ (0, 1/2) be a given constant and let κ be a security parameter. For any circuit
C : {0, 1}n1 × {0, 1}n2 → {0, 1}ν there exists a two-party (semi-honest) statistically secure protocol πC that
evaluates C(x, y) over BSCε. Furthermore, it holds that CC(πC) = Oε(|C|+ κ).

The above is the formal version of our main theorem (Theorem 1 from the introduction). Note that
Theorem 9 (i.e., Theorem 2) follows as a corollary of Proposition 10 and Proposition 11 (see Appendix B.2
for details). The remainder of the section is dedicated to proving Proposition 11.
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3.2.1 Building blocks. Towards proving Proposition 11, we start with a description of the tools that we
will combine into our final construction. Some of these tools come from the MPC literature, while other come
from the field of coding for interactive communication. Missing proofs of this section appear in Appendix B.

OT ` over BSCε with linear communication overhead. To facilitate the privacy of our construction
we rely on the following implementation of ` parallel OT’s over BSCε with communication linear in `.

Theorem 12 ([HIKN08, Theorem 9]). For any constant ε ∈ (0, 1/2), and any `, there exists a two-party

protocol πOT
`

that assumes the parties are connected (only) by an BSCε channel, which implements OT `.
The protocol is statistically secure against semi-honest parties with error 2−Ω(`), and has a communication
complexity of Oε(`) bits.

OT over a BSC with limited leakage, provided precomputed OT. Another tool we will need, is a
way to implement a specific type of “buggy OT” over a BSC. In this “buggy” version of the OT protocol on
input (b, x0, x1), with constant probability p it may happen that the Alice (the receiver) learns the wrong
input x1−b instead of the correct value xb. Otherwise, the protocol works as a standard OT, i.e., Alice
learns xb. In both cases Bob (the sender) learns nothing. The key property here is that in either case Alice
learns exactly one of the values x0, x1, and can never learn both.

Our OT implementation builds on a scheme by Beaver [Bea95], and requires the parties to already
share correlated bits of special form: their correlation corresponds to outputs of OT on random inputs. In
hindsight, those correlations will be obtained by performing OT ` (by Theorem 12) on random inputs in
a precomputation step. This precomputation step is instrumental to keep communication low assuming
BSC channels. Indeed, it is more efficient to encode over a noisy channel a large amount of OT instances,
rather than encode them one by one. On the other hand, most MPC protocols make sequential call to OT,
one-by-one, as the protocol progresses. Performing OT based on precomputed bits allows us to benefit both
worlds: the precomputation step creates a bulk of correlated bits in a communication efficient way; then, each
instantiation of OT consumes bits from that bulk, without having large communication overhead, and while
keeping the privacy guarantees.

Protocol Π-OTε

Inputs: Alice’s input is a bit b; Bob’s input is a pair of bits (x0, x1).

Pre-computation step: The parties are assumed to have (trusted) preshared bits sampled as follows: Let
(b′, x′0, x

′
1) be random independent bits. Bob gets x′0, x

′
1, while Alice gets b′ and x′b′ , that is, she either gets

x′0 or x′1 according to the value of b′.

Alice and Bob perform as follows
1. Alice sends c = b+ b′; Assume Bob receives c′

2. Bob sends (x0 + x′c′ , x1 + x′1−c′).

3. Let (y0, y1) denote the bits received by Alice in the second round. Alice outputs yb + x′b′ as her output.

Fig. 1: The Π-OTε Protocol

The protocol Π-OTε, described in Figure 1, is such a “buggy-OT” where all communication is done over
BSCε. Our above buggy-OT discussion provides the high level intuition for the usefulness of protocol Π-OTε
as a building block for our protocol. The formal statement (Lemma 13) and its proof (see Appendix B.3)
use somewhat different properties. Namely, we use the notion of weak security and of channel-transparent
security (see Appendix A their formal definition). The meaning of these new notions is roughy as follows:

weak security against semi-honest adversaries relaxes standard semi-honest security by requiring that the
views of the parties are consistent with an execution where the corrupted party’s input z is replaced by
some z′ (depending only on z), rather than with the original input z.
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Channel-transparent security strengthens the standard notion of security, by requiring that even if the
adversary could see the messages received by the honest party, it would not learn anything it was not
supposed to learn.

Lemma 13. For any ε < 1/2, the protocol Π-OTε over BSCε is weakly, channel-transparently, statistically
secure in the semi-honest setting over BSCε channels.

Computing NAND gates via OT. Assume we wish to compute a NAND gate over the inputs (a, b)
where the parties secret-share the inputs, i.e., Alice holds a1, b1 and Bob holds a2, b2 where a1, b2 are uniform
independent random bits and a = a1 + a2, b = b1 + b2. We wish to compute the bit c = NAND(a, b) so that
at the end of the computation the parties will hold a secret-sharing of c, i.e., Alice will hold a random bit c1,
and Bob will hold c2 so that c = c1 + c2.

This task can easily be done assuming we can utilize two instances of an ideal OT functionality. Note
that c1 + c2 = 1 + (a1 + a2)(b1 + b2) = 1 + a1b1 + a1b2 + a2b1 + a2b2. The parties utilize two OT instances
in which Alice, using her a1 and b1, retrieves one of (c2, c2 + b2) and one of (a2b2, a2 + a2b2), respectively,
up to some randomness added by Bob that keeps his values a2, b2, c2 private. (The complete protocol in the
OT-hybrid setting is given in Figure 2.) However, in our implementation we will not have an ideal OT, but
instead we utilize the protocol Π-OTε assuming pre-comupted correlated randomness. The following lemma
provides the security of the NAND computation protocol when each OT is realized via the above Π-OTε.

Lemma 14. For any ε < 1/2, the protocol NANDΠ-OTε (i.e., the algorithm in Figure 2, where each OT-
instance is replaced with an execution of Π-OTε (Figure 1)) is weakly, channel-transparently, statistically
secure in the semi-honest setting, assuming all communication is done over a BSCε.

Protocol NANDFOT

Inputs: Alice holds a1, b1 ∈ {0, 1}, Bob holds a2, b2 ∈ {0, 1}.
Outputs: Alice gets c1 and Bob gets c2 so that c1 +c2 = 1−(a1 +a2)(b1 +b2). I.e., if a = a1 +a2, b = b1 +b2,
and c = c1 + c2 then c = NAND(a, b).

Protocol’s Description:
1. Bob picks random bits r1, r2, and sets c2 = r1 + r2.

2. The parties query the OT oracle: FOT (a1, (r1, b2 + r1)). Denote Alice’s OT output by o1.

3. The parties query the OT oracle: FOT (b1, (a2b2 + r2, a2b2 + a2 + r2)). Denote Alice’s OT output by o2.

4. Alice sets her output to c1 = 1 + a1b1 + o1 + o2.

Fig. 2: Shared-input shared-output NAND computation in the OT-hybrid setting

A coding scheme for interactive communication with linear rate. The last tool we need is taken
from the literature of coding for interactive communication and provides a way to fortify a given protocol π0

(that assumes noiseless channels), resulting in a noise-resilient protocol π so that the output π equals that
of π0 with probability 1− expε(−|π0|) assuming BSCε channels.

The general idea, often referred to as the rewind-if-error paradigm (see [Gel17]), is to run π0 as-is for
several rounds, after which the coding scheme communicates some consistency information to verify that
both parties agree on the transcript. In case the parties detect that they agree, they continue in running π0

for another several rounds; Otherwise, they backtrack to some point in the past were they are (hopefully) in
agreement.

Several coding schemes follow this paradigm and achieve efficient schemes with good communication rate,
e.g., [Sch92, KR13, Hae14, BKN14, GHK+16, EGH16, GH17]. We will use one by Haeupler:
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Theorem 15 ([Hae14, Algorithm 3]). Given any ε < 1/2, any deterministic protocol π0 can be efficiently
transformed into a randomized protocol π that communicates over BSCε, with CC(π) = Oε(CC(π0)). For any
(x, y), it holds that π(x, y) = π0(x, y) with probability at least 1− expε(−|π0|).

Interactive Coding Scheme for BSC [Hae14]

1. Let π0 be a deterministic `-round protocol, and ε < 1/2 the BSC error probability. Let v = Ωε(1), `′ = Oε(`).
2. Run an initialization step (independent of π0), setting up a shared randomness resource sr.
3. Initialize the transcript (prefix) TA ← φ of the execution of π0 seen so far, and initialize some additional

variables tracking statistics VA. The state of the protocol is SA = (TA, VA).
4. For each iteration i ∈ [`′/v]

(a) Exchange verification information hA = Hi(SA, sr)
(b) Receive Bob’s possibly noisy verification information h′B .
(c) As a function of SA, hA, h

′
B , decide whether to:

i. Continue running the protocol: starting from TA for v steps (both sending and receiving messages,
as prescribed by π0). Append them to the transcript TA

ii. Backtrack: run the protocol as in the previous item, but send random bits instead of the real protocol
messages, and do not advance TA.a

(d) If backtracking, additionally truncate the suffix of TA by g · v steps, where g is an integer determined by
SA, h

′
B .

(e) Update the statistics VA based on the current TA and hA, h
′
B .

5. Output the value output by π0, based on TA[1, `].

a
The concrete dummy values are different in [H14], but are immaterial for its correctness, and these values are slightly more
convenient in our case. Also, for correctness to hold, the original protocol is padded to length `′ by appending dummy moves,
say, exchanging random bits.

Fig. 3: A Simplified Outline of Algorithm 3 in [Hae14]

The outline of Alice’s behaviour in the resulting protocol π is given in Figure 3. Bob’s program is symmetric.
In a nutshell, the parties in the above scheme execute π0 but occasionally compare (hashes of) prefixes of
their observed transcripts. A hash mismatch is an indication for a possible inconsistency in π0’s execution
due to channel errors, and the party that observes such a mismatch may decide to backtrack. A careful choice
of the protocol’s parameters—including the number of steps to retract and the hash range—yields a constant
rate.

Observe that the local transcripts have different lengths (e.g., if one party backtracks while the other
party does not), or may contain different information (due to noise). The simulation makes real progress
when the local transcripts of both parties, TA, TB have the same length and content, and the parties perform
Step 4(c)i in the algorithm. All the effort in the construction (and its correctness proof) goes into making
sure that ` = |π0| many such progress steps are made (and not undone by backtracking) with overwhelming
probability at the end of the `′ = O(`) rounds of π’s execution.

3.2.2 Circuit simulation over a BSC Our starting point toward devising a secure protocol for evaluating
circuits, is the classical GMW protocol [GMW87]. GMW performs a secure evaluation of a given circuit C0 on
the parties’ (private) inputs, assuming the parties are connected through a noiseless channel in the OT-hybrid
setting (i.e., assuming they have access to a perfect OT functionality).

GMW evaluates the circuit C0 gate by gate according to a predetermined topological ordering of the
circuit graph. The inputs for each gate are secret-shared between the parties, and the evaluation of the gate
yields a secret-sharing of it’s output value. More precisely, the activity of GMW can be described using the
following three phases.
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Initialization: Alice shares every bit xi of her input into a simple (2, 2)-additive sharing of xi (si,1, si,2) =
(r, xi + r) where r is a uniform bit. Alice keeps si,1 as her share of xi, and sends Bob si,2 as his share.
Bob does the same thing on his input bits yi.

Evaluation: The parties evaluate each NAND gate on the shared inputs, obtaining a randomly shared
output (giving each party a share). The evaluation of NAND gates is implemented using two calls to the
OT oracle, where Bob always plays the sender and Alice plays the receiver.

Output Delivery: At the end of the evaluation phase, the parties hold random shares of each output
bit. The parties then send their share vectors to each other, thereby each party learns exactly the values
of the outputs.

We now discuss how to augment each one of the above phases, when the communication channels are
assumed to be BSCε, and argue that this augmentation is statistically close to the original GMW, thus, it is
statistically secure.

Initialization and Output Delivery. The initialization part consists of two “rounds” (where in one
round Alice communicates many bits, and then in the second round Bob communicates many bits). Thus we
can use the simple approach of encoding each of the messages with a short ECC (Lemma 6) with codewords of
length Θε(m+ κ) (i.e., adding at least O(max{m,κ}) redundant bits, where m is the length of the encoded
message), that decode correctly over BSCε except with probability expε(−m− κ). The same holds for the
output delivery phase. The size of each such encoded message is Oε(|C0|+ κ), so asymptotic communication
complexity does not change.

The decoding of these messages fails with probability at most expε(−|C0| − κ) and this value dominates
the simulation error with respect to the original GMW.

The Evaluation phase. As in GMW, the input of this phase is a random secret-sharing of the input bits
of C0 as produced by the initialization phase. The output of this phase is a random secret-sharing of C0’s
output value.

Following the GMW approach, this phase computes the NAND gates of C one by one. However, this
approach hits two immediate obstacles: (1) each NAND computation requires two OT instantiations, each
of which may take O(κ) communication leading to a global communication of O(κ|C0|), rather than our
aimed communication of O(|C0|+ κ). (2) Due to channel noise, some of the NAND gates (as well as the OT
evaluations) will be computed incorrectly. This may lead to information leak or to correctness deficiency.

Our solution to the above hurdles is achieved by employing Beaver’s method of precomputed OT in
conjunction with Haeupler’s interactive coding scheme. Since all the OTs are precomputed, constant overhead
can be achieved. Correctness is obtained due to the coding scheme and security is obtained by carfuly
analyzing the possible leakage in case a certain NAND gate evaluation fails due to noise.

The construction follows these high-level steps:

1. The parties execute πOT
`

on random inputs. The output of this step is ` = O(|C0|+κ) tuples (x′0, x
′
1, b
′, x′b′)

where x′0, x
′
1, b
′ are independent uniform bits distributed; Alice receives (b′, x′b′) and Bob receives (x′0, x

′
1).

These ` pairs serve as correlated randomness for later OT instantiations (see below).
2. Define C to be a circuit that computes the same function as C0, yet contains O(κ) more gates. (This

step increases the success probability, and is equivalent to performing a stronger coding in Step 4 below
on the original C0.)

3. Each NAND gate in C is being evaluated using the protocol NANDΠ-OTε : the parties execute the NAND
protocol (Figure 2) where each OT execution tis replaced with an execution of Π-OTε (Figure 1).

4. The above evaluations of NAND gates are coded via the interactive coding scheme of Theorem 15, with
linear communication overhead and success probability of 1− exp(−|C|) = 1− exp(−|C0| − κ).

The complete construction, Π2pc, is depicted in Figures 4–5.

Theorem 16. The protocol Π2PC depicted in Figures 4 and 5 satisfies Proposition 11.

We now give high level and intuitive arguments that explain why the above construction is both private
and correct, and has a linear communication overhead. The detailed proof appears in Appendix B.5.
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Protocol Π2PC

Inputs: A public input circuit C0 and private inputs x and y held by Alice and Bob, respectively.

Initialization:

Augment C0 by adding O(κ) dummy gates evaluating the length-κ vector 0. The output of these added
dummy gates is to be ignored by the parties. From here and on we assume C is the augmented circuit.a

Alice sends her encoded shares of her inputs x for C using an ECC of length O(|C|) with decoding error
exp(−|C|) (Lemma 6). She also receives and decodes the (encoded) shares of the y’s. Alice stores the resulting
shares as the values of the corresponding circuit wires.

Alice and Bob run πOT
`′

(Theorem 12) on uniformly random inputs (we set `′ shortly). The output is `′

pairs (b, x0, x1) where for each such pair Bob holds x0, x1 and Alice holds b, xb. Denote these as precomputed
correlations vectors vA, vB , respectively.

a
We add these gates because the correctness guarantee in Theorem 15 behaves like 1−exp(−|C0|), which is insufficient for small
circuits. To improve this probability to a magnitude of exp(−|C|) = exp(−|C0| − κ) we increase the circuit size by adding κ
dummy gates. This is equivalent to running the coding scheme of Theorem 15 for O(κ) more rounds.

Fig. 4: Secure Circuit Evaluation protocol Π2PC (Input and Initialization)

Protocol Π2PC (cont.)

Evaluation:

Let π0 denote the protocol induced by running GMW on the augmented circuit C (recall section 3.2.2).
Namely, the parties evaluate each of the NAND gates on their input shares (Figure 2) in a gate-by-gate
fashion according to a predetermined topological ordering. Each call for FOT in the implementation of
Figure 2 is replaced with an execution of Π-OTε (Figure 1).
After evaluating the last gate, π0 is assumed to keep sending zeros indefinitely.

Apply the coding scheme of Theorem 15 onto the protocol π0 with the following augmentations: each
iteration of the coding scheme works in chunks that are aligned with a complete evaluation of NAND gates;
this way, backtracking is always aligned with a beginning of evaluating a NAND gate.
Let π denote the resulting protocol. Let `′, v denote the parameters of π as defined in Figure 3.

When evaluating the j-th NAND gate (1 ≤ j ≤ v) of the i-th iteration (1 ≤ i ≤ `′/v), the following applies:

(1) First note that Alice does not use any randomness during the NAND evaluation. Also recall that Bob’s
randomness is rB and that vA, vB denote the pre-computed OT pairs obtain in the initialization phase.

(2) Each NAND evaluation (Figure 2) requires 2 OT instantiation. The k’th OT instantiation (k ∈ {1, 2})
uses the randomness rB [i][j][k] and the pre-comupted pairs vA[i][j][k], vB [i][j][k].

(3) The inputs used by the parties to evaluate a given NAND gates are either those stored at its input
wires, or random values in case the coding scheme (Figure 3) performs Step 4(c)ii and requires sending
dummy value.

Output Delivery:

If |TA| < `, output ⊥.

Alice extracts her share vector soA of the output wires from her stored values. She sends Bob ECC(soA)
using a code with length O(soA + κ).

Alice receives (a noisy version of) Bob’s encoded share vector ECC(soB), and decodes it to obtain so′B . Alice
outputs z = soA + so′B .

Fig. 5: Secure Circuit Evaluation protocol Π2PC (Evaluation and Output)
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First, let us consider correctness. Again, due to channel noise it is possible that some NAND computations
provide an incorrect output. In fact, a constant fraction of the NAND computations are incorrect. We address
the correctness issue by employing the interactive coding scheme of Theorem 15. Namely, we plug the GMW
evaluation protocol into the coding scheme of Figure 3, with the following main (but insignificant) difference:
instead of simulating the protocol bit-by-bit, the smallest unit in our adaptation is a NAND gate, i.e., the
number of bits it takes to evaluate a NAND gate. This way, if the coding scheme rewinds the GMW evaluation,
it always rewinds to the beginning of an evaluation of a NAND gate. Then, if the noise corrupted some
transmissions (which may cause an incorrect NAND evaluation), the coding scheme will indicate this event
and allow the parties to re-evaluate any incorrect NAND evaluations. The correctness of the coding scheme
implies that at the end of the scheme, the parties share the correct value (except with exponentially small
probability).

Next, let us consider the privacy of the NAND computations assuming noisy channels. Recall that
computing NAND is immediate given a secure OT protocol (Figure 2). The straightforward implementation
of each OT would be using the BSCε channel as a resource, e.g., via [CK88, KMS16] (see also [HIKN08] for
a simple description assuming random inputs in the semi-honest setting). However, those implementations
assume a noiseless channel in addition to the noisy BSC channel, which we don’t have in our setting. If
we simply replace the noiseless channel by a BSC channel (without any other adaptations) the resulting
protocol may leak both inputs to the OT-receiver. Such a leaky instantiation of OT is unacceptable for the
GMW evalutation: it fully reveals the value of internal wires in the circuits which is not allowed as it leaks
information on the other party’s input. Another privacy issue stems from using a coding scheme: rewinding the
evaluation to a previous gate and re-evaluating a gate may cause privacy leakage unless performed correctly.

To get around these privacy issues, our approach is two-fold: (a) we utilize the Π-OTε protocol (Figure 1,
Section 3.2.1) that limits the leakage—Alice may only learn one of Bob’s input (but maybe the wrong one);
and (b) we execute each OT on an independent set of inputs, that is, we always re-share intermediate values
so that information leaked in a previous execution is meaningless to the new execution.

Lemma 13 and 14 guarantee the security for a single-shot instance NAND execution using the Π-OTε
protocol. However, in the GMW protocol we execute these protocols multiple times: once per each gate in C.
Yet, these activations happen sequentially and they operate on independent inputs.

Moreover, privacy is preserved even when the coding scheme rewinds the execution to a previous round.
This follows since Bob re-shares the output at every NAND execution using fresh randomness. That is, if
there was an error, then Alice learns a single share of an incorrect output, however, she does not learn this
output. Next time the same gate is evaluated, the output is re-shared again using fresh and independent
randomness, and Alice learns one share of this new value. Clearly, the old share she learnt in a previous
execution is independent of the share she learn in the repeated evaluation.

Finally, we discuss the communication overhead of the evaluation phase. The tool we need is a way to
implement a large number of OT’s over BSCε with constant communication overhead while allowing the
inputs of each OT depend on the outputs of previous OT; this construction must never leak both sender’s
inputs, however it may leak to the receiver the other, non-chosen, input. To our knowledge, no existing scheme
achieves the above without preprocessing. For example, if each OT is performed individually (say, via the
secure construction of [CK88]) then the overhead will not be constant in the security parameter.

Instead, our OT instantiation through the Π-OTε scheme makes use of shared correlated randomness (that
the parties pre-compute). This enables sequential evaluation of OTs with the above security requirements
in the online phase, while keeping the overhead constant both in the online and the pre-processing steps.

Specifically, we use the πOT
`

protocol (Theorem 12) on random inputs. This supplies the parties with the
required correlated randomness needed for the online OT evaluations throughout the computation. Each OT
evaluation in the online phase takes a constant number of transmissions (given the correlated randomness);
additionally, the preprocessing step has a linear communication overhead, i.e., Oε(`) = O(|C0|+ κ). Note
that Theorem 12 assumes all communication happens over a BSCε as happens in our setting. It is then
easy to verify that the evaluation phase can be done with linear communication overhead in the size of the
(augmented) circuit.
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4 Randomized 2PC over BSCε with linear rate

The main result of Theorem 9 applies only to deterministic protocols. Here we show this result can be extended
to arbitrary, potentially randomized, protocols by incurring only an additive factor of O(κ+ ν + log n).

The proof follows as a corollary of Theorem 9 and the following Lemma 18 that proves that one can
replace a randomized protocol π0 with a distribution over a small set of deterministic protocols, causing only
a little loss in the correctness (both over noiseless channels).

Definition 17. An interactive randomized (two-party) protocol for f is said to be exp(−κ)-correct if for
any given input vector (x, y) the protocol’s output is identical to the value of f(x, y), except with negligible
probability.

Lemma 18 ([NN01], Lemma 4.4). Let π0 denote a δ-correct randomized protocol for f : {0, 1}n ×
{0, 1}n → {0, 1}ν . Then, there exists a protocol π that needs only ∆ = O(κ+ log(n) + ν) random bits and has
communication complexity CC(π) = CC(π0) +∆, which is δ + exp(−κ)-correct.

Furthermore, π can be constructed as follows: Alice randomly picks a random string r of length ∆ and
sends r to Bob. Then, the parties expand r into randomness strings RA, RB and run π0 assuming that
randomness.

See Lemma 4.4 in [NN01], for a proof. We remark that the expansion of r into RA, RB in the above lemma is
done in a non-uniform way: we assume the parties hold some function g that maps each r to some RA, RB .
This non-uniformness assumption could be avoided if the parties assume to preshare a large amount of
randomness (e.g., of size 2∆ · (|RA| + |RB |); then g simply maps each one of the 2∆ possible r’s to some
random pair (RA, RB)), or when the parties are allowed to communicate a large amount of information in a
preprocessing step (in order to create this large bank of shared randomness).

As a corollary of the above Lemma and Theorem 9, our main result (Theorem 2) holds also for randomized
protocols.

Theorem 19. Given f : {0, 1}n × {0, 1}n → {0, 1}ν , κ a security parameter, and ε ∈ (0, 1/2), let π0 be a
randomized exp(−κ)-correct protocol for f assuming noiseless channels. There exists a compiler mapping π0

into a (semi-honest) statistically secure π that computes the same f over BSCε channels.
It holds that CC(π) = maxr Õ(width(BPr))CC(π0) +O(κ+ ν + log(n)), where BPr denotes the branching

program of the deterministic protocol πr = π0(· ; r) obtained by setting the randomness of π0 to r = (rA, rB).

Proof (sketch). Let π0 denote a randomized protocol that exp(−κ)-correctly computing some f over noiseless
channels. Let π̃0 denote the protocol obtained by applying Lemma 18 on the input protocol π0. Specifically,
Let ∆ = O(κ+ log(n) + ν), and assume the parties share a function g : {0, 1}∆ → RA ×RB where RA and
RB are the domain of Alice and Bob randomness in π0, respectively. We can describe π̃0 as in the following
way.

The protocol π̃0:

1. Alice samples a random string r of length ∆.
2. Alice sends r to Bob.
3. Execute π0 using the randomness g(r) ∈ RA ×RB .

Note that by Lemma 18, π̃0 is exp(−κ)-correct assuming noiseless channels.
We now augment π̃0 into a protocol π that assumes BSCε channels.

The protocol π:
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1. Alice samples a random string r of length ∆.
2. Alice encodes r via a standard error correcting code (Lemma 6) and communicates ECC(r) to Bob.
3. Bob decodes the received message and obtains r′.
4. Let πr = π0(· ; g(r)) denote the deterministic protocol obtained from π0 executed with randomness g(r) ∈

RA ×RB . Let π′r denote the protocol obtained from πr by applying Theorem 9. Similarly define π′r′ . Alice
executes π′r and Bob executes π′r′ .

It is easy to see that the above protocol is statistically secure using the following simulator(s). The
simulator SimA for Alice in π0 is defined as follows.

– Submit input x to the ideal functionality f , and let o denote the received output.
– Pick r as in Lemma 18. Run Simr

A simulating A’s view in π′r, with o as the output of f . Let V iewrA
denote the output of the simulator.

– Output ((ECC(r), V iewrA), o).

The simulator for Bob is identical (except that r′ is a received message, rather than part of its randomness).
We sketch the proof that the distribution SimA(1k, x, f(x, y) = o) produced by the above simulator is
exp(−κ)-close to (V IEWA, OUTB).

First note that note that that |ECC(r)| = Oε(κ+ log(n) + ν) so the probability that Bob fails to decode
r′ = r is at most exp(−κ). Hence, with probability at least 1 − exp(−κ) both parties execute the same
protocol π′r.

Next, observe that for at least a 1− exp(−κ) fraction of r’s, the protocol πr is correct. The reason is that
any specific πr is deterministic and that π̃0, which can be seen as a distribution over these deterministic
protocols, is exp(−κ)-correct. The latter holds by Lemma 18 since π0 is exp(−κ)-correct to begin with, which
implies that π̃0 is exp(−κ) + exp(−κ) = exp(−κ) – correct.

For any such “good” selection of r, we have outB = f(x, y), and thus by the properties of π′r and its
simulator Simr

A, we get that V IEWA is exp(−κ)-close to V iewrA of the simulation.
Since all failure events are of magnitude of exp(−κ) and since otherwise the views are exp(−κ)-close, we

obtain a maximal overall distance of at most

1 · exp(−κ) + exp(−κ)(1− exp(−κ)) = exp(−κ).

5 Extension to other unreliable channels

In this section we argue that our results extend to other types of unreliable channels. Specifically, we consider
elastic-channels.

Definition 20. For any 0 ≤ β ≤ α ≤ 1/2 the (α, β)-elastic channel Ch is the channel obtained by the
concatenation of two BSC channels with parameters β and γ such that β(1− γ) + (1− β)γ = α,

Ch(b) = BSCγ(BSCβ(b)︸ ︷︷ ︸
y

).

For any bit b ∈ {0, 1} the receiver learns Ch(b) unless the receiver is adversarial, in which case it learns y.
Note that if the receiver is honest, the channel behaves equivalently to a BSCα.

Our Coding results apply to a large family of (α, β)-elastic channels. Formally,

Theorem 21. Let f : {0, 1}n × {0, 1}n → {0, 1}ν , κ be a security parameter, and 0 < β < α < 1/2

such that α <
(
1 + (4β(1− β))−1/2

)−1
. Let π0 be a deterministic correct protocol for evaluating f over

noiseless channels, and let BP0 denote a branching program representation of π0. Then, there exists a
compiler mapping π0 into a (semi-honest) statistically secure protocol π over an (α, β)-elastic channel
with simulation error 2−κ

c

for some constant c. The communication complexity of the obtained protocol is
CC(π) = Õ(width(BP0)) · CC(π0) +O(κ).
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Proof. (sketch) Our coding scheme construction (Figures 4 and 5) is composed of two main parts: (a)
generating OT-triplets, and (b) simulating π0 over a noisy channel. Note that part (b) remains the same
regardless of the channel being elastic — compared to a BSCα, the error probability of each bit only decreases.
This can only help the coding scheme to perform better. In fact, part (b) works perfectly even if the channel
is completely noiseless.

However, we need to argue how to generate OT-triplets in a secure way with linear overhead over elastic
channels. This is a more difficult task than generating OT-triplets from a BSC. Indeed, when the channel
is elastic, the adversary possibly learns more information than it would have learned if the channel was a
BSC. This extra information may jeopardize the security of the OT implementation. Luckily, the following

theorem proves that if 0 < β < α < 1/2 such that α <
(
1 + (4β(1− β))−1/2

)−1
, then ` instances of OT can

be computed from an (α, β)-elastic channel with communication O(`).

Theorem 22 ([KMS16]). For 0 < β < α < 1/2 if α <
(
1 + (4β(1− β))−1/2

)−1
, then, there exists a

protocol that securely realizes OT ` by accessing an (α, β)-elastic channel for O(`) times. The protocol has
simulation error of at most 2−`

c

, for some constant c.

The protocol guaranteed by the above theorem can be plugged directly into our construction to complete
the proof of the theorem.

A similar result holds for randomized protocol using the same argument of the above and Section 4.

References

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press,
New York, NY, USA, 1st edn., 2009.

[Bea91] D. Beaver. Perfect privacy for two-party protocols. Proceedings of DIMACS Workshop on Distributed
Computing and Cryptography, vol. 2, pp. 65–77, 1991.

[Bea95] D. Beaver. Precomputing oblivious transfer. D. Coppersmith, ed., Advances in Cryptology — CRYPTO’
95: 15th Annual International Cryptology Conference Santa Barbara, California, USA, August 27–31,
1995 Proceedings, pp. 97–109, Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[BKN14] Z. Brakerski, Y. T. Kalai, and M. Naor. Fast interactive coding against adversarial noise. J. ACM,
61(6):35:1–35:30, 2014.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. 42nd FOCS,
pp. 136–145, IEEE Computer Society Press, 2001.

[CPT13] K.-M. Chung, R. Pass, and S. Telang. Knowledge-preserving interactive coding. Proceedings of the 54th
annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 449–458, 2013.

[CT06] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2nd edn., 2006.
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Appendix

A Extended Notions of Security

Weak security. Here we define a relaxed form of security, where the simulator is allowed to modify the
input of the honest party that it sends to the ideal functionality. In a sense, the definition allows to protocol
to output an incorrect value due to channel noise. This definition is similar to that of malicious security,
but is a relaxation of Definition 5, since it only concerns real-world adversaries that follow the protocol (no
guarantees are provided for stronger adversaries).

Definition 23 (weak statistical security over Ch). Let π = (πA, πB) denote a protocol for evaluating a
function f(x, y) = (fA(x, y), fB(x, y)).

We say that π is a weakly statistically secure protocol for computing f(x, y) when running over Ch

against semi-honest adversaries if there exist (possibly inefficient) simulators SimA, SimB for Alice and Bob,
respectively, such that for all x, y, and κ a security parameter there exist distributions X ′, Y ′ over {0, 1}n so
that

(SimA(1κ, x, fA(x′, y)), fB(x′, y)) ≈exp(−κ) (V IEWA, OUTB), and

(SimB(1κ, y, fB(x, y′)), fA(x, y′)) ≈exp(−κ) (V IEWB , OUTA).

In the above x′, y′ are sampled from X ′, Y ′ respectively, and the two instance of x′ (y′) are the same one.

Channel-transparent security. Here we define the notion of channel-transparent security. This notion
is an augmentation of either Definition 5 or Definition 23. For a secure protocol over Ch (according to
one of the above definitions) we say it is secure with channel transparency, if V IEWA = (xA, rA, TA),
V IEWB = (xB , rB , TB) in the respective security definition are augmented into V IEW ′A, V IEW

′
B to include

both TA and TB . That is, V IEW ′A = (xA, rA, TA, TB), V IEW ′A = (xA, rA, TB , TA).
Conceptually, this definition implies that the security holds even if we assume that a party could see also

the messages received by the other party, i.e., it learns the noise introduced by the channel. This means, in
particular, that the protocol does not rely on the channel’s noise for its own security. Note that assuming
only BSC channels, such a notion of security cannot be achieved for many functionalities, e.g., OT [CK88],
and additional assumptions are needed (in our case, correlated randomness).

Secure computation with correlated randomness. We also consider a variant of secure function
evaluation, where the parties have access to a randomized ideal functionality g with no inputs before they get
their inputs. More precisely, there is a preprocessing phase (before they receive their inputs to f), where the
parties make a single call to the functionality g, which samples a random variable (crA, crB), and outputs crA
to Alice, and crB to Bob. See, e.g. [IKM+13, Bea95] for more details. We define viewA (viewB) as before,
except that we append pA (pB) to it.

We say that a protocol π with correlated randomness specified by g, computes f with statistical security,
if it satisfies Definition 5 where the definition of a party’s view is augmented to include crA, crB as described
above.

B Detailed Proofs

B.1 Proof of Proposition 10

In this section we complete the proof of Proposition 10. Let us recall its statement:
Before proving the proposition, let us define a multiplexer gate (mux). The gate is parametrized by w

denoting the number of inputs and ` denoting the length of each input. The gate also has a selector input
(of length logw bits). The output of the gate is the `-bit input whose index number is given by the selector
inputs. Formally,
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Definition 24. A multiplexer MUXw,l : {1, . . . , w}× ({0, 1}`)w → {0, 1}` takes an array A of w `-bit strings
as its second argument, and an index i as its first argument, and outputs MUXw,l(i, A) = A[i].

Proof. (Proposition 10) Assume BP0 contains t layers and let w = width(BP0); assume for simplicity
of notation that each layer Vi for i ≥ 2 has width exactly w, and denote the nodes in the i-th layer by
Vi = {v1

i , . . . , v
w
i } (this is wlog., as we can add unreachable nodes to each layer). For any node v assigned to

Alice (resp., Bob) we let next(v) = fv(x) (resp., next(v) = fv(y)). Recall that fv is the transition function;
cf. Definition 7.

In order to prove the claim we need to show that there exist a circuit C0 and translation functions τA, τB ,
and τout with the following properties:

1. τA and τB encode the inputs x and y (to π0) of Alice and Bob, respectively, into inputs τA(x) and τB(y)
for C0.

2. If vout = C0 (τA(x), τB(y))—i.e., vout is the output of C0 on the encoded values—then τout(vout) = f(x, y).
In other words, τout “decodes” the output of C0 back to the corresponding output of π0.

The circuit C0 sequentially emulates the path taken by BP0 on (x, y), transition-by-transition. That is, the
node in the first layer V1 is by definition u1 = start. The node u2 at the second layer V2, is u2 = next(start).
The node u3 reached at the third layer V3 = {v1

3 , . . . , v
w
3 } equals next(u2), and so on. Finally, the protocol’s

output is the name of the layer-t node reached, which uniquely determines π0’s output on x, y (by our
definition of protocol BP). Formally, τout(v

i
t) = i

Let us show how the sequence u1, . . . , ut can be computed from the inputs (x, y). Taking u2

as an example: it can be evaluated using u1 and NEXT1 = {next(v1
2), . . . , next(vw2 )} by comput-

ing the gate MUXw,logw(u2, NEXT1). Generally, for any 1 < i ≤ t, the value ui is the output of
the gate MUXw,logw(u,NEXTi−1), where NEXTi−1 = {next(v1

i ), . . . , next(v
w
i )}. From the above we

get that the input to the circuit C0 are the values NEXTi for all i < t. Formally, let τA(x) =
(next(v1

i ), . . . , next(vwi ))1≤i≤t,i is odd, and τB(x) = (next(v1
i ), . . . , next(vwi ))1≤i≤t,i is even.

It is easy to verify that C(x, y) = τout (C0 (τA(x), τB(y))) = f(x, y) as required.
Last, we consider the size of the resulting circuit C0. Clearly, an instance of MUXw,logw can be implemented

by w · poly(logw) NAND gates, and C0 contains t such gates. Hence the size of C0 is given by

|C0| = t · w · poly(logw) = |BP0| · polylog(width(BP0)).

B.2 Proof of Theorem 9

Proof. (Theorem 9) Let BP0 be the branching program to be simulated. Proposition 10 asserts we can
convert BP0 into a circuit C0 of size |C0| = |BP0|polylog(width(BP0)), and that there are functions τA, τB ,
τout such that for any x, y we have BP0(x, y) = τout(C0(τA(x), τB(y)).

Proposition 11 asserts that the above circuit C0 can by evaluated on inputs τA(x) and τB(y) respectively,
over BSCε channel by communicating O(|C0|+ κ) = O(|BP0|polylog(width(BP0)) + κ) bits, in a statistically
secure manner (assuming semi-honest adversaries). Note that Alice and Bob can compute τA(x) and τB(y)
from their inputs independently without communication; Similarly, both can decode C0’s output via τout to
obtain an output for the evaluating BP0.

Finally, via Eq. (1) we get the claimed communication complexity

O(|BP0|polylog(width(BP0))) = O
(
depth(BP0)width(BP0) · polylog(width(BP0)

)
= CC(π0)Õ(width(BP0)).

B.3 Proof of Lemma 13

We devise a suitable simulator for Alice, SimA. It is easy to verify that the simulator proves weak statistical
channel-independent security of the protocol. Since the protocol is defined in the model where trusted
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correlated randomness is preshared, that randomness (crA, crB respectively) is also part of the parties’ view,
see, e.g., [IKM+13] for more precise definitions and discussion on security in the presence of preshared
correlated randomness. For convenience of presentation of our main protocol later on, we slightly strengthen
the definition discussed above, and fix the corrupted party’s correlated randomness as part of the simulator’s
input. We require that the simulator works conditioned on any value of the corrupted party’s correlated
randomness.

Generating the distribution SimA(1κ, b, o), given the input bit b and assuming the ideal functionality FOT

1. Sample b′, x′b′ ∈ {0, 1} uniformly and independently, as Alice’s correlated randomness crA.
2. Pick δ1, δ2, δ3 ∼ Ber(ε) independently at random; The δi’s represent the channel’s added bits by order of

delivery.
3. Query the ideal functionality on the input x′ = b+ δ1, to obtain the output bit o = FOT (x′, (x0, x1)).
4. Pick a random bit r. Let min = (o + x′b′ + δ2, r + δ3) denote Bob’s messages if x′ = 0, and min =

(r + δ3, o+ x′b′ + δ2) otherwise.
5. Output (input, crA, rA, TA, TB) = (b, (b′, x′b′), ∅,min, x

′ + b′) as Alice’s view.10

We proceed with a simulator for Bob, SimB , which is even simpler.

Generating the distribution SimB(1κ, (x0, x1)) given inputs (x0, x1) and assuming the ideal functionality FOT

– Sample x′0, x
′
1 ∈ {0, 1} uniformly and independently for crB .

– Sample δ1, δ2, δ3 ∼ Ber(ε) independently at random. The δi’s represent the channel’s added bits by order
delivery.

– Sample a random bit min ∈ {0, 1}, to serve as Alice’s sent message, and set c′ = min + δ1 as Bob’s received
message.

– Query the ideal functionality using the inputs (x0 + δ1(x′0 + x′1) + δ2, x1 + δ1(x′0 + x′1) + δ3).
– Output

(
input, crB , rB , TB , TA

)
=

(
(x0, x1), (x′0, x

′
1), ∅, c′, (x0 + x′c′ + δ2, x1 + x′1−c′ + δ3)

)
as Bob’s view.11

Analysis. Let us write the real-world distribution (V IEWA, OUTB). Note that OUTB = ⊥. Since we require
channel-transparency in the correlated-randomness setting, we have

V IEWA = (input, crA, rA, TA, TB)

= (b, (b′, x′b′), ∅, (x0 + x′c′ + δ2, x1 + x′1−c′ + δ3), c′ = b+ b′ + δ1)

where δ1, δ2, δ3 ∼ Ber(ε). It is quite straightforward to check that this distribution is identical to SimA(1κ, b, o)
with o = FOT (x′, (x0, x1)) as described above: the input, and randomness are identically distributed, as well
as the message Bob receive (up to adding a noise δ1 which is distributed according to the BSCε noise).

For TA, first note that the noise δ2, δ3 in the simulated distribution behaves according to a BSCε
and is similar to the real-world noise. Next, note that in the real world if b + δ1 = 0 then c′ = b′ and
TA = (x0 + x′b′ + δ2, x1 + x′1−b′ + δ3). In this case, in the simulated TA we have x′ = 0 and the output
is TA = (o + x′b′ + δ2, r + δ3) with o = FOT (b + δ1, (x0, x1)) = x0. Note that indeed x′1−b′ is uniform
conditioned on the view of Alice. Symmetrically, if b+ δ1 = 1 then in the real-world we have c′ = 1− b′ thus
TA = (x0 + x′1−b′ + δ3, x1 + x′b′ + δ2) while the simulated TA is (r+ δ3, o+ x′b′ + δ2) with o = x1; again, x′1−b′
is uniform conditioned on the view of Alice, while the other coordinate is distributed identically.

10 We omit Alice’s outgoing messages, as they are determined by her input, randomness and incoming messages.
11 We omit Bob’s outgoing messages, as they are determined by his input, randomness and incoming messages.
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Next consider Bob’s side. We have

V IEWB =
(

input = y, crB = (x′0, x
′
1), rB = ∅,

TB = c′ = b+ b′ + δ1, (2)

TA = (x0 + x′c′ + δ2, x1 + x′1−c′ + δ3)
)

and,

OUTA =

{
x0 + x′c′ + x′b′ + δ2 b = 0

x1 + x′1−c′ + x′b′ + δ3 b = 1
(3)

Note that conditioned on Bob’s inputs and randomness, b′, x′0, x
′
1 are all uniform independent bits. Then, it

is easy to verify that the simulator’s output is identically distributed as V IEWB .
As for the output, note that Alice’s real-world output is distributed as follows: If b = 0 Alice outputs

x0 + x′b′+δ1 + x′b′ + δ2; if b = 1 Alice outputs x1 + x′b′+δ1 + x′b′ + δ3. Hence, let err = δ1(x′0 + x′1) and define
y′ = (x0 + err + δ2, x1 + err + δ3). It is clear that the ideal-world experiment computes FOT (b, y′) which
produces identically distributed output for Alice as the real-world computation.

B.4 Proof of Lemma 14

We give here a simulator for the protocol. Recall that due to the weakly, channel-transparant property, we
need to simulate, for both views, both transcripts.

We begin with describing how to generate Alice’s view given access to an ideal NAND functionality, FNAND.
Since the protocol basically only calls Π-OTε and doesn’t send any additional messages, the simulation is
rather straightforward, however, we need to be careful about simulating the correct output distribution, since
the Π-OTε protocol over a BSCε may give the wrong output.

Specifically, for each OT instance, with probability ε (i.e., when the message from Bob to Alice is flipped)
Alice receives a flipped version of requested bit xb. Moreover, with probability ε (i.e., when the message form
Alice to Bob is flipped) Alice “gets” a uniformly random bit as the OT output. In this case, Alice also gets
from Bob the value of his other OT input. Alice ignores this value, however the simulator must generate it
correctly in order to maintain the same view’s distribution.

Corresponding to the above, the simulator can simulate which message gets corrupted and flip the output
bit of the simulated OT with probability ε, or generate a random bit as the output, accordingly.

Generating the distribution SimA(1κ, (a1, b1), c1), given the inputs a1, b1 and assuming an ideal NAND function-
ality FNAND

1. Sample δ11 , δ
1
2 , δ

1
3 ∼ Ber(ε) and δ21 , δ

2
2 , δ

2
3 ∼ Ber(ε) that will serve as the noise in the implementation of the

first and second OT realization, respectively.
2. Query FNAND using the inputs (a1, b1) to obtain the output bit c1.
3. Sample o1 ∈ {0, 1} uniformly at random and set o2 = c1 + o1 + 1 + a1b1.
4. Activate Alice’s simulator for Π-OTε on the input a1. In order to generate Bob’s messages, assume Bob

holds the input (o1, u
1) with a uniform bit u1 if a1, or the input (u1, o1) otherwise.12 Use the above δ11 , δ

1
2 , δ

1
3

for simulating the channel’s noise in Π-OTε.
5. Activate Alice’s simulator for Π-OTε on the input b1; Similar to the above OT instance, Assume Bob’s inputs

are (o2, u
2) if b1 = 0 or (u2, o2) otherwise. Here u2 is a uniform random bit. Use δ21 , δ

2
2 , δ

2
3 for simulating the

channel’s noise in Π-OTε.
6. Output (input, crA, rA, TA, TB) where input = (a1, b1), and crA, rA, TA, TB as given by the output of the two

instances of OT simulation.
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The simulation for Bob is as follows.

Generating the distribution SimB(1κ, (a2, b2), c2), given the inputs a2, b2 and assuming an ideal NAND function-
ality FNAND

1. Sample δ11 , δ
1
2 , δ

1
3 ∼ Ber(ε) and δ21 , δ

2
2 , δ

2
3 ∼ Ber(ε) that will serve as the noise in the implementation of the

first and second OT realization, respectively.
2. Sample x′10 , x

′1
1 , x

′2
0 , x

′2
1 uniform bits as Bob’s correlated randomness.

3. Set ρ1 = (δ22 + δ23) and ρ2 = (δ12 + δ13). Query FNAND using the inputs (a2 + ρ1, b2 + ρ2). Let c2 denote the
output given to Bob.

4. Sample a random bit r1 and set r2 = r1 + c2 + flip, where flip = δ11(x′10 +x′11 ) + δ21(x′20 +x′21 ) + δ12 + δ22 + ρ1ρ2 +
a2ρ

2 + ρ1b2 describes the flipping of the output due to channel noise.
5. Activate Bob’s simulator for Π-OTε on the input (r1, b2 + r1); Use δ11 , δ

1
2 , δ

1
3 for simulating the channel’s

noise in Π-OTε, and x′10 , x
′1
1 as Bob’s correlated randomness.

6. Activate Bob’s simulator for Π-OTε on the input (a2b2 + r2, a2b2 + a2 + r2); Use δ21 , δ
2
2 , δ

2
3 for simulating the

channel’s noise in Π-OTε, and x′20 , x
′2
1 as Bob’s correlated randomness.

7. Output (input, crB , rB , TA, TB) where input = (a2, b2), and crB , rB , TA, TB as given by the output of the
two instances of the OT simulation.

Analysis. Let us now analyze this simulator and show that along with c2 (the output of FNAND for Bob) it
generates a distribution close to (V IEWA, OUTB) for the protocol. First, note that V IEWA is merely two
independent activations of Π-OTε on independent inputs. Indeed, Bob’s inputs in the first activation are
masked with some random bit r1 while the second with an independent bit r2. Moreover, the two instances
use different pairs of correlated randomness, and their transcripts are also not correlated. Formally, we have

V IEWA =
(

input = (a1, b1), crA = (b′1, x′1b′1 , b
′2, x′2b′2), rA = ∅,

TA =
(
(r1 + x′1c′1 + δ1

2 , r1 + b2 + x′11−c′1 + δ1
3), (4)

(r2 + a2b2 + x′2c′2 + δ2
2 , r2 + a2b2 + a2 + x′21−c′2 + δ2

3)
)

TB = (c′1, c′2) = (a1 + b′1 + δ1
1 , b1 + b′2 + δ2

1)
)

We use superscripts to denote the instance number of the OT. Next, note that OUTB is a uniform random
bit.

OUTB = c2 = r1 + r2, (5)

however, some care should be taken as this bit is correlated with V IEWA, e.g., it holds that

c1 + c2 = 1 + (a1 + a2)(b1 + b2)

Yet, due to the security of the OT, at each activation Alice may learn only one input of Bob (the other message
looks like a random bit to her). The input that Alice can learn (even if she doesn’t use it) is determined by
a1 + δ1

1 in the first activation, and by b2 + δ2
1 in the second.

It is easy to verify that the messages generates by the simulator agree with the transcript part of V IEWA,
recalling that Alice always holds only one of x′c′ and x′1−c′ , which makes one message in each pair to be
uniformly distributed in an independent way of all the other information.

As for generating the correct output, by querying FNAND on the (correct, x′ = x) inputs (a1, b2) we
guarantee that if Bob uses his inputs y = (a2, b2), then Bob’s output v given by FNAND (corresponding to

12 That is, the simulated messages Alice receives from Bob are either the messages (o1 + x′1b′1 + δ12 , u
1 + δ13) or

(u1 + δ12 , o1 + x′1b′1 + δ13) for a1 = 0 and a1 = 1, respectively. x′1b′1 denotes the correlated randomness x′b′ of this
instance.
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fB(x′, y) in Definition 23) satisfies v + c1 = 1 + (a1 + a2)(b1 + b2), hence

v = (o1 + o2 + 1 + a1b1) + 1 + (a1 + a2)(b1 + b2) (6)

= o1 + o2 + a1b2 + a2b1 + a2b2. (7)

From the simulator definition it holds that o1 = r1 if a1 = 0 or o1 = r1 +b2 otherwise; Similarly, o2 = r2 +a2b2
if b1 = 0 or o2 = r2 + a2b2 + a2 otherwise. Then, v equals

v =


r1 + r2 + a1b2 + a2b1

r1 + r2 + a1b2 + a2b1 + b2

r1 + r2 + a1b2 + a2b1 + a2

r1 + r2 + a1b2 + a2b1 + a2 + b2

corresponding to the cases where (a1, b1) is (0, 0), (1, 0), (0, 1), and (1, 1), respectively. Now, it is easy to
verify that in all the four cases, v = r1 + r2 = OUTB .

We continue to Bob’s side, and show that the simulator (along with the output of FNAND on a related
input) generates a distribution close to (V IEWB , OUTA). First we can derive Alice output by recalling that
each of o1, o2 is distributed according to Eq. (3).

OUTA = 1 + a1b1 + o1 + o2

= 1 + a1b1 +

{
r1 + δ1

1(x′10 + x′11 ) + δ1
2 a1 = 0

r1 + b2 + δ1
1(x′10 + x′11 ) + δ1

3 a1 = 1

+

{
r2 + a2b2 + δ2

1(x′20 + x′21 ) + δ2
2 b1 = 0

r2 + a2b2 + a2 + δ2
1(x′20 + x′21 ) + δ2

3 b1 = 1

(8)

The corresponding Bob’s view is given by

V IEWB =
(

input = (a2, b2),

crB = (x′10 , x
′1
1 , x

′2
0 , x

′2
1 ),

rB = (r1, r2),

TB = (c′1 = a1 + b′1 + δ1
1 , c
′2 = b1 + b′2 + δ2

1),

TA = ((r1 + x′1c′1 + δ1
2 , r1 + b2 + x′11−c′1 + δ1

3),

(r2 + a2b2 + x′2c′2 + δ2
2 , r2 + a2b2 + a2 + x′21−c′2 + δ2

3))
)

(9)

Clearly, the randomness and correlated randomness generated by the simulator are correctly distributed, and
TA, TB are merely two (independent) instantiations of Π-OTε, using Eq. (2).

Finally, we show that output is distributed correctly. The simulator queries FNAND on Bob’s inputs
y′ = (a2 + ρ1, b2 + ρ2) and receives an output c2. If Alice queries the ideal NAND functionality on her inputs
(a1, b2) she will receive a value v (this corresponds to fA(x, y′) in Definition 23) such that

v + c2 = 1 + (a1 + a2 + ρ1)(b1 + b2 + ρ2).

Recalling that the simulator sets c2 = r1 + r2 + flip, Alice’s output is given by

v = 1 + (a1 + a2 + ρ1)(b1 + b2 + ρ2) + r1 + r2 + flip

= 1 + a1b1 + a1b2 + a2b1 + a2b2 + ρ1b1 + ρ1ρ2 + a1ρ
2 + a2ρ

2 + ρ1b2 + r1 + r2 + flip

= 1 + a1b1 + a2b2 + r1 + r2

+

{
0 a1 = 0

b2 + ρ2 a1 = 1
+

{
0 b1 = 0

a2 + ρ1 b1 = 1

+ ρ1ρ2 + a2ρ
2 + ρ1b2 + flip
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substituting the values of ρ1, ρ2, flip and re-arranging the terms, we get

= 1 + a1b1 + a2b2 + r1 + r2 + δ1
1(x′10 + x′11 ) + δ2

1(x′20 + x′21 )

+

{
δ1
2 a1 = 0

b2 + δ1
3 a1 = 1

+

{
δ2
2 b1 = 0

a2 + δ2
3 b1 = 1

which is distributed in a similar way to OUTA as given by Eq. (8).

B.5 Proof of Theorem 16

We sketch a simulator for the combined circuit-evaluation construction. We present only a simulator for Alice.
For simplicity, in the following we assume that ε is a sufficiently small constant. Otherwise, we encode each
bit with a sufficiently long repetition code; this changes the communication overhead only by a constant.

B.5.1 Simulator for Alice For clarity, we split the simulation into three parts, corresponding to the
initialization, evaluation, and output phase of the protocol Π2PC (Figures 4 and 5). We describe the simulator
assuming the circuit C has a single output wire (and let ‘root’ be the output gate); extending the simulation
to multiple output wires is straightforward.

Initialization Phase.

1. . Produce a sharing of Alice’s input: s1 = r1, s2 = r1 + x, where r1 is a random string of length |x|. The
share s1 is kept by Alice as her local share, and s2 simulating the share to be sent to Bob.

2. Simulate the incoming message from Bob, mA, which is of the form ECC(ỹ) +Nin, where ỹ is a random
string of length |y| and Nin is the noise string composed of i.i.d. Ber(ε) of the corresponding length.

3. Run the simulator for the πOT
`′

protocol (guaranteed by Theorem 12). Let crA = (x′b′1
, b′1), . . . , (x′b′

`′
, b′`′)

denote the simulator’s output of Alices’ part of the correlated randomness.

Evaluation Phase. Interpret s1,mA as the shares of x, y, respectively, that Alice holds.

1. Initialize the local statistics VA, VB and the transcript TπA, T
π
B (all empty).13 Note that these variables

are the simulator’s variables.
2. Simulate the `′/v iterations of the scheme in Figure 3. In iteration i:

(a) Simulate the exchange of statistics: Set SA = (TπA, VA) compute hA = Hi(SA, sr) and record hA. Set
SB = (TπB , VB) compute hB = Hi(SB , sr) and record h′B = hB +Ni where for any i we let Ni,N ′i
denote strings of i.i.d Ber(ε) of the corresponding length.

(b) based on SA, hA, h
′
B determine whether Alice advances or backtracks during this iteration. Similarly,

based on SB , hB , h
′
A = hA +N ′i decide whether Bob advances or backtracks during this iteration.

(c) Simulate v evaluations of NAND gates that belong to the current iteration:
Let Sim′A denote the simulator for NANDΠ-OTε for Alice, guaranteed in Lemma 14.
For the j-th NAND evaluation in that chunk:

i. Determine the output of the gate:
if gate 6= root: sample a random bit oj1 as the output of the gate;

if gate = root: query the ideal function to obtain C’s output out = FC(x). Set oj1 to be one share

of the secret sharing of out, i.e., sample a random bit oj2 and set oj1 = oj2 + out.

13 We denote the internal variables of π, which include the simulated transmitted and received messages of Alice in
the coding scheme π by TπA (or TπB , respectively, for Bob) in order to distinguish them from the simulated variables
TA, TB of the protocol Π2PC .
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ii. Use the NANDΠ-OTε simulator to simulate the gate’s evaluation:
Execute Sim′A assuming the inputs (aj1, b

j
1) and the output oj , where aj1, b

j
1 is the value stored

at the relevant input wires of the j-th gate; if the phase evaluation requires dummy values—use
random inputs instead. In this simulation, use (a fresh set of) correlated randomness from crA
generated in the Initialization Phase above (instead of sampling it afresh).

iii. Let V IEWNAND
i,j denote the simulator’s output, for j-th NAND evaluation in the i-th iteration.

iv. Propagate the outcome to the next gate:
Let gj1 be the simulated output of the j-th gate (note: this value may differ from oj1 due to channel

noise. Also note that gj1 is a deterministic function V IEWNAND
i,j ). if this iteration of the coding

scheme is progress (rather than backtracking), store gj1 at the output wire of the j-th NAND gate
in this iteration.

v. In case all the gates were evaluated yet the coding hasn’t terminated yet, simulate sending and
receiving zeros instead of evaluating further NAND gates.

(d) Derive the transcripts TπA, T
π
B from V IEWNAND

i,1 , . . . , V IEWNAND
i,v , and update VA and VB according

to TπA, T
π
B , h

′
A, h

′
B , hA, hB , and whether Alice and Bob progress or rewind in the i-th iteration. Note that

although V IEWNAND
i,j contains only the information received by Alice and by Bob, the information

sent by the parties can be interpolated from the receives messages given knowledge of δ1, δ2, δ3 of
each OT instance. It follows that TπA, T

π
B can be completely simulated.

3. Following the completion of the `′/v prescribed iterations, use the a prefix of TπA corresponding to π0 to
extract Alice’s output shares (if |TπA| is too short output ⊥).

Output Delivery phase. Set Alice’s and Bob’s output shares according to the value of the output wires14

soA =

{
⊥ |TπA| < `

oroot1 otherwise
soB =

{
⊥ |TπB | < `

oroot2 otherwise

The simulator sets Bob’s simulated message as ECC(soB) + Nout of the appropriate length. Again Nout
is a noise string composed of i.i.d Ber(ε) of the corresponding length. Recall that oroot

2 = FC(x) + oroot1 .
For completion, Alice’s simulated sent message is ECC(soA) (the simulator doesn’t add it to TA as it is a
deterministic function of Alice’s simulated view).

B.5.2 Analysis (sketch) We next argue that the above simulator is correct, addressing the more subtle
issues. Note that we prove here the standard notion of semi-honest security (i.e., Definition 5). Specifically,
since we don’t require channel-transparency, the simulator needs to simulate only the messages Alice receives
and it doesn’t need to simulate messages received by Bob. Yet, the fact that the underlying sub-protocols
(e.g., NANDΠ-OTε) are channel-transparent is pivotal in allowing simulating the coding scheme correctly, as
its actions depend on both Alice’s and Bob’s received transcripts.

Moreover, since we don’t settle for weak-security, the simulated outputs must correspond to the correct
output, despite channel noise and despite the fact that the underlying sub-protocols may deviate from the
correct output due to channel noise. This issue is solved due to the coding scheme which keeps track of the
errors and rewinds the simulated protocol.15 The coding scheme guarantees that the output is correct w.h.p,
hence we can obtain (non-weak) security, despite using weak-secure primitives.

As above, we discuss the three stages of the simulation separately.

Initialization. In the real world protocol, messages consist a secret sharing of the inputs, hence, their
distribution (conditioned on the view of the other party) is uniformly random. Recalling that each such string
is encoded via ECC of appropriate length, and suffer from stochastic noise, independently per bit, it follows

14 Here we assume a single output wire (namely, a single “root” gate), but the same holds if C has multiple outputs.
15 Note: the coding scheme π and thus the simulator SimA of Π2PC never rewind! It is only the underlying (noiseless)

protocol, i.e., π0, that is being rewound.
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that the simulated message received by Alice is identically distributed as the messages received in the real
world protocol.

Next, we argue that the proper correlated randomness is used. By the security of OT `
′

protocol (Theo-
rem 12) the correlated randomness produced is 2−Ω(κ)-close to a properly distributed vector of correlations
(resulting in an increase of at most exp(−κ) in the final simulation error).

Evaluation. The simulation in this phase is composed of two sub-simulations: a simulation of the coding
scheme, and simulation of the underlying noiseless protocol (i.e., of the GMW). Let us begin with the GMW
simulation.

On its surface, the correctness follows from the correctness of the NANDΠ-OTε simulator (Lemma 14).
However, Lemma 14 guarantees the correctness of a single instance, while here we activate multiple instances
of the protocol. This multiple activation still preserve privacy due to the fact it is being done sequentially
gate-by-gate, and due to the following properties of the GMW simulation, that guarantee that each instance
is independent of any previous instance:

— (Property 1) For each OT call during the evaluation step, Bob’s inputs to the OT are random bits.

— (Property 2) For each OT call during the evaluation step, Bob’s inputs to any specific OT are independent
of all of his inputs to previous OT instances, the other OT of the same NAND evaluation, his input y,
and of all messages previously received by him.

The above properties of GMW imply independence between different NAND evaluations—if they are not
correlated, each evaluation can be generated separately using the NANDΠ-OTε simulator. Indeed, following
these properties we get that (i) Bob, as the sender, does not learn anything from the two OT-instances, so
Alice’s privacy is not compromised regardless. (ii) Alice either learns the correct output or a (fresh!) random
bit, independent of all other bits she has seen in any other calls of OT. Hence, each gate can be simulated
independently of the rest of the transcript so far (since the transcript is generated given that input, using the
security of the NANDΠ-OTε protocol, Lemma 14). We can thus employ a simple hybrid argument on the gates
of the compiled circuit, where in each hybrid the evaluation of an additional gate is replaced by the simulation
of this gate. Following the above analysis, any two neighboring hybrids will be statistically indistinguishable
as long as none of the the above events occur. By a union bound (since the circuit is polynomially big and
the probability of any of these events occurring is negligible) the total error probability is negligible.

Moreover, due to the rewinding caused by the coding scheme, we often need to simulate the evaluation
of some gate multiple times. Using the same argument, any evaluation of a gate is independent not only of
evaluations of previous gates, but also of previous evaluations of the same gate.

Next, we discuss simulation issues that stem from following the coding scheme. The main issue is how
the simulator decides when the coding scheme needs to progress and when to rewind without simulating
Bob’s view. To this purpose, we required that the security of NAND evaluation (Lemma 14) as well as its
Π-OTε subprotocol (Lemma 13) is channel-transparant, i.e., it generates Bob’s transcript TB in addition to
Alice’s View. Using these two transcript, the simulator can keep track of the progress of the coding schemes,
compute the correct statistic and progress in a correct way.

Output. As long as there weren’t too many errors (so that the output is not ⊥), the output shares shA, shB
are a secret share of the correct circuit’s output FC(x). Similar to the protocol, the information shB is then
encoded via ECC and the appropriate noise distribution is added, so that the simulated received message is
identically distributed to the protocol’s received message.

Note that OUTB = FC(x) unless one of the following bad events happen:

1. Alice or Bob decode an incorrect share of y or x, respectively, at the initialization phase
2. The coding scheme fails to simulate the (noiseless) GMW protocol π0

3. Bob decodes an incorrect output share shA

The first and last items occur with probability at most exp(−κ), since the information is sent over a BSCε
channel encoded via ECC of length Ω(κ) (Lamma 6). The second item occurs with probability at most
exp(−|C|) = exp(−|C0| − κ) by Theorem 15. Hence, the statistical difference due to correctness is at most
exp(−κ).
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