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Abstract

Similar to 2016 and 2017 Blizzard Challenge, the task for this
year is to train on expressively-read children’s story-books, and
to synthesise speech in the same domain. This give us an oppor-
tunity to investigate the effectiveness of several techniques we
have developed when applied to expressive and prosodically-
varied audiobook data. This paper describes the text-to-speech
system entered by The Centre for Speech Technology Research
into the 2018 Blizzard Challenge. The system is a hybrid syn-
thesis system where a halfphone unit selection synthesiser is
driven by the output of a neural network based acoustic and du-
ration model. We adopt the same neural network based models
used in our last year entry with a different unit selection com-
ponent. We discuss the performance of our system by reporting
the results from formal listening tests provided by the challenge.

Index Terms: Merlin, hybrid speech synthesis, unit selection,
deep neural networks.

1. Introduction

Our entry to this year’s Blizzard Challenge closely follows the
form of the hybrid systems we submitted for the previous two
years’ challenges [1, 2]. A major difference in implementation
is that entirely different code was used for the unit selection
component of the system: the codebase used to implement the
systems described in [3, 4] was integrated into our Blizzard en-
try.

Hybrid synthesis systems compute a unit selection target
cost [5, 6, 7, for example] using acoustic properties predicted
for the speech to be produced. The idea is to combine the ben-
efits of the stability of statistical parametric speech synthesis
(SPSS) systems with the high quality waveforms of unit se-
lection, unaffected by the degradations introduced by vocoding
[8, 9]). Experiments presented in [6, 7] establish that improving
the underlying SPSS of a hybrid synthesiser results in improve-
ments to the concatenated output speech. The statistical models
used in our entry this year are identical to those used in our entry
to the 2017 challenge, and thus benefit from various incremen-
tal improvements made to them over the past years. In previous
years, we incorporated various improvements to the underlying
SPSS model compared to the system presented in [7]: the deci-
sion tree duration model was replaced with a bi-directional long
short-term memory (LSTM) recurrent neural network, and the
feed-forward DNN acoustic model was replaced with an LSTM
network. Last year, the acoustic model’s predictions of fun-
damental frequency were improved by the addition of supra-
segmental features based on acoustic counts (see Section 2.3.3).
The join-smoothing we employ (briefly described again in Sec-
tion 2.6) is also inherited from last year’s system. The neural
networks used in this entry were trained using our open-source
Merlin speech synthesis toolkit [10].

2. System Description
2.1. Data

Identical to the 2017 Challenge, the database — provided to the
Challenge by Usborne Publishing Ltd. — consists of the speech
and text of 56 children’s audiobooks spoken by a British female
speaker. Just as last year, we made use of a segmentation of the
audiobooks carried out by two other Challenge participants'?
and kindly made available to other participants. The total dura-
tion of the audio is approximately 6 hours after segmentation.
Three audiobooks from the given corpus were held out to act as
an internal development set to gauge system performance be-
fore generating the final test data. The held-out data consists
of three full short stories: Goldilocks and the Three Bears, The
Boy Who Cried Wolf and The Enormous Turnip, having a total
combined duration of approximately 10 minutes.

2.1.1. Sentence selection

For sentence selection, we have followed the same approach as
for the 2016 and 2017 challenges. For clarity, we repeat the
procedure followed in our previous entries [1, 2].

Harnessing the variety of speaking styles present in
expressively-read audiobooks might enable us to produce less
robotic-sounding TTS systems. However, initial experiments
showed that the extreme variation in parts of the training data
for the Challenge resulting in poor unit selection. We therefore
filtered the data using the active learning approach described
in [11]: 198 utterance-level acoustic features are extracted, and
15 sentences initially labelled as keep or too expressive by an
expert listener. Uncertainty sampling [12] using an ensemble
of decision trees was then used to select a further informative
sample to be hand-labelled; this process continued for 20 min-
utes (real time). A classifier built on the entire set of hand-
labelled data was then used to determine the subset of avail-
able sentences to be used for training. 20% of the training sen-
tences were discarded in this way; informal comparison sug-
gested this resulted in more stable synthesis with fewer unwar-
ranted prosodic excursions.

2.2. Text processing

The text processing part of our system is identical to that used
in the 2017 challenge [2], but we repeat a description of it here
for completeness. We used Festival’s English front-end with
the British received pronunciation version of the Combilex lex-
icon [13]. 163 items were added to cover words appearing
in the training data but otherwise absent from the dictionary.
Word and syllable level vector representations were included,
according to the method described in [14]. These were learned
by taking counts of acoustic events of f0 and energy stylized
by clustered vectors and mean values defined over syllables or
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words. The training data available for the Challenge was used
to learn these matrices. We performed experiments using vec-
tors representations learned over a larger database of a differ-
ent speaker, but we have observed that results were comparable
with speaker-dependent vectors learned on a smaller database.

2.3. Parametric system

As mentioned above, the statistical models used to predict du-
ration and acoustics in our entry are identical to those used for
our 2017 entry [2]; details of these models are repeated here
for completeness. A conventional two-stage approach was used
to predict acoustics: in the first stage, a duration model is used
to predict phone durations which are then used to form frame-
level linguistic features. In the second stage, an acoustic model
is used to generate parameters from those linguistic features.

2.3.1. Feature extraction

Phone sequences were obtained from the text using Festi-
val [15]. Festvox’s ehmm method [16] was used to modify
the phone sequences by the insertion of acoustically-motivated
pauses. A state-level forced alignment of these phone sequences
with the sentence-segmented audio was then obtained using
context-independent HMMs, similar to [17]. Each phone was
then characterised by a vector of 481 text-derived binary and
numerical features — a subset of the features used as decision-
tree clustering questions in the HTS demo [18], adapted for our
phoneset.

These questions include linguistic contexts such as quin-
phone identity which are added at the phone level, and part-
of-speech, positional information relating to syllables, words,
phrases, etc. All numerical features are given as input (after
appropriate normalisation) directly to the network, and not en-
coded as (for example) 1-of-k.

For duration modelling, all these features were used as in-
put and normalised to the range of [0.01, 0.99]. The output
for training is a five-dimensional vector of durations for every
phone, comprising five sub-state durations.

For acoustic modelling, the input uses the same features
as duration prediction, to which 9 numerical features were ap-
pended. These capture frame position in the HMM state and
phoneme, state position in phoneme, and state and phoneme
duration, similar to [17].

The speech data was analysed with STRAIGHT [19], and
each Sms frame was represented using 60 mel cepstral coeffi-
cients (MCC), measures of aperiodicity in 25 frequency bands
(BAP), logarithmic Fjy interpolated through unvoiced regions,
and a binary voicing feature. These 87 static features were
supplemented with delta and delta-delta features, and for both
the duration and acoustic data, a per-component mean and vari-
ance normalisation was applied prior to model training, with the
transformation reversed as part of synthesis.

2.3.2. Duration model

The duration model trained for our entry to the challenge made
use of a simple and straightforward approach with feed-forward
neural networks (DNNs) as demonstrated in [20, 21]. The du-
ration model is trained on the aligned data and generates state-
level durations given phone-level linguistic features.

The described approach was used only to generated dura-
tions, which were then used to form frame-level linguistic fea-
tures used as input in the generation of acoustic parameters. In
contrast to last year’s entries, duration predictions are used to

compute part of the target cost when performing unit selection
(see Section 2.4).

Inputs to the duration model consist of 481 binary and con-
tinuously valued features. Its output is a 5-dimensional vector
representing state durations in terms of frames. The duration
model’s architecture consisted of 6 feedforward hidden layers,
each with 1024 nodes, using the tanh activation function. Mini
batch size was set to 64 and learning rate was set to 0.002, being
was reduced by 50% with each epoch after the first 10 training
epochs.

2.3.3. Acoustic model

The linguistic features extracted from the front-end were con-
verted to numerical vectors using a set of continuous and bi-
nary questions [10]. To these, we appended the syllable and
word level vector representations based on acoustic counts [14].
The durations generated by the duration model described above
were used to propagate all feature to frame-level. These frame-
level feature vectors were then used as input to an acoustic
model.

A feedforward neural network was trained at the frame-
level to map linguistic inputs to vocoder parameters consisting
of static and dynamic (delta and delta-delta) features. These
acoustic parameters include 60 mel-cepstra coefficients, 25
band aperiodicities, log-f0, and a binary voicing decision. Max-
imum likelihood parameter generation (MLPG) and postfilter-
ing are then applied to the generated acoustic parameters. In
SPSS these parameter trajectories would then be passed through
the vocoder to synthesize a speech waveform. Instead, we use
them as targets for selecting waveform units (see Section 2.4).

Inputs to the acoustic model consist of the same 481 fea-
tures used by the duration model. To these, we added syllable
and word level vector representations spanning a window of 3
units. To these were appended the nine frame-level features
described in [17]. The input vector to the acoustic models con-
sisted of a total of 1900 dimensions. The model consisted of
6 feedforward hidden layers, each with 1024 nodes, using the
tanh activation function. Mini-batch size was set to 256 and
remaining parameters were identical to the duration model.

2.4. Unit selection waveform renderer

For unit selection, we used the halfphone variant of the system
described in [4]. The system is summarised here for complete-
ness.

During database preparation, a five-state per phone HMM
alignment is used to define halfphone units. This is done by as-
signing the speech segment corresponding to the first two states
as one halfphone (the left halfphone of this phone), and speech
corresponding to the last three states as another halfphone (the
right). Acoustic features which we call target and join repre-
sentations are used for computing target and join components
of the unit search cost, respectively. The target representation is
the concatenation of two streams of acoustic features: a one di-
mensional value corresponding to the logarithm of fundamental
frequency (logFo) and 60-dimensional vector of STRAIGHT-
derived mel cepstral coefficients. For the join representation,
we used a 60-dimensional vector of mel-warped log magni-
tude spectrum extracted pitch-synchronously by the MagPhase
vocoder [22], logFo, and two streams of phase features ex-
tracted by MagPhase. We expect that the inclusion of these two
phase streams will yield a sequence of speech fragments with
fewer phase discontinuities. Standardisation was performed as
described in [3, 4]. Previous work [6, §IIB] has show that when



using imperfectly predicted acoustic representations as the basis
for a target cost, hybrid systems can compensate for this imper-
fection if trained with inputs degraded in a consistent way, by
regenerating the training data with the model trained on it. In-
formal experimentation when putting our entry together showed
that this helped for the mel cepstral coefficient part of the target
representation, but harmed performance when applied to logFy.
We attribute this to the fact that logF is predicted with more
variation and less predictability of error. Natural features were
therefore used everywhere except MCCs for the target stream,
where the regenerated version was used.

As the system operates at the level of the halfphone, the
frame-level features described must be mapped to representa-
tions at that rate. To obtain halfphone target representations of
fixed size we select three frames from the halfphone frame se-
quence. The first and last are simply the first and last frames in
a given halfphone. The middle frame is not necessarily equidis-
tant between those start and end points. Rather, its position is
chosen in relation to subphone state boundaries determined dur-
ing forced alignment, in the expectation that this will provide a
more acoustically meaningful point of reference. In practice,
we use the last frame of state one as the left halfphone’s middle
point and the last frame of state four for the right halfphone’s
midpoint. The halfphone unit’s representation is completed by
appending a standardised duration of the unit. To obtain the
join representation we store frames of join acoustic streams of
the start and end of each halfphone. For the unit representation
we store references to the start and end samples of the time do-
main signal. Finally, as well as this numerical data, we store the
symbolic phonetic identity of each unit: its quinphone identity
and whether it is the left or right halfphone in the phone.

Weighting of the various elements of the target and join
representations was performed as described in [3, 4]. Uniform
weights were used for the join representations, and weights of
0.1, 0.4 and 0.5 were used for the mel cepstral coefficient, log
FO and duration parts of the target representation, respectively.
These weights were determined by limited tuning on some held-
out data.

2.5. Speech synthesis

At synthesis time, duration is predicted first, and is used as
an input to the acoustic model to predict the speech parame-
ters. Maximum likelihood parameter generation (MLPG) [23]
using variances computed from the training data was applied
to the output features for synthesis, and spectral enhancement
post- filtering was applied to the resulting MCC trajectories.
The input to the unit search module consists of phonetic iden-
tities, predicted timings and predicted acoustic features which
are used to create acoustic ‘targets’ for unit selection. Con-
catenation and normalisation of streams is done as in training,
using means and standard deviations computed on the training
corpus. The halfphones are then resampled in time to a fixed
length, consistent with the representations of units in the train-
ing database. Viterbi search of the unit database is carried out.
We limit the search space by considering a limited number of
candidates (50) at each time step. We filtered them according to
phonetic type by first taking all units from the database whose
quinphone context matches that of the target unit, if any, then
do the same for successively more limited contexts: triphone,
diphone, and context-independent halfphone, until the desired
number of candidates has been selected. In the case of diphone,
the direction of context considered depends on whether the tar-
get to be matched is the left or right half of a phone. Unit

search is treated as a weighted finite-state transducer problem:
the target cost is imposed by WEST T and the join cost by J.
The composition of these produces a WEST whose productions
are constrained by both types of cost. The least-penalised path
through it is found, corresponding to a sequence of units from
the database, whose associated waveform fragments can then
be concatenated. Target and join costs are (in effect weighted)
Euclidean distances between target and join representations, re-
spectively.

2.6. Concatenation and join smoothing

At unit concatenation time, the time domain signal correspond-
ing to each halfphone is retrieved and analysed on-the-fly with
MagPhase [22]. It extracts pitch synchronous speech features
in a frame-by-frame basis, describing the complex spectra and
FO contour. The correction/smoothing operations are performed
over these features to produce seamless concatenation of units.
This process is identical to that used in the 2017 challenge [2],
but we repeat a description of it here for completeness.

2.6.1. Concatenation and correction of FO contours

The F'0 mid point (F'0,,) between two consecutive units is
given by F0,, = (FO0,[N, — 1] + F0.[0])/2, where p means
preceding unit, ¢ current unit, and /V is the unit length in frames.

Then, the slope of the FO contours of both units are adjusted
to reach the F'Op, just in the join location. The corrected F'0
contours are computed by the Equations 1 and 2.

FOL[ne] = FO[ne] + (FO,, — FO.[0]) - (1 fN + 1) (1)

Np

FO;’[”P} = FOp[np] + (FOm — FO,[Np —1]) - N —1
p

@

Where F0’ is the corrected F'0, and n is the frame index within
each unit. After having all the corrected F'0 contours for all the
units, these are appended building a single £'0 contour for the
whole sentence.

2.6.2. Spectral concatenation and smoothing

Concatenation and smoothing is performed by overlapping and
crossfading the complex FFT spectra of two consecutive units.
Some extra frames are extracted from the sources, so the units
can be overlapped without affecting their expected locations in
the synthesised waveform. Three extra frames on each side of
the units are extracted from the sources, thus an overlap of seven
frames around the joins is produced.

The FFT complex spectrum S is derived from the parame-
ters proposed in [22], M, R, and I, by S = M - (R+ Ij). The
crossfade is linearly applied to mix the FFT complex spectra of
two consecutive units, progressively. It is seven frames length,
and in case that a unit is too short, the crossfade is shortened
accordingly.

After performing this operation on every join, the FFT com-
plex spectra of all the units are concatenated producing a single
complex spectra stream, that describes the whole utterance.

Finally, the signal is synthesised by converting the FFT
complex spectra to time domain, and applying Pitch Syn-
chronous Overlap-Add as explained in [22], using the corrected
F0’ contour.
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Figure 1: Our system(L): Mean opinion score for naturalness
of the synthesized speech with ratings from all listeners.

2.7. Paragraph-level synthesis

From the sentences synthesised in this way, files were made
containing whole paragraphs, chapters and books as required
by the Challenge by simply concatenating the waveforms, ex-
actly as for our entry in the 2016 and 2017 challenges. While
proper exploitation of long-distance contexts ought to improve
synthesis quality, no contexts outside the current sentence were
used for the present submission.

3. Results

The identifier for our system in the published results is L. We
base the results discussion presented here on the published sta-
tistical analysis of the results that was made at 1% level with
Bonferoni corrected alpha [24].

3.1. Naturalness

In Figure 1 we present the mean opinion scores for naturalness
from all listeners on book sentences. Our system significantly
outperformed two (C and E) out of the four baselines (systems
B, C, D and E). Among the 10 other systems participating in
the challenge, ours is outperformed only by three (K, I and J).
The same trend was observed for results obtained when consid-
ering the scores of paid listeners only. For paid participants our
system was outperformed only by system K while for volun-
teers our systems scores were significantly different only from
the two best and the two worst systems.

3.2. Speaker similarity

The speaker similarity mean opinion scores from all listeners
on book sentences are shown in Figure 2. Considering ratings
from all listeners, only system K was significantly better than
ours. For the three individual listener groups our system was
not outperformed by any other.

Mean Opinion Scores (similarity to original speaker) - All listeners

Score
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n 251 251 251 251 251 251 251 251 251 251 251 251 251 251 251

A K I J L M B D E F G Cc o H N
System
Figure 2: Our system(L): Mean opinion score for speaker simi-
larity with ratings from all listeners.

3.3. Evaluation of audiobook paragraphs

The results for the evaluation of audiobook paragraphs have
been obtained for several factors: stress, intonation, emotion,
pleasantness, listening effort, speech pauses and overall impres-
sion. We present ratings from all listeners on overall impression
in Figure 3. Following the trend observed for the naturalness
scores, we note that, in terms of overall impression, our system
was significantly outperformed only by systems K, I and J.

3.4. Intelligibility (SUS)

The intelligibility results obtained by our entry were not as pos-
itive as other results: only system H was significantly less intel-
ligible than our system. These results show that our system is
not as effective on intelligibility as it is on naturalness.

4. Conclusions and future work

For this year’s CSTR Blizzard Challenge entry we adopted the
same SPSS system used for the hybrid system submitted for last
year [2] with a different unit selection component based on the
halfphone variant of the system described in [3, 4].

Apart from the intelligibility evaluation, the results ob-
tained by our system are on the whole very positive. There are
a few number of potential future improvements which could be
made to the hybrid synthesis system described here. These in-
clude adopting consistent lexicon-lookup for both the SPSS and
unit selection systems, restricting the unit search with a set of
higher level acoustic targets and the prediction of phrase breaks.

Reproducibility: We used the Open Source toolkits Merlin®
for parameter prediction and Snickery* for unit-selection.
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