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ARTICLE

Adrenal hormones mediate disease tolerance in
malaria
Leen Vandermosten 1, Thao-Thy Pham1, Sofie Knoops1, Charlotte De Geest1, Natacha Lays1,

Kristof Van der Molen1, Christopher J. Kenyon2, Manu Verma2, Karen E. Chapman 2, Frans Schuit 3,

Karolien De Bosscher 4, Ghislain Opdenakker 1 & Philippe E. Van den Steen 1

Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation.

Disease tolerance mechanisms counter these negative effects without decreasing pathogen

load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones

confer disease tolerance and protect against early death, independently of parasitemia.

Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing

circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore,

without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes

exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection.

This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In

contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypogly-

cemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude

that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead,

they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby

contributing to tolerance.
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Malaria is a devastating parasitic disease, leading to an
estimated 216 million clinical cases and 445,000 deaths
in 20161. The infection can evolve as an uncomplicated

febrile disease or develop into complications that include cerebral
malaria (CM), severe malarial anemia, placental malaria, hypo-
glycemia and malaria-associated acute respiratory distress syn-
drome (MA-ARDS). These complications cannot be efficiently
cured by current antimalarial drugs, despite the effective inhibi-
tion of parasite growth. Complicated malaria has a mortality of
about 15% for CM and up to 80% for MA-ARDS2,3. Malarial
complications can be inflicted by the parasite and/or by an
exaggerated immune reaction4. Therefore, protection against
malaria complications not only involves pathogen clearance. Also
host defense mechanisms that do not interfere with the pathogen
load enable the host to limit the consequences of the infection.
This so-called disease tolerance can protect against severe
pathology. For example, tolerance to malaria has been linked to
heme oxygenase-1 and to the iron sequestering protein ferritin5,6.

The adrenal cortex synthesizes glucocorticoids (GCs; mainly
cortisol in humans and corticosterone in rats and mice) and
mineralocorticoids. Adrenalin and noradrenalin are synthesized
in the adrenal medulla. Together, these hormones regulate the
homeostasis of critical physiological processes. GCs are produced
in a circadian manner and upon activation of the hypothalamic
pituitary adrenal (HPA) axis, during stress/trauma, infection or
systemic inflammation7. They influence many processes ranging
from metabolism, immunity, bone remodeling, cardiovascular
function, reproduction and cognition8. GCs are well-known for
their anti-inflammatory properties and have differential effects on
various leukocyte subtypes9,10. In addition, gluconeogenesis,
protein catabolism and lipolysis in, respectively, liver, muscle and
adipose tissue contribute directly or indirectly to increased glu-
cose levels in response to GCs11. Adrenalin is also produced as
reaction to stress conditions to restore homeostasis, comprising
the ‘fight-or-flight’ response.

Of the adrenal hormones, only GCs are increased upon human
malaria infection. Blood cortisol levels are increased in Plasmo-
dium falciparum- or Plasmodium vivax-infected patients, com-
pared to healthy controls12–14. One study also showed higher
cortisol levels in P. falciparum-infected patients with CM com-
pared to uncomplicated malaria15. Despite the established find-
ings of increased GC levels in patients infected with malaria, their
functional role has received no recent attention. Studies in the
1980s concluded that in immunized mice, pregnancy-associated
increases in corticosterone levels cause the loss of malarial
immunity and more recrudescences16–18. An earlier and limited
study reported that adrenalectomy reduced survival of NMRI
mice after P. berghei K173-infection, though the mechanism was
not explored19.

Here, adrenalectomy was performed to investigate the impor-
tance of adrenal hormones in experimental malaria. Several
mouse-parasite strain combinations were used. Infection of
C57BL/6 mice with P. chabaudi AS (PcAS) is a model of resolving
malaria with a non-lethal transient parasitemia accompanied by
liver inflammation20. P. berghei NK65 Edinburgh strain
(PbNK65-E)-infected BALB/c mice represent a model of non-
resolving malaria; the mice fail to clear the infection and die in a
late phase due to hyperparasitemia and anemia22. In a model of
hyperinflammatory malaria, infection of C57BL/6 mice with
PbNK65-E induces MA-ARDS, a lethal complication character-
ized by excessive lung inflammation21. Since important differ-
ences exist between malaria parasites that can infect normocytes
versus parasites restricted to reticulocytes, we also included
C57BL/6 mice infected with PbNK65 New York strain (PbNK65-
NY), which predominantly infects reticulocytes22. Our data
indicate that infection of adrenalectomized (Adx) mice leads to

early lethal hypoglycemia and increased inflammation. The
hypoglycemia is insulin- and TNF-α-independent and is paral-
leled by exhaustion of hepatic glycogen stores without increased
gluconeogenesis. This phenotype can be rescued by dex-
amethasone (DEX) treatment. Therefore, adrenal hormones are
essential for disease tolerance in malaria.

Results
Adrenal glands are crucial for disease tolerance in malaria. To
investigate whether adrenal hormone production is essential to
survive malaria infection, the adrenal glands were surgically
removed from C57BL/6 and BALB/c mice, at least 16 days prior
to infection. Sham-operated (Sham) mice were used as controls.
C57BL/6 mice were infected with PbNK65-E, PcAS or PbNK65-
NY. BALB/c mice were also infected with PbNK65-E. Adx mice
showed no increase in plasma corticosterone levels upon infec-
tion, in contrast to Sham mice (Supplementary Fig. 1a,b). Non-
infected control Adx and Sham mice did not show any clinical
symptoms and survived the experiment.

Importantly, early lethality was observed in the four mouse-
parasite combinations, without affecting parasitemia. Infection of
Adx BALB/c mice with PbNK65-E caused lethality from 6 until
12 days post infection (p.i.) at a parasitemia of less than 10%,
whereas the Sham-operated mice progressed later to hyperpar-
asitemia and anemia (Fig. 1a). PcAS-infected Adx C57BL/6 mice
died between 8 and 10 days p.i., while the corresponding Sham
mice all survived the transient parasitemia peak (Fig. 1b).
PbNK65-E-infected Adx C57BL/6 mice died 8 or 9 days p.i.,
whereas MA-ARDS in the Sham mice caused death around
11 days p.i. (Fig. 1c). Remarkably, although none of the Sham
PbNK65-NY-infected mice died before 21 days p.i, almost all
PbNK65-NY-infected Adx mice died 6–8 days p.i. at an average
parasitemia as low as 1.6% (Fig. 1d).

Overall, this demonstrates, with four different animal models,
that adrenalectomy does not influence parasitemia levels and that
—regardless of the mouse-parasite combination—early mortality
follows infection of Adx mice. Therefore, the adrenal glands are
essential for disease tolerance in malaria.

To assess whether adrenalectomy affects other aspects of
disease progression, body weight loss and disease severity were
monitored. In all four animal models, the clinical disease score
was higher in Adx mice upon infection compared to Sham mice
(Supplementary Fig. 2, right panels). Adrenalectomy did not
change body weight loss in PcAS-infected mice, caused a slightly
earlier body weight loss in PbNK65-E-infected mice and
significantly increased body weight loss in PbNK65-NY-infected
mice (Supplementary Fig. 2, left panels). Thus, adrenalectomy
increases the disease severity following malaria infection and,
dependent on the mouse-parasite combination, aggravates loss of
body weight.

Adrenalectomy does not affect peripheral pathology. In further
experiments, we focused on PbNK65-E-infected BALB/c and
PcAS-infected C57BL/6 mice, because these two models differ in
mouse strain, parasite strain and resolving versus non-resolving
infection in Sham mice. We investigated whether the
adrenalectomy-induced mortality is related to malaria-associated
anemia, liver damage, pulmonary pathology or kidney dysfunc-
tion. Therefore, Adx PbNK65-E-infected BALB/c and PcAS-
infected C57BL/6 mice were examined when they had developed
a clinical score of at least 3 (between 6 and 7 days p.i. for
PbNK65-E and 8 and 10 days p.i. for PcAS), and were simulta-
neously compared to a corresponding number of infected Sham
mice with similar parasitemia.
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Fig. 1 Adrenalectomy reduces survival following infection, without affecting parasitemia. Sham-operated (Sham) and adrenalectomised (Adx) BALB/c mice
(a) or C57BL/6 mice (b–d) were injected with Plasmodium berghei NK65 Edinburgh strain (PbNK65-E; a and c), Plasmodium chabaudi AS (PcAS; b) or
PbNK65 New York strain (PbNK65-NY; d). Survival of Adx and Sham mice was monitored daily. In each experiment, non-infected Sham and Adx mice were
included and these all survived the observation period (not shown). The peripheral parasitemia of infected mice was determined at the indicated time
points and shown as means ± SEM. Graphs represent two or three separate experiments and the numbers of mice are as follows: a Sham, n = 14; Adx, n =
13; b Sham, n = 8; Adx, n = 9; c Sham, n = 10; Adx, n = 9; d Sham, n = 12; Adx, n = 10. No parasitemia of Adx mice is shown where two or fewer mice
remained alive: after day 9 (a, b) or day 8 (c). Daggers (†) indicate when at least one mouse died or was euthanized when it reached the humane
endpoints. Asterisks indicate significance levels by Log-rank test. ** p < 0.01, *** p < 0.001, ****p < 0.0001
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Pulmonary pathology was determined by measuring the lung
weight and protein content in the bronchoalveolar lavage fluid
(BALF). Adrenalectomy did not affect lung weights in PbNK65-
E-infected Adx BALB/c compared to Sham mice (Fig. 2a),
whereas an increase in lung weight was observed in PcAS-infected
Adx C57BL/6 compared to Sham mice (Fig. 2g). However, no
difference was seen in protein content in the BALF between
infected Adx and Sham mice, indicating that the mortality of Adx
mice is not related to alveolar edema (Fig. 2b, h). Furthermore, in
Adx mice, the accumulation of parasites in the lungs was
comparable (Fig. 2c) or even lower than in Sham mice (Fig. 2i),
despite similar peripheral parasitemia. Adrenalectomy did not
consistently affect the pulmonary levels of mRNA encoding TNF-
α, CCL2 (monocyte chemotactic protein-1; MCP-1) and CXCL10
(IFN-γ induced protein-10; IP-10) (Fig. 2d–f, j–l). Nevertheless,
the increase in pulmonary CCL2 expression in Adx mice upon
PcAS infection was significantly greater than that in Sham mice
(Fig. 2k).

Liver pathology was assessed by measurement of markers of
liver damage. Infection with PcAS, but not with PbNK65-E,
increased plasma alanine aminotransferase (ALT) levels in Adx
mice (around 250 IU/L). This suggests greater liver damage in
Adx compared to Sham mice after PcAS infection (Supplemen-
tary Fig. 3a,b). However, these increased ALT levels are unlikely
to indicate liver damage that is sufficient to cause an abrupt death,
since non-operated PcAS-infected C57BL/6 mice exhibit tenfold
higher ALT levels (up to 3000 IU/L) at a later time point without
any lethality20. Accumulation of PcAS parasites, which are known
to sequester in the liver, was lower in infected Adx mice
(Supplementary Fig. 3c). To investigate whether death of infected
Adx mice was associated with increased hepatic pro-
inflammatory cytokine expression, several mRNA transcripts
were measured in the liver. In accordance with previous
observations20, infection with PcAS increased hepatic levels of
several mRNAs encoding pro-inflammatory cytokines. No
significant differences in levels of mRNAs encoding IL-1β or
IL-6 were seen between Adx and Sham mice (Supplementary
Fig. 3f,g). CCL2 and TNF-α mRNA levels were even lower in Adx
than in Sham mice (Supplementary Fig. 3d,e). This reinforces the
notion that liver inflammation is not the cause of death in the
PcAS-infected Adx mice.

Although hemoglobin levels were decreased upon infection, no
differences between Adx and Sham mice were observed
(Supplementary Fig. 3h). Furthermore, kidney function, assessed
by urinary albumin/creatinine ratio, was similar between groups
(Supplementary Fig. 3i).

Altogether, these data indicate that adrenalectomy does not
affect parasite growth or accumulation, nor does it affect anemia,
liver, lung or kidney function. The observed lethality must
therefore be due to other causes.

Adrenalectomy increases brain inflammation upon infection.
In the experimental malaria models used, neurological symptoms
developed in infected Adx mice (Supplementary Movie 1).
Therefore, levels of mRNA transcripts encoding inflammatory
cytokines and chemokines were measured in the brain (Fig. 3).
Notably, the upregulation of the pro-inflammatory TNF-α, IL-1β,
IL-6 and CCL2 was significantly higher in PbNK65-E and PcAS-
infected Adx compared to Sham mice (Fig. 3a–d, j–m). In general,
mRNAs encoding the chemokines CXCL6 (granulocyte chemo-
tactic protein-2; GCP-2) and CXCL10 were differentially upre-
gulated in PbNK65-E and PcAS-infected Adx compared to Sham
mice (Fig. 3e, f, n, o). Furthermore, the levels of mRNA encoding
the nitric oxide-producing enzyme, inducible nitric oxide syn-
thase (iNOS), showed a higher increase in Adx compared to

Sham mice upon PbNK65-E and PcAS infection (Fig. 3h, q),
whereas the expression of reactive oxygen producing NADPH
oxidase 2 (NOX-2) was not affected (Fig. 3g, p). The higher
expression of cytokines, chemokines and iNOS in brains of Adx
mice was not the consequence of greater parasite accumulation in
the brain, as levels of parasite 18S RNA were either similar (in
PbNK65-E-infected BALB/c; Fig. 3i) or lower (in PcAS-infected
C57BL/6; Fig. 3r) in Adx compared to Sham mice.

To investigate leukocyte infiltration of the brain, immunohis-
tochemistry was performed with an anti-CD45 antibody on
sagittal brain sections of PcAS-infected C57Bl/6 mice (Fig. 4a).
More intense immunoreactivity was observed in infected mice
compared to uninfected controls. However, no major differences
were found between Adx and Sham mice in any region of the
brain. Therefore, flow cytometry was performed to quantify
leukocytes in the brain (Fig. 4b–i and Supplementary Fig. 4).
Amongst the infiltrating cell populations, numbers of CD4+ T
lymphocytes and neutrophils were greater in Adx versus Sham
mice (Fig. 4c, e). The infection did not alter the number of
microglia, as identified by the specific Tmem119 marker23

(Fig. 4g), but increased their activation state, as determined by
elevated MHC class II expression levels (Fig. 4h, i). However,
activation did not differ between Adx and Sham infected mice.
Together, the increased cerebral cytokine expression levels and
numbers of locally recruited neutrophils and CD4+ T cells
indicate that malaria infection leads to an increased inflammatory
activity in the brain of Adx compared to Sham mice.

Plasma cytokines are elevated in PcAS-infected Adx mice.
Adrenalectomy enhances endotoxin-induced lethality related to
increased circulating cytokines24. Hence, we assessed the impact
of adrenalectomy on plasma cytokine and chemokine levels fol-
lowing infection with PcAS. Plasma levels of TNF-α, IFN-γ, IL-6,
IL-10, CXCL10, CCL2 and IL-4 were all increased upon infection
(Supplementary Fig. 5). Of these, TNF-α, IFN-γ, IL-6 and IL-10
were elevated to a greater extent in Adx compared to Sham mice.
The expression of TNF-α, IFN-γ, IL-6, IL-10 and IL-1β was also
examined in the spleen (Supplementary Fig. 6). Only the levels of
mRNAs encoding IL-6 and IL-1β were increased in spleens of
infected Adx compared to Sham mice, while the level of the
mRNA encoding TNF-α was even decreased.

In summary, these data indicate that the severe pathology in
infected Adx mice is associated with raised levels of cytokines,
both in the brain and in the circulation. Notably, adrenal
hormones differentially affect inflammation in the brain and
circulation versus the liver and lungs.

Lethal hypoglycemia develops in infected Adx mice. Since GCs
and adrenalin have glucose-regulating properties, and malaria
may be complicated by hypoglycemia, the effect of adrenalectomy
on blood glucose levels was assessed. In general, glucose levels
decreased after infection (although not significantly for PbNK65-
E-infected Sham BALB/c mice; Fig. 5a, h). However, the drop in
plasma glucose levels was considerably greater in infected Adx
mice compared to infected Sham mice. The hypoglycemia was
most marked in PcAS-infected Adx mice. To determine how
generally applicable this finding was, glycemia was also measured
during the course of infection of Adx and Sham C57BL/6 mice
with PbNK65-E or PbNK65-NY (Supplementary Fig. 7). In these
two models, severe hypoglycemia developed within 9 days after
infection. This marked hypoglycemia was sufficient to cause
death, as plasma glucose levels below 50 mg/dL cause functional
brain failure and coma, and levels below 20 mg/dL result in rapid
brain death25.
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Fig. 2 Adrenalectomy has no major effect on malaria-induced pathology and inflammation in the lungs. Sham and Adx BALB/c mice (a–f) or C57BL/6 mice
(g–l) were infected with PbNK65-E or PcAS, respectively. Infected mice were euthanized and dissected at 6 to 7 days p.i. (PbNK65-E) or 8 to 9 days p.i.
(PcAS). a, gWeight of left lungs. b, h Bronchoalveolar lavage fluid (BALF) samples were collected and the protein contents of centrifuged supernatants was
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Only in PbNK65-E-infected C57BL/6 mice, glucose levels
correlated negatively with parasitemia (Supplementary Fig. 7b),
but not in the other three models (Supplementary Fig. 7f and
Supplementary Fig. 8a-b). Also, although glycemia correlated
negatively with plasma ALT levels after infection with PcAS
(Supplementary Fig. 8d), no correlation was observed after
infection with PbNK65-E (Supplementary Fig. 8c). Consistent
with hypoglycemia being a major life threat, glycemia correlated
negatively with the clinical score (Supplementary Fig. 7d, h).

Furthermore, plasma glucose levels correlated negatively with
brain levels of mRNAs encoding TNF-α, IL-1β, IL-6, CCL2 and
iNOS, suggesting that hypoglycemia and the expression of these
pro-inflammatory markers might be linked (Supplementary
Fig. 8e–n). With the exception of IL-4, cytokine and chemokine
concentrations in the plasma also correlated negatively with
plasma glucose levels (Supplementary Fig. 8o–u).

Besides hypoglycemia, hyperlactatemia and lactic acidosis may
complicate malaria infections and may result from an increased
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Fig. 3 Pro-inflammatory cytokine and chemokine expression is increased in the brain of Adx mice upon infection. Sham and Adx BALB/c mice or C57BL/6
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compared to the uninfected control group. Data from at least two separate experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001
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glycolytic flux. Blood lactate levels were increased in Adx mice
upon infection but were not different from Sham infected mice
(Fig. 5b). A modest negative correlation was found with the blood
glucose levels (Supplementary Fig. 8×).

As an alternative energy source for glucose, plasma levels of
free fatty acids (FFA) are increased after stimulation of lipolysis in
adipose tissue by adrenalin and GCs. Nevertheless, plasma FFA
levels were not decreased in PcAS-infected Adx compared to
Sham mice (Fig. 5c), indicating that limiting levels of FFA were
not driving the hypoglycemia.

A deficiency in glycogenolysis as well as an insufficient
gluconeogenic response might lead to hypoglycemia. Therefore,
glycogen levels were measured in liver extracts (Fig. 5d).
Glycogen stores decreased upon infection of Sham mice and
were fully depleted in infected Adx mice, suggesting that hepatic
glycogen was consumed and exhausted during the infection of

Adx mice. In order to investigate possible alterations in hepatic
gluconeogenesis, levels of mRNAs encoding the two main
gluconeogenic flux-controlling enzymes, glucose-6-phosphatase
(G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) were
measured. Expression did not differ between Adx and Sham
C57BL/6 mice or BALB/c mice upon infection with either PcAS
(Fig. 5e, f) or PbNK65-E (Fig. 5i, j), respectively. Remarkably,
despite the increased corticosterone levels in Sham mice upon
infection, expression of PEPCK was not induced and G6Pase
expression was even decreased after infection. We also explored
the hepatic expression of peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1α), a GC-inducible
transcriptional coactivator which coordinates the expression of a
wide array of genes involved in glucose and fatty acid metabolism.
Surprisingly, neither infection, nor adrenalectomy affected the
expression of PGC1α (Fig. 5g, k). These data thus indicate that
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the hepatic gluconeogenic transcriptional response is diminished
after malaria infection, despite increased GC levels.

Altogether, these findings point to adrenal hormones being
crucial in malaria infections to maintain blood glucose levels. In
Adx mice, hepatic glycogen was completely exhausted and thus
unable to prevent the development of severe hypoglycemia. The
classical glycemia-regulating mechanisms of adrenal hormones
include the transcriptional induction of a gluconeogenic response
in the liver and the increase of FFA plasma levels. However, this
did not occur upon malaria infection suggesting that adrenal
hormones confer protection against hypoglycemia through other
mechanisms.

Glucose supplementation fails to rescue infected Adx mice. To
test whether glucose supplementation could alleviate the severe
hypoglycemia, PcAS- or PbNK65-E-infected Adx mice were
provided with drinking water supplemented with glucose (5% wt/
vol) and additionally, if blood glucose levels fell below 100 mg/dL,
an intraperitoneal (IP) injection of 2 g/kg. Remarkably, glucose
supplementation did not prevent the lethal effect of infection in
Adx mice (Fig. 6a, f) nor was it sufficient to prevent or reverse the
hypoglycemia (Fig. 6d, e, i, j). In only 18% (2/11) or 40% (4/10) of
the PbNK65-E or PcAS-infected Adx mice, respectively, the first
IP injection was able to increase blood glucose levels with 100 mg/
dL in 30 min (Fig. 6b, g). The parasitemia was unaffected by
glucose administration (Fig. 6c, h). With or without glucose
supplementation, the blood glucose levels correlated significantly
with the clinical score (Fig. 6k, l), in line with earlier results
(Supplementary Fig. 7d,h).

Adrenalectomy-induced hypoglycemia is not caused by insulin.
Insulin and glucagon are essential pancreatic hormones that
regulate glycemia. Plasma glucagon levels were highly increased
in infected Adx mice with hypoglycemia (Fig. 7a and Supple-
mentary Fig 8w), suggesting that pancreatic α-cells reacted cor-
rectly to the low glycemia. Plasma insulin levels were not
increased in PcAS-infected Adx mice compared to Sham mice,
but were not suppressed either, despite the severe hypoglycemia
(Fig. 7b). In fact, insulin levels did not correlate with glucose
levels (Supplementary Fig. 8v). Since the administered glucose
was rapidly cleared from the circulation (Fig. 6) and insulin levels
were not decreased in the hypoglycemic infected Adx mice, we
tested whether suppression of insulin release could alleviate the
hypoglycemia. PcAS-infected Adx mice were treated with cloni-
dine (Fig. 7c-i), an α2-adrenergic agonist, because it is well
documented that α2-adrenergic agonism inhibits insulin-
secretion from β-cells of the pancreas26,27. Clonidine treatment
indeed drastically decreased plasma insulin levels (Fig. 7c). In
mice with glycemia levels above 100 mg/dL, this resulted in
marked but transient increases in glycemia (Fig. 7i). The average
clinical score in the clonidine-treated mice was also lower
(Fig. 7h). However, clonidine treatment did not significantly
improve the survival of the mice (Fig. 7d) and was, despite dra-
matically decreased insulin levels, unable to restore or increase
glycemia in most of the mice that developed hypoglycemia
(Fig. 7i). Parasitemia or weight loss also did not differ (Fig. 7e, f).
Together, these data indicate that inappropriate release of insulin
is not the driver of hypoglycemia in the Adx mice.

TNF-α neutralization is not sufficient to prevent lethality. In
the infected Adx mice, TNF-α was one of the most increased
cytokines in the circulation (Supplementary Fig. 5) and brain
(Fig. 3). Since, amongst the increased cytokines, this was the main
cytokine able to cause acute lethality, we performed TNF-α
neutralization experiments with a monoclonal antibody in PcAS-

infected Adx mice. Survival was unaltered by TNF-α neutraliza-
tion (Fig. 8a). Moreover, parasitemia, body weight loss and
clinical score were only minimally affected (Fig. 8b–d). The PcAS-
infected Adx mice still developed lethal hypoglycemia following
TNF-α neutralization (Fig. 8f). These findings indicate that sup-
pression of TNF-α is not sufficient to protect against lethal
hypoglycemia.

Dexamethasone treatment reverses the lethal phenotype. We
evaluated whether the lethal phenotype of PcAS-infected Adx
C57BL/6 mice could be rescued by treatment with a synthetic GC,
DEX. An IP injection of 3 mg/kg DEX was administered daily to
PcAS-infected Adx and Sham mice, from 4 or 5 days after
infection. DEX improved the survival of Adx PcAS-infected mice
(Fig. 9a) despite higher levels of parasitemia in treated compared
to untreated mice (Fig. 9d, g). Due to DEX side-effects (ascites
and gastro-intestinal complications) two out of nine infected Adx
mice had to be euthanized on day 14 or day 15 p.i., after their
peak in parasitemia. Following infection, DEX treatment did not
alter body weight loss or clinical score (Fig. 9e, f, h, i). Impor-
tantly, DEX increased plasma glucose levels in Adx mice at their
peak of parasitemia, 8 to 10 days p.i. (Fig. 9b), without sig-
nificantly affecting insulin levels (Fig. 9c). Surprisingly, the levels
of mRNAs encoding G6Pase, PEPCK and PGC1α were not
induced in the liver upon DEX treatment (Fig. 9j-l). However,
DEX did potently suppress the inflammatory cytokine expression
in the brain (Fig. 9m–o).

Together, these data show that the hypoglycemia in infected
Adx mice is not reversed by administration of glucose, by
blocking insulin release with clonidine or by neutralizing TNF-α.
In contrast, DEX treatment is able to increase the glycemia, to
suppress cerebral cytokine expression and to prevent lethality.

Discussion
In this study, we demonstrated that adrenal hormones confer
disease tolerance to murine malaria (Fig. 10). Without affecting
the pathogen load, adrenal hormones prevent the development of
severe hypoglycemia and suppress cytokine levels in the circula-
tion and brain but, surprisingly, not in the lungs or liver. Treat-
ment with the synthetic glucocorticoid DEX compensates for the
adrenalectomy after PcAS infection, indicating that GCs can
restore tolerance to malaria.

Our data show the crucial role of adrenal hormones in four
different mouse-parasite combinations, which mimic different
outcomes of malaria. This indicates the general applicability of
our findings in murine malaria. It is striking that in the model
with C57BL/6 mice infected with PbNK65-NY, adrenalectomy
resulted in death at low parasitemia (on average 1.5% infected red
blood cells), levels at which the Sham mice did not display any
symptoms. This suggests that adrenal hormones are essential for
disease tolerance in asymptomatic malaria. Although it is cur-
rently unclear whether these findings may be extrapolated to
humans, possibly it is of importance, since hundreds of millions
of people are asymptomatically infected with malaria28. A report
of adrenocortical and pituitary hyporesponsiveness in patients
with complicated malaria suggest that HPA axis dysregulation
might contribute to disease severity12.

Previously, the notion of disease tolerance has been applied to
malaria and other infection models. In malaria, tolerance
mechanisms have been ascribed to heme oxygenase-1, carbon
monoxide, ferritin and nitric oxide, though these mechanisms are
likely to be interlinked5,29,30. In the absence of one of these
mediators, the host loses its capacity to survive the infection,
irrespectively of the parasitemia. As a new tolerance mechanism
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Fig. 6 Supplementation with glucose does not rescue from hypoglycemia or lethality in infected Adx mice. Adx BALB/c mice mice were infected with
PbNK65-E (a–e and k) and Adx C57BL/6 mice with PcAS (f–j and l). Glucose supplementation was started 5 days p.i. via the drinking water (5% (wt/vol))
and by IP injection of a dose of 2 g/kg if the blood glucose levels fell below 100 mg/dL (dotted lines). In each experiment, non-infected Adx mice were
included and these all survived the observation period (not shown). a, f Survival of the mice was monitored daily. b, g Blood glucose levels were measured
before and 30 min after the first IP injection of glucose. c, h The peripheral parasitemia of infected mice was determined at the indicated time points. Data
are means ± SEM. Daggers (†) indicate when at least one mouse died or was euthanized when it reached the humane endpoints. d, e and i, j Morning and
afternoon blood glucose levels were measured. Each curve represents the glycemia course of an individual mouse, black curves (d, i) for untreated mice
and blue curves (e, j) for glucose-supplemented mice. Red dots indicate the last glucose measurement before death. k, l Spearman correlations between
blood glucose levels of both glucose-supplemented and untreated mice and the clinical score. Spearman r- and p-values are shown. Graphs represent two
separate experiments and the numbers of mice are as follows: n = 4 for uninfected controls, n > 10 for infected Adx without or with glucose
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Fig. 7 Inhibition of insulin secretion by clonidine cannot revert lethal hypoglycemia in PcAS-infected Adx mice. a, b Sham and Adx C57BL/6 mice were
infected with PcAS. Mice were euthanized and dissected at 8 to 10 days p.i. and plasma glucagon and insulin levels were measured. c–i Adx C57BL/6 mice
were infected with PcAS. Daily clonidine (CLO) treatment was started at 6 days p.i. by IP injection of a dose of 0.5 mg/kg or 1 mg/kg clonidine
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c Plasma insulin levels at 8 to 10 days after infection. The dotted lines represent the limits of detection. Each symbol represents data from an individual
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for Adx + CLO. * p < 0.05, ** p < 0.01, *** p < 0.001
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in malaria, we here show the importance of adrenal hormones,
which are essential to maintain a minimal glycemia.

Tolerance mechanisms have also been identified in bacterial
and viral infections and largely reflect metabolic adaptations of
the host. In an innovative study, Weis et al. linked the ability of
ferritin to prevent hypoglycemia with tolerance to sepsis31. This
was mediated by sustained expression of liver G6Pase. In another
elegant study, Wang et al. reported opposing effects of fasting on
tissue tolerance in bacterial versus viral infection32. Fasting
dampened bacterial inflammation since glucose stimulated brain

damage, whereas the outcome of a viral infection was favored by
glucose through attenuation of brain dysfunction.

The host nutritional status and metabolism influence the
immune function and outcome of infection, potentially affecting
pathogen clearance. In experimental CM, early dietary restriction
protects against neuropathology33. This is associated with an
increased capacity of the spleen to clear parasitized red blood cells
(RBCs). These effects have been attributed to decreased levels of
leptin, a host-derived adipokine, which activates mTORC1 in
splenic T cells. Conversely, a high-fat diet mediates oxidative
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stress in hepatocytes, preventing Plasmodium survival inside
hepatocytes34. Cumnock et al. propose that, in the P. chabaudi
chabaudi AJ murine model of malaria, the combination of
anorexia and severe anemia makes the host reliant upon glyco-
lysis. This is supported by the lethal effect of 2-deoxyglucose and
the improved survival after glucose supplementation35. Further-
more, circadian rhythms of food intake dictate the synchronicity

of the erythrocytic stage of PcAS36,37. Many studies addressing
the relevance of metabolism to malaria focus on the metabolism
of the parasite38–40. Importantly, metabolic changes in patients
with malaria contribute considerably to the severity of disease.
Lactate acidosis and hypoglycemia are key indicators of a poor
prognosis41,42. Also, altered blood concentrations of glycerol,
alanine and arginine point to a general metabolic impairment in
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Plasmodium-infected patients42–44. Hypoglycemia in patients
with malaria can, on the one hand, be explained by an increased
glucose uptake by the parasite and the febrile host. On the other
hand, host glucose production may be impaired45. Here, we
clearly demonstrate that in murine malaria models, adrenal
hormones promote host survival and prevent the development of
severe hypoglycemia upon infection, independently of the para-
site burden. The glucose counter-regulatory effects of adrenal
hormones are thus essential to survive malaria. Hypoglycemia has
been described in other studies of murine malaria models46–50

and the group of Elased et al. even ascribed it to increased insulin
levels46,51. In this study, we show that insulin is not driving the
hypoglycemia, since insulin levels were not increased in infected
Adx mice and potent inhibition of insulin release by clonidine
could not reverse the hypoglycemia. Of note, in malaria patients,
hypoglycemia only develops in an insulin-dependent manner
upon quinine treatment (quinine induces insulin), whereas in
patients not treated with quinine, life-threatening hypoglycemia
also develops in an insulin-independent way, similar to our
observations in mice52.

Adrenalin and GCs both regulate glucose homeostasis during
conditions of stress. In rats, adrenalectomy increases the glyco-
lytic flux, decreases gluconeogenesis and rapidly depletes

glycogen stores in brain astrocytes53. GCs stimulate hepatic gly-
cogen synthesis and gluconeogenesis54. In particular, fasting-
induced hepatic expression of the gluconeogenic enzymes G6Pase
and PEPCK is dependent on GC action, and DEX treatment
typically induces the expression of these molecules55. PGC-1α is a
crucial coactivator of the GC receptor in the activation of the
gluconeogenic program in the liver, and can also be induced by
glucagon56. Since malaria infection in mice results in anorexia-
associated weight loss33,35, and in view of the increased metabolic
demands and elevated corticosterone levels, one would expect
increased expression of gluconeogenic enzymes and PGC-1α
upon infection of Sham mice. However, this was not the case.
Moreover, and in contrast to expectations, the expression of
PGC-1α and gluconeogenic enzymes was not lower in Adx versus
Sham mice upon infection. This indicates that the mechanism by
which adrenal hormones protect against hypoglycemia in malaria
is not through induction of the expression of these gluconeogenic
molecules. In addition, it is important to note that neither the
high glucagon levels nor DEX treatment of infected Adx mice
were able to induce the transcription of these genes, suggesting
that malaria-infection severely compromises the induction of
their expression. Within the context of an apparently deficient
gluconeogenic response, hepatic glycogen stores were consumed

Fig. 9 Dexamethasone treatment of Adx mice prevents the lethal hypoglycemia and suppresses cerebral cytokines upon infection. Sham and Adx C57BL/6
mice were infected with PcAS. Dexamethasone (DEX) treatment was started 4 to 5 days p.i. by IP injection of a dose of 3 mg/kg dexamethasone sodium
phosphate dissolved in PBS. Control mice were treated with the corresponding volume of PBS. a Survival of Adx and Sham mice was monitored daily. Two
infected and treated Adx mice were euthanized after the peak in parasitemia on day 14 and 15 p.i. because of DEX side-effects. Asterisks indicate
significance levels by Log-rank test. b, c Glucose and insulin levels were determined in plasma at day 8 to 10 p.i (detection limits indicated by dotted line).
d, g The peripheral parasitemia was determined at the indicated time points. e, h The relative changes in body weight, compared to day 0, were determined
at the indicated time points. f, i A clinical score of the disease severity was calculated based on several clinical parameters. j–o At day 8 to 10 p.i., mice were
euthanized, liver (j–l) and brain (m–o) were homogenized and specific mRNA levels were measured by qRT-PCR. d–i Data are means ± SEM and analysis
was by Mann-Whitney U-test. Daggers (†) indicate when at least one mouse died or was euthanized when it reached the humane endpoints. No data are
shown for Adx + PBS after day 12 when two or fewer mice remained alive. Graphs represent two separate experiments and the numbers of mice are as
follows: n = 5 for infected Sham + DEX, n = 6 for infected Sham + PBS, n = 9 for infected Adx + DEX, n = 6 for infected Adx + PBS. b, c, j–o Each symbol
represents data from an individual mouse. Horizontal lines in between data points represent group medians and analysis was by Mann-Whitney U-test.
Horizontal lines with asterisks on top indicate the levels of statistical significance between the indicated groups. Asterisks above individual data sets
indicate the levels of statistical significance compared to the uninfected control group. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001
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Fig. 10 Adrenal hormones confer tolerance to malarial disease. Blood glucose levels decrease slightly, hepatic glycogen is consumed and the expression of
a main gluconeogenic enzyme, glucose-6-phosphatase is lowered in murine malaria models without affecting survival. However, when adrenal hormone
production is abolished, glycogen stores become exhausted and glycemia declines further until lethal glycemia levels are reached. This hypoglycemia is
accompanied by increased circulatory and cerebral cytokine levels and can be prevented by supplementing dexamethasone. These effects are independent
of the parasite load, indicating that adrenal hormones are crucial in mediating tolerance to malarial disease
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upon infection and, in the hypoglycemic Adx mice, completely
exhausted. Together, the complete glycogen depletion, deficient
gluconeogenic program in the liver and increased inflammatory
activity, plausibly account for the lethal hypoglycemia in the
infected Adx mice.

The cause of lethality is thought to be brain-mediated since
neurological signs were observed (Supplementary Movie 1). The
observed hypoglycemia is a likely trigger of these signs, since
glucose is an obligate fuel for the brain, and neuronal death
occurs if severe hypoglycemia reaches levels below 20 mg/dL57.
The hypoglycemia is paralleled by increased expression of cyto-
kines, chemokines and iNOS in the brain of infected Adx mice.
The enhanced expression of chemokines may have contributed to
the increased numbers of CD4+ T cells and neutrophils. The
increase in iNOS was thus not sufficient to counterbalance the
loss of tolerance or to prevent infiltration of CD4+ T cells, as
previously described by Jeney et al30. Its increase might thus be a
consequence of the increased brain inflammation. The increased
pro-inflammatory expression either directly resulted from
the lack of anti-inflammatory GC action or might have been
indirectly mediated by the hypoglycemia. Microglia respond
to various stressors, including both malaria infection and
hypoglycemia58–60. Upon activation, they release NO, ROS and
pro-inflammatory cytokines such as IL-1 and TNF-α61. This
microglial activation is reported to be GC-sensitive62,63. More-
over, the cerebral production of cytokines may increase the
energy demands of the brain, potentially further depleting cir-
culating glucose levels. The inability of TNF-α neutralization to
restore normoglycemia or survival may suggest that TNF-α-
mediated inflammation is not the main cause of death and may
instead be a consequence of the hypoglycemia. Nevertheless,
other cytokines may mediate the inflammation, which may also
be involved in the increased glucose consumption. This inter-
relation between inflammation and glycemia is further supported
by a decrease in brain inflammation and restoration of normo-
glycemia with DEX treatment of infected Adx mice, despite the
inability of DEX to induce the expression of gluconeogenic genes
in the liver.

Various bacterial and viral species stimulate the HPA axis and
GC production, similar to infection with Plasmodium. Inter-
ference with the HPA axis is detrimental during infection with
murine cytomegalovirus or with bacteria that produce toxins such
as C. difficile toxin A, Shiga toxin 2 or superantigen SEB24.
Similarly, infections or endotoxin may be lethal in patients with
adrenal insufficiency or in Adx animals64. The mechanism is
ascribed to the anti-inflammatory effects of GCs, suppressing an
immune system overshoot. It is demonstrated that the protective
effect of GCs in septic shock relates to the suppression of IL-1β
expression in macrophages and IL-12 production in DCs65,66.
Our data suggest that GC effects on metabolic processes might
have been overlooked as a survival mechanism. Furthermore, our
findings might have implications for the mechanisms underlying
an Addisonian crisis.

In conclusion, our study identifies a crucial role for adrenal
hormones in mediating tolerance to malaria. This effect appears
to be mediated by maintenance of normoglycemia and prevention
of cerebral and systemic inflammation. Our findings enhance the
understanding of metabolic homeostasis in malaria and the
consequences of glucose imbalance. This is particularly impor-
tant, since metabolic disturbances, including hypoglycemia, are
common in malaria but the underlying mechanism is insuffi-
ciently studied.

Methods
Mice. In all experiments, 8 to10 week old male and female mice were used and
each experimental and control group contained similar numbers of each sex.

Sham-operated and Adx C57BL/6 J or BALB/c mice were purchased from
Janvier (Le Genest-St. Isle, France). Mice were allowed (at least 2 weeks) to recover
from the surgery before starting the experiments. Adrenalectomy was confirmed by
post-mortem examination and by measurement of plasma corticosterone levels
(Supplementary Fig. 1a,b). The drinking water of Adx mice was supplemented with
0.9% NaCl.

All experiments were performed at the KU Leuven according to the regulations
of the European Union (directive 2010/63/EU) and the Belgian Royal Decree of 29
May 2013, and were approved by the Animal Ethics Committee of the KU Leuven
(License LA1210186, Belgium).

Infection of mice and clinical scoring. Mice were housed in a conventional or
specific pathogen free (SPF) animal house and were IP injected with 104 infected
RBCs67. Infection was with one of the following parasite strains: PcAS, PbNK65-E
(corresponding to the Edinburgh strain22) or PbNK65-NY (corresponding to a
cloned line (1556Cl1) of the New York strain22). PcAS and PbNK65-E were ori-
ginally kind gifts from the late Prof. Dr. D. Walliker (University of Edinburgh,
Scotland, UK)21 and PbNK65-NY was a kind gift of Prof. C.J. Janse (Leiden
University Medical Center, The Netherlands). Mice received high energy food ad
libitum and drinking water was supplemented with para-amino benzoic acid
(PABA; Sigma-Aldrich, Bornem, Belgium) to facilitate in vivo parasite growth21.

Body weights, parasitemia levels, and clinical scores were determined. The
clinical parameters including spontaneous activity (SA), limb grasping (LG), body
tone (BT), trunk curl (TC), pilo-erection (PE), shivering (Sh), abnormal breathing
(AB), dehydration (D), incontinence (I) and paralysis (P) were evaluated daily to
calculate a total clinical score of disease severity. A disease score was given of 0
(absent) or 1 (present) for TC, PE, Sh and AB and 0 (normal), 1 (intermediate) or 2
(most serious) for the other parameters. The total clinical score was calculated by
the following formula: SA + LG + BT + TC + PE + 3*(Sh + AB + D + I + P).
Peripheral parasitemia (percentage of RBCs that are infected) was determined by
microscopic analysis of blood smears after Giemsa staining (VWR, Leuven,
Belgium). Blood glucose and lactate levels were measured in tail blood with the use
of, respectively, a OneTouch Verio glucometer (LifeScan, Zurich, Switzerland) and
a Lactate Plus meter (Nova Biomedical, Waltham, Massachusetts, USA). Mice were
euthanized with Dolethal (Vétoquinol, Aartselaar, Belgium; 200 mg/mL, IP
injection of 50 µL) when the humane endpoints were reached (clinical score of ≥
15) or at the indicated time points.

Treatments. Glucose complementation was by addition of D-glucose (Sigma-
Aldrich) in the drinking water of the mice at a concentration of 5% (wt/vol),
starting 5 days after infection. The non-treated group received water without
glucose. Morning and afternoon blood glucose levels were measured. If the gly-
cemia dropped below 100 mg/dL in the glucose-treated mice, glucose was sup-
plemented by IP injection (2 g/kg D-glucose in water) and 30 min after injection,
blood glucose levels were again measured.

Dexamethasone treatment was daily, starting at 4 or 5 days after infection, by IP
injection of 200 µl of dexamethasone sodium phosphate (DEX; Sigma-Aldrich),
dissolved in phosphate buffered saline (PBS) at a dosage of 3 mg/kg. Controls
received PBS by IP injection.

Daily clonidine treatment was started 6 days p.i. by IP injection of a dose of
0.5 mg/kg clonidine hydrochloride (Sigma-Aldrich) dissolved in PBS. In mice with
a glycemia below 100 mg/dl, a dosage of 1 mg/kg clonidine was used. Control mice
received the corresponding volume of PBS.

To neutralize TNF-α, mice were treated with 0.5 mg rat anti-mouse TNF-α
IgG1, clone MP6-XT22 (Biolegend, San Diego, California, USA), dissolved in 500
µL PBS. A morning and evening IP injection of 250 µL were given on day 5, 8 and
11 after infection. Control mice received Rat IgG1 isotype control, clone RTK2071
(Biolegend).

Collection of tissues. Following sacrifice, blood was collected by heart puncture.
The left lung was pinched off and BALF was collected from the right lung21. Mice
were systemically perfused (transcardial route) with PBS to remove circulating
blood. Left lungs, liver, spleen, kidney and brain were removed, weighted and
stored at -80 °C until further analysis. Alternatively, brain tissue was fixed in 6%
paraformaldehyde for 48 h at 4 °C for histological analysis or further processed for
flow cytometry.

Analyses of biological fluids. Liver function was assessed by measurement of
plasma ALT using a reagent set according to the manufacturer’s protocols (Teco
Diagnostics, California, USA)20.

Urine was collected in a 1.5 mL Eppendorf tube after restraining the mice.
Kidney function was assessed by determining the albumin/creatinine ratio in the
urine. Albumin was measured by Enzyme Linked Immunosorbent Assay (ELISA)
with antibodies and standard from ICL (Immunology Consultants Laboratory,
Portland, USA). In all, 96-well NUNC immunoplates were coated overnight at 4 °C
with 3 µg/mL of capture antibody in 0.1 M NaHCO3, pH 9.6. After washing, the
wells were blocked for 2 h at room temperature (RT) with 0.5% casein and 0.1%
Tween 20 in PBS. Wells were washed and serial dilutions of urine samples and
albumin standard were added to the coated plate and incubated for 2 h at RT.
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Plates were washed and 1/10,000 horseradish peroxidase (HRP)-conjugated anti-
mouse albumin antibody was added to the wells. After incubation for 2 h at RT, the
plates were washed. HRP activity was visualized by adding 0.55 µM
tetramethylbenzidine (TMB, Sigma-Aldrich) in 0.004% H2O2 (Merck, Darmstadt,
Germany), 0.1 M citrated acetate buffer pH 4.3. The reaction was stopped with 1 M
H2SO4 and optical densities were determined at 450 nm on a microplate
spectrophotometer (Power Wave XS, Biotek, Winooski, VT, USA). Creatinine was
determined with a Quantichrom Creatinine Assay Kit (DICT-500, Bioassay
systems) following the manufacturer’s instructions.

Hemoglobin concentrations were determined by the ‘SDS-haemichrome’
colorimetric assay68. Blood was collected from the tail vein into lithium-heparin-
coated microvette tubes (Sarstedt, Hoogstraten, Belgium) and diluted in 0.1% SDS,
154 mM NaCl buffer. The absorbance was measured at 536 nm and the
concentration was calculated from a standard curve of human hemoglobin (Sigma-
Aldrich, St. Louis, MO, USA).

BALF samples were centrifuged and protein concentrations of the supernatants
were determined by Bradford assay (Bio-Rad, Hercules, CA, USA).

Blood samples were centrifuged and plasma glucose concentrations were
measured using a OneTouch Verio meter. Plasma insulin and glucagon levels were
assayed using ELISA (Mercodia, Uppsala, Sweden) according to the manufacturer’s
protocols. Plasma corticosterone concentrations were determined using a
radioimmunoassay (RIA) with [3H]-corticosterone as described previously69.
Plasma levels of TNF-α, IFN-γ, IL-6, IL-10, CXCL-10, CCL-2 and IL-4 were
determined with a ProcartaPlex Multiplex immunassay (Thermo Fisher Scientific
Inc., Waltham, MA, USA) according to the manufacturer’s protocol. Plasma FFA
concentrations were measured using a colorimetric FFA quantification Assay Kit
(Abcam, Cambridge, UK) according to the manufacturer’s instructions.

Hepatic glycogen measurement. Liver homogenates (10 mg/100 µL) were
incubated at 100 °C for 5 min and cleared by centrifugation at 13,000 g for 10 min.
A colorimetric Glycogen Assay Kit (Sigma Aldrich) was used according to the
manufacturer’s instructions.

Quantitative reverse transcription-polymerase chain reaction. The left lung,
liver lobe and the spleen were mechanically homogenized in RLT buffer from the
RNeasy kit. QIAzol lysis reagent (Qiagen, Hilden, Germany) was used to homo-
genize brain tissue. The brain homogenate was separated into aqueous RNA-
containing and organic phases by chloroform addition and centrifugation. RNA
was extracted with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s
guidelines with quantification by UV absorption. For each sample, cDNA was
synthesized using the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) and quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) was performed on 25 ng and 12.5 ng cDNA with primer and probe sets
from Integrated DNA Technologies (IDT, Leuven, Belgium) using an ABI Prism
7500 Sequence Detection System (Applied Biosystems). Data were normalized to
the non-infected control Sham and 18 S ribosomal RNA levels70. All used primers
are listed in Supplementary Table 1.

Flow cytometry. Leukocytes were isolated from brains71. After cardial perfusion
with 40 mL of ice-cold PBS, brains were collected in Hank’s balanced salt solution
(HBSS, Gibco/ Thermo Fisher Scientific Inc.) supplemented with 0.075% (w/v)
sodium bicarbonate. The organs were minced with scissors, followed by a 15 min
digestion at 37 °C with 2 mg/mL collagenase D (Roche, Manheim, Germany) and
14 µg/mL DNase I (Roche). Thereafter, digested tissues were filtered through a 100
µm cell strainer (VWR, Heverlee, Belgium) and washed with HBSS. The cell pellet
was resuspended in 10 mL 37% (v/v) Percoll (GE healthcare, Upsala, Sweden) and
centrifuged. The layer of myelin was sucked off and the cells were washed,
resuspended in PBS supplemented with 2% FCS and counted in a Bürker chamber
with trypan blue exclusion.

Before surface staining, single cells were incubated with Fc-receptor blocking
antibodies anti-CD16/anti-CD32 (Miltenyi Biotec, Leiden, The Netherlands) and
Zombie Aqua Fixable Viability Dye (BioLegend). Cells were washed and incubated
for 25 min with rabbit anti-mouse Tmem119 (106-6; Abcam) in PBS supplemented
with 2% FCS. Subsequently, cells were washed three times and stained in Brilliant
stain buffer (BD Biosciences Erembodegem, Belgium) for 20 min with the
following monoclonal antibodies: anti-CD3 (FITC, 145-2c11, Biolegend), anti-CD4
(APC eFluor 780, RM4-5, eBioscience), anti-CD8a (BV711, 53-6.7, BD
Biosciences), anti-CD11b (PerCP-Cy5.5, M1/70, eBioscience), anti-CD45
(BUV395, 30-F11, BD Biosciences), anti-F4/80 (BV785, BM8, Biolegend), anti-
Ly6G (PE, 1A8, eBioscience), anti-MHC class II (Pe-Cy7, M5/114.15.2, Biolegend)
and secondary donkey anti-rabbit (Alexa Fluor 647, Poly4064, Biolegend). Cells
were washed and fixed with 0.4% formaldehyde in PBS. Samples were analysed
with a LSR Fortessa X-20 using FACSDiva software (BD Biosciences). Live singlet
cells (ZombieAqua-) were analyzed with FlowJo (Version 10). To calculate absolute
cell numbers, the total number of counted leukocytes was multiplied with the
percentage of CD45+ cells for each cell subset.

Histological analysis. After fixation, tissues were embedded in paraffin. Immu-
nohistochemistry analysis was performed on paraffin-embedded sections with anti-

CD45 monoclonal antibodies (Clone 30-F11, BD Biosciences,) using an autostainer
(Leica Bond Max, Leica Microsystems, Diegem, Belgium). Paraffin sections were
pre-treated with Epitope Retrieval Solution 2 BOND (Leica) for 20 min at 97 °C.
The Bond Polymer Refine Detection kit (Leica) containing a peroxide block, 3,3′-
diaminobenzidine tetrahydrochloride hydrate (DAB) chromogen and hematoxylin
counterstain, was used following the manufacturer’s instructions. Endogenous
peroxidase activity was quenched using the provided peroxide block for 5 min.
Then, the sections were incubated with the primary antibodies diluted 1/50 in
Bond Primary Antibody Diluent (Leica) for 30 min at room temperature. Subse-
quently, slides were incubated with peroxidase-labelled rabbit anti-rat (Dako,
Heverlee, Belgium; dilution 1/75 in 10% normal human serum) for 30 min at room
temperature. After reaction with DAB, the complexes were visualized as brown
precipitates. Cell nuclei were counterstained with hematoxylin (Bond Polymer
Refine Detection kit). Transmitted light images were captured through a 40 × /0.65
Plan-Apochromat objective by a Leica DM 2000 microscope equipped with a DFC
295 camera (Leica), using Leica Application Suite (LAS) software version 4.2.
Images (2048 × 1536 pixels) were not further processed.

Statistical analysis. The GraphPad Prism Software (GraphPad Software, San
Diego, CA) was used for all analyses. P-values for the differences between groups
were calculated by the non-parametric two-tailed Mann-Whitney U-test. Sig-
nificance levels for the survival curves were calculated with the Log-rank (Mantel-
Cox) Test. Non-parametric two-tailed Spearman correlations were computed. * p <
0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001. Each set of data originate from at
least 2 separate experiments. Each data point shown represents the mean of a
duplicate measurement, except for repeated blood glucose measurements during
disease course experiments.

Data availability
The authors declare that all data supporting the findings of this study are included
in the paper and its supplementary information files. Data available from the
author upon reasonable request.
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