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This paper describes a neural semantic parser that maps natural language utterances onto
logical forms which can be executed against a task-specific environment, such as a knowledge
base or a database, to produce a response. The parser generates tree-structured logical forms
with a transition-based approach which combines a generic tree-generation algorithm with
domain-general grammar defined by the logical language. The generation process is modeled by
structured recurrent neural networks, which provide a rich encoding of the sentential context and
generation history for making predictions. To tackle mismatches between natural language and
logical form tokens, various attention mechanisms are explored. Finally, we consider different
training settings for the neural semantic parser, including fully supervised training where
annotated logical forms are given, weakly-supervised training where denotations are provided,
and distant supervision where only unlabeled sentences and a knowledge base are available.
Experiments across a wide range of datasets demonstrate the effectiveness of our parser.

1. Introduction

An important task in artificial intelligence is to develop systems that understand

natural language and enable interactions between computers and humans. Semantic

parsing has emerged as a key technology towards achieving this goal. Semantic

parsers specify a mapping between natural language utterances and machine-

understandable meaning representations, commonly known as logical forms. A logical

form can be executed against a real-world environment, such as a knowledge

base, to produce a response, often called a denotation. Table 1 shows examples
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of natural language queries, their corresponding logical forms, and denotations.

The query What is the longest river in Ohio? is represented by the logical form

longest(and(type.river, location(Ohio))), which when executed against a

database of US geography returns the answer Ohio River. In the second example, the

logical form count(daughterOf(Barack Obama)) corresponds to the query How

many daughters does Obama have? and is executed against the Freebase knowledge

base to return the answer 2.

In recent years, semantic parsing has attracted a great deal of attention due to its

utility in a wide range of applications such as question answering (Kwiatkowski et al.

2011; Liang, Jordan, and Klein 2011), relation extraction (Krishnamurthy and Mitchell

2012), goal-oriented dialog (Wen et al. 2015), natural language interfaces (Popescu et al.

2004), robot control (Matuszek et al. 2012), and interpreting instructions (Chen and

Mooney 2011; Artzi and Zettlemoyer 2013).

Early statistical semantic parsers (Zelle and Mooney 1996; Zettlemoyer and Collins

2005; Wong and Mooney 2006; Kwiatkowksi et al. 2010) mostly requires training

data in the form of utterances paired with annotated logical forms. More recently,

alternative forms of supervision have been proposed to alleviate the annotation

burden, e.g., training on utterance-denotation pairs (Clarke et al. 2010; Liang 2016;

Kwiatkowski et al. 2013), or using distant supervision (Krishnamurthy and Mitchell

2012; Cai and Yates 2013). Despite different supervision signals, training and inference

procedures in conventional semantic parsers rely largely on domain-specific grammars

and engineering. A CKY-style chart parsing algorithm is commonly employed to parse

a sentence in polynomial time.

The successful application of recurrent neural networks (Bahdanau, Cho, and

Bengio 2015; Sutskever, Vinyals, and Le 2014) to a variety of NLP tasks has provided
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Table 1: Examples of questions, corresponding logical forms, and their answers.

Environment: A database of US geography
Utterance: What is the longest river in Ohio?
Logical form: longest(and(type.river, location(Ohio)))
Denotation: Ohio River
Environment: Freebase
Utterance: How many daughters does Obama have?
Logical form: count(daughterOf(Barack Obama))
Denotation: 2

strong impetus to treat semantic parsing as a sequence transduction problem where

an utterance is mapped to a target meaning representation in string format (Dong and

Lapata 2016; Jia and Liang 2016; Kočiský et al. 2016). Neural semantic parsers generate

a sentence in linear time, while reducing the need for domain-specific assumptions,

grammar learning, and more generally extensive feature engineering. But this modeling

flexibility comes at a cost since it is no longer possible to interpret how meaning

composition is performed, given that logical forms are structured objects like trees or

graphs. Such knowledge plays a critical role in understanding modeling limitations so

as to build better semantic parsers. Moreover, without any task-specific knowledge, the

learning problem is fairly unconstrained, both in terms of the possible derivations to

consider and in terms of the target output which can be syntactically invalid.

In this work we propose a neural semantic parsing framework which combines

recurrent neural networks and their ability to model long-range dependencies with a

transition system to generate well-formed and meaningful logical forms. The transition

system combines a generic tree-generation algorithm with a small set of domain-

general grammar pertaining to the logical language to guarantee correctness. Our

neural parser differs from conventional semantic parsers in two respects. Firstly, it

does not require lexicon-level rules to specify the mapping between natural language

3
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and logical form tokens. Instead, the parser is designed to handle cases where the

lexicon is missing or incomplete thanks to a neural attention layer, which encodes a

soft mapping between natural language and logical form tokens. This modeling choice

greatly reduces the number of grammar rules used during inference to those only

specifying domain-general aspects. Secondly, our parser is transition-based rather than

chart-based. Although chart-based inference has met with popularity in conventional

semantic parsers, it has difficulty in leveraging sentence-level features since the

dynamic programming algorithm requires features defined over substructures. In

comparison, our linear-time parser allows us to generate parse structures incrementally

conditioned on the entire sentence.

We perform several experiments in downstream question-answering tasks and

demonstrate the effectiveness of our approach across different training scenarios. These

include full supervision with questions paired with annotated logical forms using the

GEOQUERY (Zettlemoyer and Collins 2005) dataset, weak supervision with question-

answer pairs using the WEBQUESTIONS (Berant et al. 2013a) and GRAPHQUESTIONS

(Su et al. 2016) datasets and distant supervision without question-answer pairs, using the

SPADES (Bisk et al. 2016) dataset. Experimental results show that our neural semantic

parser is able to generate high quality logical forms and answer real-world questions

on a wide range of domains.

The remainder of this article is structured as follows. Section 2 provides an overview

of related work. Section 3 introduces our neural semantic parsing framework and

discusses the various training scenarios to which it can be applied. Our experiments

are described in Section 4 together with detailed analysis of system output. Discussion

of future work concludes the paper in Section 5.

4
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2. Related Work

The proposed framework has connections to several lines of research including various

formalisms for representing natural language meaning, semantic parsing models, and

the training regimes they adopt. We review related work in these areas below.

Semantic Formalism. Logical forms have played an important role in semantic parsing

systems since their inception in the 1970s (Winograd 1972; Woods, Kaplan, and Nash-

Webber 1972). The literature is rife with semantic formalisms which can be used to

define logical forms. Examples include lambda calculus (Montague 1973) which has

been used by many semantic parsers (Zettlemoyer and Collins 2005; Kwiatkowksi

et al. 2010; Reddy, Lapata, and Steedman 2014) due to its expressiveness and flexibility

to construct logical forms of great complexity, Combinatory Categorial Grammar

(Steedman 2000), dependency-based compositional semantics (Liang, Jordan, and

Klein 2011), frame semantics (Baker, Fillmore, and Lowe 1998) and abstract meaning

representations (Banarescu et al. 2013).

In this work, we adopt a database querying language as the semantic formalism,

namely the functional query language (FunQL; Zelle (1995)). FunQL maps first-

order logical forms into function-argument structures, resulting in recursive, tree-

structured, program representations. Although it lacks expressive power, FunQL has

a modeling advantage for downstream tasks, since it is more natural to describe the

manipulation of a simple world as procedural programs. This modeling advantage has

been revealed in recent advances of neural programmings: recurrent neural networks

have demonstrated great capability in inducing compositional programs (Reed and

De Freitas 2016; Neelakantan, Le, and Sutskever 2016; Cai, Shin, and Song 2017).

For example, they learn to perform grade-school additions, bubble sort and table

5
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comprehension in procedures. Finally, some recent work (Yin and Neubig 2017; Iyer

et al. 2017; Zhong, Xiong, and Socher 2017) uses other programming languages, such as

the SQL as the semantic formalism.

Semantic Parsing Model. The problem of learning to map utterances to meaning

representations has been studied extensively in the NLP community. Most data-

driven semantic parsers consist of three key components: a grammar, a trainable

model, and a parsing algorithm. The grammar defines the space of derivations from

sentences to logical forms, and the model together with the parsing algorithm find

the most likely derivation. The model, which can take for example the form of an

SVM (Kate and Mooney 2006), a structured perceptron (Zettlemoyer and Collins 2007;

Lu et al. 2008; Reddy, Lapata, and Steedman 2014; Reddy et al. 2016) or a log-linear

model (Zettlemoyer and Collins 2005; Berant et al. 2013a), scores the set of candidate

derivations generated from the grammar. During inference, a chart-based parsing

algorithm is commonly used to predict the most likely semantic parse for a sentence.

With recent advances in neural networks and deep learning, there is a trend of

reformulating semantic parsing as a machine translation problem. The idea is not

novel, since semantic parsing has been previously studied with statistical machine

translation approaches in both Wong and Mooney (2006) and Andreas, Vlachos, and

Clark (2013). However, the task setup is important to be revisited since recurrent neural

networks have been shown to be extremely useful in context modeling and sequence

generation (Bahdanau, Cho, and Bengio 2015). Following this direction, Dong and

Lapata (2016) and Jia and Liang (2016) develop neural semantic parsers which treat

semantic parsing as a sequence to sequence learning problem. Jia and Liang (2016) also

introduces a data augmentation approach which bootstraps a synchronous grammar

from existing data and generates artificial examples as extra training data. Other related

6
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work extends the vanilla sequence to sequence model in various ways, such as multi-

task learning (Fan et al. 2017), parsing cross-domain queries (Herzig and Berant 2017)

and context-dependent queries (Suhr, Iyer, and Artzi 2018), and applying the model to

other formalisms such as AMR (Konstas et al. 2017) and SQL (Zhong, Xiong, and Socher

2017).

The fact that logical forms have a syntactic structure has motivated some

of the recent work on exploring structured neural decoders to generate tree or

graph structures, and grammar constrained decoders to ensure the outputs are

meaningful and executable. Related work includes Yin and Neubig (2017) who generate

abstract syntax trees for source code with a grammar constrained neural decoder.

Krishnamurthy, Dasigi, and Gardner (2017) also introduce a neural semantic parser

which decodes rules in a grammar to obtain well-typed logical forms. Rabinovich, Stern,

and Klein (2017) propose abstract syntax networks with a modular decoder, whose

multiple submodels (one per grammar construct) are composed to generate abstract

syntax trees in a top-down manner.

Our work shares similar motivation: we generate tree-structured, syntactically valid

logical forms, however, following a transition-based generation approach (Dyer et al.

2016, 2015). Our semantic parser is a generalization of the model presented in Cheng

et al. (2017). While they focus solely on top-down generation using hard attention, the

parser presented in this work generates logical forms following either a top-down or

bottom-up generation order and introduces additional attention mechanisms (i.e., soft

and structured attention) for handling mismatches between natural language and

logical form tokens. We empirically compare generation orders and attention variants,

elaborate on model details, and formalize how the neural parser can be effectively

trained under different types of supervision.
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Training Regimes. Various types of supervision have been explored to train

semantic parsers, ranging from full supervision with utterance-logical form pairs to

unsupervised semantic parsing without given utterances. Early work of statistical

semantic parsing has mostly used annotated training data consisting of utterances

paired with logical forms (Zelle and Mooney 1996; Kate and Mooney 2006; Kate, Wong,

and Mooney 2005; Wong and Mooney 2006; Lu et al. 2008; Kwiatkowksi et al. 2010).

Same applies to some of the recent work on neural semantic parsing (Dong and Lapata

2016; Jia and Liang 2016). This form of supervision is the most effective to train the

parser, but is also expensive to obtain. In order to write down a correct logical form, the

annotator not only needs to have expertise in the semantic formalism, but also has to

ensure the logical form matches the utterance semantics and contains no grammatical

mistakes. For this reason, fully supervised training applies more to small, close domain

problems, such as querying the US geographical database (Zelle and Mooney 1996).

Over the past few years, developments have been made to train semantic parsers

with weak supervision from utterance-denotation pairs (Clarke et al. 2010; Liang,

Jordan, and Klein 2011; Berant et al. 2013a; Kwiatkowski et al. 2013; Pasupat and

Liang 2015). The approach enables more efficient data collection, since denotations

(such as answers to a question, responses to a system) are much easier to obtain

via crowd sourcing. For this reason, semantic parsing can be scaled to handle large,

complex and open domain problems. Examples include the work that learn semantic

parsers from question-answer pairs on Freebase (Liang, Jordan, and Klein 2011; Berant

et al. 2013a; Berant and Liang 2014; Liang et al. 2017; Cheng et al. 2017), from system

feedbacks (Clarke et al. 2010; Chen and Mooney 2011; Artzi and Zettlemoyer 2013),

from abstract examples (Goldman et al. 2018), and from human feedbacks (Iyer et al.

2017) or statements (Artzi and Zettlemoyer 2011).

8
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Some work seeks for more clever ways of gathering data and trains semantic parsers

with even weaker supervision. In a class of distant supervision methods, the input is

solely a knowledge base and a corpus of unlabeled sentences. Artificial training data

is generated from the given resources. For example, Cai and Yates (2013) generate

utterance paired with logical forms. Their approach searches for sentences containing

certain entity pairs, and assume (with some pruning technique) the sentences express a

certain relation from the KB. In Krishnamurthy and Mitchell (2012) and Krishnamurthy

and Mitchell (2014) whose authors work with the CCG formalism, an extra source of

supervision is added. The semantic parser is trained to produce parses that syntactically

agree with dependency structures. Reddy, Lapata, and Steedman (2014) generate

utterance-denotation pairs by masking entity mentions in declarative sentences from a

large corpus. A semantic parser is then trained to predict the denotations corresponding

to the masked entities.

3. Neural Semantic Parsing Framework

We present a neural-network based semantic parser that maps an utterance into a logical

form, which can be executed in the context of a knowledge base to produce a response.

Compared to traditional semantic parsers, our framework reduces the amount of

manually engineered features and domain-specific rules. As semantic formalism, we

choose the functional query language (FunQL), which is recursive and tree-structured

(Section 3.1). A transition-based tree generation algorithm is then defined to generate

FunQL logical forms (Sections 3.2–3.4). The process of generating logical forms is

modeled by recurrent neural networks—a powerful tool for encoding the context

of a sentence and the generation history for making predictions (Section 3.5). We

handle mismatches between natural language and knowledge base through various

attention mechanisms (Section 3.7). Finally, we explore different training regimes

9
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(Section 3.8, including a fully supervised setting where each utterance is labeled with

annotated logical forms, a weakly supervised setting where utterance-denotation pairs

are available, and distant supervision where only a collection of unlabeled sentences

and a knowledge base is given.

3.1 FunQL Semantic Representation

As mentioned earlier, we adopt FunQL as our semantic formalism. FunQL is a variable

free recursive meaning representation language which maps simple first order logical

forms to function-argument structures that abstract away from variables and quantifiers

(Kate and Mooney 2006). The language is also closely related to lambda DCS (Liang

2013), which makes existential quantifiers implicit. Lambda DCS is more compact in

the sense that it can use variables in rare cases to handle anaphora and build composite

binary predicates.

The FunQL logical forms we define contain the following primitive functional

operators. They overlap with simple lambda DCS (Berant et al. 2013a) but differ slightly

in syntax to ease recursive generation of logical forms. Let l denote a logical form, JlK

represent its denotation, and K refers to a knowledge base.

• Unary base case: An entity e (e.g., Barack Obama) is a unary logical

form whose denotation is a singleton set containing that entity:

JeK = {e} (1)

• Binary base case: A relation r (e.g., daughterOf) is a binary logical

form with denotation:

JrK = {(e1, e2) : (e1, r, e2) ∈ K} (2)

10

Computational Linguistics

© 2018 Association for Computational Linguistics Published under a Creative Commons

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

 Just Accepted MS.

doi:10.1162/coli_a_00342



Cheng, Reddy, Saraswat and Lapata Learning an Executable Neural Semantic Parser

• A relation r can be applied to an entity e1 (written as r(e1)) and returns as

denotation the unary satisfying the relation:

Jr(e1)K = {e : (e1, e) ∈ JrK} (3)

For example, the expression daughterOf(Barack Obama) corresponds

to the question “Who are Barack Obama’s daughters?”.

• count returns the cardinality of the unary set u:

Jcount(u)K = {|JuK|} (4)

For example, count(daughterOf(Barack Obama)) represents the

question “How many daughters does Barack Obama have?”.

• argmax or argmin return a subset of the unary set u whose specific

relation r is maximum or minimum:

Jargmax(u, r)K = {e : e ∈ u ∩ ∀e′ ∈ u, r(e) ≥ r(e′)} (5)

For example, the expression argmax(daughterOf(Barack Obama),

age) corresponds to the utterance “Who is Barack Obama’s eldest

daughter?”.

• filter returns a subset of the unary set u where a comparative constraint

(=, ! =, >, <, ≥, ≤) acting on the relation r is satisfied:

Jfilter>(u, r, v)K = {e : e ∈ u ∩ r(e) > v} (6)

11
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For example, the query filter> (daughterOf(Barack Obama),

age, 5) returns the daughters of Barack Obama who are older than five

years.

• and takes the intersection of two urinary sets u1 and u2:

Jand(u1, u2)K = Ju1K ∩ Ju2K (7)

while or takes their union:

Jor(u1, u2)K = Ju1K ∪ Ju2K (8)

For example, the expression and(daughterOf(Barack Obama),

InfluentialTeensByYear(2014)) would correspond to the query

“Which daughter of Barack Obama was named Most Influential Teens in

the year 2014?”.

The operators just defined give rise to compositional

logical forms (e.g., count(and(daughterOf(Barack Obama),

InfluentialTeensByYear(2014)).

The reason for using FunQL in our framework lies in its recursive nature which

allows us to model the process of generating logical form as a sequence of transition

operations, which can be decoded by powerful recurrent neural networks. We next

describe how our semantic formalism is integrated with a transition-based tree-

generation algorithm to produce tree-structured logical forms.

3.2 Tree Generation Algorithm

We introduce a generic tree generation algorithm which recursively generates tree

constituents with a set of transition operations. The key insight underlying our

12
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Top-down Transitions
NT(X) ([σ|X′],X, ε, [β|X′], P (X′))⇒ ([σ|X′,X], ε, ε, [β|X′,X], P (X))
TER(x) ([σ|X′], ε,x, [β|X′],P(X’))⇒ ([σ|X′,x], ε, ε, [β|X′,x], P (X′))
RED ([σ|X′,X,x], ε, ε, [β|X′,X], P (X))⇒ ([σ|X′,X(x)], ε, ε, [β|X′], P (X′))

Bottom-up Transitions
TER(x) (σ, ε,x)⇒ ([σ|x], ε, ε)
NT-RED(X) ([σ|x],X, ε)⇒ ([σ|X(x)], ε, ε)

Table 2: Transitions for top-down and bottom-up generation system. Stack
∑

is
represented as a list with its head to the right (with tail σ), same for stack N (with
tail β).

algorithm is to define a canonical traversal or generation order, which generates a tree

as a transition sequence. A transition sequence for a tree is a sequence of configuration-

transition pairs [(c0, t0), (c1, t1), · · · , (cm, tm)]. In this work, we consider two commonly

used generation orders, namely top-down pre-order and bottom-up post-order.

The top-down system is specified by the tuple c = (
∑
, π, σ,N, P ) where

∑
is a

stack used to store partially complete tree fragments, π is non-terminal token to be

generated, σ is the terminal token to be generated, N is a stack of open non-terminals,

andP is a function indexing the position of a non-terminal pointer. The pointer indicates

where subsequent children nodes should be attached (e.g., P (X) means that the pointer

is pointing to the non-terminal X). The initial configuration is c0 = ([], TOP, ε, [],⊥),

where TOP stands for the root node of the tree, ε represents an empty string, and

⊥ represents an unspecified function. The top-down system employs three transition

operations defined in Table 2:

• NT(X) creates a new subtree non-terminal node denoted by X. The

non-terminal X is pushed on top of the stack and written as X( while

subsequent tree nodes are generated as children underneath X.

13
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• TER(x) creates a new child node denoted by x. The terminal x is pushed

on top of the stack, written as x.

• RED is the reduce operation which indicates that the current subtree being

generated is complete. The non-terminal root of the current subtree is

closed and subsequent children nodes will be attached to the predecessor

open non-terminal. Stack-wise, RED recursively pops children (which can

be either terminals or completed subtrees) on top until an open

non-terminal is encountered. The non-terminal is popped as well, after

which a completed subtree is pushed back to the stack as a single closed

constituent, written for example as X1(X2, X3).

We define the bottom-up system by tuple c = (
∑
, π, σ) where

∑
is a stack used

to store partially complete tree fragments, π is the token non-terminal to be generated,

and σ is the token terminal to be generated. We take the initial configuration to be c0 =

([], xl, ε), where xl stands for the leftmost terminal node of the tree, and ε represents

an empty string. The bottom-up generation uses two transition operations defined in

Table 2:

• TER(x) creates a new terminal node denoted by x. The terminal x is

pushed on top of the stack, written as x.

• NT-RED(X) builds a new subtree by attaching a parent node (denoted by

X) to children nodes on top of the stack. The children nodes can be either

terminals or smaller subtrees. Similarly to RED in the top-down case,

children nodes are first popped from the stack, and subsequently

combined with the parent X to form a subtree. The subtree is pushed back

to the stack as a single constituent, written for example as X1(X2, X3). A
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challenge with NT-RED(X) is to decide how many children should be

popped and included in the new subtree. In this work, the number of

children is dictated by the number of arguments expected by X which is in

turn constrained by the logical language. For example, from the FunQL

grammar it is clear that count takes one argument and argmax takes two.

The language we use does not contain non-terminal functions with a

variable number of arguments.

Top-down traversal is defined by three generic operations, while bottom-up order

applies two operations only (since it combines reduce with non-terminal generation).

However, the operation predictions required are the same for the two systems. The

reason is that the reduce operation in the top-down system is deterministic when the

FunQL grammar is used as a constraint (we return to this point in Section 3.4).

3.3 Generating Tree-structured Logical Forms

To generate tree-structured logical forms, we integrate the generic tree generation

operations described above with FunQL, whose grammar determines the space of

allowed terminal and non-terminal symbols:

• NT(X) includes an operation that generates relations NT(relation), and

other domain-general operators in FunQL: NT(and), NT(or),

NT(count), NT(argmax), NT(argmin) and NT(filter). Note that

NT(relation) creates a placeholder for a relation, which is subsequently

generated.
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Table 3: Top-down generation of the logical form count(and(daughterOf(Barack
Obama), InfluentialTeensByYear(2014)). Elements on the stack are separated
by || and the top of the stack is on the right.

Operation Logical form token Stack
NT(count) count count(
NT(and) and count( || and(
NT(relation) daughterOf count( || and( || daughterOf
TER(entity) Barack Obama count( || and( || daughterOf( || Barack Obama
RED count( || and( || daughterOf(Barack Obama)
NT(relation) InfluentialTeensByYear count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear(
TER(entity) 2014 count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear( ||
RED count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear(2014
RED count( || and(daughterOf(Barack Obama), InfluentialTeensByYear(2014))
RED count(and(daughterOf(Barack Obama), InfluentialTeensByYear(2014)))

• TER(X) includes two operations: TER(relation) for generating

relations and TER(entity) for generating entities. Both operations create

a placeholder for a relation or an entity, which is subsequently generated.

• NT-RED(X) includes NT-RED(relation), NT-RED(and),

NT-RED(or), NT-RED(count), NT-RED(argmax), NT-RED(argmin)

and NT-RED(filter). Again, NT-RED(relation) creates a

placeholder for a relation, which is subsequently generated.

Table 3 illustrates the sequence of operations employed by our parser in

order to generate the logical form count(and(daughterOf(Barack Obama),

InfluentialTeensByYear(2014)) top-down. Table 4 shows how the same logical

form is generated bottom-up. Note that the examples are simplified for illustration

purposes; the logical form is generated conditioned on an input utterance, such as “How

many daughters of Barack Obama were named Most Influential Teens in the year

2014?”.
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Table 4: Bottom-up generation of the logical form count(and(daughterOf(Barack
Obama), InfluentialTeensByYear(2014)). Elements on the stack are separated
by || and the top of the stack is on the right.

Operation Logical form token Stack
TER(entity) Barack Obama Barack Obama
NT-RED(relation) daughterOf daughterOf(Barack Obama)
TER(entity) 2014 daughterOf(Barack Obama) || 2014
NT-RED(relation) InfluentialTeensByYear daughterOf(Barack Obama) || InfluentialTeensByYear(2014)
NT-RED(and) and and(daughterOf(Barack Obama), InfluentialTeensByYear(2014))
NT-RED(count) count count(and(daughterOf(Barack Obama), InfluentialTeensByYear(2014

3.4 Constraints

A challenge in neural semantic parsing lies in generating well-formed and meaningful

logical forms. To this end, we incorporate two types of constraints in our system. The

first ones are structural constraints to ensure that the outputs are syntactically valid

logical forms. For the top-down system these constraints include:

• The first operation must be NT;

• RED cannot directly follow NT;

• The maximum number of open non-terminal symbols allowed on the stack

is 10. NT is disabled when the maximum number is reached;

• The maximum number of (open and closed) non-terminal symbols

allowed on the stack is 10. NT is disabled when the maximum number is

reached.

Tree constraints for the bottom-up system are:

• The first operation must be TER;

• The maximum number of consecutive TERs allowed is 5;
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• The maximum number of terminal symbols allowed on the stack is the

number of words in the sentence. TER is disallowed when the maximum

number is reached.

The second type of constraints relate to the FunQL-grammar itself, ensuring that the

generated logical forms are meaningful for execution:

• The type of argument expected by each non-terminal symbol must follow

the FunQL grammar;

• The number of arguments expected by each non-terminal symbol must

follow the FunQL grammar;

• When the expected number of arguments for a non-terminal symbol is

reached, a RED operation must be called for the top-down system; for the

bottom-up system this constrain is built within the NT-RED operation,

since it reduces the expected number of arguments based on a specific

non-terminal symbol.

3.5 Neural Network Realizer

We model the above logical form generation algorithm with a structured neural network

which encodes the utterance and the generation history, and then predicts a sequence of

transition operations as well as logical form tokens based on the encoded information.

In the following, we present details for each component in the network.

Utterance Encoding. An utterance x is encoded with a bidirectional LSTM architecture

(Hochreiter and Schmidhuber 1997). A bidirectional LSTM is comprised of a forward

LSTM and a backward LSTM. The forward LSTM processes a variable-length sequence

x = (x1, x2, · · · , xn) by incrementally adding new content into a single memory slot,
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with gates controlling the extent to which new content should be memorized, old

content should be erased, and current content should be exposed. At time step t, the

memory −→ct and the hidden state
−→
ht are updated with the following equations:

it
ft
ot
ĉt

 =


σ
σ
σ

tanh

W · [−−→ht−1, xt] (9)

−→ct = ft �−−→ct−1 + it � ĉt (10)

−→
ht = ot � tanh(−→ct ) (11)

where i, f , and o are gate activations; W denotes the weight matrix. For simplicity, we

denote the recurrent computation of the forward LSTM as:

−→
ht =

−−−−→
LSTM(xt,

−−→
ht−1) (12)

After encoding, a list of token representations [
−→
h1,
−→
h2, · · · ,

−→
hn] within the forward

context is obtained. Similarly, the backward LSTM computes a list of token

representations [
←−
h1,
←−
h2, · · · ,

←−
hn] within the backward context as:

←−
ht =

←−−−−
LSTM(xt,

←−−
ht+1) (13)

Finally, each input token xi is represented by the concatenation of its forward and

backward LSTM state vectors, denoted by hi =
−→
hi :
←−
hi . The list storing token vectors for

the entire utterance x can be considered as a buffer, in analogy to syntactic parsing. A

notable difference is that tokens in the buffer will not be removed since its alignment to

logical form tokens is not pre-determined in the general semantic parsing scenario. We

denote the buffer b as b = [h1, · · · , hk], where k denotes the length of the utterance.
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Generation History Encoding. The generation history, aka partially completed subtrees,

is encoded with a variant of stack-LSTM (Dyer et al. 2015). Such an encoder captures

not only previously generated tree tokens but also tree structures. We first discuss the

stack-based LSTM in the top-down transition system and then present modifications to

account for the bottom-up system.

In top-down transitions, operations NT and TER change the stack-LSTM

representation st as in a vanilla LSTM as:

st = LSTM(yt, st−1) (14)

where yt denotes the newly generated non-terminal or terminal token. A RED operation

recursively pops the stack-LSTM states as well as corresponding tree tokens on the

output stack. The popping stops when a non-terminal state is reached and popped,

after which the stack-LSTM reaches an intermediate state st−1:t.1 The representation of

the completed subtree u is then computed as:

u = Wu · [pu : cu] (15)

where pu denotes the parent (non-terminal) embedding of the subtree, cu denotes the

average of the children (terminal or completed subtree) embeddings, and Wu denotes

the weight matrix. Note that cu can also be computed with more advanced method such

as a recurrent neural network (Kuncoro et al. 2017). Finally, the subtree embedding u

serves as the input to the LSTM and updates st−1:t to st as:

st = LSTM(u, st−1:t) (16)

1 We use st−1:t to denote the intermediate transit state from time step t− 1 to t, after terminal tokens are
popped from the stack; st denotes the final LSTM state after the subtree representation is pushed back to
the stack (as explained in the following).
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Figure 1 provides a graphical view on how the three operations change the

configuration of a stack-LSTM.

In comparison, the bottom-up transition system uses the same TER operation to

update the stack-LSTM representation st when a terminal yt is newly generated:

st = LSTM(yt, st−1) (17)

Differently, the effects of NT and RED are merged into a NT-RED(X) operation.

When NT-RED(X) is invoked, a non-terminal yt is first predicted and then the stack-

LSTM starts popping its states on the stack. The number of pops is decided by the

amount of argument expected by yt. After that, a subtree can be obtained by combining

the non-terminal yt and the newly popped terminal tokens, while the stack-LSTM

reaches an intermediate state st−1:t. Similar to the top-down system, we compute the

representation of the newly combined subtree u as:

u = Wu · [pu : cu] (18)

where pu denotes the parent (non-terminal) embedding of the subtree, cu denotes the

average of the children (terminal or completed subtree) embeddings, and Wu denotes

the weight matrix. Finally, the subtree embedding u serves as the input to the LSTM and

updates st−1:t to st as:

st = LSTM(u, st−1:t) (19)

The key difference here is that a non-terminal tree token is never pushed alone to update

the stack-LSTM, but rather as part of a completed subtree that does the update.

Making Predictions. Given encodings of the utterance and generation history, our model

makes two types of predictions pertaining to transition operations and logical form
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Figure 1: A stack-LSTM extends a standard LSTM with the addition of a stack pointer
(shown as Top in the figure). The example shows how the configuration of the stack
changes when the operations NT, TER, and RED are applied in sequence. The initial
stack is presumed empty for illustration purposes. We only show how the stack-LSTM
updates its states, not how subsequent predictions are made which depend not only on
the hidden state of the stack-LSTM, but also on the natural language utterance.

tokens (see Tables 3, 4). First, at every time step, the next transition operation ot+1 is

predicted based on utterance encoding b and generation history st:

ot+1 ∼ f(b, st) (20)

where f is a neural network that computes the parameters of a multinomial distribution

over the action space which is restricted by the constraints discussed in Section 3.4.

Next, the logical form token underlying each generation operation must be emitted.

When the generation operation contains one of the domain-general non-terminals

count, argmax, argmin, and, or, and filter (e.g., NT(count)), the logical form

token is the corresponding non-terminal (e.g., count). When the generation operation
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involves one of the placeholders for entity or relation (e.g., NT(relation),

NT-RED(relation), TER(relation) and TER(entity)), a domain-specific logical

form token yt+1 (i.e., an entity or a relation) is predicted in a fashion similar to action

prediction:

yt+1 ∼ g(b, st) (21)

where g is a neural network that computes the parameters of a multinomial distribution

over the token space.

A remaining challenge lies in designing predictive functions f (for the next action)

and g (for the next logical form token) in the context of semantic parsing. We explore

various attention mechanisms which we discuss in the next sections.

3.6 Next Action Prediction

This section explains how we model function f for predicting the next action. We draw

inspiration from previous work on transition-based syntactic parsing and compute a

feature vector representing the current state of the generation system (Dyer et al. 2016).

This feature vector typically leverages the buffer which stores unprocessed tokens in

the utterance and the stack which stores tokens in the partially completed parse tree. A

major difference in our semantic parsing context is that the buffer configuration does not

change deterministically with respect to the stack since the alignment between natural

language tokens and logical-form tokens is not explicitly specified. This gives rise to the

challenge of extracting features representing the buffer at different time steps. To this

end, we compute at each time step t a single adaptive representation of the buffer b̄t

with a soft attention mechanism:

uit = V tanh(Wbbi +Wsst) (22)

23

Computational Linguistics

© 2018 Association for Computational Linguistics Published under a Creative Commons

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

 Just Accepted MS.

doi:10.1162/coli_a_00342



Computational Linguistics Volume xx, Number xx

αi
t = softmax(uit) (23)

b̄t =
∑
i

αi
tbi (24)

where Wb and Ws are weight matrices and V is a weight vector. We then combine

the representation of the buffer and the stack with a feed-forward neural network

(Equation (25)) to yield a feature vector for the generation system. Finally, softmax is

taken to obtain the parameters of the multinomial distribution over actions:

at+1 ∼ softmax(Woa tanh(Wf [b̄t, st])) (25)

where Woa and Wf are weight matrices.

3.7 Next Token Prediction

This section presents various functions g for predicting the next logical form token

(i.e., a specific entity or relation). A hurdle in semantic parsing concerns handling

mismatches between natural language and logical tokens in the target knowledge base.

For example, both utterances “Where did X graduate from” and “Where did X get his PhD”

would trigger the same predicate education in Freebase. Traditional semantic parsers

map utterances directly to domain-specific logical forms relying exclusively on a set of

lexicons either predefined or learned for the target domain with only limited coverage.

Recent approaches alleviate this issue by firstly mapping the utterance to a domain-

general logical form which aims to capture language-specific semantic aspects, after

which ontology matching is performed to handle mismatches (Kwiatkowski et al. 2013;

Reddy, Lapata, and Steedman 2014; Reddy et al. 2016). Beyond efficiency considerations,

it remains unclear which domain-general representation is best suited to domain-

specific semantic parsing.
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Neural networks provide an alternative solution: the matching between natural

language and domain-specific predicates is accomplished via an attention layer, which

encodes a context-sensitive probabilistic lexicon. This is analogous to the application

of the attention mechanism in machine translation (Bahdanau, Cho, and Bengio 2015),

which is used as an alternative to conventional phrase tables. In this work, we consider

a practical domain-specific semantic parsing scenario where we are given no lexicon.

We first introduce the basic form of attention used to predict logical form tokens and

then discuss various extensions as shown in Figure 3.

Soft Attention. In the case where no lexicon is provided, we use a soft attention layer

similar to action prediction. The parameters of the soft attention layer prior to softmax

are shared with those used in action prediction:

uit = V tanh(Wbbi +Wsst) (26)

αi
t = softmax(uit) (27)

b̄t =
∑
i

αi
tbi (28)

yt+1 ∼ softmax(Woy tanh(Wf [b̄t, st])) (29)

which outputs the parameters of the multinomial distribution over logical form tokens

(either predicates or entities). When dealing with extremely large knowledge bases,

the output space can be pruned and restricted with an entity linking procedure. This

method requires us to identity potential entity candidates in the sentence, and then

generate only entities belonging to this subset and the relations linking them.
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Structured Soft Attention. We also explored a structured attention layer (Kim et al. 2017;

Liu and Lapata 2018) to encourage the model to attend to contiguous natural language

phrases when generating a logical token, while still being differentiable.

The structured attention layer we adopt is a linear-chain conditional random field

(CRF; Lafferty, Mccallum, and Pereira (2001). Assume that at time step t each token

in the buffer (e.g., the ith token) is assigned an attention label Ai
t ∈ {0, 1}. The CRF

defines p(At), the probability of the sequence of attention labels at time step t as:

p(At) =
exp

∑
iWf · ψ(Ai−1

t , Ai
t, bi, st)∑

A1
t ,··· ,An

t
exp

∑
iWf · ψ(Ai−1

t , Ai
t, bi, st)

(30)

where
∑

i sums over all tokens and
∑

A1
t ,··· ,An

t
sums over all possible sequences of

attention labels. Wf is a weight vector and ψ(Ai−1
t , Ai

t, bi, st) a feature vector. In this

work the feature vector is defined with three dimensions: the state feature for each

token:

uit · ait (31)

where uit is the token-specific attention score computed in Equation (26); the transition

feature:

Ai−1
t ·Ai

t (32)

and the context-dependent transition feature

uit ·Ai−1
t ·Ai

t (33)

The marginal probability p(Ai
t = 1) of each token being selected is computed with

the forward-backward message passing algorithm (Lafferty, Mccallum, and Pereira

2001). The procedure is shown in Figure 2. To compare with standard soft attention,
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Objective: Predict the next logical form token given the current stack representation st
and n input token representations in the buffer b1 · · · bn.
Steps:

1. Compute the logit uit of each input token bi as uit = V tanh(Wbbi +Wsst).
The logit will be used to compute the first and third feature in ψ.

2. Forward algorithm: Initialize β(A1
t ) = 1.

For i ∈ {2 · · ·n}, Ai
t ∈ {0, 1}: β(Ai

t) =
∑

Ai−1
t ∈{0,1}

β(Ai−1
t )× ψ(Ai−1

t , Ai
t, bi, st),

where ψ is the context-dependent feature vector.

3. Backward algorithm: Initialize γ(An
t ) = 1.

For i ∈ {1 · · · (n− 1)}, Ai
t ∈ {0, 1}:

γ(Ai
t) =

∑
Ai+1

t ∈{0,1}
γ(Ai+1

t )× ψ(Ai
t, A

i+1
t , bi, st), where ψ is the

context-dependent feature vector.

4. Compute the marginal probability αi
t of each input token bi:

αi
t = β(Ai

t)× γ(Ai
t)

5. Apply soft attention to compute an adaptive buffer representation:
b̄t =

∑
i α

i
tbi

6. Predict the next token: yt+1 ∼ softmax(Woy tanh(Wf [b̄t, st]))

7. Compute the error and backpropagate.

Figure 2: The structured attention model for token prediction.

we denote this procedure as:

αi
t = forward-backward(uit) (34)

The marginal probabilities are used as in standard soft attention to compute an

adaptive buffer representation:

b̄t =
∑
i

αi
tbi (35)

which is then used to compute a distribution of output logical form tokens:

yt+1 ∼ softmax(Woy tanh(Wf [b̄t, st])) (36)
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The structured attention layer is soft and fully differentiable and allows us to model

attention over phrases since the forward-backward algorithm implicitly sums over an

exponentially-sized set of substructures through dynamic programming.

Hard Attention. Soft attention learns a complete mapping between natural language

and logical tokens with a differentiable neural layer. At every time step, every natural

language token in the utterance is assigned the probability of triggering every logical

predicate. This offers little in the way of interpretability. In order to render the inner

workings of the model more transparent we explore the use of a hard attention

mechanism as a means of rationalizing neural predictions.

At each time step, hard attention samples from the attention probability a single

natural language token xt:

uit = V tanh(Wbbi +Wsst) (37)

xt ∼ softmax(uit) (38)

The representation of xt denoted by bt is then used to predict the logical token yt:

yt+1 ∼ softmax(Woy tanh(Wf [bt, st])) (39)

Hard attention is nevertheless optimization-wise challenging; it requires sampling

symbols (aka non-differentiable representations) inside an end-to-end module which

may incur high variance. In practice, we adopt a baseline method to reduce the variance

of the predictor which we discuss in Section 3.8.1.

Binomial Hard Attention. Learning difficulties aside, a limitation of hard attention lies

in selecting a single token to attend to at each time step. In practice, a logical form
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utterance: which daughter of Barack Obama was named Most Influential Teens in the year 2014
partially completed logical form: and(daughterOf(Barack Obama),
next logical form token: InfluentialTeensByYear

soft attention over all utterance tokens:
whichwhich daughterdaughter ofof BarackBarack ObamaObama waswas namednamed MostMost InfluentialInfluential TeensTeens inin thethe YearYear 20142014

hard attention over a single utterance token:
which daughter of Barack Obama was named as the InfluentialInfluential Teens in the year 2014

structured attention over a subset of utterance tokens:
which daughter of Barack Obama was named Most Influential Teens in the yearMost Influential Teens in the year 2014

Figure 3: Different attention mechanisms for predicting the next logical form token. The
example utterance is which daughter of Barack Obama was named Most Influential
Teens in the year 2014? and the corresponding logical form to be generated is
and(daughterOf(Barack Obama), InfluentialTeensByYear(2014)). The
figure shows attention for predicting InfluentialTeensByYear. Darker shading
indicates higher values.

predicate is often triggered by a natural language phrase or a multi-word expression. A

way to overcome this limitation is to compute a binomial distribution for every token

separately, indicating the probability of the token being selected. Then an attention label

is assigned to each token based on this probability (e.g., with threshold 0.5). Let Ai
t ∈

{0, 1} denote the attention label of the ith token at time step t. Using the unnormalized

attention score uit computed in Equation (26), we obtain the probability p(Ai
t = 1) as:

p(Ai
t = 1) = logistic(uit) (40)

where logistic denotes a logistic regression classifier. We compute adaptive buffer

representation as an average of the selected token embeddings:

b̄t =
1∑
iA

i
t

∑
i

Ai
tbi (41)

which is then used to compute a distribution of the output logical form tokens:

yt+1 ∼ softmax(Woy tanh(Wf [b̄t, st])) (42)
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Table 5: Example data for various semantic parsing training regimes.

Full supervision: utterance-logical form pairs
utterance: which daughter of Barack Obama was named Most Influential Teens in the year 2014?
logical form: and(daughterOf(Barack Obama), InfluentialTeensByYear(2014))

Weak supervision: utterance-denotation pairs
utterance: which daughter of Barack Obama was named Most Influential Teens in the year 2014?
denotation: Malia Obama

Distant supervision: entity-masked utterances
utterance: Malia Obama, the daughter of Barack Obama, was named Most Influential Teens in the year 2014.
artificial utterance: _blank_, the daughter of Barack Obama, was named Most Influential Teens in the year 2014.
denotation: Malia Obama

3.8 Model Training

We now discuss how our neural semantic parser can be trained under different

conditions, i.e., with access to utterances annotated with logical forms, when only

denotations are provided, and finally, when neither logical forms nor denotations are

available (see Table 5).

3.8.1 Learning from Utterance-Logical Form Pairs. The most straightforward training

setup is fully supervised making use of utterance-logical form pairs. Consider

utterance xwith logical form lwhose structure is determined by a sequence of transition

operations a and a sequence of logical form tokens y. Our ultimate goal is to maximize

the conditional likelihood of the logical form given the utterance for all training data:

L =
∑

(x,l)∈T

log p(l|x) (43)

which can be decomposed into the action likelihood and the token likelihood:

log p(l|x) = log p(a|x) + log p(y|x, a) (44)
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Soft attention. The above objective consists of two terms, one for the action sequence:

La =
∑

(x,l)∈T

log p(a|x) =
∑

(x,l)∈T

n∑
t=1

log p(at|x) (45)

and one for the logical form token sequence:

Ly =
∑

(x,l)∈T

log p(y|x, a) =
∑

(x,l)∈T

n∑
t=1

log p(yt|x, at) (46)

These constitute the training objective for fully differentiable neural semantic parsers,

when (basic or structured) soft attention is used.

Hard attention. When hard attention is used for token prediction, the objective

La remains the same but Ly differs. This is because the attention layer is non-

differentiable for errors to backpropagate through. We use the alternative REINFORCE-

style algorithm (Williams 1992) for backpropagation. In this scenario, the neural

attention layer is used as a policy predictor to emit an attention choice, while subsequent

neural layers are used as the value function to compute a reward—a lower bound of the

log likelihood log p(y|x, a). Let ut denote the latent attention choice2 at each time step t;

we maximize the expected log likelihood of the logical form token given the overall

attention choice for all examples, which by Jensen’s Inequality is the lower bound on

the log likelihood log p(y|x, a):

Ly =
∑

(x,l)∈T

∑
u

[p(u|x, a) log p(y|u, x, a)]

≤
∑

(x,l)∈T

log
∑
u

[p(u|x, a)p(y|u, x, a)]

=
∑

(x,l)∈T

log p(y|x, a)

(47)

2 In standard hard attention, the choice is a single token in the sentence; while in binomial hard attention, it
is a phrase.
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The gradient of Ly with respect to model parameters θ is given by:

∂Ly

∂θ
=

∑
(x,l)∈T

∑
u

p(u|x, a)
∂ log p(y|u, x, a)

∂θ
+ log p(y|u, x, a)

∂p(u|x, a)

∂θ

=
∑

(x,l)∈T

∑
u

p(u|x, a)
∂ log p(y|u, x, a)

∂θ
+ log p(y|u, x, a)

∂ log p(u|x, a)

∂θ
p(u|x, a)

=
∑

(x,l)∈T

∑
u

p(u|x, a)

[
∂ log p(y|u, x, a)

∂θ
+ log p(y|u, x, a)

∂ log p(u|x, a)

∂θ

]

≈
∑

(x,l)∈T

1

N

K∑
k=1

[
∂ log p(y|uk, x, a)

∂θ
+ log p(y|uk, x, a)

∂ log p(uk|x, a)

∂θ

]
(48)

which is estimated by the Monte Carlo estimator with K samples. This gradient

estimator incurs high variance because the reward term log p(y|uk, x, a) is dependent

on the samples of uk. An input-dependent baseline is used to reduce the variance, which

adjusts the gradient update as:

∂Ly

∂θ
=

∑
(x,l)∈T

1

N

K∑
k=1

[
∂ log p(y|uk, x, a)

∂θ
+ (log p(y|uk, x, a)− b)∂ log p(uk|x, a)

∂θ

]
(49)

As baseline, we use the soft attention token predictor described earlier. The effect is to

encourage attention samples that return a higher reward than standard soft attention,

while discouraging those resulting in a lower reward. For each training case, we

approximate the expected gradient with a single sample of uk.

3.8.2 Learning from Utterance-Denotation Pairs. Unfortunately, training data

consisting of utterances and their corresponding logical forms is difficult to obtain at

large scale, and as a result limited to a few domains with a small number of logical

predicates. An alternative to full supervision is a weakly supervised setting where the

semantic parser is trained on utterance-denotation pairs, where logical forms are treated

as latent.
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In the following we firstly provide a brief review of conventional weakly supervised

semantic parsing systems (Berant et al. 2013a), and then explain the extension of our

neural semantic parser to a similar setting. Conventional weakly-supervised semantic

parsing systems separate the parser from the learner (Liang 2016). A chart-based (non-

parametrized) parser will recursively build derivations for each span of an utterance,

eventually obtaining a list of candidate derivations mapping the utterance to its logical

form. The learner (which is often a log-linear model) defines features useful for scoring

and ranking the set of candidate derivations, and is trained based on the correctness

of their denotations. As mentioned in Liang (2016), the chart-based parser brings a

disadvantage since the system does not support incremental contextual interpretation,

because features of a span can only depend on the sub-derivations in that span, as a

requirement of dynamic programming.

Different from chart-based parsers, a neural semantic parser is itself a parametrized

model and is able to leverage global utterance features (via attention) for decoding.

However, training the neural parser directly with utterance-denotation pairs is

challenging since the decoder does not have access to gold standard logical forms for

backpropagation. Moreover, the neural decoder is a conditional generative model which

generates logical forms in a greedy fashion and therefore lacks the ability to make global

judgments of logical forms. To this end, we follow conventional setup in integrating

our neural semantic parser with a log-linear ranker, to cope with the weak supervision

signal. The role of the neural parser is to generate a list of candidate logical forms,

while the ranker is able to leverage global features of utterance-logical form-denotation

triplets to select which candidate to use for execution.
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The objective of the log-linear ranker is to maximize the log marginal likelihood of

the denotation d via latent logical forms l:

log p(d|x) = log
∑
l∈L

p(l|x)p(d|x, l) (50)

where L denotes the set of candidate logical forms generated by the neural parser. Note

that p(d|x, l) equates to 1 if the logical form executes to the correct denotation and 0

otherwise. For this reason, we can also write the above equation as log
∑

l∈L(c) p(l|x),

where L(c) is the set of consistent logical forms which execute to the correct denotation.

Specifically p(l|x) is computed with a log-linear model:

p(l|x) =
exp(φ(x, l)θ)∑

l′∈L exp(φ(x, l′)θ)
(51)

where L is the set of candidate logical forms; φ is the feature function that maps

an utterance-logical form pair (and also the corresponding denotation) into a feature

vector; and θ denotes the weight parameter of the model.

Training such a system involves the following steps. Given an input utterance, the

neural parser first generates a list of candidate logical forms via beam search. Then these

candidate logical forms are executed and those which yield the correct denotation are

marked as consistent logical forms. The neural parser is then trained to maximize the

likelihood of these consistent logical forms
∑

l∈Lc
log p(l|x). Meanwhile, the ranker is

trained to maximize the marginal likelihood of denotations log p(d|x).

Clearly, if the parser does not generate any consistent logical forms, no model

parameters will be updated. A challenge in this training paradigm is the fact that we

rely exclusively on beam search to find good logical forms from an exponential search

space. In the beginning of training, neural parameters are far from optimal, and as a

result good logical forms are likely to fall outside the beam. We alleviate this problem
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by performing entity linking which greatly reduces the search space. We determine the

identity of the entities mentioned in the utterance according to the knowledge base and

restrict the neural parser to generating logical forms containing only those entities.

3.8.3 Distant Supervision. Despite allowing to scale semantic parsing to large open-

domain problems (Kwiatkowski et al. 2013; Berant et al. 2013a; Yao and Van Durme

2014), the creation of utterance-denotation pairs still relies on labor-intensive crowd-

sourcing. A promising research direction is to employ a sort of distant supervision,

where training data (e.g., artificial utterance-denotations pairs) is artificially generated

with give resources (e.g., a knowledge base, Wikipedia documents). In this work,

we additionally train the weakly-supervised neural semantic parser with a distant

supervision approach proposed by Reddy, Lapata, and Steedman (2014). In this

setting, the given data is a corpus of entity-recognized sentences and a knowledge

base. Utterance-denotation pairs are artificially created by replacing entity mentions

in the sentences with variables. Then, the semantic parser is trained to predict

the denotation for the variable that includes the mentioned entity. For example,

given the declarative sentence NVIDIA was founded by Jen-Hsun Huang and Chris

Malachowsky, the distant supervision approach creates the utterance NVIDIA was

founded by Jen-Hsun_Huang and _blank_ paired with the corresponding denotation

Chris Malachowsky. In some cases, even stronger constraints can be applied. For

example, if the mention is preceded by the word the, then the correct denotation

includes exactly one entity. In sum, the approach converts the corpus of entity-

recognized sentences into artificial utterance-denotation pairs on which the weakly

supervised model described in Section 3.8.2 can be trained. We also aim to evaluate

if this approach is helpful for practical question answering.
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4. Experiments

In this section, we present our experimental setup for assessing the performance of

the neural semantic parsing framework. We present the datasets on which our model

was trained and tested, discuss implementation details, and finally report and analyze

semantic parsing results.

4.1 Datasets

We evaluated our model on the following datasets which cover different domains and

require different types of supervision.

GEOQUERY (Zelle and Mooney 1996) contains 880 questions and database queries

about US geography. The utterances are compositional, but the language is simple and

vocabulary size small (698 entities and 24 relations). Model training on this dataset is

fully supervised (Section 3.8.1)

WEBQUESTIONS (Berant et al. 2013b) contains 5,810 question-answer pairs. It is

based on Freebase and the questions are not very compositional. However, they are

real questions asked by people on the web.

GRAPHQUESTIONS (Su et al. 2016) contains 5,166 question-answer pairs which

were created by showing 500 Freebase graph queries to Amazon Mechanical Turk

workers and asking them to paraphrase them into natural language. Model training

on WEBQUESTIONS and GRAPHQUESTIONS is weakly supervised (Section 3.8.2).

SPADES (Bisk et al. 2016) contains 93,319 questions derived from CLUEWEB09

(Gabrilovich, Ringgaard, and Subramanya 2013) sentences. Specifically, the questions

were created by randomly removing an entity, thus producing sentence-denotation

pairs (Reddy, Lapata, and Steedman 2014). The sentences include two or more entities
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and although they are not very compositional, they constitute a large-scale dataset for

neural network training with distant supervision (Section 3.8.3).

4.2 Implementation Details

Shared Parameters. Across training regimes, the dimensions of word vector, logical form

token vector, and LSTM hidden state are 50, 50, and 150 respectively. Word embeddings

were initialized with Glove embeddings (Pennington, Socher, and Manning 2014). All

other embeddings were randomly initialized. We used one LSTM layer in forward and

backward directions. Dropout was used on the combined feature representation of the

buffer and the stack (Equation (25)), which computes the softmax activation of the next

action or token. The dropout rate was set to 0.5. Finally, momentum SGD (Sutskever

et al. 2013) was used as the optimization method to update the parameters of the model.

Entity Resolution. Amongst the four datasets described above, only GEOQUERY contains

annotated logical forms which can be used to directly train a neural semantic parser. For

the other three datasets, supervision is indirect via consistent logical forms validated on

denotations (see Section 3.8.2). As mentioned earlier, we use entity linking to reduce the

search space for consistent logical forms. Entity mentions in SPADES are automatically

annotated with Freebase entities (Gabrilovich, Ringgaard, and Subramanya 2013).

For WEBQUESTIONS and GRAPHQUESTIONS we perform entity linking following

the procedure described in Reddy et al. (2016). We identify potential entity spans

using seven handcrafted part-of-speech patterns and associate them with Freebase

entities obtained from the Freebase/KG API (http://developers.google.com/

freebase/). For each candidate entity span, we retrieve the top 10 entities according to

the API. We treat each possibility as a candidate entity to construct candidate utterances

with beam search of size 500, among which we look for the consistent logical forms.
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Discriminative Ranker. For datasets which use denotations as supervision, our semantic

parsing system additionally includes a discriminative ranker, whose role is to select

the final logical form to execute from a list of candidates generated by the neural

semantic parser. At test time, the generation process is accomplished by beam search

with beam size 300. The ranker which is a log-linear model is trained with momentum

SGD (Sutskever et al. 2013). As features, we consider the embedding cosine similarity

between the utterance (excluding stop-words) and the logical form, the token overlap

count between the two, and also similar features between the lemmatized utterance and

the logical form. In addition, we include as features the embedding cosine similarity

between the question words and the logical form, the similarity between the question

words (e.g., what, who, where, whose, date, which, how many, count ) and relations

in the logical form, and the similarity between the question words and answer type as

indicated by the last word in the Freebase relation (Xu et al. 2016). Finally, we add as a

feature the length of the denotation given by the logical form (Berant et al. 2013a).

4.3 Results

In this section, we present the experimental results of our Transition-based Neural

Semantic Parser (TNSP). We present various instantiations of our own model as well

as comparisons against semantic parsers proposed in the literature.

Experimental results on GEOQUERY are shown in Table 6. The first block contains

conventional statistical semantic parsers, previously proposed neural models are

presented in the second block, whereas variants of TNSP are shown in the third block.

Specifically we build various top-down and bottom-up TNSP models using the various

types of attention introduced in Section 3.7. We report accuracy which is defined as the

proportion of utterances which correctly parsed to their gold standard logical forms.

Amongst TNSP models, a top-down system with structured (soft) attention performs
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Table 6: Fully supervised experimental results on the GEOQUERY dataset. For Jia and
Liang (2016), we include two of their results: one is a standard neural sequence to
sequence model; and the other is the same model trained with a data augmentation
algorithm on the labeled data (reported in parentheses).

Models Accuracy
Zettlemoyer and Collins (2005) 79.3
Zettlemoyer and Collins (2007) 86.1
Kwiatkowksi et al. (2010) 87.9
Kwiatkowski et al. (2011) 88.6
Kwiatkowski et al. (2013) 88.0
Zhao and Huang (2015) 88.9
Liang, Jordan, and Klein (2011) 91.1
Dong and Lapata (2016) 84.6
Jia and Liang (2016) 85.0 (89.1)
Rabinovich, Stern, and Klein (2017) 87.1
TNSP, soft attention, top-down 86.8
TNSP, soft structured attention, top-down 87.1
TNSP, hard attention, top-down 85.3
TNSP, binomial hard attention, top-down 85.5
TNSP, soft attention, bottom-up 86.1
TNSP, soft structured attention, bottom-up 86.8
TNSP, hard attention, bottom-up 85.3
TNSP, binomial hard attention, bottom-up 85.3

best. Overall, we observe that differences between top-down and bottom-up systems are

small; it is mostly the attention mechanism that affects performance, with hard attention

performing worst and soft attention performing best for both top-down and bottom-up

systems. TNSP outperforms previously proposed neural semantic parsers which treat

semantic parsing as a sequence transduction problem and use LSTMs to map utterances

to logical forms (Dong and Lapata 2016; Jia and Liang 2016). TNSP brings performance

improvements over these systems when using comparable data sources for training. Jia

and Liang (2016) achieve better results with synthetic data that expands GEOQUERY;

we could adopt their approach to improve model performance, however, we leave this

to future work. Our system is on the same par with the model of Rabinovich, Stern, and

Klein (2017) who also output well-formed trees in a top-down manner using a decoder
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built of many submodels, each associated with a specific construct in the underlying

grammar.

Results for the weakly supervised training scenario are shown in Table 7. For all

Freebase related datasets we use average F1 (Berant et al. 2013a) as our evaluation

metric. We report results on WEBQUESTIONS and GRAPHQUESTIONS in Tables 7a

and 7b, respectively. The first block in the tables groups conventional statistical semantic

parsers, the second block presents related neural models, and the third block variants

of TNSP. For fair comparison, we also built a baseline sequence-to-sequence model

enhanced with an attention mechanism (Dong and Lapata 2016).

On WEBQUESTIONS, the best performing TNSP system generates logical forms

based on top-down pre-order while employing soft attention. The same top-down

system with structured attention performs closely. Again we observe that bottom-up

preorder lags behind. In general, our semantic parser obtains performance on par with

the best symbolic systems (see the first block in Table 7a). It is important to note that

Bast and Haussmann (2015) develop a question answering system, which contrary to

ours cannot produce meaning representations whereas Berant and Liang (2015) propose

a sophisticated agenda-based parser which is trained borrowing ideas from imitation

learning. Reddy et al. (2016) learn a semantic parser via intermediate representations

which they generate based on the output of a dependency parser. TNSP performs

competitively despite not having access to linguistically-informed syntactic structure.

Regarding neural systems (see the second block in Table 7a), our model outperforms

the sequence-to-sequence baseline and other related neural architectures using similar

resources. Xu et al. (2016) represent the state of the art on WEBQUESTIONS. Their system

uses Wikipedia to prune out erroneous candidate answers extracted from Freebase. Our

model would also benefit from a similar post-processing.
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Table 7: Weakly supervised experimental results on two datasets. Results with
additional resources are shown in parentheses.

(a) WEBQUESTIONS

Models F1
SEMPRE (Berant et al. 2013b) 35.7
JACANA (Yao and Van Durme 2014) 33.0
PARASEMPRE(Berant and Liang 2014) 39.9
AQQU (Bast and Haussmann 2015) 49.4
AGENDAIL (Berant and Liang 2015) 49.7
DEPLAMBDA (Reddy et al. 2016) 50.3
SUBGRAPH (Bordes, Chopra, and Weston 2014) 39.2
MCCNN (Dong et al. 2015) 40.8
STAGG (Yih et al. 2015) 52.5
MCNN (Xu et al. 2016) 53.3
Sequence-to-sequence 48.3
TNSP, soft attention, top-down 50.1
TNSP, soft structured attention, top-down 49.8
TNSP, hard attention, top-down 49.4
TNSP, binomial hard attention, top-down 48.7
TNSP, soft attention, bottom-up 49.6
TNSP, soft structured attention, bottom-up 49.5
TNSP, hard attention, bottom-up 48.4
TNSP, binomial hard attention, bottom-up 48.7

(b) GRAPHQUESTIONS

Models F1
SEMPRE (Berant et al. 2013b) 10.8
PARASEMPRE (Berant and Liang 2014) 12.8
JACANA (Yao and Van Durme 2014) 5.1
SIMPLEGRAPH (Reddy et al. 2016) 15.9
UDEPLAMBDA (Reddy et al. 2017) 17.6
Sequence-to-sequence 16.2
PARA4QA (Dong et al. 2017) 20.4
TNSP, soft attention, top-down 17.3
TNSP, soft structured attention, top-down 17.1
TNSP, hard attention, top-down 16.2
TNSP, binomial hard attention, top-down 16.4
TNSP, soft attention, bottom-up 16.9
TNSP, soft structured attention, bottom-up 17.1
TNSP, hard attention, bottom-up 16.8
TNSP, binomial hard attention, bottom-up 16.5

With respect to GRAPHQUESTIONS, we report F1 for various TNSP models (third

block in Table 7b), and conventional statistical semantic parsers (first block in Table 7b).

The first three systems are presented in Su et al. (2016). Again, we observe that a top-

down variant of TNSP with soft attention performs best. It is superior to the sequence-to-
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sequence baseline and obtains performance comparable to Reddy et al. (2017) without

making use of an external syntactic parser. The model of Dong et al. (2017) is state of the

art on GRAPHQUESTIONS. Their method is trained end-to-end using questions-answer

pairs as a supervision signal together with question paraphrases as a means of capturing

different ways of expressing the same content. Importantly, their system is optimized

with question-answering in mind, and does not produce logical forms.

When learning from denotations, a challenge concerns the handling of an

exponentially large set of logical forms. In our approach, we rely on the neural semantic

parser to generate a list of candidate logical forms by beam search. Ideally, we hope

the beam size is large enough to include good logical forms which will be subsequently

selected by the discriminative ranker. Figure 4 shows the effect of varying beam size on

GRAPHQUESTIONS (development set) when training executes for two epochs using the

TNSP soft attention model with top-down generation order. We report the number of

utterances that are answerable (i.e., an utterance is considered answerable if the beam

includes one or more good logical forms leading to the correct denotation) and the

number of utterances that are correctly answered eventually. As the beam size increases,

the gap between utterances that are answerable and those that are answered correctly

becomes larger. And the curve for correctly answered utterances gradually plateaus

and the performance does not improve. This indicates a trade-off between generating

candidates that cover good logical forms and picking the best logical form for execution:

when the beam size is large, there is a higher chance for good logical forms to be

included but also for the discriminative ranker to make mistakes.

GRAPHQUESTIONS consists of four types of questions. As shown in Table 8, the

first type are relational questions (denoted by relation). An example of a relational

question is what periodic table block contains oxygen ; the second type contains count
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Figure 4: Fraction of utterances that are answerable versus those correctly predicted
with varying beam size on the GRAPHQUESTIONS development set.

Table 8: Breakdown of questions answered by type for the GRAPHQUESTIONS.

Question type Number % Answerable % Correctly answered
relation 1938 0.499 0.213
count 309 0.421 0.032
aggregation 226 0.363 0.075
filter 135 0.459 0.096
All 2,608 0.476 0.173

questions (denoted by count). An example is how many firefighters does the new

york city fire department have ; the third type includes aggregation questions requiring

argmax or argmin (denoted by aggregation). An example is what human stampede

injured the most people ; the last type are filter questions which requires comparisons by

>,≥,< and≤ (denoted by filter). An example is which presidents of the united states

weigh not less than 80.0 kg. Table 8 shows the number of questions broken down by

type, as well as the proportion of answerable and correctly answered questions. As the

results reveal, relation questions are the simplest to answer which is expected since

relation questions are non-compositional and their logical forms are easy to find by
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Table 9: Distantly supervised experimental results on the SPADES dataset.

Models F1
Unsupervised CCG (Bisk et al. 2016) 24.8
Semi-supervised CCG (Bisk et al. 2016) 28.4
Supervised CCG (Bisk et al. 2016) 30.9
Rule-based system (Bisk et al. 2016) 31.4
Sequence-to-sequence 28.6
TNSP, soft attention, top-down 32.4
TNSP, soft structured attention, top-down 32.1
TNSP, hard attention, top-down 31.5
TNSP, binomial hard attention, top-down 29.8
TNSP, soft attention, bottom-up 32.1
TNSP, soft structured attention, bottom-up 31.4
TNSP, hard attention, bottom-up 30.7
TNSP, binomial hard attention, bottom-up 30.4

beam search. The remaining types of questions are rather difficult to answer: although

the system is able to discover logical forms that lead to the correct denotation during

beam search, the ranker is not able to identify the right logical forms to execute. Aside

from the compositional nature of these questions which makes them hard to answer,

another difficulty is that such questions are a minority in the dataset posing a learning

challenge for the ranker to identify them. As future work, we plan to train separate

rankers for different question types.

Finally, Table 9 presents experimental results on SPADES which serves as a testbed

for our distant supervision setting. Previous work on this dataset has used a semantic

parsing framework where natural language is converted to an intermediate syntactic

representation and then grounded to Freebase. Specifically, Bisk et al. (2016) evaluate

the effectiveness of four different CCG parsers on the semantic parsing task when

varying the amount of supervision required. As can be seen, TNSP outperforms all CCG

variants (from unsupervised to fully supervised) without having access to any manually
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annotated derivations or lexicons. Again, we observe that a top-down TNSP system with

soft attention performs best and is superior to the sequence-to-sequence baseline.

The results on SPADES hold promise for scaling semantic parsing by using distant

supervision. In fact, artificial data could potentially help improve weakly supervised

question answering models trained on utterance-denotation pairs. To this end, we

use the entity-masked declarative sentences paired with their denotations in SPADES

as additional training data for GRAPHQUESTIONS. We train the neural semantic

parser with the combined training data and evaluate on the GRAPHQUESTIONS.

We use the top-down, soft-attention TNSP model with a beam search size of 300.

During each epoch of training, the model was first trained with a mixture of the

additional SPADES data and the original training data. Figure 5 shows the fraction of

answerable and correctly answered questions generated by the neural semantic parser

on GRAPHQUESTIONS. Note that the original GRAPHQUESTIONS training set consists

of 1,794 examples and we report numbers when different amount of SPADES training

data is used.

As the figure shows, using artificially training data is able to improve the neural

semantic parser on a question answering task to some extent. This suggests that distant

supervision is a promising direction for building practical semantic parsing systems.

Since artificial training data can be abundantly generated to fit a neural parser, the

approach can be used for data argumentation when question-answer pairs are limited.

However, we observe that the maximum gain occurs when 1,000 extra training

examples are used, a size comparable to the original training set. After that no further

improvements are made when more training examples are used. We hypothesize

this is due to the disparities between utterance-denotation pairs created in distant

supervision and utterance-denotation pairs gathered from real users. For example,
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Figure 5: Fraction of answerable and correctly answered questions in the
GRAPHQUESTIONS when different amount of the SPADES data is used.

given the declarative sentence NVIDIA was founded by Jen-Hsun Huang and Chris

Malachowsky, the distant supervision approach creates the utterance NVIDIA was

founded by Jen-Hsun_Huang and _blank_ and the corresponding denotation Chris

Malachowsky. However, the actual question users may ask is Who founded NVIDIA

together with Jen-Hsun_Huang. This poses a challenge if the neural network is trained

on one type of utterance and tested on another. We observe that the distribution

mismatch outweighs the addition of artificial data quickly. Future work will focus

on how to alleviate this problem by generating more realistic data with an advanced

question generation module.

Another factor limiting performance is that SPADES mainly consists of relational

questions without high-level predicates, such as count, filter and aggregation

which substantially harder to answer correctly (see Table 8).
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hard attention
good selections:
the brickyard 400 was hosted at what venue? (base.nascar.nascar_venue)
christian faith branched from what religion? (religion.religion)
which paintings are discovered in lascaux? (base.caveart.painting)
bad selections:
which violent events started on 1995-04-07? (base.disaster2.attack)
who was the aircraft designer of the b-747? (aviation.aircraft_designer)
the boinc has been used in which services? (base.centreforeresearch.service)
neutral selections:
how does ultram act in the body? (medicine.drug_mechanism_of_action)
microsoft has created which programming languages? (computer.programming_language)
find un agencies founded in 1957 (base.unitednations.united_nations_agency).

structured attention
good selections:
the brickyard 400 was hosted at what venue? (base.nascar.nascar_venue)
which violent events started on 1995-04-07? (base.disaster2.attack)
how does ultram act in the body? (medicine.drug_mechanism_of_action)
bad selections:
what is ehrlich’s affiliation? (education.department)
for which war was the italian armistice signed? (base.morelaw.war)
the boinc has been used in which services? (base.centreforeresearch.service)
neutral selections:
where was the brickyard 400 held? (base.nascar.nascar_venue)
by whom was paul influenced? (influence.influence_node)
how does ultram act in the body? (medicine.drug_mechanism_of_action)

Table 10: Hard attention and structure attention when predicting the relation in each
question. The corresponding logical predicate is shown in brackets.

To summarize, across experiments and training regimes, we observe that TNSP

performs competitively while producing meaningful and well-formed logical forms.

One characteristic of the neural semantic parser is that it generates tree-structured

representations in an arbitrarily canonical order, as a sequence of transition operations.

We investigated two such orders, top-down pre-order and bottom-up post-order.

Experimentally, we observed that pre-order generation provides marginal benefits over

post-order generation. One reason for this is that compared to sibling information which

the bottom-up system uses, parent information used by the top-down system is more

important for subtree prediction.

We explored three attention mechanisms in our work, including soft attention,

hard attention, and structured attention. Quantitatively, we observe that soft attention
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always outperforms hard attention in all three training setups. This can be attributed

to the differentiability of the soft attention layer. The structured attention layer is

also differentiable since it computes the marginal probability of each token being

selected with a dynamic programming procedure. We observe that on GEOQUERY

which represents the fully supervised setting, structured attention offers marginal gains

over soft attention. But in other datasets where logical forms are not given, the more

structurally aware attention mechanism does not improve over soft attention, possibly

due to the weaker supervision signal. However, it should be noted that the structured

attention layer at each decoding step requires the forward-backward algorithm, which

has time complexity O(2n2) (where n denotes the utterance length) and therefore much

slower than soft attention which has linear (O(n)) complexity.

An advantage of hard and structured attention is that it allows us to inspect which

natural language tokens are being selected when predicting a relation or entity in

the logical form. For hard attention, the selection boils down to a token sampling

procedure; whereas for structured attention, the tokens selected can be interpreted with

the Viterbi algorithm which assigns the most likely label for each token. Table 10 shows

examples of hard and structured attention when predicting the key relational logical

predicate. These examples were selected from GRAPHQUESTIONS using the top-down

TNSP system. The table contains both meaningful token selections (where the selected

tokens denote an informative relation) and non-meaningful ones.

5. Conclusions

In this paper, we described a general neural semantic parsing framework which

operates with functional query language and generates tree-structured logical forms

with transition-based neural networks. To tackle mismatches between natural language

and logical form tokens, we introduced various attention mechanisms in the generation
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process. We also considered different training regimes, including fully supervised

training where annotated logical forms are given, weakly-supervised training when

denotations are provided, and distant supervision where only unlabeled sentences and

a knowledge base are available. Compared to previous neural semantic parsers, our

model generates well-formed logical forms, and is more interpretable — hard and

structured attention can be used to inspect what the model has learned.

When the training data consists of utterance-denotation pairs, we employ a

generative parser-discriminative ranker framework: the role of the parser is to (beam)

search for candidate logical forms, which are subsequently re-scored by the ranker.

This is in contrast to recent work (Neelakantan et al. 2017) on weakly-supervised

neural semantic parsing, where the parser is directly trained by reinforcement learning

using denotations as reward. Advantageously, our framework employs beam search (in

contrast to greedy decoding) to increase the likelihood of discovering correct logical

forms in a candidate set. Meanwhile, the discriminative ranker is able to leverage global

features on utterance-logical form-denotation triplets to score logical forms. In future,

we will compare the presented parser-ranker framework with reinforcement learning-

based parsers.

Directions for future work are many and varied. Since the current semantic parser

generates tree structured logical forms conditioned on an input utterance, we could

additionally exploit input information beyond sequences such as dependency tree

representations, resembling a tree-to-tree transduction model. To tackle long-term

dependencies in the generation process, an intra-attention mechanism could be used

(Cheng, Dong, and Lapata 2016; Vaswani et al. 2017). Secondly, when learning from

denotations, it is possible that the beam search output contains spurious logical forms

which lead to correct answers accidentally but do not represent the actual meaning of an
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utterance. Such logical forms are misleading training signals and should be removed,

e.g., with a generative neural network component (Cheng, Lopez, and Lapata 2017)

which scores how well a logical form represents the utterance semantics. Last but

not least, since our semantic parsing framework provides a decomposition between

domain-generic tree generation and the selection of domain-specific constants, we

would like to further explore training the semantic parser in a muti-domain setup

(Herzig and Berant 2017), where the domain-generic parameters are shared.
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