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Abstract

We study how the learning of argument structure constructions in a second language (L2) is

affected by two basic input properties often discussed in literature—the amount of input and the time of

L2 onset. To isolate the impact of the two factors on learning, we use a computational model that

simulates bilingual construction learning. In the first two experiments we manipulate the sheer amount

of  L2  exposure,  both  in  absolute  and  in  relative  terms  (that  is,  in  relation  to  the  amount  of  L1

exposure).  The  results  show  that  higher  cumulative  amount  of  L2  exposure  leads  to  higher

performance. In the third experiment we manipulate the prior amount of L1 input before the L2 onset

(that is, the time of L2 onset). Given equal exposure, we find no negative effect of the later onset on

learners’  performance.  This  has  implications  for  theories  of  order  of  acquisition  and  bilingual

construction learning.

Keywords: second language acquisition, argument structure constructions, order of acquisition, time of

onset, amount of input.

Introduction

How is the learning of argument structure constructions in a second language (L2) affected by 

basic input properties such as the amount of input and the moment of L2 onset? This question touches 

on an important claim in usage-based theories of learning, namely that our knowledge of language is 

directly based on our experience with it, in particular the linguistic input we are exposed to. The 

amount of input and the moment of L2 onset are variables which are widely discussed in the field of 

second language acquisition (SLA). Yet, the exact question posed above has not received much 

attention either in usage-based linguistics or in SLA, although many closely related issues have been 

http://dx.doi.org/10.1017/S1366728915000607
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studied.

The impact of the moment of onset and the amount of exposure has been investigated in the 

domain of first language (L1) word learning, resulting in a number of competing hypotheses (see 

overviews by Hernandez & Li, 2007; Juhasz, 2005). Most researchers agree that word learning is 

affected both by the time of the word onset and the amount of exposure to that word. These findings 

might be applicable to the development of abstract constructions as well, especially since cognitive 

linguistics rejects a strict dichotomy between language domains such as lexis and grammar. However, 

some argue that there is a functional distinction between lexical items and abstract constructions (Boas,

2010). Learning abstract constructions is different from word learning in that it is based on pattern-

finding skills such as analogy and categorization (Tomasello, 2003; Abboth-Smith & Tomasello, 2006).

There is also some neurological evidence that abstract constructions and lexical items are characterized 

by different representation in the human brain, and might be subject to different learning mechanisms 

(Pulvermüller & Knoblauch, 2009; Pulvermüller, Cappelle & Shtyrov, 2013). The difference in how 

words and abstract patterns are stored in memory is also one of the central points in the 

declarative/procedural model (e.g., Ullman, 2015; Pinker & Ullman, 2002). These differences suggest 

that the findings on word learning are not immediately generalizable to construction learning, and vice 

versa.

Interest in L2 construction learning has been growing recently (Gries & Wulff, 2005, 2009; 

Tyler, 2012; Ambridge & Brandt, 2013, etc.). In particular, it has been investigated how L2 

construction learning depends on distributional properties of the linguistic input, such as the frequency 

of using verbs in constructions, or the generality of verb meanings (Boyd & Goldberg, 2009; Year & 

Gordon, 2009; McDonough & Nekrasova-Becker, 2014; N. C. Ellis, O’Donnell & Römer, 2014; 

Römer, N. C. Ellis & O’Donnell, 2014), but not on the amount of input and the moment of onset—

factors commonly discussed in SLA literature.

The biggest challenge of studying input-related factors and their impact on language 

development is that their effects are often hard to disentangle. Studies on both L1 and L2 learning have 

shown that the amount of exposure and the time of onset are often confounded (Flege, 2009; Muñoz & 

Singleton, 2011; Ghyselink, Lewis & Brysbaert, 2004), and observational and experimental studies 

cannot easily solve this problem. In contrast, computational modeling allows researchers to manipulate 

input properties one at a time and to examine their individual impact on language development 

(A. W. Ellis & Lambon Ralph, 2000; Monaghan & A. W. Ellis, 2002; Zhao & Li, 2010; Monner, Vatz, 



3

Morini, Hwang & DeKeyser, 2013).

In this study, we use a computational tool for investigating how the learning of L2 argument 

structure constructions depends on the moment of L2 onset and the amount of L2 input. Our goal is not 

to develop a cognitive model of how humans learn a second language, but to simulate L2 construction 

learning from bilingual input in a purely data-driven fashion and without incorporating any unrelated 

(e.g., biological or social) factors. This approach allows us to analyze how the development of L2 

constructions changes as a result of systematic manipulations of the amount of exposure and the time of

onset. Although the use of computational modeling prevents us from making conclusive claims about 

human L2 construction learning, our simulations can provide useful intuitions on this process, which 

may then be tested with human subjects.

Variable definitions and the problem of confounding

SLA literature often talks about the age of onset, or the age of acquisition. However, the 

appropriateness of the term ‘age’ has been questioned. Talking about age has been suggested to be not 

informative, because this is not a basic variable, but a macrovariable that aggregates multiple 

interrelated factors (e.g., Jia & Aaronson, 2003; Montrul, 2008; Flege, 2009), which can be grouped 

into three broader categories (Jia & Aaronson, 2003; Moyer, 2004; Larson-Hall, 2008):

1. Biological–cognitive factors: state of neurological and cognitive development (Birdsong, 

2005), neuroplasticity (Long, 1990), etc.

2. Socio-psychological factors: motivation, the need to be fluent, self-perception of fluency, etc.

(Moyer, 2004).

3. Experiential factors: amount and distribution of L1 and L2 input, contexts of use, contacts 

with L2 native speakers, etc. (Moyer, 2004).

The proposed categorization indicates how important it is to exactly specify which 

‘components’ of age are being studied. This can be especially well illustrated by studies on the age of 

acquisition in L1 processing. Some of them (e.g., Mermillod, Bonin, Méot, Ferrand & Paindavoine, 

2012; Izura et al., 2011, A. W. Ellis & Lambon Ralph, 2000) use the term ‘age of acquisition’ 

interchangeably with ‘order of acquisition’. This can be confusing, because conventionally ‘order’ only

reflects a sequential nature of the input presentation during the learning, while ‘age’ is associated with 

biological changes that accompany maturation. Speaking in terms of the categorization proposed 

above, order of acquisition falls into the category of experiential factors, while ‘age’ is a proxy variable
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for the three groups. Thus, the relative onset of two languages is better described by such terms as 

‘moment of onset’, or ‘time of onset’, or simply ‘onset’, to avoid references to biological–cognitive or 

socio-psychological factors.

Strict variable definitions, however, do not resolve the problem of their confounding. In the 

SLA literature, the contributions of the amount of L2 input and the L2 onset have been debated. In 

particular, Flege (2009) claims that the confounding of the variables has resulted in underestimating the

predictive power of L2 input, compared to the L2 onset. Similarly, studies on L1 processing have 

discussed what affects the word processing: the amount of exposure to a specific word (i.e., its 

frequency), or the moment of its first encounter. Some theories, such as the cumulative frequency 

hypothesis (Lewis, Gerhand & H. D. Ellis, 2001) and the frequency trajectory theory (Mermillod et al., 

2012), attribute a determining role to the frequency, rather than to the order of acquisition. Other 

theories, such as the lexical–semantic competition hypothesis (Brysbaert & Ghyselink, 2006; Belke, 

Brysbaert, Meyer & Ghyselink, 2005), focus more on the order effect, claiming it can be both 

frequency-related and frequency-independent. The problem of confounding is difficult to solve with 

human learners, which justifies the use of computational models in the field.

Another reason to use highly controlled computational models is a lack of accurate measures 

able to capture, for example, the actual amount of language input that learners are exposed to. Muñoz 

and Singleton (2011) describe some of the difficulties involved in measuring the actual amount of L2 

input, both in immersion and in classroom settings. A systematic investigation of the impact of L2 onset

and L2 amount requires addressing these methodological challenges. Computational modeling has been

widely used to study related issues, as we show in the next section, although no models have simulated 

the bilingual learning of abstract constructions.

Existing computational models

Connectionist simulations have been widely used in studying the order of acquisition effects in 

L1 processing (e.g., A. W. Ellis & Lambon Ralph, 2000; Monaghan & A. W. Ellis, 2002; Lambon 

Ralph & Ehsan, 2006; Mermillod et al., 2012). In particular, A. W. Ellis and Lambon Ralph (2000) 

demonstrated that, as a neural network is exposed to more words, its plasticity is reduced, limiting its 

ability to learn new (late) words. They also showed how order of acquisition might interact with 

frequency. Although this type of research investigates variables relevant to our study, it deals with data 

from a single language.



5

As for bilingual learning, Zhao and Li (2010) simulated English–Chinese lexical acquisition 

under different onset conditions. In their experiments lexical items were represented as pairings of 

phonological and semantic features. The manipulated variable was the amount of L1 input that their 

computational model received prior to the moment of L2 onset. When the onset of the two languages 

was the same (simulating an early bilingual), the model’s proficiency in both languages was 

comparable. However, when the model received a substantial amount of L1 input prior to the L2 onset 

(i.e., a late L2 learner), it performed better in L1 than in L2. This outcome supported the hypothesized 

relationship between the level of L1 neural entrenchment and the L2 attainment. In short, Zhao and Li 

(2010) demonstrated the negative effect of L1 entrenchment on L2 learning in the lexical domain. In 

another study on bilingual learning, Monner et al. (2013) used computational modeling to investigate 

the effect of L1 entrenchment in a different domain, namely the learning of morphological gender from 

phonological features in Spanish and French. Using a similar experimental design, they demonstrated 

the negative effect of L1 entrenchment on learning L2 lexical morphology.

These two studies demonstrate the negative effect of L1 entrenchment on L2 learning at the 

word level. However, there are no comparable studies for language units beyond the word level, in 

particular abstract linguistic constructions. In the next section, we describe the computational model 

used in this study to simulate bilingual construction learning.

Method

The model

The model that we use in the current study is an adaptation of a model of early argument 

structure acquisition (Alishahi & Stevenson, 2008). This original model was inspired by usage-based 

theories, in particular Construction Grammar (as informed by Goldberg, 1995), and it has successfully 

replicated several patterns of construction learning by children. The model employs a domain-specific 

unsupervised learning mechanism, inherited from a model of human category learning (Anderson, 

1991). Just as in human learning, the model processes input iteratively, so that linguistic knowledge 

slowly builds based on experience. All this makes the model a good candidate for our study. 

We simulate one specific task—learning argument structure constructions from linguistic and 

conceptual exposure in two languages. According to Goldberg (1995), this is a special class of abstract 

constructions (or form–meaning mappings) that provides the basic means of clausal expression. 

Goldberg, Casenhiser and Sethuraman (2004) consider these constructions as “argument structure 



6

generalizations”—high-level associations of form and meaning, which gradually emerge from 

categorizing individual instances. These views on learning are reflected in our computational model.

Next we provide a conceptual description of the model, while its formal description can be found in 

Appendix A.

Exposure. The exposure consists of a number of argument structure instances (AS instances) 

represented as assemblies of different information cues (or features). Each instance corresponds to an 

individual verb usage: an utterance and the respective perceptual context. A sample verb usage and its 

corresponding AS instance are presented in Table 1. The features include the head predicate (verb) and 

its semantic properties (lexical meaning), the number of arguments that the verb takes, argument heads,

their cases, their semantic and event-based (thematic role) properties, prepositions and the syntactic 

pattern (which reflects the word order and the presence or absence of prepositions at specific slots). 

Instead of representing lexical meanings or thematic roles symbolically, we use a set of elements for 

each of these, following the theories of Dowty (1991), and McRae, Ferretti and Amyote (1997). 

Composite representations allow the model to estimate the similarity between different meanings or 

thematic roles. Sets of elements may be rather large, therefore for brevity we only show three elements 

for each feature in Table 1. Unlike semantic and role properties, some other features, for example head 

predicate and prepositions, take language-specific values. When a feature such as argument case is 

absent in a language (e.g., English), it is assigned a dummy value ( / ). Note that the cases are the onlyɴ ᴀ

morphological features in our setup, other morphological elements as well as articles are ignored, as 

they contribute little to differentiating between argument structure constructions.

Table 1. An example AS instance extracted from a verb usage I ate a tuna sandwich.

Feature Value

Head predicate eat

Predicate properties consume, take in

Number of arguments 2

Argument 1 I

Argument 2 sandwich

Semantic properties of argument 1 self, person, …, entity

Semantic properties of argument 2 snack food, dish, …, entity

Role properties of argument 1 living thing, entity, …, organism

Role properties of argument 2 solid, substance, …, entity
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Case of argument 1 N/A

Case of argument 2 N/A

Syntactic pattern 1  2ᴀʀɢ ᴠᴇʀʙ ᴀʀɢ

Prepositions N/A

Learning process. The learner maintains a set of constructions, which are represented as 

generalizations over AS instances. More specifically, each construction is an assembly of feature values

of all instances that the model has decided to add to this construction. The learner tracks the frequency 

of each construction (the number of participating instances), together with the frequencies of all feature

values, yet the original instances are not recoverable. The learner receives one instance at a time and 

iterates over all the acquired constructions, to find the one that can best accommodate the new instance.

Two factors determine which construction the new instance is added to:

1. The frequency of each construction in the previously encountered input. This follows the idea

in usage-based linguistics that linguistic units become entrenched through their use (e.g., Langacker, 

1987; Schmid, 2007; MacWhinney, 2012). A construction which already contains a large number of 

instances is more entrenched, or more readily accessible, therefore the learner is more likely to add the 

new instance to this construction. Note that this is to a certain extent similar to processing limitations 

that arise in connectionist models at later stages of learning (e.g., A. W. Ellis & Lambon Ralph, 2000). 

However, the maximal processing capacity of our model (the number of categories) is not predefined as

is the number of units in connectionist models, and we make no claims regarding how similar the two 

approaches are.

2. The similarity between the new AS instance and each construction, which is measured in 

terms of each feature independently (see Table 1 above). For example, if a construction and the new 

instance share the number of arguments, the syntactic pattern and the argument role properties, it is 

likely that this instance belongs to this construction. Vice versa, if a construction and the new instance 

have little in common in terms of feature values, the new instance is unlikely to be added to this 

construction. This similarity-based learning mechanism comes from the original model in Anderson 

(1991) and reflects the role of similarity in human categorization (e.g., Sloutsky, 2003; Hahn & 

Ramscar, 2001).
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Figure 1. Deciding on a construction for a newly encountered L2 AS instance.

Upon estimating the two values, the learner adds the new AS instance into one of the 

constructions. However, especially at the beginning of the learning process, the best decision (as 

informed by the likelihood values) may be to create a new construction and add the new instance to this

new construction (which would be identical to the instance). This happens when the new instance is 

very dissimilar to all the constructions the learner has acquired so far.1

Exactly the same algorithm applies to L1 and L2 learning, as illustrated by Figure 1. Note that 

constructions may contain instances from only L1 or L2, as well as from both languages. Although 

such features as head predicate, arguments, and prepositions contain implicit information about the 

language of each AS instance, the model is not explicitly enforced to distinguish between the two 

languages. It is the input data and the probabilistic learning mechanism that determine to what extent 

L1 and L2 share their ‘storage resource’.
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Figure 2. Updating a construction with a newly encountered AS instance. The frequency of the 

construction represents the number of AS instances it is based on. The frequency of each feature value 

equals to the number of participating AS instances showing this value for the respective feature. Square

brackets denote updated elements.

We further illustrate the learning process in Figure 2, where an English speaker learning L2 

German encounters an AS instance with the head predicate gewinnen “to gain”. Note that construction 

9 is associated, among other English verbs, with gain, and the instance headed by gain shares some 

feature values with the new instance headed by gewinnen. Thus, among all the existing constructions, 

construction 9 may be the most likely candidate for adding the new AS instance. Imagine, however, 

that the learner, upon receiving a substantial amount of English input, encounters a German instance 

with a syntactic pattern  1  2 3 (e.g., ᴘʀᴇᴘ ᴀʀɢ ᴠᴇʀʙ ᴀʀɢ ᴀʀɢ Über die Nebenwirkungen weiß niemand 
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das geringste. “No one knows anything about the side effects.”). This order of arguments is not typical 

for English, therefore the learner might not know a suitable construction to accommodate this AS 

instance, and is likely to create a new construction for the novel instance.

Simplifying assumptions. Like all computational models in the field, our model simulates only

certain aspects of learning, and makes a number of simplifying assumptions about the other aspects. 

Because we focus on the learning of abstract constructions, we assume that our simulated learner is 

able to segment the utterance and recognize all the words; it knows the meaning of most words in the 

utterance; it can identify the role of each participant in a given perceptual context; and it is able to infer 

the information about linguistic cases in the utterance. For the purpose of this study, we assume that the

learning mechanism has acquired these types of knowledge and abilities by the moment it starts 

learning constructions, although we acknowledge that human learners acquire different types of 

knowledge in parallel (see, e.g., Lieven & Tomasello, 2008, for child learning).

Testing L2 proficiency

The model’s knowledge of argument structure constructions is tested in terms of the accuracy of

language use, both in production and comprehension. A formal description of the testing method is 

provided in Appendix A, while here we outline the general approach to testing and focus on the actual 

tasks. We use five tasks for evaluating the model, each of them testing a different aspect (or feature) of 

the model’s construction knowledge. We provide the model with a number of test instances in which 

the values of some features are masked. Although it is possible to mask the values of multiple features 

at once, each of the tasks in this study masks only a single feature. Thus, for each test instance, the 

model has to predict the missing value of a particular feature given the values of the other features. The

prediction accuracy in each task is estimated based on the match between the original (masked) value 

and the value predicted by the model. 

Such approach relates to the view in usage-based linguistics that linguistic knowledge is 

reflected in language use. Although the main motivation for the task choice comes from the model 

architecture, the tasks we employ map onto some existing methodologies used either in L2 assessment 

or in experimental studies with children and adults (see Table 2). Note, however, that our test tasks are 

conceptually closer to spontaneous language use rather than to traditional language assessment,2 

therefore the examples (1)–(5) below are provided mostly for illustrative purposes, while the actual 

testing algorithm can be found in Appendix A.
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Table 2. Assessment tasks with their descriptions and corresponding features in AS instances.

Masked AS feature Task name Description

Head predicate Filling in verbs “Fill-in-the-blank” test with removed verb

Prepositions Filling in prepositions “Fill-in-the-blank” test with removed 
prepositions

Syntactic pattern Word ordering Placing verb and prepositions in their correct 
positions

Predicate properties Verb definition Verb definition in a sentential context

Arguments’ role properties Role comprehension Comprehension of argument roles in a given 
sentence–event pair

Filling in verbs. In this task we elicit the production of verbs that the model finds suitable in a 

given test instance. This is close to the method used in some experimental studies concerned with the 

learning of argument structure constructions, as they tend to examine the distribution of verbs in 

specific constructions (e.g., N. C. Ellis et al., 2014; Gries & Wulff, 2005):

(1) Fill in a verb: I _____ a sandwich.

Filling in prepositions. The same design is used to elicit the production of prepositions. Filling 

in blank slots with missing prepositions is a classic task in L2 assessment (e.g., Oller & Inal, 1971):

(2) Fill in a preposition: John gave an apple _____ Mary.

Word ordering. Given the verb and its arguments, the task is to name a matching syntactic 

pattern. This is similar to a common L2 assessment task in which learners are asked to unscramble the 

words into a grammatical sentence (e.g., Wesche & Paribakht, 2000):

(3) Arrange the words to form a grammatical sentence: ate, (a) sandwich, I.

Verb definition. The task of deriving lexical meanings from contexts tests learners’ ability to 

comprehend verbs. A similar definition task has been used, for example, for assessing children’s 

vocabulary (Cain, 2007). A schematic example for our setup is given in (4):

(4) Describe the lexical meaning of ate in the sentence: I ate a sandwich. 

Role comprehension. Studies in which humans have to learn new verbs (e.g., Akhtar & 

Tomasello, 1997; Wonnacott, Newport & Tanenhaus, 2008) often test the acquisition of verb-general 

knowledge about the thematic roles of participants in a given event. Similarly, our model is required to 

describe the role of each participant in a given sentence–event pair:

(5) Describe the thematic roles of I and (a) sandwich in the sentence: I ate a sandwich.
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Input and test instances

In preliminary experiments (Matusevych et al., 2013) we tested the model on small data sets of 

German and English, in which argument structures were annotated manually. However, manual 

annotation of larger data sets would be very time-consuming. Instead, in the present study we extracted 

data from available annotated resources for the same languages. Essentially, the data come from 

German and English newspaper texts. Although these texts do not represent the kind of language that 

L1 and most L2 learners are exposed to, we used these corpora as the only large sources of English and 

German that contained all the necessary types of annotations related to argument structure.

Figure 3. Schematic representation of the input data preparation.

Figure 3 schematically shows the resources we used and the steps we took for preparing the 

input data. The syntactically annotated data originate from the TIGER corpus for German (Brants et al.,
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2004) and the Penn Treebank for English (Marcus et al., 1994). The German SALSA corpus (Burchardt

et al., 2006) and English PropBank (Palmer, Gildea & Kingsbury, 2005) contained the types of 

annotations that helped us to extract argument structure from sentences. Further, for consistency 

between the languages, we filtered the resulting sentences and kept only those that were annotated with

FrameNet frames (see Ruppenhofer, Ellsworth, Petruck, Johnson & Scheffczyk, 2010). While some 

German data were already annotated so in SALSA, for English we had to use the mappings between 

PropBank and FrameNet, provided in SemLink (Palmer, 2009). Finally, semantic features for 

individual lexemes were extracted from WordNet (Miller, 1995) and VerbNet (Schuler, 2006). The 

existing mappings between WordNet and FrameNet (Bryl, Tonelli, Giuliano & Serafini, 2012) also 

made it possible to automatically expand argument thematic roles into sets of elements. The procedure 

resulted in German and English data sets containing 3,370 and 3,803 AS instances, respectively. Note 

that the two data sets have similar, but not identical sizes. Besides, they may differ in the amount of 

noise originating from either the corpus annotations or from our data extraction procedures. This 

potentially may result in one of the data sets being more difficult to learn than the other.

Importantly, a substantial part of both German and English AS instances originated from 

embedded clauses. While in English main and embedded clauses have analogous word order, this is not

so for German, where embedded clauses are usually verb-final. Consider the following English 

sentence (6) translated into German (7):

(6) The group said (that) it sold the shares.

(7) Die Gruppe sagte, dass sie die Aktien verkauften.

The word order in the English embedded clause in (6) is SVO, while the German order (7) is SOV. This

is a natural difference if one considers each complex sentence as a whole. However, we represent each 

AS as an independent language unit, and the unnaturally large number of SOV sentences would make 

our data set a non-representative sample of German (simple) sentences. Ultimately, this would provide 

our model with an unrealistic tool to distinguish between English and German syntactic structures. 

Therefore, we ‘recovered’ German verb-second word order in embedded clauses by manually assigning

the second position to the verb. Note, however, that the order of arguments was never changed, so that 

the data contained both SVO and OVS sentences.

From the resulting data sets, input to the model was sampled randomly, so each individual 

simulation represented a learner with a unique history of language exposure. Thereby, in our 

experiments we sometimes refer to different simulations as individual learners. The exact number of 
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German and English AS instances as well as the temporal pattern of their presentation were determined 

by the experimental setup, however all the experiments were run twice—using German as L1 and 

English as L2, and vice versa. 

Similarly, test instances are randomly sampled from the data. Learners are tested on different 

test sets, although every learner is repeatedly offered the same test set at certain intervals. Furthermore, 

each learner performs most language tasks on a single test set, except for the task of filling in 

prepositions, for which an additional test set is prepared. This is because most AS instances in our data 

(approximately 70% for German and 90% for English) contain no prepositions, and sampling items 

randomly would result in having no prepositions in the majority of test instances. Therefore, we sample

an additional test set for each learner, considering only instances with prepositions. Just as in human 

language learning, some test items may be identical to input items that the model has encountered. In 

other words, sampling the input and the test instances from the same data resembles better a natural 

language learning setting than splitting the data into a train and a test set (a common practice in 

computational linguistics). It is unlikely that the model can memorize specific instances and then 

simply reproduce them, because construction learning is implemented as a categorization task, without 

memorizing actual instances. However, to ensure that the model does not memorize the exact instances,

we run an additional set of simulations, in which none of the learning data appear as test instances.3 The

described data is used in all the experiments that we report in the next section.

Experiments and results

This section describes the design and the results of three experiments. The first two are intended

to test whether the general learning principle “the more, the better” holds for statistical learning of 

argument structure constructions—that is, whether the larger amount of L2 input results in higher L2 

performance. We measure L2 amount both in relative (experiment 1) and absolute terms (experiment 

2). Experiment 3 is designed to test how learners’ L2 performance is affected by the time of L2 onset. 

In all the experiments, we quantify various amounts of input in terms of the respective number of AS 

instances. Furthermore, we adopt the following notations (see Figure 4):
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Figure 4. Notations used in the experiments.

1. ET—total language exposure, both L1 and L2. E.g., ET = 12,000 AS instances.

2. TO—the time of onset, expressed as the amount of L1 input prior to the L2 onset. E.g., TO = 9,000 

L1 instances. TO = 0 defines a simultaneous bilingual.

3. EL2—cumulative L2 exposure in absolute terms. E.g., EL2 = 3,000 L2 instances.

4. R—the ratio of L1 amount to L2 amount at each interval after TO. E.g., R = 20:1 means that the 

learner receives 20 times more L1 input than L2 input.

5. EB—the amount of bilingual input, in which both L1 and L2 instances are present. E.g., EB = 6,000 

indicates that after TO, the learner receives 6,000 instances of bilingual input, where L1 and L2 are 

mixed in the proportion determined by R.

Amount of L2 input

Experiment 1. In this experiment learners’ exposure to L2 was measured in relation to their L1 

exposure. To investigate whether the relative amount of L2 input would affect learners’ L2 

performance, we manipulated the ratio R in four groups of simulated learners, while keeping ET 

constant. The first group of learners received equal amounts of L1 and L2 input at each learning 

interval after L2 onset, R = 1:1, while for the other groups R was set to 3:1, 10:1, or 20:1, respectively. 
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Such design simulated a common SLA setting: adult L2 learners are often exposed to the target 

language in small quantities, while L1 still dominates in their daily use. Each of the four groups 

consisted of 30 learners, for which both TO and EB were set to 6,000 instances—to simulate a 

population of adult L2 learners. Our choice of the TO value 6,000 was justified in our preliminary 

simulations, which had shown that after encountering approximately 6,000 AS instances learners’ L1 

performance stabilized (although not completely, and this differed somewhat depending on the task). 

This way, ET = TO + EB = 12,000. Similarly, we simulated four more groups of early bilinguals 

(TO = 0, ET = EB = 6,000) with different R values (see Figure 5).

Figure 5. The setup of experiment 1. Two rows show the population types, four columns show the 

learner groups.

After every 500 input instances, learners’ L2 proficiency was tested using the five tasks 

described in the previous section. Figure 6 shows the average performance curves for each of the four 

groups of adult learners.
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Figure 6. Average learning curves for adult learners with different R values, ET is kept constant.

First, we notice that in most tasks the performance curve flattens far below 100%. This is partly 

because all the tasks underestimate learners’ L2 knowledge: while each test item assumes a single 

‘correct’ answer, there may be more than one acceptable answer. When filling in verbs, for example, 

some empty slots may fit several semantically related verbs—synonyms (8) or antonyms (9).

(8) He acquired (bought) 300,000 shares of the stock.

(9) Industrial output fell (rose) 0.1% in September.
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The size of the described effect is different for each task, which contributes to the different learners’ 

performance across tasks (note that in Figure 6 the tasks are plotted on different scales). Additionally, 

there are certain differences between the model’s performance in L2 German and L2 English tasks 

(compare the plots in Figure 6 pairwise). We explain this by possible differences in complexity between

the German and English data sets, which we mentioned in the subsection Input and test instances 

above.

Despite the differences between the tasks, each individual plot in Figure 6 reveals the same 

pattern. Higher relative amount of L2 input corresponds to better L2 performance at each point in time. 

To statistically test whether the relative amount of L2 input correlated with the L2 performance at the 

end of learning, we ran Kendall’s tau correlation tests4 (see Table 3A). The results revealed a highly 

significant correlation between the amount of L2 input and the performance in each task in late 

learners, both for L2 English and L2 German. The results for early bilinguals yielded very similar 

patterns, thus we do not provide the plots of their learning curves, however the results of the correlation

tests are shown in Table 3B.

Table 3. Results of correlation tests between R and L2 performance at the end of learning, ET is kept 

constant.

A. Simulated population of late L2 learners

L2

Task

Filling in verbs

Filling in 

prepositions Word ordering Verb definition

Role 

comprehension

τ p τ p τ p τ p τ p

English .69 <.001 .68 <.001 .51 <.001 .54 <.001 .30 <.001

German .76 <.001 .73 <.001 .67 <.001 .72 <.001 .48 <.001

B. Simulated population of early bilingual learners

L2

Task

Filling in verbs

Filling in 

prepositions Word ordering Verb definition

Role 

comprehension

τ p τ p τ p τ p τ p

English .65 <.001 .65 <.001 .49 <.001 .59 <.001 .22 .001

German .69 <.001 .71 <.001 .63 <.001 .73 <.001 .33 <.001
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The results in Table 3 suggest that receiving more L2 input (in relation to L1 input) by a 

statistical learner leads to the better knowledge of L2 argument structure constructions. This may be 

due to the interaction of L2 input with the ongoing exposure to L1 input. However, so far we have 

assumed that learners’ performance achieves its maximum at the end of learning simulations (upon 

receiving 6,000 mixed AS instances). This may be the case for the easier tasks, but the more difficult 

ones may take learners more time to achieve the highest possible performance, especially in case their 

cumulative EL2 is low because of a high R value (e.g., 20:1). For example, most learning curves for 

filling in verbs (see Figure 6A) do not flatten at step 12. Thus, it may be the case that learners in each 

group could potentially achieve the same performance, irrespective of the R value, if only they had 

enough time to learn. In this interpretation the L2 attainment depends not on the relative, but on the 

absolute amount of L2 input. To test whether this would be true, we ran another experiment.

Experiment 2. The setup of this experiment was similar to that of experiment 1, however this 

time we kept the absolute amount of L2 input constant (EL2 = 1,500), while manipulating R. The latter 

was set to 1:1 (intensive L2 learning) or 5:1 (extensive L2 learning)—see Figure 7 (note that the length 

of L2 exposure is different in the two conditions, but the total L2 area is identical). Since the results of 

experiment 1 did not differ substantially for early bilinguals and adult learners, this time we simulated 

only the latter population by setting TO to 6,000.

Figure 7. The setup of experiment 2.

If the relative amount of L2, indeed, determines the level of L2 attainment in a statistical 
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learner, then we expect the performance to differ in the two groups. However, if it is only the absolute 

amount of L2 input that matters, there must be no difference in proficiency between the two conditions.

The learning curves are shown in Figure 8.

Figure 8. Average learning curves for learners with different R values, EL2 is kept constant.

Each individual plot in Figure 8 shows that the learner ultimately achieves the same or very 

similar performance in both conditions. In case of intensive learning, the curve is steep and reaches the 

highest level fast, while in the extensive condition learning goes much slower. The final performance is

comparable, however: see the horizontal lines in Figure 8. Again, we ran Kendall’s tau correlation tests 

using the final performance values. Table 4 shows the results of these tests.
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Table 4. Results of correlation tests between R and L2 performance at the end of learning, EL2 is kept 

constant.

L2

Task

Filling in verbs

Filling in 

prepositions Word ordering Verb definition

Role 

comprehension

τ p τ p τ p τ p τ p

English −.25 .021* −.03 .779 −.03 .750 −.07 .497 0.01 .918

German .15 .156 .12 .268 .01 .918 .08 .442 .18 .099

The results show no significant correlations between R and learners’ final performance for most 

tasks, the correlation reaching significance only for filling in verbs in L2 English: τ = −.25, p = .021. 

Since the correlation is negative, learners’ performance in this task is higher in the extensive condition 

(R = 5:1) than in the intensive condition (R = 1:1). We believe this reflects learners’ ongoing 

enhancement of L1 verbs. As we mentioned, filling in verbs is the most difficult task of the five, 

therefore continuing L1 exposure after TO aids learners in memorizing some contexts in which L1 

verbs are used. As the extensive condition exposes learners to more L1 input than the intensive 

condition, they memorize more of these contexts, which helps them in discriminating between L1 and 

L2 contexts. As a result, at the end of learning in the extensive condition the model produces fewer L1 

instances than in the intensive condition, hence the higher performance.

For the other tasks only the absolute amount of L2 input determines the resulting knowledge of 

L2 argument structure constructions. This suggests that length of exposure makes no difference, as long

as the cumulative amount of L2 input stays the same.

Time of L2 onset

Experiment 3. This experiment was designed to investigate whether learners’ L2 performance 

could be influenced by the time of L2 onset. If constructions and words are learned in a similar manner,

then a negative effect of higher L1 entrenchment is to be expected (e.g., MacWhinney, 2012). Later L2 

onset would lead to higher L1 entrenchment and, because of the interference this entails, lower L2 

proficiency.
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We manipulated the prior amount of L1 input by setting TO to 0 (simultaneous bilinguals), 

2,000, 4,000 or 6,000 (late L2 learners). As we mentioned, in our preliminary simulations the 

maximum L1 performance was achieved only after approximately 6,000 AS instances, thereby we 

chose TO values under 6,000 to ensure that the level of L1 entrenchment is different for each TO. For 

all the four groups of learners, EB was set to 6,000, and R was equal for all the groups (1:1), therefore 

EL2 amounted to 3,000 instances for each learner. The only difference between the groups, then, was the

TO value. The experimental setup is shown in Figure 9, while Figure 10 illustrates the average learning 

curves for each group.

Figure 9. The setup of experiment 3.

If we look at each individual plot, we can notice no obvious pattern of difference between the 

four groups—in each case the learning curves seem to reach similar accuracy values. To statistically 

test whether learners’ resulting performance at the end of learning correlated with TO, we ran Kendall’s

tau correlation tests (see Table 5).
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Figure 10. Average learning curves for learners with different TO values.

Table 5. Results of correlation tests between TO and L2 performance at the end of learning.

L2

Task

Filling in verbs

Filling in 

prepositions Word ordering Verb definition

Role 

comprehension

τ p τ p τ p τ p τ p

English .00 .961 .15 .034* −.04 .595 .00 .944 .15 .029*

German .14 .049* .05 .440 .00 .959 .12 .086 .07 .277

The results suggest that the time of L2 onset does not affect the simulated learners’ performance

at the end of learning, with some exceptions. We do observe significant positive correlations between 
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TO and the ultimate L2 performance for two tasks in L2 English (filling in prepositions and role 

comprehension), and a marginally significant correlation for filling in verbs in L2 German. Note that 

the correlations are positive, meaning that later TO leads to better L2 performance. This suggests a 

positive impact of cross-linguistic transfer from L1 to L2. English and German argument structures 

have a lot in common, as the two languages are typologically close: they both have SVO order in main 

clauses, and both are satellite-framed. Thus, the model may use the existing L1 knowledge to perform 

better in L2 tasks. The higher L1 entrenchment at TO is, therefore, beneficial, and may well give the 

model a small long-term advantage in L2 performance.

Most correlations in Table 5, however, are not significant. To ensure this is not caused by the 

similar degree of L1 entrenchment at TO in some groups (with TO = 2,000, TO = 4,000, and 

TO = 6,000), we compared the average L1 performance at TO in the three mentioned groups. Table 6 

shows that L1 performance in the three groups differs in most tasks. The only deviation from this 

pattern is observed for role comprehension in L1 English, where the L1 performance of the three 

groups is approximately equal. This, in fact, makes our correlation result for role comprehension in L2 

German non-informative, because the difference in ultimate L2 performance is not to be expected for 

the three groups with equal degree of L1 entrenchment at TO.

Table 6. Average L1 performance at TO in different learner groups in experiment 3.

L1 Task

TO

0 2,000 4,000 6,000

English Filling in verbs – 10.2% 12.9% 13.2%

Filling in prepositions – 47.2% 48.3% 49.7%

Word ordering – 96.1% 96.7% 97.2%

Verb definition – 56.7% 58.1% 57.5%

Role comprehension – 82.0% 82.0% 81.8%

German Filling in verbs – 13.3% 17.5% 19.9%

Filling in prepositions – 57.3% 61.6% 62.2%

Word ordering – 94.3% 95.9% 97.4%

Verb definition – 51.4% 53.3% 54.8%

Role comprehension – 84.2% 84.5% 84.9%
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Before drawing any conclusions regarding the effect of the time of onset, we should 

additionally look at whether such effect is present at the earlier learning stages as well, since the 

presented correlation results are estimated for the learners’ performance at the end of learning only. In 

addition, the correlation results do not tell us whether the time of onset interacts in any way with 

learners’ cumulative amount of L2 exposure. To test this, we ran a series of regression models that 

predicted learners’ performance at each learning stage.

L2 performance: contributions of individual factors

Regression models were used to examine the potential effects of TO, EL2, and their interaction. 

Conceptually speaking, we checked whether at any learning stage learners’ L2 performance in a certain

task could be predicted by TO and EL2. We ran ten linear mixed effects models (Baayen, 2008), one for 

each task in each language, using the lme4 package for R (Bates, Mächler, Bolker & Walker, n.d.). To 

account for possible individual variation between learners, we introduced a random factor of learner. 

Each model had the maximal random effect structure justified by the data sample (Barr, Levy, 

Scheepers & Tilly, 2013), slightly varying for different tasks and languages due to convergence issues. 

All the models were run on the learning results reported on for experiment 3. Recall that in 

experiment 3 we manipulated TO, but not EL2. Nevertheless, the latter was present in the learning 

results of our simulations, because we tested the model’s performance at different learning stages (that 

is, after it was exposed to different amounts of L2). Therefore, each performance score had an EL2 value

associated with it, which we used in the regression. This setup implies that the regression models do 

not only provide results in terms of ultimate L2 proficiency (as did the correlation tests reported in the 

previous sections), but at each moment of learning. Importantly, L2 performance is not a linear function

of EL2 in our experiments (recall the shapes of the learning curves). In general, learning success is 

believed to be a power function of experience (Newell & Rosenbloom, 1981). To account for this 

relation between performance and EL2, we log-transformed all the performance values and EL2, but also 

TO for consistency. To eliminate the problems of multicollinearity and variance inflation, and to make 

the regression coefficients directly comparable, we standardized all the variables. A summary of the 

models is given in Table 7.
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Table 7. Summary of mixed effects models predicting learners’ L2 performance (predictors names are given in the central 

column).

L2 German

Predictor

L2 English

Task R2 β SE 95% CI β SE 95% CI R2 Task

Filling in

verbs

R2
m = .66

R2
c = .95

0.06 0.05 [−0.05, 0.16] TO 0.02 0.07 [−0.11, 0.15]
R2

m = .50

R2
c = .95

Filling in

verbs
0.81 0.02 [0.77, 0.84] EL2 0.71 0.02 [0.67, 0.74]

0.02 0.02 [−0.01, 0.06] TO × EL2 −0.01 0.02 [−0.05, 0.03]

Filling in

preposi-

tions

R2
m = .58

R2
c = .89

0.00 0.05 [−0.11, 0.10] TO 0.12 0.05 [0.01, 0.22]
R2

m = .48

R2
c = .86

Filling in

preposi-

tions

0.76 0.02 [0.73, 0.79] EL2 0.68 0.02 [0.64, 0.73]

0.00 0.02 [−0.04, 0.03] TO × EL2 −0.05 0.02 [−0.10, −0.01]

Word 

ordering

R2
m = .61

R2
c = .84

−0.04 0.05 [−0.13, 0.05] TO −0.05 0.06 [−0.16, 0.07]
R2

m = .28

R2
c = .74

Word

ordering
0.78 0.02 [0.73, 0.83] EL2 0.53 0.03 [0.47, 0.59]

0.05 0.02 [0.00, 0.09] TO × EL2 0.01 0.03 [−0.04, 0.08]

Verb 

defini-

tion

R2
m = .67

R2
c = .92

0.04 0.05 [−0.05, 0.13] TO −0.02 0.08 [−0.17, 0.13]
R2

m = .32

R2
c = .94

Verb

defini-

tion

0.81 0.01 [0.79, 0.84] EL2 0.57 0.02 [0.53, 0.60]

0.04 0.02 [0.01, 0.07] TO × EL2 −0.02 0.02 [−0.05, 0.01]

Role 

compre-

hension

R2
m = .21

R2
c = .91

0.05 0.08 [−0.11, 0.21] TO 0.22 0.09 [0.04, 0.41]
R2

m = .09

R2
c = .95

Role

compre-

hension

0.46 0.02 [0.41, 0.50] EL2 0.20 0.02 [0.16, 0.24]

0.02 0.02 [−0.02, 0.06] TO × EL2 −0.02 0.02 [−0.05, 0.02]

Note: R2
m and R2

c stand for marginal and conditional R2 coefficients and indicate the amount of variance explained by the 
fixed factors and by the full model, respectively (Johnson, 2014). The reported SE and confidence interval values are 
estimated via parametric bootstrap with 1,000 resamples (Bates et al., n.d.).

L2 amount. The effect of EL2 is the only main effect observed for all the tasks in both German 

and English (see the dark gray cells in Table 7). As expected, the effect is always positive: learners’ L2 

proficiency increases as they are being exposed to more L2 input. This supports the correlation between

EL2 and learners’ L2 performance, found in experiment 1. Note that the standardized regression 

coefficients (β) for EL2 have the largest values, compared to the coefficients of EL2 and TO × EL2 in each 

regression model, which means that the effect of EL2 is stronger than that of TO and of the interaction. 

The only exception is role comprehension in L2 English, for which the coefficient of EL2 (0.20) is 

smaller than that of TO (0.22). Yet, the amount of variance explained by the fixed effects (R2
m) in the 

respective regression model is the smallest (R2
m = .09, or 9%), compared to the respective value in all 

the other models (e.g., R2
m = .67 for verb definition in L2 German). The poor model fit suggests that the
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β coefficients in the regression model for role comprehension in L2 English might not be informative.

L2 onset. The main effect of TO is present only for L2 English and only for two tasks: filling in

prepositions and role comprehension. This is comparable to the results of experiment 3, in which the 

correlation of TO with learners’ final L2 performance was observed for the same two tasks in L2 

English. Additionally, in experiment 3 the same positive correlation was observed for a single task in 

L2 German (filling in verbs), but this was only marginally significant and is not supported by the 

regression results. As for the other two tasks with a main effect of TO, the analysis for role 

comprehension, as we mentioned, is not informative due to the poor model fit. This is not the case, 

however, for filling in prepositions. The impact of TO is positive: late L2 starters perform better than 

early L2 starters. This could be explained by the positive effect of cross-linguistic transfer. As we 

mentioned, the model may use the existing L1 knowledge to perform better in L2 tasks, and the higher 

level of L1 entrenchment is beneficial, especially at the early stages of L2 learning. Indeed, although 

the effect of transfer can be both positive and negative, the positive effect must prevail here due to the 

similarity of English and German argument structure constructions. However, the effect can be 

manifested differently in each of the five tasks used, due to their nature. Since the two languages in our 

model use shared representations of lexical semantics, participant roles, and word order, in such tasks 

as verb definition, role comprehension and word ordering, one would expect a positive transfer effect. 

For example, a simulated learner of L2 English may be able to describe the meaning of a novel English 

verb to increase, because it shares many contexts of use with its German translation steigen. This is 

different for the other two tasks—filling in verbs and prepositions. Since learners are allowed to use 

their L1 in the two “fill-in-the-blank” tasks, they are likely to produce L1 verbs and prepositions 

(which are different in German and English), hence the negative effect of transfer.5 Note, however, that 

both German and English have a preposition in, often used in equal or very similar contexts. In our 

German data set, in is the most frequent preposition, which promotes its use by L1 German speakers 

during the testing in L2 English. Although the learners, in fact, use the German preposition, it may fit 

many English test instances that require the use of English in, hence the positive effect of lexical 

transfer from German to English. The same effect from English to German may not be observed, since 

in our English data set in is only the third most frequent preposition. Therefore, learners would more 

likely use the two more frequent prepositions (to and on) during the testing.

Interaction term. First we note that the interaction effect of EL2 and TO is significant for filling

in prepositions in L2 English, with a negative β coefficient. Considering the positive effect of TO in 
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this task we just discussed, this negative interaction can be interpreted as a decrease in the positive TO 

effect at the later stages of L2 testing. This supports our explanation of the positive TO effect in terms 

of positive transfer: higher L1 entrenchment is beneficial at the early stages of L2 learning, however at 

the later stages this benefit diminishes, because learners rely more on their acquired L2 knowledge than

on L1 knowledge.

Finally, there is a significant interaction effect in verb definition in L2 German. The respective 

β coefficient is positive—that is, the positive effect of higher EL2 on learners’ performance is stronger 

for learners with later TO. In other words, in this task late L2 starters achieve a certain level of 

performance faster than early L2 starters. This observation also suggests that transfer has more positive 

than negative effect in verb definition in L2 German. 

Discussion

In the present study we investigated how the learning of argument structure constructions in L2 

was affected by two variables—the amount of L2 input (both relative and absolute) and the time of L2 

onset. For this purpose, we computationally simulated the process of statistical construction learning in 

two languages and ran three experiments to test the performance of simulated learners under different 

conditions of exposure.

Amount of L2 input. The first variable, the amount of L2 input, affected learners’ L2 

performance as expected—getting more L2 input resulted in better L2 performance. This is in line with

a general learning rule “the more, the better”, which has been demonstrated to apply to human learners 

for various domains (e.g. Flege, Yeni-Komshian & Liu, 1999; Muñoz, 2011). In experiment 1, we 

captured this type of relation using a relative measure of L2 amount, while controlling for the length of 

L2 exposure. However, when the cumulative amount of L2 was kept constant instead (experiment 2), 

the model’s performance appeared to be the same for varying relative amounts of L2. Intuitively, this is

contrary to a well-researched spacing effect: spaced, or distributed, practice leads to higher test 

performance than massed practice in many domains (Küpper-Tetzel, 2014), including construction 

learning (Ambridge, Theakston, Lieven & Tomasello, 2006). However, it has been argued (e.g., 

Cepeda, Pashler, Vul, Wixted & Rohrer, 2006) that the learning depends not only on the length of the 

interstudy interval (the time between two presentations of an item), but also on that of the retention 

interval (the time between its last presentation and the test). Thus, simulations with a systematic control

of the two intervals (with respect to the presentation of individual L2 instances) are needed to relate our
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findings to the existing research in this domain.

In the current study we focused only on the quantitative characteristics of L2 input, but the 

quality of L2 input may be equally important (Moyer, 2005). Obviously, it cannot be the mere amount 

of input that determines learners’ L2 proficiency, as an identical amount of input may be very different 

for two different learners, in terms of relevance for the learner, grammatical complexity, lexical 

diversity, native-likeness, discourse style, etc. All these characteristics contribute to learners’ level of 

engagement with the target language and affect the learning process. Therefore, an ideal measure of L2 

input should account for much more than its overall amount. Preliminary versions of such measures 

have already been proposed, but they need further refinement. For example, Ågren, Granfeldt and 

Thomas (2014) have developed an individual input profile score, yet they recognize it does not take 

into account that different input domains may affect the learning to a different degree.

Time of L2 onset. The second variable that we investigated—the time of L2 onset—appeared 

not to have any impact on performance in most L2 tasks. The only exceptions were two tasks in L2 

English—filling in prepositions and role comprehension, where later L2 starters performed better than 

early starters. The latter exception, as we showed, could be due to the poor fit of the respective 

regression model. As for filling in prepositions, later L2 starters had a better knowledge of a frequent 

German preposition in, and they could transfer this knowledge into L2 to identify the correct contexts 

of use of the English preposition in. Overall, unlike in other linguistic domains such as lexis and 

morphology (Zhao & Li, 2010; Monner et al., 2013), a pronounced negative effect of L1 entrenchment 

(i.e., later L2 onset) on learning L2 argument structure constructions is absent in our experiments. The 

difference between the domains relates to a discussion in literature on L1 processing or, more broadly, 

on the age/order effect. It has been shown (Lambon Ralph & Ehsan, 2006) that the negative effect of a 

later acquisition of a specific item (e.g., word) in cued production is higher for stimuli with more 

arbitrary cue–outcome mappings (e.g., word phonology and meaning), and lower for stimuli with more 

consistent mappings (e.g., word phonology and orthography). In case of arbitrary mappings, the 

meaning of a novel word can hardly be predicted from its phonological form, despite a potentially large

number of earlier acquired mappings. On the contrary, word orthography is often predictable from its 

phonological form, due to the consistency of the mapping with earlier acquired words. In the context of

bilingual learning we look at the consistency of mappings across L1 and L2, rather than across multiple

L1 items. In our test tasks each cue (i.e., test AS instance) consisted of multiple features, and the model,

in fact, could predict the outcome (i.e., the value of the missing feature) based on the mappings 
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between the features in L1: the languages we used in this study—German and English—were 

typologically close, and positive transfer was likely to take place. This could be the reason why the 

negative effect of the late onset was not observed. 

In the light of the ongoing discussion about the age/order effect in literature, we can further note

that our results do not support the idea proposed by Stewart and A. W. Ellis (2008) that the age/order 

effect is a property of any learning system. Instead, our findings are consistent with the cumulative 

frequency hypothesis (Lewis et al., 2001; Zevin & Seidenberg, 2002), which claims that the 

accessibility of a word is determined by its cumulative frequency, but not the moment of its first 

encounter.

Due to the lack of available annotated resources we only used English and German in the 

current study. We plan to explore new resources and investigate the bilingual learning of argument 

structure constructions in additional language pairs, to determine the exact contribution of cross-

linguistic transfer effects to such learning. The computational tool used for our study focuses on only a 

subset of (input-related) factors and is not meant to represent the whole picture of how humans learn a 

second language. Nevertheless, it has provided rather robust and consistent results by allowing for full 

control of the variable confounding and of the input quantities, which cannot be easily done in human 

subject studies. These advantages make the presented model a promising tool for future studies. 
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1. In practice, it is difficult to estimate whether an instance is ‘very’ dissimilar to a construction. Our 

model has a parameter determining the cost of creating a new construction, which increases over time: 

the more constructions the model knows, the less likely a new one to be created (for more detail, see 

Appendix A).

2. For example, in filling in verbs and prepositions we do not restrain the model from using L1 lexemes

that it finds appropriate. In other words, the model has no explicitly implemented control mechanisms, 

similar to those that humans can use for inhibiting activated representations from a non-target language 

(e.g., Green, 1998; Kroll, Bobb, Misra & Guo, 2008). At the same time, mixing L1 and L2 lexemes 

within the same utterance is not uncommon in bilingual speakers, as the literature on code-switching 

suggests (e.g., Auer, 2014). Although the lack of inhibitory control negatively affects the model’s 

performance in the mentioned tasks, making it less comparable to human performance, our findings 

must not be affected, because the inhibitory control is consistently absent in all the experimental 

conditions.

3. In all the reported simulations a learning and a test set have been sampled from the same data, 

therefore the model might have encountered a substantial part of the test instances in the learning data. 

Yet, the additional simulations yielded very similar results. In other words, the main findings reported 

in this article are robust and do not depend on the sampling procedure.

4. Alternatively, we could compare the performance in the four groups (e.g., with an ANOVA or the 

Kruskall–Wallis test). However, this would require a further pairwise comparison of the groups, 

making the presentation of results less straightforward. Correlation tests are better in this respect, and 

their use is justified by our TO values being measured on a ratio scale. We use a non-parametric 

Kendall’s tau test, to make no assumptions about the distributions of the performance values. Note that 

for data with only two groups (experiment 2) this test is equivalent to the Mann–Whitney U test, which 

is a non-parametric counterpart of the t-test.

5. This is a rather broad understanding of cross-linguistic transfer, as it covers not only subconscious 

cross-linguistic influence, but also the use of L1 instead of L2.

6. Additionally, we fitted the same models to the data with only two variables log-transformed 

(performance and EL2), and with original non-transformed variables, and they yielded consistent results.
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