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Abstract—Active learning aims to reduce annotation cost by
predicting which samples are useful for a human teacher to label.
However it has become clear there is no best active learning algo-
rithm. Inspired by various philosophies about what constitutes
a good criteria, different algorithms perform well on different
datasets. This has motivated research into ensembles of active
learners that learn what constitutes a good criteria in a given
scenario, typically via multi-armed bandit algorithms. Though
algorithm ensembles can lead to better results, they overlook the
fact that not only does algorithm efficacy vary across datasets,
but also during a single active learning session. That is, the
best criteria is non-stationary. This breaks existing algorithms’
guarantees and hampers their performance in practice. In this
paper, we propose dynamic ensemble active learning as a more
general and promising research direction. We develop a dynamic
ensemble active learner based on a non-stationary multi-armed
bandit with expert advice algorithm. Our dynamic ensemble
selects the right criteria at each step of active learning. It has
theoretical guarantees, and shows encouraging results on 13
popular datasets.

I. INTRODUCTION

The key barrier to scaling or applying supervised learning
in practice is often the cost of obtaining sufficient annotation.
Active Learning (AL) aims to address this by designing query
algorithms that effectively predict which points will be useful
to annotate, thus enabling efficient allocation of human annota-
tion effort. There are many different AL algorithms, each with
appealing – yet completely different – motivations for what
constitutes a good question to ask underpinning their design.
For example, uncertainty or margin-based sampling [1], [2]
suggests querying the most uncertain or ambiguous point that
is the closest point to the decision boundary. Expected error
reduction [3], [4] queries points that the current model predicts
will reduce its future error. Another typical approach is to
label the most representative samples [5], [6], [7] to ensure
the major clusters within the dataset are correctly estimated.
Besides these approaches, query-by-committee active learning
queries points based on the disagreement between a committee
of classifiers [8], [9], [10]. More recent studies investigated
hybrid criteria that balance multiple motivations [11], [12],
[13].

These are all good ideas, yet there are situations where
each is ineffective. For example, if the classes are heavily
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overlapped in an area of feature-space, uncertainty sampling
will be tied up querying points in an impossible to solve
region. If the current model is very poor, expected error
reduction cannot accurately estimate its own future error. If the
main data clusters are already well classified, representative
sampling focused approaches may not fine-tune between them.

These thought experiments are reflected empirically. The
best algorithm for pool-based AL in practice varies both across
datasets and also with the progress of learning within a given
dataset [14], [15]. This observation has motivated research
into both learning dataset and time-specific weightings for an
AL algorithm ensemble. [16], [17] developed heuristics for
switching AL algorithms that are typically good at early versus
late stage learning. In contrast, [14], [15] developed methods
for rapid online learning of a dataset-specific weighting for
algorithms within an AL-ensemble.

The key insight of the Combination of Active Learning On-
line (COMB) [14] and Active Learning by Learning (ALBL)
[15] algorithms is to formalise the query criteria selection
task as a multi-armed bandit (MAB) problem. MAB prob-
lems have been well studied and many powerful algorithms
with optimality guarantees exist. For example, if each query
criterion in the ensemble is considered to be a bandit arm,
and the learning improvement after executing a criterion is
considered to be the arm’s reward, then MAB algorithms such
as EXP3 (Exponential-weight algorithm for Exploration and
Exploitation) [18] can be applied to quickly learn the efficacy
of the arms (AL criteria) and is guaranteed to achieve a near
optimal overall reward (learning improvement). A variant of
this is to consider data-points to be arms, and AL criteria to
be experts providing advice about promising arms. Then MAB
with expert advice algorithms such as EXP4.P (Exponential-
weight algorithm for Exploration and Exploitation using Ex-
pert advice with high probability regret bound) [19] optimise
exploration and exploitation of experts, and achieve provably
near optimal reward.

The fundamental limitation of existing MAB-based ap-
proaches to AL is that their underlying MAB algorithms
do not take into account the temporal dynamics of active
learning: different criteria are effective at different learning
stages [16], [17]. This issue is illustrated by Fig. 1(a,c,e),
where the most effective criterion varies across the entire
time horizon. On fourclass, Density (DE) sampling is slightly
better at first and uncertainty (US) is consistently good later



on. Similarly in ILPD or german, representative (RS) and
density (DE) sampling are better at the crucial early stage
before uncertainty becomes better. A second issue is that
the scale of an accuracy-based reward falls dramatically over
time (Fig. 1(b,d,f)). Because of this stationary bandit learners
will be unduly biased by the high reward from an initial
observation and fail to adapt subsequently. For example in
ILDP a stationary learner may fail to make the switch from
DE to US as later rewards in favour of US are small in scale
compared to the initial reward in favour of DE.

Therefore there are non-stationary aspects both in reward
scale, and in reward distribution per-arm (MAB perspective)
or per-expert (MAB with expert advice perspective). Thus
the MAB problem is formally non-stationary, violating a
fundamental assumption required to guarantee existing MAB
algorithms’ optimality bounds.

Here we develop a performance guaranteed stochastic MAB
with expert advice1 algorithm in a non-stationary environment.
Applying this to AL means that, like [15], if there is a single
best (but a priori unknown) AL algorithm for a dataset, we are
able to quickly discover it and thus approach the performance
of an oracle that knows the best algorithm for each dataset.
But importantly when different algorithms’ efficacies vary over
time within one dataset, we can adapt to this and approach the
performance of an oracle that knows the best AL algorithm at
each iteration.

II. BACKGROUND AND RELATED WORK

A. Active Learning

We denote the pool of data with M samples as D =
{xi, li, . . . ,xM , lM} where the instances are xi ∈ Rd and
the labels are li ∈ {1, . . . , C}. In an active learning scenario,
the data D are initially a labelled set L and unlabelled set
U = D \ L where |L| � |U|. Training an initial classifier f0

on the samples in the initial set L, the algorithm starts to query
instances xq from U during iterations t = 1, . . . , T . After the
supervision lq of instance xq is obtained, xq is removed from
the unlabelled set U and added to the labelled set L, from
which classifier ft is retrained.

B. Bandit Algorithms

Multi-armed Bandit In multi-armed bandit (MAB) prob-
lems, a player pulls a lever from a set K = {1, . . . ,K} of
slot machines in a sequence of time steps T = {1, . . . , T} to
maximise her payoff. During the game, she only observes the
reward rk(t) ∈ [0, 1] of the specific arm pulled k at time step
t. The aim of the player is to maximise their return, which
is the sum of the rewards over the sequence of pulls. This
requires a trade-off between exploration (collect information
to estimate the arm with the highest return) and exploitation
(focus on the arm with the highest estimated return). Training
a bandit learner to solve a MAB problem is then formalized

1We use terminology from [18]. It also has other names, including ‘con-
textual bandit’ [19], [20], ‘partial-label problem’ [21], and ‘associative bandit
problem’ [22].
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Fig. 1: Examples of non-stationary AL in UCI datasets “four-
class” and “ILPD” using four algorithms/criteria: US, RS,
DE, and RAND. Above: Proportion of times each criterion
generates the largest increase in accuracy. Below: Relative
increase in accuracy. In the relative part all increments are
re-scaled by subtracting the minimum increment of accuracy
over all criteria in each bin.

as minimising the regret between the actions chosen by the
player’s strategy ak ∼ π, and the best arm.

For example, the EXP3 algorithm [18] minimises, for any
finite T , the “static regret” between the player’s reward and
the best arm in retrospect: maxk

∑T
t=1 r

k(t)−E(
∑T
t=1 r

π(t)).

Contextual Multi-armed Bandit The goal of contextual
bandits is to build a relationship between available context
information ht ∈ Rd and the reward distribution over all arms.
For example, LinUCB [23] makes the linear realizability as-
sumption that there exists an unknown weight vector θ∗ ∈ Rd
with ||θ∗|| ≤ 1 so that regret

∑T
t=1 ra∗t (t) − ∑T

t=1 rat(t)
is minimized, where ra∗t (t) = θ∗>ht and rat(t) = θ>ht.
However, learning to predict the reward for each data point
accurately appears to be an even harder problem given the



limited information from only expert suggestions (Fig 1). More
importantly, given the changing reward distribution over time,
there is no constant relation between context and reward.

Multi-armed Bandit with Expert Advice Expert informa-
tion about the likely efficacy of each arm is often available.
[18] thus introduced an adversarial MAB with expert advice
algorithm EXP4 that exploits N experts giving advice vectors
(probabilities ξn(t) ∈ [0, 1]K over levers) to the learner at
each time. In contrast to MAB without expert advice, the goal
is now to identify the best expert rather than the best arm. In
this setting the regret to minimise is the difference between
the return of the best expert in retrospect and the player:

max
n

T∑
t=1

ynt − E(

T∑
t=1

yπt ) (1)

where ynt =
∑K
k=1 ξ

n
k (t)× rk(t) is the expected reward of an

expert and yπt is the expected reward of our policy.

C. Bandits for Active Learning

For active learning using a MAB with expert advice algo-
rithm, the N experts correspond to our ensemble of active
learning criteria and the K arms are available points in
the pool. Each expert (criterion) n provides a probability
vector encoding preference ξn(t) over arms (instances). Active
learners based on MAB with expert advice aim to learn the
best criterion for a specific dataset. In COMB [14], the authors
propose to use MAB with expert advice in active learning and
heuristically designed the classification entropy maximization
(CEM) score as the reward of the EXP4 bandit algorithm [18].
A more recent paper [15] (ALBL) proposed to replace the
CEM reward with an unbiased estimation of test accuracy
Important Weighted Accuracy (IWA) and used an upgraded
bandit algorithm EXP4.P [19], which improves the earlier
EXP4 method. Similarly, another recent paper [24] applied
linear upper confidence bound contextual bandit algorithm
(LinUCB) to train an ensemble and transferred the knowledge
to other datasets. All of these algorithms enable the selection
of a suitable active learning criteria for a given dataset. Our
contribution is also to perform AL in a dataset-specific way
by optimally tuning the exploration and exploitation of an
ensemble of AL algorithms; but more importantly to do so
dynamically, thus allowing the optimal tuning to vary as
learning progresses. Unlike [14], [15], [24] we are able to deal
with the non-stationary nature of this process. And unlike the
heuristics in [16], [17], we have a theoretical guarantees, and
can work with more than two criteria.

D. Non-stationary Property of Active Learning

Demonstration of Non-stationarity We describe a prelim-
inary experiment to demonstrate empirically the existence of
non-stationary reward distributions for a MAB formalisation of
AL. Following the learning trajectory of our method, we use an
oracle to score all the available query points at each iteration
(i.e., hypothetically label each point, update the classifier, and
check the test accuracy). Using the actual test accuracy as the

reward, we can obtain the true expected reward of the nth
expert ynt = ξn(t)r(t) at each time step t. Fig. 1 summarises
the resulting average reward obtained in every 10 iterations of
AL. Based on this, we can further compute the proportion of
times that each criterion would obtain the highest reward. It
can be seen that the MAB problem is non-stationary as the
rewards vary systematically, and there is not a single criterion
(expert) which obtains the highest proportion of wins through-
out learning. Additionally, the ideal combination of criteria
varies across datasets. For example, as illustrated in Fig 1,
density and uncertainty sampling show better complementary
in ILPD, while representative and uncertainty sampling are
more complementary in german dataset.

Existing MAB ensembles are not robust to non-stationarity
The non-stationary property in the MAB formalisation of AL
also highlights the key weakness of COMB and ALBL: they
use EXP4/EXP4.P [18], [19] expert advice bandit algorithms
which provide guarantees against an inappropriate (static)
regret that is only relevant in a stationary problem. In a non-
stationary problem, it is clear that even an algorithm that per-
fectly estimates the best single expert (optimal w.r.t static ora-
cle Eq. 1) can be arbitrarily worse than one which can choose
the best expert at each step (optimal w.r.t dynamic oracle).
In this paper, we develop an non-stationary stochastic MAB
algorithm REXP4 (Restarting Exponential-weight algorithm
for Exploration and Exploitation using Expert advice) with
bounds against a stricter dynamic oracle notion of optimality
more suited for (non-stationary) AL.

Prior attempts at non-stationary active learners A few
previous active learning studies also observed that different
algorithms are effective at different stages of learning and
proposed heuristics for switching two base query criteria (e.g.,
density sampling at an early stage, and uncertainty sampling
later on) [16], [17]. But these only adapt 2 criteria (density and
uncertainty) unlike MAB ensembles which learn to combine
many criteria, and their heuristics do not provide a principled
and optimal way to learn when to switch.

Prior attempts at non-stationary MABs Some previous
studies have extended MAB without expert advice learning
to the non-stationary setting [25], [26] and provided regret
bounds to guarantee the algorithms’ performance. However
bandits with expert advice are preferable because they can
achieve tighter learning bounds [18], [15] and they do not
treat each criterion as a black box, so that one observation can
be informative about many arms. Consider an AL situation
where two criteria prefer the same instance. In the MAB
interpretation (criteria=arms), after observing a reward, you
only learn about the criterion/arm chosen at that iteration. In
the MAB with expert advice interpretation (criteria=experts),
the observed reward generates updates about the efficacy of
all criteria that expressed opinions about the point.

Those few MABs extended to the non-stationary set-
ting have other stronger assumptions. For example, the
discounted/sliding-window UCB algorithm [25] assumes the



nature of the non-stationarity is that the reward distribution
is piece-wise and the number of changes is known. Similarly
[27] makes the easier piecewise assumption, and also that the
retrospective rewards for un-pulled arms are available – but
they are not in active learning. In [28], the authors proposed to
measure the total statistical variance of the consecutive distri-
butions at each time interval. Their result provides a big picture
of the regret landscape for full information and bandit settings.
Their proposed method addresses non-stationary environments
but only for the regular MAB problem. Despite the use of the
term expert in the title, it does not address the Expert-advice
variant of the MAB problem relevant to us. It addresses arms
rather than experts over arms.

We propose a non-stationary MAB with expert advice
algorithm that has performance guarantees, and validate its
practical application to active learning.

III. NON-STATIONARY MULTI-ARMED BANDIT WITH
EXPERT ADVICE FOR ACTIVE LEARNING

A. Non-stationary Multi-Armed Bandit with Expert Advice:
REXP4

To formalise the problem, we assume the expected reward
ynt of each expert n can change at any time step t. The total
variation of the expected reward over all T steps is

T−1∑
t=1

sup
n
|ynt − ynt+1| (2)

Following [29], [26], we assume this total variation in expected
reward is bounded by a variation budget VT . The variation
budget captures our assumed constraints on the non-stationary
environment. It allows a wide variety of reward changes – from
continuous drift to discrete jumps – yet provides sufficient
constraint to permit a bandit algorithm to learn in a non-
stationary environment. Temporal uncertainty set V is defined
as the set of reward vector sequences that are subject to the
variation budget VT over all T steps.

V =

{
y ∈ [0, 1]N×K :

T−1∑
t=1

sup
n
|ynt − ynt+1| ≤ VT

}
To bound the performance of a bandit learner in a non-

stationary environment, we work with the regret between the
learner and a dynamic oracle. The regret is defined as the
worst-case difference between the expected policy return and
the return of using the best expert at each time t.

Definition 1. Dynamic Regret for Multi-Armed Bandit with
Expert Advice

Rπ(V, T ) = sup
y∈V
{
T∑
t=1

y∗t − Eπ[

T∑
t=1

yπt ]} (3)

where y∗t = maxn y
n
t is the best possible expected reward

among all experts at time t. Our regret is against this dynamic
oracle, in contrast to prior MABs’ static oracle (Eq 1).

Our non-stationary MAB with expert advice algorithm
REXP4 minimises the dynamic regret in Eq 3. As shown in

Algorithm 1 Pseudocode of algorithm REXP4

Inputs: γ ∈ (0, 1] and an epoch size ∆T

1) Set Epoch index j = 1
2) Repeat while j ≤ dT/∆T e
• Set τ = (j − 1)∆T

• Initialisation: for any expert n set weight wn(t) = 1
• Repeat for t = τ + 1, . . . ,min{T, τ + ∆T }, Call

EXP4 Algorithm[18]
• Set j = j + 1 and return to the beginning of step 2

Algorithm 1, it trades off between the need to remember and
forget by breaking the task into batches and applying EXP4
[18] on each batch. As the reward distribution changes, it
adapts to the change as by re-estimating each expert’s reward
distribution at each batch. We show the worst case bound on
the regret between this REXP4 procedure and the dynamic
oracle.

B. Regret Bound for REXP4

The regret bound for REXP4 is illustrated in the following
theorem. The theorem is proved by following the proof struc-
ture of [26] and replacing the term µ in [26] with the expected
reward term y in our paper.

Theorem 1. Let π be the REXP4 policy with a
batch size ∆T = d(A logN)1/3(T/VT )2/3e and γ =

min{1,
√

A logN
(e−1)∆T

}. Then, there is some constant C such that
for every T ≥ 1,K ≥ 2, N ≥ 2, and VT ∈ [A−1, A−1T ]

Rπ(V, T ) ≤ C(A logN · VT )1/3T 2/3 (4)

where A = min{N,K} indicates the smaller number of
experts or arms.

The result is an upper bound on the regret between our
REXP4 policy and the dynamic oracle. As A = min{N,K},
it is favourable if either the number of experts N or arms K
is small. This also means it is relatively robust to many arms
(as in AL, where arms=data points). If VT is sub-linear in T
(total variation in reward grows slower than timesteps), then
performance converges to that of the oracle.

C. Dynamic Ensemble Active Learning

Based on our REXP4 algorithm for MAB with expert
advice, we present DEAL-REXP4 (Dynamic Ensemble Ac-
tive Learning) for active learning based on REXP4. Our
dynamic ensemble learner will update both base learner ft
and active criteria weights w(t) iteratively. More specifically,
each ensemble criterion will predict scores snt for all unla-
belled instances. We use exponential ranking normalisation
− exp(−α rank) to avoid the issue of different criterion
scales, and apply the Gibbs measure exp(−βsn

t )∑
k exp(−βsnt,k) where

the parameters α, β control the sharpness of the distribution.
The rank denotes the ranking position of the instance’s
score where the ranking order is determined by the criterion
strategy’s ordering. For example, the entropy criterion prefers



Algorithm 2 DEAL: Dynamic Ensemble Active Learning

Inputs: γ ∈ (0, 1], initial weight w(1) = 1, ∆T = 10,
τ = 1,labelled set L0, unlabelled set U0, initial classifier f0

for t = 1→ T do
1) Get scores of instance snt from criteria
2) Normalised the score vector snt = − exp(−α rank)

3) Obtain the advise vector with ξn(t) =
exp(−βsn

t )∑
k exp(−βsnt,k)

4) Set Wt =
∑N
n=1 wn(t) and for k = 1, . . . ,K set

pk(t) = (1− γ)

N∑
i=n

wn(t)ξnk (t)

Wt
+
γ

K

5) Query the label of instance xkt randomly from Ut
according to probability p1(t), . . . , pK(t)

6) Move the instance xkt from Ut to Lt
7) Retrain the classifier ft and receive reward rkt ∈ [0, 1]
8) For k = 1, . . . ,K set

r̂k(t) =

{
rk(t)/pk(t) if k = kt
0 otherwise

9) For n = 1, . . . , N set

ŷnt = ξn(t)T r̂(t)

wn(t+ 1) = wn(t) exp(γŷnt /K)

10) τ = τ + 1

if τ > ∆T then Reset τ = 1 and w(t+ 1) = 1
end if

end for

points with maximum entropy, so the maximum entropy point
has rank 1. Similarly, the minimum margin criterion prefers
points with low distance to margin, so the minimum distance
point has rank 1. Based on the current suggestions from
the criteria members, the active learning ensemble w(t) will
select an instance for label querying. Then, the base learner
ft+1 will be updated with the new labelled data and the
active learner w(t + 1) will be updated successively based
on the performance improvement of the updated base learner.
To learn the non-stationary reward distribution, we use our
proposed REXP4 algorithm to learn the weights of active
learning criteria in an online adaptive way by introducing
the restart scheme. Giving the current within-batch index
τ ∈ {1, · · · ,∆T }, the restart scheme will be activated when
τ > ∆T , otherwise updates follow the EXP4 rule. The details
are described in Algorithm 2 with an illustration in Fig. 2.

In DEAL-REXP4 we set the reward as the resulting accu-
racy after a classifier update. Thus in the context of active
learning, the bound given in Eq. 4 means that we know that
the total area under the reward curve obtained by DEAL-
REXP4 is within a bound of the best case scenario that would
occur only if we had known the best criterion to use at each
iteration. Moreover, if the variation budget VT grows sub-
linearly with T , DEAL-REXP4 converges towards this best-
expert-per-iteration upper bound scenario.

XUt

N Experts(Criteria)

E1 · · · EN

Normalisation

K
Arms

(Points)

ξ11

...

ξ1K

· · ·

. . .

· · ·

ξN1

...

ξNK

Active Learner

Update
Lt+1,Ut+1, ft+1

Pull a arm
(Query a point)

Get the
reward

τ > ∆T

Y

N

Update w(t+ 1)
τ = τ + 1

Reset w(t+ 1) = 1
τ = 1

Fig. 2: Illustration of DEAL System. Light blue: Taking the
unlabelled set XUt as the input, each expert will output a
score that is normalised before input to the DEAL active
learner. ξNK is the N th criterion score of Kth instance. Orange:
the active learner to make a decision. Green: updating the
labelled set, unlabelled set, and the classifier. Light yellow:
The restart detection scheme. Ensemble weights are then
updated differently between (light red) or at (dark red) restarts.

D. Discussion of Static and Dynamic Active Learning

We divide active learning algorithms into static/dynamic
based on the stationary/non-stationary assumption on the im-
portance of each criteria over different time periods.

Static Active Learning Single criterion algorithms are all
static, since they solve active learning with only one criterion.
Regarding active learning algorithms with multiple motiva-
tions: if they are formalised as a single fixed mixture of
criteria, they are also static. Since the coefficients of different
motivations are fixed over all time steps, they assume that a
single weighted combination is suitable at any learning stage.
For example, Query Informative and Representative Examples
(QUIRE) [11], Learning Active Learning (LAL) [33], and
Discriminative and Representative Queries for Batch Mode
Active Learning (BMDR) [12] are static active algorithms with
multiple motivations.

Previously proposed ensemble algorithms ALBL [15],
COMB [14], and Linear Strategy Aggregation (LSA) [24] are
also static in the sense that, although the weight proportion



TABLE I: Summary of Active Learning Algorithms

Single Criterion
Algorithm Motivation Stationarity Importance of Criterion Ensemble Members Property
US [1], [30], [31] Querying the least confidence Stationary Fixed US Static
RS [32] Query a cluster within Margin Stationary Fixed RS Static
DE [16] Query the major cluster Stationary Fixed DE Static
Multiple Criteria
Algorithms Motivations Stationarity Importance of Criterion Ensemble Members Property
QUIRE [11] Combining informativeness and representativeness Stationary Equal effect QUIRE Static
BMDR [12] Combining discriminative and representativeness Stationary Equal effect BMDR Static
LAL [33] Combining Multiple motivations Stationary Equal effect Any Criteria Static
DUAL[16] Switching from DE to US once Non-stationary Varying US, DE Dynamic
ALGD [17] Switching between DE to US Non-stationary Varying US, DE Dynamic
Bandit Ensemble Algorithms
Algorithm Bandit Regret Stationarity Importance of Criterion Ensemble Members Property
COMB [14] EXP4 [18] maxn

∑T
t=1 y

n
t − E(

∑T
t=1 y

π
t ) Stationary Single best Any Criteria Static

ALBL [15] EXP4.P [19] maxn
∑T
t=1 y

n
t − E(

∑T
t=1 y

π
t ) Stationary Single best Any Criteria Static

LSA [24] LinUCB [23]
∑T
t=1 ra∗t (t)−

∑T
t=1 rat (t) Stationary Single best combination Any Criteria Static

DEAL REXP4
∑T
t=1 maxn ynt − E(

∑T
t=1 y

π
t ) Non-Stationary Dynamic best Any Criteria Dynamic
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Fig. 3: Comparison of DEAL-REXP4 versus individual en-
semble members.

of their ensemble members changes as data is gathered, their
underlying bandit learner is a stationary one, assuming there is
only one best expert or best linear combination over all time.

Dynamic Active Learning In our dynamic active learning
research question, we avoid a stationarity assumption on
criteria importance over time. A non-stationary algorithm
should adapt its weighting proportions over time in response
to learning progress. Prior attempts propose heuristics for
classifier switching or reweighting [16], [17] between density
and uncertainty sampling. Our DEAL-REXP4 improves on
these in that it can use an arbitrary number of criteria of
any type beyond 2 specified criteria; and in contrast to prior
heuristics, it contains a principled underlying learner with
theoretical guarantees. We provide a summary of related prior
active learning algorithms in Table I, where the generality and
strong notion of regret in DEAL-REXP4 is clear.

IV. EXPERIMENTS AND RESULTS

To evaluate our algorithm, we use 13 datasets from UCI2

and LibSVM3 repositories. These datasets are selected follow-
ing previous relevant papers [24], [15], [11], [6]. We use linear
SVM [34] as the base learner. If the datasets do not include

2https://archive.ics.uci.edu/ml/datasets.html
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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Fig. 4: Comparison of active learning with our DEAL-REXP
versus alternative state of the art bandit algorithms.

a pre-defined training/testing split, we randomly split 60% for
training and the rest for testing. In each trial, we start with 1
randomly labelled point per class. Each experiment is repeated
200 times and the average testing accuracy is reported.

Criteria Ensemble: The ensemble of base learners includes:
US: picking the instances with max-entropy (min margin)
instance in binary class datasets [1], [30] or minimum Best-
versus-Second-Best (BvSB) [31] in multiclass datasets. RS:
clustering the points near the margin [32] then scoring un-
labelled points by their distances to the largest centroid.
Distance-Furthest-First (DFF): Focuses on exploration by
selecting the furthest unlabeled instance to the nearest labeled
instance [35]. We use DFF which selects the furthest unla-
belled instance to the nearest labelled instance [35] to replace
the RS in multiclass datasets as originally RS is designed



TABLE II: Win/Tie/Loss counts of DEAL-REXP4 versus ensemble members in terms of AUC at specified learning stage.

Rank 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% Total
1st 0/4/9 0/3/10 0/3/10 0/2/11 0/2/11 0/4/9 0/4/10 0/3/10 0/3/10 0/3/10 0/30/100
2nd 2/6/5 4/5/4 4/6/3 5/4/4 6/3/4 6/3/4 6/3/3 6/4/3 6/4/3 5/6/2 50/45/35
3rd 7/5/1 7/4/2 7/5/1 7/5/1 7/4/2 7/4/2 7/6/0 7/6/0 8/5/0 8/5/0 72/49/9
4th 11/2/0 12/1/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 13/0/0 127/3/0

Total 20/17/15 23/13/16 24/14/14 25/11/16 26/9/17 26/11/15 26/13/13 26/13/13 27/12/13 26/14/12 249/127/144

TABLE III: Win/Tie/Loss counts of DEAL-REXP4 and state of the art alternatives at specified learning stages.

Algorithm 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% Total
Non-Stationary Datasets

ALBL 8/15/3 9/13/4 9/12/5 9/11/6 7/13/6 6/14/6 6/15/5 4/16/6 4/16/6 4/16/6 66/141/53
COMB 4/13/9 2/14/10 2/13/11 2/12/12 1/12/13 2/12/12 2/13/11 1/15/10 0/16/10 0/16/10 16/136/108
DUAL 7/9/8 7/7/10 7/7/10 8/6/10 9/8/7 8/8/8 6/11/7 7/12/5 7/14/3 7/15/2 73/97/70
DEAL 6/15/5 9/14/3 11/12/3 12/11/3 12/11/3 12/12/2 11/13/2 12/11/3 11/12/3 10/13/3 106/124/30

Stationary Datasets
ALBL 4/6/1 6/3/2 7/3/1 6/3/2 7/2/3 6/3/2 6/3/2 5/5/1 5/5/1 4/6/1 56/39/15
COMB 2/4/5 2/2/7 1/4/6 1/2/8 1/2/8 1/2/8 1/3/7 1/4/6 1/4/6 1/4/6 12/31/67
DUAL 0/2/7 3/1/5 3/3/3 5/2/2 5/2/2 5/2/2 4/4/1 4/4/1 4/4/1 4/4/1 37/28/25
DEAL 7/4/0 6/2/3 3/4/4 4/3/4 4/2/5 4/3/4 3/4/4 2/5/4 2/5/4 2/6/3 37/38/35

for binary class datasets. Both are motivated by exploring
the datasets, but DFF does not depend on binary classifiers.
Density Estimation (DE): Picking the instance with maximum
density in a GMM with 20 diagonal covariance components
[16]. RAND: Randomly selecting points can be hard to beat
on datasets unsuited to a given criterion. Moreover, including
a random expert (for exploration) is necessary to guarantee
the performance of the EXP4 subroutine [18], [19].

Competitors: We compare our method to ALBL [15],
COMB [14] and DUAL [16]. For COMB, we follow their
recommended settings with CEM reward and β = 100. For
the ALBL, we use their settings and importance-weighted
accuracy reward.

For direct comparison, ALBL, COMB and REXP4 use
the same ensemble of criteria described above. DUAL is
engineered for a specific pair of criteria, so we apply its
original version using Uncertainty Sampling and Density-
Weighted Uncertainty Sampling. It is also only defined for
binary classification problems unlike the others.

DEAL-REXP4 Settings: For reward, we follow [15], [24]
in using the IWA for unbiased estimation of test accuracy.
To produce probabilistic preferences for points from all AL
criteria, we use exponential ranking normalisation and a Gibbs
measure with α = 0.1, β = 100. We use batch size ∆T = 10
throughout. The choice ∆T = 10 is based on observing the
typical coarse duration of performance gaps among different
criteria. For example, RS wins first 20 iterations in Fig. 3(b).
The reason for parameterizing in terms of ∆T rather than VT
is that it has intuitive meaning in AL context (batch-size),
yet implies a corresponding variation budget for any given T
(Theorem 1).

Characterising dataset (non)stationarity: We first investi-
gate each dataset to characterise its (non)stationarity. We use
our DEAL trajectory, and use an oracle to measure the % wins
of each criterion at each batch ∆T in terms of performance
increase. A dataset with stationary reward distribution would

tend to have a consistent winner, and vice-versa. Although
(non)stationarity is a continuum, we will describe a dataset as
stationary if at least two criteria have a fraction of wins above
threshold θ = 10%.

DEAL versus Individual Criteria Examples comparing the
performance of DEAL and individual criteria in the ensemble
are shown in Fig. 3. There is no single criterion that works
best for all datasets, moreover different criteria are effective
at different stages of learning. While DEAL is not best across
all datasets and all time-steps (this would require the actual
dynamic oracle upper bound), it performs well overall. This
is summarised quantitatively across all 13 datasets in Tab. II.
Each method’s performance is evaluated by the area under
the learning curve at different proportions of added instances.
The results show the number of wins/ties/losses of DEAL
versus the alternative ensemble member of specified highest
rank according to two-sided t-test. This shows for example that
DEAL often ties with the top-ranked ensemble member (30
draws vs 1st rank), is usually at least as good as the second
ranked member (50 wins and 45 ties vs only 35 losses) and
is never the worst (0 losses vs 4th rank).

Comparison vs State-of-the-Art We compare our DEAL-
REXP4 with state-of-the-art alternatives to tuning an AL-
ensemble. Sometimes DUAL performs well, but it is highly
variable depending on whether the criterion switch heuristic
makes a good choice or not, as seen in Fig. 4. Tab. III
summarises the results across all datasets in terms of AUC
wins/draws/losses of each approach against the alternatives.
DUAL has a lower row-total as it is defined for binary prob-
lems only, so not evaluated on wine and letter datasets. The
main observation is that DEAL outperforms the alternatives
particularly on non-stationary datasets. On stationary datasets
we are only slightly worse than ALBL. This is expected
as REXP4 performs forgetting in order to adapt to changes
in expert efficacy, meaning that we cannot exploit the best
criterion as aggressively as ALBL’s EXP4.P MAB learner.
Nevertheless, overall DEAL is fairly robust to stationary



datasets (small margin behind ALBL), while ALBL is not ro-
bust to non-stationary datasets (larger margin behind DEAL).

V. CONCLUSION

We proposed a non-stationary multi-armed bandit with
expert advice algorithm REXP4, and demonstrated its appli-
cation to online learning of a criterion ensemble in active
learning. The theoretical results provide bounds on REXP4’s
optimality. The empirical results show that active learning with
DEAL-REXP4 tends to perform near the best criterion in the
ensemble. It performs comparable to state of the art alternative
ensembles on stationary datasets, and outperforms them on
non-stationary datasets.
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