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Lifetime Achievement Award

The Lost Combinator
It linked all perplexed meanings
Into one perfect peace.

—Procter and Sullivan, 1877, The Lost Chord

Mark Steedman∗

University of Edinburgh

Let me begin by thanking the Association for Computational Linguistics and its Executive

Committee for conferring on me the great honor of their lifetime achievement award for 2018,

which of course I share with all the wonderful students and colleagues that have made many

essential contributions to this work over many years.

At the heart of the work that I have been pursuing over my research lifetime so far, whether in

parsing and sentence processing, spoken language understanding, semantics, or even in musical

understanding by machine, there lies a theory of natural language grammar that brings parsing,

compositional semantics, statistical modeling and logical inference into the closest possible rela-

tion. This theory of grammar is combinatory, in the sense that its operations are type-dependent

and restricted to strictly string-adjacent phonologically or graphologically-realized inputs, and

categorial, in the sense that those operands pair a syntactic type with a type-transparent semantic

representation or logical form.

I’d like to use this opportunity to briefly address three questions that revolve around the

theory of grammar, both combinatory and otherwise. The first question concerns the way that

Combinatory Categorial Grammar (CCG) was developed with a number of colleagues, over

a number of stages and in slightly different forms. The second is an essentially evolutionary

question of why natural language grammar should take a combinatory form. The third question is

that of what the future holds for CCG and other structural theories of grammar in Computational

Linguistics and NLP in the Age of Deep Learning.

I have called this talk “The Lost Combinator” in homage to the Victorian era poem “The

Lost Chord”, in the hope of suggesting that the theoretical development of CCG has always been
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empirical, rather than axiomatic, in search of the simplest explanation of the facts of language,

rather than for confirmation of linguistic received opinion, however intuitively salient.

1. In the Beginning

In the late ’60s (when I was a psychology undergraduate at the University of Sussex under Stuart

Sutherland, and then started as a graduate student in artificial intelligence at Edinburgh under

Christopher Longuet-Higgins), a broad community of theoretical linguists, psychologists, and

computational linguists saw themselves as all working on the same problem, under the definition

provided by the “transformational” theory of grammar proposed by Chomsky (1957, 1965), using

theories of psycholinguistic processing, language acquisition, and language evolution proposed

by Lashley (1951), Miller, Galanter, and Pribram (1960), Miller (1967), and Lenneberg (1967),

theories of natural language semantics proposed by Carnap (1956), Montague (1970), and Lewis

(1970), and computational models of parsing such as those proposed by Thorne, Bratley, and

Dewar (1968), and Woods (1970). (I myself was so convinced that this program would succeed

that I believed it was time to apply the same methods to other cognitive faculties, taking as my

research project for PhD their application to the interpretation of music by machine, following

the lead of Max Clowes (1971) in machine vision.)

Almost immediately, this consensus fell apart. First, Chomsky himself was among the first

(1965) to recognize that transformational rules, though descriptively revealing, were so expres-

sive as to have little explanatory force, and required many apparently arbitrary constraints (Ross,

1967). Second, psychologists realized that psycholinguistic measures of processing difficulty

of sentences bore almost no relation to their transformational derivational complexity (Fodor,

Bever, and Garrett, 1974; Marslen-Wilson, 1973) Finally, computational linguists attempting to

implement transformational grammars as parsers realized that they were spending all their time

implementing even more constraints on rules, in order to limit search arising from overgeneration

(Friedman, 1971; Gross, 1978). (Meanwhile, I realized that the problem had not in fact been

solved, and returned to natural language processing, thanks to a postdoc at Sussex with Philip

Johnson-Laird.)

This disillusion wasn’t just a case of internal academic squabbling. There were also a couple

of influential reports commissioned by the US and UK governments that ended funding for

Machine Translation (MT) and Artificial Intelligence (AI) (Pierce et al., 1966; Lighthill, 1973).

As a result of the second of these reports, which determined that AI was never going to work,

PhDs in artificial intelligence like my classmate Geoff Hinton and myself spent ten years or

so after graduation in psychology departments (in my case, at the Universities of Sussex and
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Warwick), until yet another report said AI was working after all and that Britain and the US were

falling behind Japan in this vital area. As a result, I could get hired again in CS, first briefly back

at Edinburgh, and then at the University of Pennsylvania (I learned a lesson from this odyssey that

I have tried to remember whenever I have been appointed to a committee to report on anything,

which is that while reports very rarely do any good, they can very easily do a great deal of harm.)

Meanwhile, as a result of these conflicts, the scientific study of language fragmented. The

linguists swiftly abjured any responsibility for their grammars (“Competence”) bearing any rela-

tion to processing (“Performance”). Since the psychologists could hardly abandon Performance,

they in turn became agnostic about grammar, retreating to context-free surface grammar (which

they tended to refer to as “parsing strategies”), or a touchingly optimistic belief in its emergence

from neural models. Meanwhile, the computational linguists (whose machines were growing

exponentially in size and speed from the 16K byte core of the machine that supported the whole

group when I started my graduate studies, on to levels that would soon permit parsing the entire

contents of the then embrionic web) similarly found that very little of what the linguists and

psychologists cared about was usable at scale, and that none of it significantly improved overall

performance over very much simpler context-free or even finite-state methods that the linguists

had shown to be incomplete. The reason of course was Zipf’s law, which means that the events

with respect to which the low-level methods are incomplete are off in the long tail.

It also became apparent to a few computationalists working on speech, MT, and IR that the

real problem was not grammar but ambiguity and its resolution by world-knowledge, and that

the solution lay in probabilistic models (Bar-Hillel, 1960/1964; Spärck Jones, 1964/1986; Wilks,

1975; Jelinek and Lafferty, 1991) (although it was not immediately apparent how to combine

statistical models with grammar-based systems without making obviously false independence

assumptions).

Nevertheless, as any red-blooded psychologist had always insisted, the divorce between

competence and performance that everyone else had accepted didn’t make any sense. The

grammar and the processor had to have evolved in lock-step, as a package deal, for what could be

the evolutionary selective advantage of a grammar which you can’t process, or a parser without

a grammar?

It seemed equally obvious that surface syntax and the underlying semantic or conceptual

representation must also be closely related, since the only reasonable basis for child language

acquisition that has ever been on offer is that the child attaches language-specific grammar to a

universal conceptual relation or “language of mind” (Miller, 1967; Bowerman, 1973; Wexler and

Culicover, 1980). It seemed to follow that radically new theories of grammar were needed.

3
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2. The Problem of Discontinuity

Theoretical linguists agree that the central problem for the theory of grammar is discontinuity or

non-adjacent dependency between predicates and their arguments:

(1)

respect  and  confidence     which     most      Americans    previously           had

Chomsky described discontinuity in terms of movement, which was known to be formally very

unconstrained. By contrast, the ATN parser used in the LUNAR project (Woods, Kaplan, and

Nash-Webber, 1972) reduced all discontinuity to local operations on registers (Thorne, Bratley,

and Dewar, 1968; Bobrow and Fraser, 1969; Woods, 1970)

In particular, unbounded wh-dependencies like the above were handled by: (a) putting a

pointer into a * or HOLD register as soon as the “which” was encountered without regard

to where it would end up, and; (b) retrieving the pointer from HOLD when the verb needing

an object “had” was encountered without regard to where it had started out. (It also included

an ingenious mechanism for coordination called SYSCONJ that one finds even now being

reinvented on an almost yearly basis—cf. Woods, 2010.) A * register was also used for wh-

constructions within a systemic grammar framework by Winograd (1972: 52-53) in his inspiring

conversational program SHRDLU.

However, it was unclear how to generalize the HOLD register to handle the multiple long-

range dependencies, including crossing dependencies, that are found in many other languages. In

particular, if the HOLD register were assumed to be a stack, then the ATN becomes a two-stack

machine (since we are already implicitly using one stack as a PDA to parse the context-free core

grammar).

On the computational side at least, the reaction to this impass took two distinct forms.

Both reactions took the form of trying to reduce the two major operators of the transformation

theory, substitution of immediate constituents or what is nowadays called “Merge”, and “Move”

or displacement of non-immediate constituents, to one. On the one hand, Lexical Functional

Grammar (LFG, Bresnan and Kaplan, 1982) and Head-driven Phrase Structure Grammar (HPSG,

Pollard and Sag, 1994) followed Kay (1979) in making unification the basis of both merge and

move. Since unification can pass information across unbounded structures, this can be thought

of as reducing Merge to Move.

4
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On the other hand, Generalized Phrase Structure Grammar (GPSG, Gazdar, 1981), Tree

Adjoining Grammar (TAG Joshi and Levy, 1982), and Combinatory Categorial Grammar (CCG,

Ades and Steedman, 1982), sought to reduce Move to various forms of local Merger. In particular,

the latter authors suggested that the same stack could be used to capture both long-range

dependency and recursion in CCG.1

3. Why Does Natural Language Allow Discontinuity?

Natural language grammar exhibits discontinuity because semantically language is an applicative

system. Applicative systems (such as programming languages) support the twin notions of: (a)

Application of a function/concept to an argument/entity; and, (b) Abstraction, or the definition

of a new function/concept in terms of existing ones.

Language is in that sense inherently computational. It seems to follow that linguistics is (or

should be) inherently computational as well. (Of course, it does not follow that computationalists

have nothing to learn from linguistics.)

There are two ways of modeling abstraction in applicative systems: (a) Taking abstraction

itself as a primitive operation (λ -calculus, LISP):

(2) a. father Esau⇒ Isaac

b. grandfather = λx.father (father x)

c. grandfather Esau⇒ Abraham

(b) Defining abstraction in terms of a collection of operators on strictly adjacent terms aka

Combinators, such as function composition (Combinatory Calculus, MIRANDA).

(3) b′. grandfather = B father father

The latter does the work of the lambda calculus without using any variables.

Despite the resemblance of the “traces” (or copies) and “operators” (or complementizer

positions) of the transformational theory to the λ -operators and variables of applicative systems

of the first kind, natural language actually seems to be a system of the second, combinatory

kind. The evidence stems from the fact that natural language deals with all sorts of fragments

that linguists don’t normally think of as semantically typable constituents, without the use of any

phonologically realized equivalent of variables, such as pronouns:

1 As well as at Warwick and Edinburgh, much of the early work on CCG was done during 1980/81 as a visiting fellow

at the University of Texas at Austin, under funding from the Sloan Foundation to Stanley Peters and Phil Gough, my

first introduction to the United States.
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(4) a. Give [Anna books]? and [Manny records]?

b. (Mother to child): There’s a DOGGIE! [You LIKE]? # the doggie.

c. Food that you must [washV P/NP [before eating](V P\V P)/NP]?.

d. ik denk dat ik1 Henk2 Cecilia3 [zag1 leren2 zingen3]?

These fragments are diagnostic of a Combinatory Calculus based on Bn, T, and the “duplicator”

Sn, plus application (Szabolcsi, 1989; Steedman, 1987; Steedman and Baldridge, 2011).2

4. Combinatory Categorial Grammar (CCG)

CCG lexicalizes all bounded dependencies, such as passive, raising, control, exceptional case-

marking, etc., via lexical logical form. All syntactic rules are Combinatory—that is, binary

operators over contiguous phonologically realized categories and their logical forms. These rules

are restricted by a Combinatory Projection Principle (CPP) which in essence says they cannot

override the decisions already taken in the language-specific lexicon, but must be consistent with

and project unchanged the directionality specified there. All such language-specific information

is specified in the lexicon: the combinatory rules like composition are free and universal. All

arguments, such as subjects and objects, are lexically type-raised to be functions over the

predicate, as if they were morphologically cased as in Latin, exchanging the roles of predicate

and argument.

All long range dependencies are established by contiguous reduction of a wh-element such

as (N\N)/(S/NP) with an adjacent non-standard constituent with category S/NP, formed by

rules of function composition.

(5) company that Verizon owns
>T

N (N\N)/(S/NP) S/(S\NP3s) (S\NP3s)/NP)
>B

S/NP
>

N\N
<

N : λx.companyx∧ownsxverizon

2 The combinators are identified as Bn, T, and Sn for historical reasons. This combinatory calculus is distinct from the

categorial type-logic stemming from the work of Lambek (1958) that similarly underpins Type-Logical Grammar

(Oehrle, 1988; Hepple, 1990; Morrill, 1994; Moortgat, 1997), in which the grammar is a logic, rather than a

calculus, and some but not all of the CCG combinatory rules are theorems.
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(6) company that Google thinks Verizon owns
>T >T

N (N\N)/(S/NP) S/(S\NP3s) (S\NP3s)/S) S/(S\NP3s) (S\NP3s)/NP)
>B >B

S/S S/NP
>B

S/NP
>

N\N
<

N : λx.companyx∧ thinks(ownsxverizon)google

The combinatory rules synchronize composition of the syntactic types shown above with corre-

sponding composition of logical forms (suppressed in the derivations above), to yield the logical

forms shown as λ -terms for the resulting nouns N.

To capture the construction in (4c), whose syntactic derivation we pass over here, we also

need rules based on the duplicator S:

(7) a. “wash X before eating X”

b. VP/NP : λx.before(eat x)(washx)≡ S(Bbeforeeat)wash

To capture constructions like (4d) (whose syntactic derivation is similarly suppressed), we

also need rules based on second-order composition B2:

(8) a. “Y saw X teach W to sing.”

b. ((S\NP)\NP)\NP : λwλxλy.help(teach(singw)wx)xy≡ B2 sees(B teachsing)

CCG thus reduces the operator MOVE of transformational theory to applications of purely

adjacent operators—that is, to recursive combinatory MERGE.

Interestingly, the latest “minimalist” form of the transformational theory has also proposed

that move should be relabeled as an “internal” form of standard or “external” merge (Chomsky,

2001/2004: 110), though without providing any formal basis for the reduction other than identify-

ing internal merge as “a grammatical transformation”. (If anything deserved the soubriquet “the

lost combinator”, it would be this notional unitary combination of application and abstraction in

a single perfect operator, linking or merging all types, as in the epigraph to this article.)

4.1 Expressivity of CCG

B2 rules allow us to “grow” categories of arbitrarily high valency, such as ((S\NPy)\NPx)\NPw.

As we saw earlier, in some Germanic languages like Dutch, Swiss German, and West-Flemish,

serial verbs are linearized using such rules to require crossing discontinuous dependencies. Thus,

B2 rules give CCG slightly greater than context-free power.

7
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Nevertheless, CCG is still not as expressive as movement. In particular, we can only capture

permutations that are what is called “separable”, where separabillity is related to the idea of

obtaining the permutations by rebracketing and rotating sister nodes (Steedman, 2018).

For example, for the categories of the form A|B, B|C, C|D, and D, it is obvious by inspection

that we cannot recognize the following permutations:

(9) i. *B|C D A|B C|D

ii. *C|D A|B D B|C

This generalizatiion appears likely to be true cross-linguistically for the components of this

form for the NP “These five young boys”:

(10) i. *Five boys these young

ii. *Young these boys five

21 of the 22 separable permutations of “These five young boys” are attested (Cinque, 2005;

Nchare, 2012). The two forbidden orders are among the unattested 3.3

The probability of this happening by chance is the prior probability of the hypothesis itself—

that is the reciprocal of 24 choose 2—times 3 choose 2, the number of ways of predicting two

impossible orderings out of three unattested ones, given by the following:

(11) p =

(
3
2

)
(

24
2

) = (3∗2)/2
(24∗23)/2 = 6

552 ≈ 0.01

—that is, about one in a hundred. (If the sole predicted order that remains unattested so far were

to be attested, this chance would fall to about one in two thousand.)

The number of separable permutations grows much more slowly in n than n!, the number

of all permutations. For example, for n = 8, around 80% of the permutations are non-separable.

There are obvious implications for the problem of alignment in machine translation and neural

semantic parsing, to which we will return.

In 1986, I moved to Computer and Infromation Science at Penn, first as a visitor (incredibly,

partly still under Sloan funding—at least, that was what Aravind Joshi told me), and then as a

member of faculty, where much of the further development of CCG was worked out. Crucially,

Aravind’s students proved in a series of papers (Vijay-Shanker, Weir, and Joshi, 1987, Joshi,

Vijay-Shanker, and Weir (1991), passim) that the “shared stack” claim of Ades and Steedman

3 (Dryer, 2018) notes four languages which have been claimed to have the first of these orders as basic. However,

examination of the source materials makes it clear that the examples in question involve extraposed APs rather than

A, which Cinque excludes (cf. Cinque, 2010).
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(1982), was correct, by showing that both CCG and Aravind Joshi’s Tree Adjoining Grammar

(TAG) were weakly equivalent to Linear Indexed Grammar (LIG, Gazdar, 1988), a new level of

the Language Hierarchy characterized by the (Linear) Embedded Push-down Automaton (EPDA)

(cf. Kuhlmann, Koller, and Satta, 2015).

The class of languages characterizable by these formalisms fell within the requirements of

what Joshi (1988) called “mild context sensitivity” (MCS), which proposed as a criterion for

what could count as a computationally “reasonable” theory of natural languages—informally

speaking, that they are polynomially recognizable, exhibiting constant growth and some limit

on crossing dependencies. However, the MCS class is much much larger than the CCG/TAG

languages, including the multiple context free languages and even (under certain further assump-

tions) the languages of Chomskian minimalism, so it seems appropriate to distinguish TAG and

CCG as “slightly non-context-free” (SNCF, with apologies to the french railroad company).

4.2 CCG for Natural Language Processing

Despite its SNCF complexity, CCG was originally assumed to be totally unpromising as a

grammar formalism for parsing, because of the extra derivational ambiguity introduced by

type raising and the combinatory rules, particularly composition. However, these supposedly

“spurious” constituents also show up under coordination, and as intonational phrases. So any

grammar with the same coverage as CCG will engender the same degree of nondeterminism in

the parser (because it is there in the grammar). In fact, this is just another drop in the ocean of

derivational ambiguity that faces all natural language processors, and can be handled by exactly

the same statistical models as other varieties.

In particular, the head-word dependency models pioneered by Don Hindle and Mats Rooth,

Mike Collins, and Eugene Charniak are straightforwardly applicable (Hockenmaier and Steed-

man, 2002b; Clark and Curran, 2004). CCG is also particularly well-adapted to parsing with

“supertagger” front ends, which can be optimized using embeddings and LSTM (Lewis and

Steedman, 2014; Lewis, Lee, and Zettlemoyer, 2016)

CCG is now quite widely used in applications, especially those that call for transparency be-

tween semantic and syntactic processing, and/or dislocation, such as machine translation (Birch

and Osborne, 2011; Mehay and Brew, 2012), machine reading (Krishnamurthy and Mitchell,

2014), incremental parsing (Pareschi and Steedman, 1987; Niv, 1994; Xu, Clark, and Zhang,

2014; Ambati et al., 2015), human-robot interaction (Chai et al., 2014; Matuszek et al., 2013),

and semantic parser induction (Zettlemoyer and Collins, 2005; Kwiatkowski et al., 2010; Abend

et al., 2017). Some of my own work with the same techniques has returned to their application in
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musical analysis (Granroth-Wilding and Clark, 2016; McLeod and Steedman, 2016), and shown

that CCG grammars of the same SNCF class and parsing models of the same statistical kind are

required there as well: it is only in the details of their compositional semantics that music and

language differ very greatly.

Rather than reflecting on this substantial body of work in detail, I’d like to conclude by

examining two further more speculative questions: The first is an evolutionary question: Why

should natural language be a combinatory calculus in the first place? The second is a question

about the future development of our subject: Will CCG and other grammar-based theories

continue to be relevant to NLP in the age of Deep Learning and Recursive Neural Networks?

I’ll take these questions in order in the next two sections.

5. Why is Language Combinatory?

Natural language looks like a distinctively Combinatory applicative system because B, T, and S

evolved independently, in our animal ancestors, to support planning of action sequences before

there was any language (Steedman, 2002). Even pure reactive planning animals like pigeons need

application. Composition B and Substitution S are needed for seriation of actions. (Even rats

need to compose sensory-motor actions to make plans.) Macaques can form the concept “food

that you need to wash before eating”). Type-raising T is needed to map tools onto actions that

they allow (affordances). (Chimpanzees and some other animals can plan with tools.) Second-

order combinators like B2 are needed to make plans with arbitrary numbers of entities, including

non-present tools, and crucially including other agents whose cooperation is yet to be obtained.

Only humans seem to be able to do the latter.

Thus, Chimpanzees solve the (mistitled) monkey and bananas problem, using tools like old

crates to gain altitude in order to obtain objects that are otherwisw out of reach (Köhler, 1925,

figure 1a).

Köhler’s chimpanzee Grande’s planning amounts to composing (B) affordances (T) of crates

etc., such as actions of moving, stacking, and climbing-on them, etc. Similarly, macacques can

apply S(Bbeforeeat)wash to a sweet potato (Kawai, 1965, figure 1b). Interestingly, Köhler and

much subsequent work showed that the crates and other tools have to be there in the situation

already for the ape to be able to plan with them: she was unable to achieve plans which involve

fetching crates from the next room, even if she had recently seen them there.

More generally, the problem of planning can be viewed as the problem of search for a

sequence of actions in a lattice or labyrinth of possible states. Crucially, such search has the

same recursive character as parser search. For example, there are both chart-based dynamic-
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Figure 1

Köhler 1925; Kawai 1965

programming and stack-based shift-reduce-style algorithms for the purpose. The latter seem

a more plausible alternative in evolutionary terms, as affording a mechanism that is common

to both semantic interpretation and parsing, rather than requiring the independent evolution of

something like the CKY algorithm.4

Planning therefore provides the infrastructure for linguistic performance, as well as the

operators for competence grammar, allowing the two to emerge together, as what was referred to

above as an evolutionary “package deal”.

6. CCG in the Age of Deep Learning

I hope to have convinced you that CCG grammars are both linguistically and evolutionarily

explanatory, as well as supporting practical semantic parsers that are fast enough to parse the

web.

Nevertheless, like other supervised parsers, CCG parsers are limited by the weakness of

parsing models based on only a million words of WSJ training data, no matter how cleverly

we smooth them using synthetic data and embeddings. Moreover, the constructions they are

specifically needed for—unbounded dependencies etc.—are as we have noted rare, and off in

the long tail. As a consequence, supervised parsers are easy to equal on performance overall by

using end-to-end models (Vinyals et al., 2015).

This outcome says more about the weakness of treebank grammars and parsers than about

the strength of deep learning. Nevertheless, in the area of semantic parser induction for arbitrary

knowledge graphs such as FreeBase (Reddy, Lapata, and Steedman, 2014), I would say that CCG

4 This point seems to have escaped Berwick and Chomsky 2016: 175-176,n9.
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and other grammar-based parsers have already been superseded by semisupervised end-to-end

training of Deep Neural Networks (DNN) (Dong and Lapata, 2016, 2018; Jia and Liang, 2016),

raising the question of whether DNNs will replace structured models for practical applications

in generall.

DNNs are effective because we don’t have access to the universal semantic representations

that allow the child to induce full CCG for natural languages and that we really ought to be using

both in semantic parser induction, and in building knowledge graphs. Since the FreeBase Query

language is quite unlike any kind of linguistic logical form, let alone like the universal language

of mind, it may well be more practically effective with small and idiosyncratic datasets to induce

semantic parsers for them by end-to-end deep neural brute force (DNBF), rather than by CCG

semantic parser induction.

But is it really possible that the problem of parsing could be completely solved by

RNN/LSTM, pehaps augmented by attention/a stack (He et al., 2017; Kuncoro et al., 2018)? Do

semantic-parsing-as-end-to-end-translation learners actually learn syntax, as has been claimed?

It seems likely that end-to-end SRL parsers and Neural Machine Translation (NMT) will

continue to have difficulty with long range wh-dependencies, because the evidence for their

detailed idiosyncrasies is so sparse.

For example, both English and French treat embedded subject extraction as a special case,

either involving special bare complement verb categories (English) or a special complementizer

“qui” (French).

(12) a. A woman who I believe (*that) won

b. Une femme que je crois qui/*que à gagné

(This is actually predicted by CCG, which says that if you are an SVO language with relatively

rigid-word order, like English and French, then you won’t in general be able to extract embedded

subjects, whereas in verb initial languages like Welsh or verb final languages like Japanese and

German, you will either be able to extract both embedded subjects and objects, or neither—

Steedman, 1987, 2000.)

Not surprisingly, at the time of writing, a well-known end-to-end DNN translation system

Near You shows no sign of having learned these syntactic niceties. Starting from a legal English,

we get an ambiguous French sentence whose back-translation to English translation means

something different:

(13) This is the company that the agency told us owned the title.

6= C’est la compagnie que l’agence nous a dit détenir le titre.

= This is the company that the agency told us to hold the title.
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Similarly, if we start with French subject extraction, we get ungrammatical English (which

happily translates back into the original correct French):

(14) C’est la compagnie que l’agence nous a dit qui détient le titre.

6= *This is the company that the agency told us *that holds the title.

= C’est la compagnie que l’agence nous a dit qui détient le titre.

If instead we start with legal English subject extraction, using a bare complement, the (correct)

translation again includes an infinitival which is incorrectly back-translated:

(15) This is the company that they said had owned the bank.

6= C’est la compagnie qu’ils ont dit avoir possédé la banque.

= *This is the company they said they owned the bank.

By contrast, supervised CCG parsers do rather well on embedded subject extraction (Hock-

enmaier and Steedman, 2002a; Clark, Steedman, and Curran, 2004), which is a fairly frequent

construction that happens to be rather unambiguously determined by the parsing model.

End-to-end methods are similarly unreliable when faced with long-range agreement, even

when the source sentence is completely unambiguous in this respect:

(16) The banks think that the chairman owns the stock, and know that it is stolen.

6= Les banques pensent que le président est propriétaire du stock et sait qu’il est volé.

= Banks think that the president owns the stock and knows it is stolen.

Moreover, in principle at least, these constructions could be learned by grammar-based

semantic parser induction from examples, using the methods of Kwiatkowski et al. (2010, 2011)

and Abend et al. (2017).

These observations make it seem likely that there will be a continued need for structured

representations in tasks like QA where long-range dependencies matter. Nevertheless, like Rock

n’Roll, deep learning and distributional representations are clearly here to stay. The future in

parsing for such tasks probably lies with hybrid systems using neural front ends for disambigua-

tion, and grammars for assembling meaning representations.

7. The Shape of Things to Come

The most important open problem in NLP remains the fact that natural language understanding

involves inference as well as semantics, and we have no idea of the meaning representation

involved. If your question is Has Verizon bought Yahoo?, the text will almost certainly answer it

many times over. But it is almost equally certain to present the information in a form that is not

immediately compatible with the form of the question. For example, sentences like the following
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use: a different verb; a noun rather than a verb; an implicative verb; an entailing quantification; a

negated entailment; a modal verb; and disjunction:

(17) a. Verizon purchased Yahoo. (“Yes”)

b. Verizon’s purchase of Yahoo (“Yes”)

c. Verizon managed to buy Yahoo. (“Yes”)

d. Verizon acquired every company. (“Yes”)

e. Verizon doesn’t own Yahoo (“No”)

f. Yahoo may be sold to Verizon. (“Maybe”)

g. Verizon will buy Yahoo or Yazoo. (“Maybe not”)

To arrive at a meaning representation language that is form-independent (and ultimately

language-independent), we are using CCG parsers to machine-read the Web for relations between

typed named entities. in order to detect consistent patterns of entailment between relations over

named entities of the same types, using directional similarity over entity vectors representing

relations. We then build an entailment graph (cleaning it up and closing it under relations such

as transitivity—cf. Berant et al., 2015). Cliques of mutually-entailing relations in the entailment

graph then constitute paraphrases that can be collapsed to a single relation identifier (Lewis and

Steedman, 2013a). (This can be done across text from multiple languages—Lewis and Steedman,

2013b.)

We can then replace the original naive semantics for relation expressions with the relevant

paraphrase cluster identifiers, and reparse the entire corpus using this now both form- and

language- -independent semantic representation, building an enormous knowledge graph, with

the entities as nodes, and the paraphrase identifiers as relations.

To answer questions concerning the knowledge in this graph, we parse questions Q into the

same form-independent semantics representation, which is now the language of the knowledge

graph itself. To answer the question, we use the knowledge graph and the entailment graph, and

the following rule:

(18) a. if Q or anything that entails Q is in the knowledge graph then answer in the positive.

b. If ¬Q or the negation of anything that Q entails is in the knowledge graph, then

answer in the negative.

For this to work, we need complex expressions (including negation, auxiliaries, modals, implica-

tive verbs etc.) to be nodes in their own right in both knowledge and entailment graphs. We shall

then be able to discard hand-built knowledge graphs like Freebase in favor of a truly organic

semantic net built in the language of mind, obviating the need to learn end-to-end transduction

between semantic representations and the language of the knowledge graph
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If this project is successful, the language-independent paraphrase cluster identifiers will

perform the function of a “hidden” version of the decompositional semantic features in semantic

representations like those of Katz and Postal (1964); Jackendoff (1990); Moens and Steedman

(1988); White (1994) and Pustejovsky (1998), while the entailment graph will form a similarly

hidden version of the “meaning postulates” of Carnap (1952) and Fodor, Fodor, and Garrett

(1975). Such semantic representations are essentially distributional, but with the advantage that

they can be combined with traditional logical operators such as quantifiers and negation.

This proposal for the discovery of hidden semantic primitives underlying natural language

semantics stands in contrast to another quite different contemporary approach to distributional

semantics that seeks to use dimensionally-reduced vector-based representations of collocations

to represent word meanings, using linear-algebraic operations such as vector and tensor addition

and multiplication in place of traditional compositional semantics. It is an interesting open ques-

tion whether vector-based distributional word embeddings can be used, together with directional

similarity measures, to build entailment graphs of a similar kind (Henderson and Popa, 2016;

Chang et al., 2018). It is quite likely that some kind of hybrid approach will be needed here too,

to combat the eternal silence of the infinite spaces of the long tail.

8. Conclusion

Algorithms like LSTM and RNN may work in practice. But do they work in theory? In particular,

can they learn all the syntactic stuff in the long tail, like non-constituent coordination, subject

extractions, and crossing dependency, in a way that will support semantic interpretation? If they

aren’t actually learning syntax, but are instead learning a huge FST or a Soft ATN, then by

concentrating on them as mechanisms for natural language processing, we are in danger of losing

sight of the computational linguistic project of also providing computational explanations of

language and mind.

Even if we convince ourselves that something like SEQ2TREE is a psychologically real

learning mechanism, and that children learn their first language by end-to-end mapping of the

sentences of their language onto the situationally-afforded structures of the universal language

of mind, we still face the supreme challenge of finding out what that universal semantic target

language looks like. We won’t get an answer to that question unless we can rise above using SQL,

SPARQL and hand-built ontologies and logics such as OWL as proxies for the hidden language

of mind, to use machine learning for what it is really good at, namely finding out such hidden

variables and their values, for use in a truly natural language processing.
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