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Abstract. We consider a particle undergoing run and tumble dynamics, in which

its velocity stochastically reverses, in one dimension. We study the addition of a

Poissonian resetting process occurring with rate r. At a reset event the particle’s

position is returned to the resetting site Xr and the particle’s velocity is reversed

with probability η. The case η = 1/2 corresponds to position resetting and velocity

randomization whereas η = 0 corresponds to position-only resetting. We show that,

beginning from symmetric initial conditions, the stationary state does not depend on η

i.e. it is independent of the velocity resetting protocol. However, in the presence of an

absorbing boundary at the origin, the survival probability and mean time to absorption

do depend on the velocity resetting protocol. Using a renewal equation approach, we

show that the the mean time to absorption is always less for velocity randomization

than for position-only resetting.

PACS numbers: 05.40.a, 02.50.r, 87.23.Ge, 05.10.Gg

Keywords: run and tumble dynamics, persistent random walkers, diffusion, stochastic

resetting
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1. Introduction

Stochastic processes with correlated noise have a long history in physics beginning with

the Ornstein Uhlenbeck process which generates a finite correlation time for Brownian

motion [1, 2]. More recently, active matter has been described by stochastic processes

with correlated noise such as the run and tumble dynamics used to model bacterial

motion. Run and tumble dynamics is, in turn, the continuum limit of persistent random

walkers [3, 4] commonly used to model animal movement [5] and search processes [6].

Also the bidirectional motion of cellular cargoes is, in general, a correlated random walk

[7].
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A particle under run and tumble dynamics, in one dimension, obeys a Langevin

equation of the form

dx

dt
= v0σ(t) (1)

Here σ is a stochastic process which switches between two states σ = ±1 with rate γ.

Thus a run and tumble process is sometimes referred to as ‘telegraphic noise’ to describe

the evolution of σ [8]. Non-Poissonian switching has been considered in [9].

Run and tumble dynamics have revealed a number of interesting nonequilibrium

properties such as clustering at boundaries [10, 11], novel stationary states [12, 13] and

first-passage properties [14, 15]. In this paper we investigate the effect of resetting [16]

on run and tumble dynamics.

Resetting is the procedure of restarting a stochastic process from a given initial

condition [17]. The initial condition can be fixed [16] or chosen from some resetting

distribution [18]. In this way the system is held away from any long time stationary state

and a nonequilibrium stationary state is generated [19]. Interesting transient properties

of the relaxation to this state have been revealed [20]. Also the resetting process can

be considered as a realisation of an intermittent search process [21, 22] where a reset

event is a long range move. The resetting process is usually considered to be a Poisson

process with exponentially distributed waiting times between resetting events, however

more general waiting time distributions including power law distributions have been

considered [23, 24, 25]. Moreover, it has been shown that a deterministic resetting

period may be optimal in the minimisation of mean search times or mean first passage

times [24, 26, 27, 28]. Resetting with memory, where a walker resets only to previously

visited sites with a certain distribution, have also been studied [29, 30, 31, 32]. While

some interesting properties of the mean first-passage time and its fluctuations for Markov

processes with resetting (i.e., without any memory of the pre-resetting history) have been

derived [18, 33, 34, 27, 28], many fundamental questions concerning the full first-passage

probability under resetting, with or without memory effects, still remain open [35, 31].

Recent variations on the resetting theme have been to consider: resetting of discrete-

time Lévy flights [36] and continuous-time Lévy walks [37, 38], resetting for random

walks in a bounded domain [39, 38], resetting of extended systems such as fluctuating

interfaces [40] and a reaction diffusion process in one dimension [41], Michaelis-Menten

reaction schemes [42, 34]; the thermodynamics of resetting [43, 44] and large deviations

of the additive functionals of resetting processes [45, 46, 47], interaction-driven resetting

[48], resetting with branching [49] and fractional Brownian motion with resetting [50].

Very recently, resetting dynamics in quantum systems have also been studied [51, 52].

Stochastic process of the form (1) open up new possibilities for resetting as the

velocity variable σ as well as the position x may be reset. (Previously orientation resets

have been considered in continuous time random walks with drifts [53].) We focus on

the case where the position is reset to a fixed resetting point Xr and simultaneously the

velocity undergoes a resetting protocol. Initially, we consider velocity randomization

in which the velocity is reversed with probability 1/2. Later we generalise this to the
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protocol where the velocity is reversed with probability η which allows interpolation to

the case of position-only resetting where η = 0.

We employ a renewal equation approach first noted in [16] (see also [36] for the

computation of first-passage probability using the renewal approach and [54] for recent

work). For the velocity randomization case we may use a simple renewal equation for

the survival probability (29), which is applicable to many systems resetting to their

initial conditions. In the general velocity resetting case a system of renewal equations

for joint probabilities of survival and velocity is required (55).

Our study reveals that resetting of position and velocity of run and tumble particle

results in nonequilibrium stationary state that is a Laplace distribution (symmetric,

exponential decay) which is of the same form as a diffusive particle with position

resetting. However the survival probability of the path particle and the mean first

passage time do depend on the velocity resetting parameter η.

The paper is organised as follows. In section 2 we review run and tumble dynamics

as described by a Master equation system. We then consider position resetting

and velocity randomization and compute the stationary state in section 3, survival

probability in section 4 and mean time to absorption in section 5. In section 6 we

consider general velocity resetting parametrised by η and present a general renewal

scheme. We work out particular formulae for the mean time to absorption for position-

only resetting and compare to the velocity randomization case. We conclude in section

7.

2. Run and tumble particle dynamics

In this section we review the dynamics of a run and tumble particle (see for example

[3, 15, 4]). The system of forward master equations (in the absence of resetting) read

∂P+(x, t)

∂t
= − v0

∂P+(x, t)

∂x
− γP+(x, t) + γP−(x, t) (2)

∂P−(x, t)

∂t
= + v0

∂P−(x, t)

∂x
− γP−(x, t) + γP+(x, t) (3)

where Pσ(x, t) is the probability density for the particle to have velocity σ and be at

position x at time t. The terms proportional to γ originate from the switching of velocity

with rate γ; the correlation time of the velocity is thus 1/γ. We note that the system is

invariant under time reversal: σ → −σ and v0 → −v0.
It will be convenient to have at our disposal the form of the Laplace transforms of

P±, which are defined as

P̃±(x, s) =

∫ ∞
0

dt e−stP±(x, t) . (4)

Taking the Laplace transform of (2,3) we obtain the system

−P+(x, 0) + v0
dP̃+

dx
+ (s+ γ)P̃+ − γP̃− = 0 (5)

−P−(x, 0)− v0
∂P̃+

∂x
+ (s+ γ)P̃− − γP̃+ = 0 . (6)
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We need to fix initial conditions which we choose to be at the origin and symmetric

P+(x, 0) = P−(x, 0) =
1

2
δ(x) , (7)

i.e. the particle begins at the origin with equal probability for the velocity σ(0) = ±1.

By taking a further spatial derivative and rearranging, we may turn the first-order

system (5, 6) into decoupled second-order equations which read (away from x = 0)

v20
d2P̃±
dx2

−
[
(s+ γ)2 − γ2

]
P̃± = 0 . (8)

The solutions which respect the boundary conditions that P± remain finite as

x→ ±∞ are

P̃± = A±e−λx for x > 0 (9)

P̃± = B±e+λx for x < 0 (10)

where

λ =

(
s(s+ 2γ)

v20

)1/2

. (11)

In order to fix the coefficients A±, B± we go back to (5, 6) and obtain conditions

(s+ γ − λv0)A+ = γA− (12)

(s+ γ + λv0)B+ = γB− . (13)

Also, as the initial condition is symmetric around x = 0 and the dynamics is invariant

under time reversal, the total probability P (x, t) = P+(x, t)+P−(x, t) must be symmetric

about x = 0. This implies

A+ + A− = B+ +B− . (14)

Finally, normalisation of probability dictates∫
dx
[
P̃+ + P̃−

]
=

1

s
(15)

which implies

A+ + A− = B+ +B− =
λ

2s
(16)

so that

P̃ (x, t) = P̃+(x, t) + P̃−(x, t) =
λ

2s
e−λ|x| . (17)

The Laplace transform (17) is sufficient for our purposes in the next section. However, it

is possible to invert the Laplace transform [3] to obtain the time-dependent distribution

P (x, t) =
e−γt

2

{
δ(x− v0t) + δ(x+ v0t) +

γ

2v0

[
I0(ρ) +

γI1(ρ)

ρ

]
Θ(v0t− |x|)

}
(18)

where

ρ =
√
v20t

2 − x2 γ
v0

(19)
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and I0(ρ) and I1(ρ) are modified Bessel functions of the first kind.

Equation (17) is the main result of this section. For completeness we present the

coefficients appearing in (9, 10) which can be found by solving (12, 13, 16)

A+ =
λγ

2s(s+ 2γ − λv0)
A− =

λ(s+ γ − λv0)
2s(s+ 2γ − λv0)

(20)

B+ =
λγ

2s(s+ 2γ + λv0)
B− =

λ(s+ γ + λv0)

2s(s+ 2γ + λv0)
. (21)

3. Run and tumble particle under position resetting and velocity

randomization

We now add a resetting process to the dynamics, which comprises simultaneous resetting

both the position and the velocity. In this section the resetting position is taken to be

the origin. With rate r the particle resets its initial position and the velocity σ is

chosen to be ±1 with probability 1/2, i.e. the velocity is randomized. We refer to this

resetting protocol as position resetting and velocity randomization. We shall consider

more general resetting protocols in section 6.

Given that the initial condition of the particle is also at the origin with the velocity

σ is chosen to be ±1 with probability 1/2, we may write down a renewal equation [16]

for the total probability density in the presence of resetting which we denote Pr(x, t) :

Pr(x, t) = e−rtP0(x, t) + r

∫ t

0

dτe−rτP0(x, τ)

∫
dx′Pr(x

′, t− τ) (22)

= e−rtP0(x, t) + r

∫ t

0

dτe−rτP0(x, τ) . (23)

Here, P0(x, t) is the probability density without resetting considered in section 2. The

first term on the r.h.s of (22) is the contribution from trajectories in which there

is no resetting, which occurs with probability e−rt; the second term integrates the

contributions from trajectories in which the last reset occurs at time t − τ and at

position x′ and there is no resetting from time t− τ to t, which occurs with probability

e−rτ . The second equality (23) comes from the fact that when there are no absorbing

boundaries probability is conserved which implies
∫

dx′Pr(x
′, t− τ) = 1.

3.1. Stationary State and limits

The stationary distribution

P st
r (x) = lim

t→∞
Pr(x, t) (24)

is easily obtained from the limit t → ∞ of (23) from which we learn, using the result

(17) of section 2, that

P st
r (x) = rP̃ (x, r) =

λr
2

e−λr|x| . (25)
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where λr is given by

λr =

(
r(r + 2γ)

v20

)1/2

. (26)

The distribution is a double exponential distribution, also known as Laplace

distribution, with decay length

` ≡ 1

λr
=

(
v20

r(r + 2γ)

)1/2

. (27)

Thus the decay length increases with the speed v0 but decreases with switching rate γ

and resetting rate r.

It is of interest to consider the various limits of the process and the form of the

decay length in these limits. First as r → 0, the limit of no resetting, the decay length

diverges as r−1/2 indicating that there is no stationary state. The ballistic limit is when

the switching rate γ → 0 in which case ` → v0
r

which is the mean distance travelled

between resets. Finally the diffusive limit occurs when both v0 and γ diverge but

lim
v0,γ→∞

v20
γ

= 2D (28)

where D is the diffusion coefficient. Then ` →
√

D
r

which recovers the expression for

diffusive resetting [16].

4. Survival Probability

We now consider the survival probability of the persistent random walker in the presence

of an absorbing boundary at the origin (and under position resetting to Xr ≥ 0 and

velocity randomization as in section 3). In the context of a search we refer to the origin

as the target; clearly, the event of particle touching the boundary corresponds to the

event of a searcher locating the target.

We again take advantage of a renewal equation. We first define Qr(x0, t) as the

survival probability in the presence of resetting and Q0(x0, t) as the survival probability

in the absence of resetting, for a particle having started from initial position x = x0 ≥ 0

with initial velocity chosen to be σ = ±1 with equal probability 1/2. Note that Qr(x0, t)

implies an integration over the final position of the particle. Also note that the initial

position x0 is a variable which, at the end of the calculation, we may set equal to Xr.

Then we have a renewal equation analogous to (22)

Qr(x0, t) = e−rtQ0(x0, t) + r

∫ t

0

dτe−rτQ0(Xr, τ)Qr(x0, t− τ) . (29)

Again, the first term on the r.h.s is the contribution from survival trajectories in

which there is no resetting; the second term integrates the contributions from survival

trajectories in which the last reset occurs at time t− τ .

Taking the Laplace Transform

Q̃∗(x0, s) =

∫ ∞
0

dt e−stQ∗(x0, t) . (30)
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where ∗ indicates 0 or r, we readily obtain from (29)

Q̃r(x0, s) =
Q̃0(x0, r + s)

1− rQ̃0(Xr, r + s)
(31)

and, in particular, setting the initial position x0 = Xr,

Q̃r(Xr, s) = −1

r
+

1

1− rQ̃0(Xr, r + s)
. (32)

Equation (32) is an equation of rather general applicability, which applies whenever

resetting to the initial conditions is a Poisson process with rate r.

4.1. Survival probability in the absence of resetting

In view of (32) we just need to compute Q0(Xr, s), the Laplace transform of the survival

probability in the absence of resetting. To do so it is convenient to introduce Q+
0 (x0, t)

and Q−0 (x0, t) as the survival probability (without resetting) for a particle having started

from position x = x0 ≥ 0 with initial velocity ±1 respectively.

We can write down a system of backward evolution equations for these survival

probabilities

∂Q+
0 (x0, t)

∂t
= v0

∂Q+
0 (x0, t)

∂x0
− γQ+

0 (x0, t) + γQ−0 (x0, t) (33)

∂Q−0 (x0, t)

∂t
= −v0

∂Q−0 (x0, t)

∂x0
− γQ−0 (x0, t) + γQ+

0 (x0, t) . (34)

which needs to be solved in the positive half-space x0 ≥ 0. The initial conditions are

Q+
0 (x0, 0) = Q−0 (x0, 0) = 1 and the boundary condition, which imposes an absorbing

boundary at x = 0, is just Q−0 (0, t) = 0. This is because if the particle starts at the

origin with a negative initial velocity it can not survive up to finite time t. In contrast,

if it starts with a positive velocity, it can survive and Q+
0 (0, t) is therefore unspecified

and has to be determined a posteriori. In fact, as we will see below that just the single

condition Q−0 (0, t) = 0 is sufficient to provide a unique solution to this system of coupled

equations.

Taking the Laplace transform of (33,34) yields

+v0
∂Q̃+

0

∂x0
− (s+ γ)Q̃+

0 + γQ̃−0 = −1 (35)

−v0
∂Q̃−0
∂x0

− (s+ γ)Q̃−0 + γQ̃+
0 = −1 (36)

from which a further spatial derivative and rearrangement yields the decoupled equation

v20
∂2Q̃−0
∂x20

− s(s+ 2γ)Q̃−0 = −(2γ + s)

v0
. (37)

The solution which satisfies the boundary condition Q−(0, t) = 0 is

Q̃−0 (x0, s) =
1

s

[
1− e−λx0

]
(38)
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where λ is given by (11). Substituting back into (36) yields

Q̃+
0 (x0, s) =

1

s
+

1

γs
[v0λ− (s+ γ)] e−λx0 . (39)

Given the symmetric velocity initial condition, we have

Q̃0(x0, s) ≡
1

2

[
Q̃+

0 (x0, s) + Q̃−0 (x0, s)
]

=
1

s
+

1

2γs
[v0λ− (s+ 2γ)] e−λx0 . (40)

Inserting (40) into (32) yields the result

Q̃r(Xr, s) = −1

r
+

1

r

[
2γ(s+ r)eλs+rXr

2γseλs+rXr − r [v0λr+s − (r + s+ 2γ)]

]
(41)

where

λr+s =

(
(r + s)(r + s+ 2γ)

v20

)1/2

. (42)

5. Mean first passage time

The mean first passage time to the origin (or equivalently the mean time to absorption

at the origin), T (Xr), is conveniently given by

T (Xr) = Q̃(Xr, s = 0) . (43)

In the s→ 0 limit it can be checked that (41) reduces to

T (Xr) = −1

r
+

2γ

r

[
eλrXr

r + 2γ − (r(r + 2γ))1/2

]
(44)

where λr is given by (26).

First let us check the diffusive limit (28) in which case λr → (r/D)1/2 and

T (Xr)→ −
1

r
+

e(r/D)1/2Xr

r
(45)

recovering the result of [16].

We also note that T (Xr) diverges as r−1/2 as r → 0 and also diverges exponentially

in r as r →∞ implying a minimum value at intermediate r. In order to analyse where

this minimum occurs it is useful to introduce reduced variables

R =
r

2γ
(46)

ξ =
2γXr

v0
. (47)

R is half the ratio of resetting rate to velocity switching rate whereas ξ is twice the ratio

of distance to the target to mean distance travelled between reversals of velocity (the

factors of two are included for later convenience). In terms of these variables

λrXr = (R(R + 1))1/2ξ (48)
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and one obtains

2γT (R, ξ) = − 1

R
+

e(R(1+R))1/2ξ

R [1 +R− (R(1 +R))1/2]
. (49)

We may minimise this expression with respect to R at fixed ξ. It has a unique minimum.

A plot of T (R, ξ = 1) vs. R is shown in Fig. (1).

6. General velocity resetting

We now consider a more general resetting process which comprises simultaneous

resetting of both the position and the velocity. With rate r the particle resets its

initial position at Xr and the velocity σ is reversed to −σ with probability η or remains

σ with probability 1 − η. The case η = 1/2 corresponds to the velocity randomization

considered in earlier sections and the case η = 0 corresponds to position-only resetting.

The first thing to note is that given a symmetric initial condition the stationary

state is independent of η. The reason is that the velocity distribution will remain

symmetric and is independent of η. To demonstrate this explicitly we let P
σfσi
∗ (x, t) be

the probability density of being at x at time t and having velocity σf given that the

particle began at t = 0 at Xr with velocity σi; ∗ indicates 0 or r and corresponds to no

resetting or with resetting respectively. We may then write down the following renewal

equation system

P
σf σi
r (x, t) = e−rtP

σf σi
0 (x, t) (50)

+ r

∫ t

0

dτe−rτ
∫

dx′
{
P
σf σi
r (x′, t− τ)

[
(1− η)P

σf σf
0 (x, τ) + ηP

σf −σf
0 (x, τ)

]
+P

−σf σi
r (x′, t− τ)

[
(1− η)P

σf −σf
0 (x, τ) + ηP

σf σf
0 (x, τ)

]}
.

Now let us fix the initial conditions at t = 0 as σ = ±1 with probability 1/2 and define

P
σf
∗ (x, t) =

1

2
P
σf +
∗ (x, t) +

1

2
P
σf −
∗ (x, t) . (51)

The system (50) becomes

P
σf
r (x, t) = e−rtP

σf
0 (x, t) (52)

+ r

∫ t

0

dτe−rτ
∫

dx′
{
P
σf
r (x′, t− τ)

[
(1− η)P

σf σf
0 (x, τ) + ηP

σf −σf
0 (x, τ)

]
+P

−σf
r (x′, t− τ)

[
(1− η)P

σf −σf
0 (x, τ) + ηP

σf σf
0 (x, τ)

]}
.

Now due to the symmetric initial condition we have
∫

dx′P
σf
r (x, t) = 1/2 and we find

that the terms with coefficient η in (52) cancel, leaving

P
σf
r (x, t) = e−rtP

σf
0 (x, t) (53)

+
r

2

∫ t

0

dτe−rτ
{
P
σf σf
0 (x, τ) + P

σf −σf
0 (x, τ)

}
(54)

which recovers (23). Thus, the stationary state of the resetting run and tumble particle

does not depend on the velocity resetting protocol.
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However, as we shall now show the survival probability in the presence of an

absorbing boundary does depend on η.

6.1. Survival probability

In order to solve for the survival probability in the general case we define Q
σfσi
r (t) and

Q
σfσi
0 (t) as the joint probability of survival and having velocity σf at time t, given that

the particle began at Xr with velocity σi, with and without resetting respectively. To

ease the notation we shall drop the dependence on initial position (which is always Xr)

from the Q
σfσi
r (t).

Then we may write down a renewal equation system as follows

Q
σf σi
r (t) = e−rtQ

σf σi
0 (t) (55)

+ r

∫ t

0

dτe−rτ
{
Q
σf σi
r (t− τ)

[
(1− η)Q

σf σf
0 (τ) + ηQ

σf −σf
0 (τ)

]
+Q

−σf σi
r (t− τ)

[
(1− η)Q

σf −σf
0 (τ) + ηQ

σf σf
0 (τ)

]}
.

Again this equation is easily understood: the first term represents surviving trajectories

within which no resetting occurred; the second term integrates up the surviving

trajectories which have the last reset at time t − τ and the coefficients (1 − η) and

η give the probability of a velocity switch occurring at that reset.

We now take the Laplace transform

Q̃
σf σi
∗ (s) =

∫ ∞
0

dt e−stQ
σf σi
∗ (t) (56)

with ∗ = 0, r, to obtain

Q̃
σf σi
r (s) = Q̃

σf σi
0 (r + s) (57)

+ r
{
Q
σf σi
r (s)

[
(1− η)Q̃

σf σf
0 (r + s) + ηQ̃

σf −σf
0 (r + s)

]
+Q̃

−σf σi
r (s)

[
(1− η)Q̃

σf −σf
0 (r + s) + ηQ̃

σf σf
0 (r + s)

]}
As usual the initial conditions at t = 0 are σ = ±1 with probability 1/2 and we

define

Q
σf
∗ (t) =

1

2
Q
σf +
∗ (t) +

1

2
Q
σf −
∗ (t) (58)

with similar definitions for the Laplace transforms. Then system (57) becomes (where

we now write out explicitly the two equations)

Q̃+
r (s) = Q̃+

0 (r + s) (59)

+ r
{
Q+
r (s)

[
(1− η)Q̃++

0 (r + s) + ηQ̃+−
0 (r + s)

]
+Q̃−r (s)

[
(1− η)Q̃+−

0 (r + s) + ηQ̃++
0 (r + s)

]}
Q̃−r (s) = Q̃−0 (r + s) (60)

+ r
{
Q−r (s)

[
(1− η)Q̃−−0 (r + s) + ηQ̃−+

0 (r + s)
]

+Q̃+
r (s)

[
(1− η)Q̃−+

0 (r + s) + ηQ̃−−0 (r + s)
]}
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This system is easily solved to give

Q̃+
r (s) =

1

ad− bc

[
dQ̃+

0 (r + s)− bQ̃−0 (r + s)
]

(61)

Q̃−r (s) =
1

ad− bc

[
−cQ̃+

0 (r + s) + aQ̃−0 (r + s)
]

(62)

where

a = 1− r
[
(1− η)Q̃++

0 (r + s) + ηQ̃+−
0 (r + s)

]
(63)

b = − r
[
ηQ̃++

0 (r + s) + (1− η)Q̃+−
0 (r + s)

]
(64)

c = − r
[
ηQ̃−−0 (r + s) + (1− η)Q̃−+

0 (r + s)
]

(65)

d = 1− r
[
(1− η)Q̃−−0 (r + s) + ηQ̃−+

0 (r + s)
]
. (66)

Thus we obtain the general expression for the Laplace transform of the total survival

probability

Q̃r(s) ≡ Q̃+
r (s) + Q̃−r (s) (67)

=
1

ad− bc

[
(d− c)Q̃+

0 (r + s) + (a− b)Q̃−0 (r + s)
]
. (68)

The solution (68) simplifies greatly when η = 1/2 in which case d− c = 1, a− b = 1

and ad − bc = 1 − r[Q+
0 (r + s) + Q−0 (r + s)] = 1 − rQ0(r + s) and the result (32) is

recovered.

In the case of general η we require the knowledge of the Laplace transforms Q̃
σfσi
0

which we now show how to compute.

6.2. Survival probabilities in absence of reset

We generalise the system (33, 34) of section 4.1 we write down a system of four backward

equations as

∂Q
σf σi
0 (x0, t)

∂t
= σiv0

∂Q
σf σi
0 (x0, t)

∂x0
− γQσf σi

0 (x0, t) + γQ
σf −σi
0 (x0, t) (69)

Note that we have kept here the explicit x0 dependence in Q
σfσi
0 (x0, t) since we use x0

as a variable in the backward Fokker-Planck approach. Eq. (69) has to be solved in the

domain x0 ≥ 0. The initial conditions are now

Q++
0 (x0, 0) = Q−−0 (x0, 0) = 1 (70)

Q+−
0 (x0, 0) = Q−+0 (x0, 0) = 0 (71)

and the boundary condition corresponding to the absorbing boundary at x0 = 0 is

Q+−
0 (0, t) = Q−−0 (0, t) = 0 . (72)

As usual, the solution to the system (69) is obtained by Laplace transform which we

write out explicitly to show that it breaks into two subsystems

−1 = v0
∂Q̃++

0 (x0, s)

∂x0
− (s+ γ)Q̃++

0 (x0, s) + γQ̃+−
0 (x0, s) (73)
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0 = − v0
∂Q̃+−

0 (x0, s)

∂x0
− (s+ γ)Q̃+−

0 (x0, s) + γQ̃++
0 (x0, s) (74)

−1 = − v0
∂Q̃−−0 (x0, s)

∂x0
− (s+ γ)Q̃−−0 (x0, s) + γQ̃−+

0 (x0, s) (75)

0 = v0
∂Q̃−+(x0, s)

∂x0
− (s+ γ)Q̃−+

0 (x0, s) + γQ̃−−0 (x0, s) (76)

Then equations (73) and (74) and equations (75) and (76) can be turned into decoupled

second order equations

∂2Q̃+−
0 (x0, s)

∂x20
= λ2Q̃+−

0 (x0, s)−
γ

v20
(77)

∂2Q̃−−0 (x0, s)

∂x20
= λ2Q̃−−0 (x0, s)−

s+ γ

v20
(78)

The solution satisfying the boundary condition (72) is

Q̃+−
0 (s) =

γ

s(s+ 2γ)

[
1− e−λx0

]
(79)

Q̃++
0 (s) =

s+ γ

s(s+ 2γ)

[
1− e−λx0

]
+

v0λ

s(s+ 2γ)
e−λx0 (80)

Q̃−−0 (s) =
s+ γ

s(s+ 2γ)

[
1− e−λx0

]
(81)

Q̃−+
0 (s) = − 1

γ
+

(s+ γ)2

γs(s+ 2γ)

[
1− e−λx0

]
+
v0(s+ γ)λ

γs(s+ 2γ)
e−λx0 . (82)

where we have dropped, as usual for brevity, the explicit x0 dependence of Q̃
σfσi
0 (x0, s) ≡

Q̃
σfσi
0 (s).

6.3. Position-only resetting

As a specific example we present results for the case η = 0 i.e. position-only resetting.

After unilluminating algebra (which we do not present here) equation (68) may be

reduced to:

Q̃r(s) = − 1

r
+

1

r

1− r
2

[
Q̃++

0 (r + s) + Q̃−−0 (r + s)− Q̃+−
0 (r + s)− Q̃−+0 (r + s)

]
ad− bc

(83)

ad− bc = 1− r
[
Q̃++

0 (r + s) + Q̃−−0 (r + s)
]

+ r2
[
Q̃++

0 (r + s)Q̃−−0 (r + s)− Q̃+−
0 (r + s)Q̃−+0 (r + s)

]
(84)

Using expressions (79–82) one eventually obtains

Q̃(s) = −1

r
+

1

r2E

[
s+ 2γ

r
+

(1− β)

2
e−λr+sXr

]
(85)

where

β =
γ

λr+sv0 + γ + r + s
(86)
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Figure 1. Mean first-passage time T (R, ξ = 1) vs. R given respectively in Eq. (49)

for η = 1/2 (solid (black) line) and in Eq. (90) for η = 0 (dot-dashed (red) line). For

convenience, we have set the parameter ξ = 1 for both η = 1/2 and η = 0. Clearly,

in both cases T (R, 1) has a unique minimum and also for all R, T (R, 1) for η = 1/2

is always larger than T (R, 1) for η = 0, indicating that the velocity randomization

protocol i.e., η = 1/2 is more efficient than position-only resetting (η = 0).

and

E =
(s+ 2γ)s

r(r + s)
+

[(β + 1)γ + s]

r(r + s)
e−λr+sXr (87)

where λr+s is given in Eq. (42). The mean first passage time to the origin (or equivalently

the mean time to absorption at the origin), T (Xr), is conveniently given by the s → 0

limit of (85) which reduces to

T (Xr) = −1

r
+

1

r + 2γ − (r(r + 2γ))1/2

[
2γeλXr

r
− r

2γ
+

(r(r + 2γ))1/2

2γ

]
(88)

where λ is given by (11).

Let us check the diffusive limit (28) in which case λ→ (r/D)1/2 and

T (Xr)→
eXr(r/D)1/2

r
− 1

r
(89)

recovering the result of [16].

In terms of the reduced variables R (46) and ξ (47) we obtain

2γT (R, ξ) = − 1

R
+

[
e(R(1+R))1/2ξ −R2 +R3/2(1 +R)1/2

]
R(1 +R− (R(1 +R))1/2)

(90)

which is to be compared with the η = 1/2 case (49). As in the η = 1/2 case, T (R, ξ)

as a function of R for fixed ξ has a unique minimum, signalling an optimal resetting

rate (see Fig. (1) for a plot). We see that for the same values of the reduced variables,
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T (R, ξ) is always greater for η = 0 than for η = 1/2. This shows that the velocity

randomization protocol (η = 1/2) is more efficient in searching for a fixed target than

the position-only protocol (η = 0), for the same parameter values such as Xr, γ and v0.

7. Conclusion

In this paper we have studied the resetting of a run and tumble particle in one dimension.

First we derived the stationary state for resetting to point Xr and simultaneous velocity

resetting. It turns out that the stationary state does not depend on the resetting

protocol. Indeed the stationary state distribution (25) has the same form as a diffusive

process under resetting. The width of the stationary distribution decreases with γ and

thus increases with increasing velocity correlation time.

However the velocity resetting protocol does affect the survival probability in the

presence of an absorbing target at the origin. We have derived explicit expressions for the

mean time to absorption in the case of position resetting and velocity randomization (49)

and position-only resetting (90). For other parameters fixed, the position-only resetting

gives a greater mean time to absorption. Writing the mean time to absorption in terms

of the reduced variables R (46) and ξ (47) we see that there is an optimal value of R

which minimises the mean time to absorption. It would be of interest to consider how

these results generalise to the case of partial absorption of the particle by the boundary

[55, 14].

Throughout we have used a renewal equation approach which facilitates the

calculations. It would be interesting to see how this approach can be extended to

study the resetting of a run and tumble particle in higher dimensions.

It would also be of interest to consider the resetting of other stochastic processes

with correlated noise. For example, physical Brownian motion is described as an

Ornstein-Uhlenbeck process [1]

dx

dt
= v

dv

dt
= −γv + η(t) (91)

where η(t) is usual white noise. The renewal approach should again be applicable in

this case.
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