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SUMMARY

Ribosome profiling, or Ribo-seq, is based on large-
scale sequencing of RNA fragments protected from
nuclease digestion by ribosomes. Thanks to its
unique ability to provide positional information about
ribosomes flowing along transcripts, thismethod can
be used to shed light on mechanistic aspects of
translation. However, current Ribo-seq approaches
lack the ability to distinguish between fragments pro-
tected by either ribosomes in active translation or
inactive ribosomes. To overcome this possible limi-
tation, we developed RiboLace, a method based on
an original puromycin-containing molecule capable
of isolating active ribosomes by means of an anti-
body-free and tag-free pull-down approach. Ribo-
Lace is fast, works reliably with low amounts of input
material, and can be easily and rapidly applied both
in vitro and in vivo, thereby generating a global snap-
shot of active ribosome footprints at single nucleo-
tide resolution.
INTRODUCTION

The process of protein synthesis is a core regulator of numerous

critical physiological pathways ranging from cell growth (Goyer

et al., 1993) and development (Kondrashov et al., 2011; Xue

et al., 2015) to immune response (Piccirillo et al., 2014). Local

protein synthesis in neurons (Jung et al., 2014) also plays funda-

mental roles in memory formation (Fioriti et al., 2015; Kandel

et al., 2014; Martin et al., 1997) and synaptic plasticity

(McCamphill et al., 2015). Hence, dysregulation of translation is

a major driver of important pathologies such as cancer (Bhat

et al., 2015; Topisirovic and Sonenberg, 2015) and neurodegen-

erative diseases (Bernabò et al., 2017; Darnell et al., 2011).

During the last few years, methodological approaches such as

ribosome profiling (Ribo-seq) (Ingolia et al., 2009) have contrib-

uted considerable insights into the translation process. Ribo-
Cell Rep
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seq has been largely used to identify translated RNAs (both

coding and, unexpectedly, non-coding), map upstream open

reading frames (ORFs), and estimate translation levels in

different biological conditions. Ribo-seq has been used to

estimate translation efficiencies and ‘‘protein synthesis levels’’

(Ingolia et al., 2014; Li et al., 2014) in a variety of organisms,

from prokaryotes (Li et al., 2014) to yeast (Ingolia et al., 2009),

Caenorhabditis elegans (Stadler et al., 2012), zebrafish (Bazzini

et al., 2014; Chew et al., 2013), plants (Juntawong et al., 2014),

mouse (Ingolia et al., 2011), and human (Fritsch et al., 2012;

Lee et al., 2012; Liu et al., 2013).

Despite its unquestionable discrimination power and wide

applicability, Ribo-seq still faces a number of challenges and

presents some limitations. For example, translationally inactive

mRNAs can be sequestered into ribonucleoprotein particles

(mRNPs) and stalled or paused in polysomes as a consequence

of physiological surveillance mechanisms, stress stimuli, and

regulatory mechanisms (Yordanova et al., 2018). The contribu-

tion of these phenomena in multicellular organisms is particularly

important in specific tissues, and it has been shown to occur

especially in neurons (Chapman and Walter, 1997; Darnell

et al., 2011; Doma and Parker, 2006; Graber et al., 2013; Higashi

et al., 2013). As such, while inactive ribosomes unbound to tran-

scripts do not present a problem, Ribo-seq does not necessarily

discriminate ‘‘authentic’’ protected footprints of translating poly-

somes from RNA fragments protected by inactive or stalled

ribosomes, leading to possible misinterpretations of translation

occupancy profiles. Therefore, to generate optimal insight into

the translation process, Ribo-seq is still open to further optimiza-

tion and refinements, incorporating aspects from the laboratory

bench to data analysis (Aeschimann et al., 2015).

Here, we present RiboLace, a methodological approach to

study active translation based on a newly developed reagent: a

puromycin analog molecule. The aim of our study was to purify

active ribosomes by immobilizing puromycylated ribosomes

frozen on the transcript by the chain elongation inhibitor cyclo-

heximide, which impedes the dissociation of ribosomal subunits

(David et al., 2012). Our data show that RiboLace is useful for

ribosome purification and the co-purification of associated pro-

teins, intact mRNAs, and nuclease-protected footprints using
orts 25, 1097–1108, October 23, 2018 ª 2018 The Author(s). 1097
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. An Analog of Puromycin Inhibits Translation and Can Be Used for Functionalization of Agarose and Polystyrene Beads

(A) Schematic representation of the 3P structure. Biotin is the residue binding the surface; two 2,20-ethylenedioxy-bis-ethylamine units form the ‘‘L’’ linker,

and puromycin is the residue binding the ribosome. Steps 1–3 refer to the chemical synthesis procedure. CDI, N,N0-dicyclohexylcarbodiimide, jeffamine,

2,20-ethylenedioxy-bis-ethylamine; NHS, N-hydroxysuccinimide.

(B) Chemical formula of the puromycin analog 3P.

(C) Depletion assay of 3P with streptavidin-coated agarose (purple) and polystyrene beads (black). Absorbance of the supernatant at 275 nm is measured after

addition of streptavidin-coatedmagnetic beads to 100 pmol 3P. Data represent themean of triplicate experiments. The gray barmarks the quantity of beads used

in all of the experiments for each sample.

(D) Comparison between the efficiency of puromycin (left) and 3P (right) to inhibit the protein production of firefly luciferase. ε-Labeled biotinylated lysine-tRNA is

used tomonitor the protein production by SDS-PAGE (top). Histograms represent the change in protein production after the addition of different concentrations of

puromycin or 3P with respect to the control. Error bars represent SDs calculated from triplicate experiments; n = 3; t test; *p < 0.05.
�40 times less material than classical ribosome profiling.

RiboLace provides a valuable technique, with clear applications

in vitro and in vivo.

RESULTS

Design and Synthesis of an Analog of Puromycin
Puromycin is an aminonucleoside antibiotic able to bind the

ribosome and the nascent peptide chain, causing ribosome

disassembly and disruption of protein synthesis (Nissen et al.,

2000; Welch et al., 1995; Wilson, 2014; Yarmolinsky and Haba,

1959). It has been extensively used to quantify global protein

synthesis, taking advantage of radioactive (Gambetti et al.,

1972) and biotinylated molecules (Aviner et al., 2014) or anti-pu-

romycin antibodies (Schmidt et al., 2009). Leveraging its ability

to maintain contact with the ribosome (Kukhanova et al., 1979;

Odom et al., 1990; Pestka et al., 1972; Schmeing et al., 2002),

puromycin has also been used to covalently bind an mRNA to

the corresponding protein during its synthesis (Biyani et al.,
1098 Cell Reports 25, 1097–1108, October 23, 2018
2006; Roberts and Szostak, 1997). In addition, puromycin can

be modified to create cell-permeable analogs suitable for direct

and in situ imaging of newly synthesized proteins (Ge et al., 2016;

Starck et al., 2004). These methods require the irreversible

reaction of the a-amino group of puromycin with the carbon

on its carbonyl group, acylating the 30 hydroxyl group of the pep-

tidyl-tRNA buried in the P-site of the ribosome.

Motivated by the evidence that molecules containing puromy-

cin modified at its a-amino group can bind the large subunit of

the active ribosome (Schmeing et al., 2002), we covalently

coupled puromycin to a biotin moiety through two 2,20-ethylene-
dioxy-bis-ethylamine units to obtain a compound that is still able

to bind ribosomes by mimicking the 30-tRNA in the acceptor site

(A-site). We synthesized the molecule (Figures 1A, 1B, and S1A),

characterized it by nuclear magnetic resonance (NMR) and liquid

chromatography-electrospray ionization-mass spectrometry

(LC-ESI-MS) (Figures S1B and S1C), and called it 3P. We verified

the activity of the biotin moiety, taking advantage of its absor-

bance spectrum, and tested the binding on polystyrene or
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Figure 2. 3P-Functionalized Beads Can Capture mRNAs in Active Translation In Vitro

(A) Experimental design: 3P beads are used to pull down transcripts in a cell-free in vitro transcription-translation system. Briefly, from step 1 to step 5:

(1) plasmids were added to the IVTT reaction mix, and the reaction was stopped by the addition of cycloheximide after 40 min; (2) beads were functionalized with

3P; (3) the IVTT reaction was incubated with 3P beads for 1 hr on a wheel at 2 rpm and 4�C; (4) beads were washed to remove unspecific binding; (4a) RNA was

extracted and treated with DNase I to avoid possible DNA contaminations (4b); and (5) RNA samples were analyzed by RT-qPCR to detect the reporter gene.

(B) Immunoblotting of total EGFP protein at different incubation times, without (�) or with (+) harringtonine (2 mg/mL for 3 min). Immunoblotting showing the

comparison between total EGFP expression from the pPR-IBA2 plasmid (blue) and EGFP expressed from the pBluescript II KS+ plasmid (red).

(C) EGFP RNA enrichment on RiboLace in the presence or absence of harringtonine (h�/h+) during time in different translational conditions: low (red pBluescript II

KS+) and high translation efficiency (blue, pPR-IBA2 plasmid). At right, the total RNA content without (�) or with harringtonine (harr) in the two IVTT reactions;

incubation time 25 min; t test; *p < 0.05.

(D) Experimental protocol for IVTT reaction with the firefly luciferase (luc) reporter with harringtonine (2 mg/mL for 3 min) or puromycin (puro, 40 min, 5 mg/mL) as

controls of translation inhibition condition: (i) ribosomes in active translation were isolated with RiboLace, and mP beads were used as control for unspecific

binding; (ii) RNA was extracted, treated with DNase I, and analyzed by qRT-PCR.

(E) Fold change values relative to the total amount of transcript captured by 3P beads were compared to the control beads (mP), henceforth referred to as the

‘‘enrichment.’’ t test; *p < 0.05. All of the data presented represent the mean values and SDs of three to five independent experiments.
agarosebeads.Weobserved that thebiotingroupallows thebind-

ing of 3P to commercially available streptavidin beads (Figure 1C).

To demonstrate that the 3P molecule maintains an inhibitory

effect on translation, we compared its effects to that exerted by

puromycin, using a eukaryotic in vitro cell-free transcription-

translation system and the firefly luciferase as a reporter gene.

Wemonitored total protein production by SDS-PAGE (Figure 1D)

and luminescence assay (Figure S1D) in the presence of puromy-

cin and 3P at different concentrations. As expected, puromycin

induced conspicuous decay of protein production at nanomolar

concentrations. In the case of 3P, we observed a decreased level

of translation, which reached >70% of inhibition at concentra-

tions >1 mM (Figure 1D). We concluded that even if it has slightly

lower efficiency than puromycin, 3P can robustly inhibit eukary-

otic translation in vitro, interfering with ribosome function, and

can therefore be used to produce functionalized beads.

3P-Functionalized Beads Capture mRNAs in Active
Translation In Vitro

Our finding that 3P is able to interact with the process of

translation, likely through its puromycin moiety, prompted us
to investigate whether 3P can capture mRNAs in active

translation.

First, we monitored the ability of 3P-functionalized magnetic

beads (3P beads) to purify transcripts of reporter genes with

different levels of protein expression in in vitro translation sys-

tems. To this end, we developed the following protocol (Fig-

ure 2A): (1) in vitro transcription translation (IVTT) reaction to

induce the production of the reporter protein, (2) functional-

ization of beads with 3P, (3) stopping reaction with the trans-

lation inhibitor cycloheximide and incubation of 3P beads and

control beads functionalized with a biotin-glycol conjugate

(mP beads), (4) washing of beads, and (5) extraction of RNA

associated with the beads for downstream analyses. In parallel,

the production of the protein was followed by detection of

whole protein extracts.

We applied this protocol to study the ability of our 3P function-

alized beads to purify mRNAs associated with high translational

states. We took advantage of two reporter plasmids character-

ized by different translational efficiencies. The EGFP reporter

genes showed differential efficiency in protein production,

depending on the expression vector used (IPR-IBA2) (Arosio
Cell Reports 25, 1097–1108, October 23, 2018 1099



et al., 2007), high performance and pBluescript II KS+ (Higashi

et al., 2006), and low performance (Figure 2B). Complete inhibi-

tion of protein production was observed after addition of the

translation inhibitor harringtonine as a control (Figure 2B). We

applied our protocol, purified the RNA associated with the

beads, and quantified by RT-qPCR the relative abundance of

EGFPmRNA in both low- and high-performance conditions (Fig-

ure 2C). We observed a 7- to 10-fold enrichment of the reporter

transcript on 3P functionalized beads in conditions of active

translation, with respect to samples treated with harringtonine.

This enrichment can be observed in the absence of transcrip-

tional changes (Figure 2C, right) and with respect to the unspe-

cific binding on control beads (Figure S2).

Then, to demonstrate that this result was not dependent on the

reporter used, we applied the methodology to a luciferase re-

porter system (Figures 2D and 2E). In this case, we observed a

>1.6-fold enrichment of luciferase transcript with respect to

negative controls (mP beads) and an enrichment with respect

to samples in which translation had been inhibited (Figure 2D),

as previously observed for EGFP. Finally, to understand whether

the observed enrichments were dependent on the puromycin

moiety of 3P, we pre-saturated the system with puromycin and

induced ribosome drop-off. Under these conditions, we found

no evidence for mRNA enrichment (Figure 2E). Overall, these

findings support the claim that 3P beads can be used to capture

transcripts undergoing translation in eukaryotic in vitro systems.

We named this method RiboLace.

RiboLace Captures Active Ribosomes and Associated
mRNAs from Whole Cellular Lysates
Next, we wanted to establish whether RiboLace was capable of

isolating ribosomes and mRNAs under active translation from

more complex systems than in vitromixtures.We used RiboLace

on whole cellular lysates under different translational states

and monitored its efficiency to capture mRNAs and proteins

associated with ribosomes and polysomes in cellular lysates

(Figure 3A). We took advantage of established cellular stimuli

that induce cells into translationally active or inactive states. To

shut down translation, we used cell starvation and oxidative,

proteotoxic, and heat stresses, all of which are known to globally

suppress protein synthesis (Liu and Qian, 2016) (Figure S3A). To

specifically activate protein synthesis, we rescued cells from

starvation by epithelial growth factor (EGF) or by fetal bovine

serum (FBS) stimulation (Thomas et al., 1982).

First, we monitored the enrichment on RiboLace of functional

and structural markers of ribosomes (eukaryotic elongation fac-

tor 1a [eEF1a], calnexin, RPL26, and RPS6) in lysates of immor-

talized human cells (HEK293T) (Figure 3B). We used 2 3 105

cells, representing �1/40 of the input material required for clas-

sical polysomal profiling or ribosome profiling approaches. The

elongation factor eEF1a is responsible for the delivery of amino-

acyl-tRNAs to the translation machinery and is associated with

ribosomes in active translation (Andersen et al., 2001; Lamberti

et al., 2004). Calnexin is a chaperone protein in the endoplasmic

reticulum that associates with ribosomes, helping protein folding

during translation (Lakkaraju et al., 2012). Finally, RPL26 and

RPS6 are ribosomal proteins belonging to the large and small

subunits of the ribosome, respectively. After immunoblotting
1100 Cell Reports 25, 1097–1108, October 23, 2018
the RiboLace-eluted proteins from untreated cells, we observed

an enrichment of all four proteins with respect to serum starva-

tion. When cells were stimulated with EGF after starvation, we

observed a modest increase in the signal of the translational

markers (Figures 3B and 3C). Because the background signal

using control beads (mP beads) was the same in all conditions,

our results suggest that RiboLace can pull down active ribo-

somes, therefore monitoring the translational state of cells.

To further confirm this result, we monitored the relative abun-

dances on RiboLace of eEF1a and eEF2 between no-stress and

stress conditions. It is known that eEF2-mediated translocation

and the switch of ribosome conformation from the non-rotated

to the rotated state (Lareau et al., 2014) are inhibited by cyclo-

heximide (Schneider-Poetsch et al., 2010). In agreement with

the hypothesis that RiboLace captures active ribosomes, we

found that RiboLace can isolate both proteins, with preferential

enrichment of eEF1a with respect to eEF2 (Figure 3D), reflecting

the co-sedimentation profile of the two proteins with polysomes

(Figure S3B). This finding suggests that RiboLace favors the cap-

ture of the non-rotated conformation of the ribosome (Ferguson

et al., 2015). Because the duration of cycloheximide treatment is

a few minutes long and the elongation speed of translation is �6

amino acids (aa)/s (Ingolia et al., 2011), RiboLace is likely able to

capture ribosomes that are in a different phase of the elongation

cycle at the beginning of the treatment (i.e., after peptide bond

formation but before translocation). In fact, the cycloheximide

treatment is long enough for ribosomes in the pre-translocation

stage to move into the post-translocation cycle, be blocked by

the drug, and be captured by RiboLace.

Next, we tested RiboLace in a different cell line, the widely

used human tumor cell line MCF7, under control or starvation

conditions, establishing again the presence of translational

markers associated with RiboLace (Figure 3E). In addition to ri-

bosomal proteins, we detected other proteins known to be asso-

ciated with polysomes (e.g., PABP, eIF4B) or to be a marker of

active translation (me(K9)H3) (Rivera et al., 2015), while proteins

not associated with polysomes did not show any enrichment

(Figure S3C). In agreement with results obtained for HEK293T

cells, the decrease in translational markers associated with

RiboLace in starved cells suggests that our method captures

fewer ribosomes when global translation is downregulated. To

further validate this finding, we applied other stress stimuli

known to elicit repression of global protein synthesis (e.g., pro-

teotoxic stress, heat shock, sodium arsenite). In all of the cases,

translation markers were reduced (Figure S3D). We then tested

RiboLace on amouse motor neuron-like cell line, NSC-34, under

normal growth conditions. We observed an �8-fold enrichment

of RPL26 and an �4-fold enrichment of RPS6 with respect to

control beads (Figure S3E), demonstrating that RiboLace can

isolate ribosomes from both human and mouse cell lines.

Consistent with these results, the pelota protein (mammalian

ortholog of the yeast Dom34), known to promote the dissociation

of stalled ribosomes (Guydosh and Green, 2014; Pisareva et al.,

2011), was not enriched in RiboLace applied to control, starved,

or arsenite-treated lysates of MCF7 and HEK293T cells (Figures

3F and S3F, respectively).

These findings prompted us to investigate whether RiboLace

provides an improved estimation of protein level with respect
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Figure 3. RiboLace Is Able to Capture Ribosomes and Associated mRNAs under Active Translation in Cell Cultures and Tissues

(A) RiboLace protocol: magnetic beads coated with streptavidin are functionalized with the 3Pmolecule (step 1). RiboLace beads are then added to the cell lysate

(step 2) (usually 5–20 mL, corresponding to �1.2–5 3 105 cells) and washed (step 3). Finally, both proteins and RNA are recovered for further analysis (step 4).

(B) Immunoblotting of eEF1a, calnexin, RPL26, and RPS6 isolated after applying the RiboLace protocol on HEK293 cells (RiboLace, mP beads, and input).

(C) Quantification of proteins isolated with RiboLace under different stress conditions. n = 3; t test; *p < 0.05.

(D) Comparison between the relative enrichment (no starvation versus starvation) of eEF2 and eEF1a on RiboLace. t test; *p < 0.05; n = 4.

(E) Immunoblotting of eIf4B, PABP, eEF1a, RPL14, RPL26, me(K9)H3, and H3, detected on RiboLace under normal growing conditions (nt) or serum starvation

(st), with relative inputs in MCF7 cytoplasmic lysates.

(F) Immunoblotting of pelota and eEF1a detected on RiboLace in MCF7 treated or not treated with arsenite.
to the use of total RNA or polysomal RNA (Figure 4A). To this end,

we compared at transcriptome-wide scale the proteome of

MCF7 cells with all three RNA quantifications: total RNA levels

(classical transcriptome), polysomal RNA levels (classical trans-

latome), and RiboLace. The levels of �2,700 proteins were

determined by MS and label-free quantification (LFQ). We report

in Figure 4B (left) that RNA levels obtained using RiboLace dis-

played the highest correlation with protein levels (0.48), signifi-
cantly improving the correlation obtained with polysomal RNA

(0.41) and total RNA (0.18). It is worth mentioning that some

translational changes may show up as a shift in the position of

an mRNA within a sucrose density gradient rather than as

a change in the fraction of the mRNA found in polysomes,

thereby penalizing the sensitivity of polysome-associated RNA

sequencing. Our results prove that RiboLace provides a reliable

estimation of the translation state of cells.
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Figure 4. Comparison of RiboLace to RNA-Seq or POL-Seq Reveals that RiboLace Is an Accurate Proxy of the Cellular Proteome

(A) Experimental design for comparing the global RNA repertoire of RNAs associatedwith RiboLace by next-generation sequencing, total RNA sequencing (RNA-

seq), and polysomal sequencing (POL-seq) to the cellular proteome.

(B) Correlation analysis between the MCF7 proteome, determined by mass spectrometry, and total RNA, polysomal RNA, and RiboLace RNA, respectively,

determined by deep sequencing. Pearson correlation values are displayed (error bars refer to the 95% confidence interval). The significance of the differences

between Pearson coefficients was measured using Williams’ test (**p < 0.01, ***p < 0.001).

(C) Single gene comparisons of protein (Prot), RiboLace (RL), polysomal RNA (Poly), and total RNA (Tot) levels in MCF7 control and starved cells (empty and filled

bars, respectively). Data are represented as means ± SEMs (*p < 0.05, **p < 0.01, and ***p < 0.001, based on proteomics or next-generation sequencing [NGS]

differential analysis). A total of 15 representative genes, with the most significant differences between RiboLace and conventional approaches, were chosen for

display, showing either increase (top row), decrease (middle row), or no change (bottom row) at the protein level.
To further validate these results, we isolated RNA from

total RNA, polysomal RNA, and RiboLace from MCF7 cells

before and after serum starvation or EGF stimulation (Figures

S4A–S4F). As in control cells (Figure 4B, left), we observed in

starved MCF7 cells a significantly higher correlation between
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protein levels and RiboLace levels with respect to polysomal

and total RNA levels (Figure 4B, right). We next searched for

genes that contributed the most to this difference in correlation.

Comparing the control and starved conditions, we considered

cases in which significant protein changes were reported in



proteomics. We identified a population of 80 genes changing at

the protein and mRNA levels in proteomics and RiboLace,

respectively. The mRNA shifts of these 80 genes were either

not detected or reversed at both polysomal and total RNA levels

(Figure 4C, upper row for upregulated proteins and middle row

for downregulated proteins).

Next, we considered a scenario in which the researcher would

exclude unchanging proteins from the analysis of translation. We

found a population of 201 genes showing no change in protein

levels and no change in RiboLace levels, but showing significant

changes in polysomal and optionally total RNA levels (Figure 4C,

bottom row). For each of these populations, five representative

genes showing the most significant differences between Ribo-

Lace and conventional approaches were chosen for display

(Figure 4C). Further validations for the consistency between

RiboLace measurements and protein levels in the case of

MCF7 cells treated with EGF are provided in Figures S4D–S4F.

Overall, these results establish the important proof-of-concept

that RiboLace can capture ribosomes under active translation

and estimate protein levels and their variations with accuracy

and reliability.

In VivoActiveRibosomeProfilingUsingRiboLace: Active
Ribo-Seq
Given the unique opportunity to purify active ribosomes from low

amounts of input material, we next wanted to combine our puri-

fication strategy with Ribo-seq to capture active ribosome dy-

namics along transcripts, thereby improving ribosome profiling

experiments. To facilitate this, we modified our original protocol

by including an endonuclease digestion step and applying it to

cellular and tissue lysates (Figure 5A).

First, we demonstrated that RiboLace can capture isolated

ribosomes after endonuclease digestion, as shown by the

enrichment of eEF1a, calnexin, RPL26, and RPS6 on RiboLace

in HEK293T and HeLa cells (Figure 5B). Second, we confirmed

that RiboLace was able to enrich ribosome-protected fragments

(Figures S5A and S5B). Third, we applied RiboLace on as few as

15 mL of whole mouse brain ribosome-protected fragments

(RPFs). In parallel, we performed ribosome profiling from

polysomes, pre-purified using sucrose gradients (750 mL of

total brain lysate, Ribo-seq; Figure 5C). After sequencing, we

analyzed both RiboLace and Ribo-seq ribosome-protected frag-

ments using the dedicated pipeline riboWaltz (Lauria et al., 2018)

to obtain sub-codon information and identification of the trinu-

cleotide periodicity. The distribution of read lengths highlighted

a main population of ribosome-protected fragments at �29 nt

(Figure S5C) (Archer et al., 2016; Lareau et al., 2014). As ex-

pected for ribosome footprints, we observed an enrichment of

signal from mapped reads along coding sequence regions in

both RiboLace and Ribo-seq data (Figure 5D), demonstrating

that RiboLace is indeed able to capture bona fide ribosomes.

Occupancy meta-profiles, derived from the aggregation of sig-

nals on single genes, presented the typical trinucleotide period-

icity of the ribosome P-site along coding sequences, which is

suggestive of signal derived from ribosomes moving along tran-

scripts (Figures 5E and 5F). The comparison between meta-

profiles obtained with RiboLace and Ribo-seq highlights for

our method an accumulation of ribosomes at the start codon
and at the fifth codon, a feature that has previously been re-

ported to be associated with a productive elongation phase of

translation (Han et al., 2014).

To further reinforce our findings, we systematically compared

position-specific profiles from RiboLace and standard Ribo-seq

using an additional dataset from the widely used HEK293 human

cell line (Figure S6A). According to Arava et al. (2003), in fully

growing, actively translating cells, anoverall decreaseof ribosome

density is expected along the transcripts. We therefore analyzed

our data by calculating the ratio between the average number of

P-siteson thecodingsequenceand theaveragenumberofP-sites

on the first five codons for each transcript. The lower this value,

the lower the ribosome density ratio along the transcript. By

comparing the distributions obtained with RiboLace and Ribo-

seq, RiboLace showed a stronger decrease in ribosome density

along coding sequences than Ribo-seq, both in mouse brain and

in HEK293 cells (Figure 6A), which is in line with active translation

(Arava et al., 2003). Conversely, a comparison of codon-specific

ribosome densities revealed a high correlation between RiboLace

and Ribo-seq (0.98 in mouse brains and 0.93 in HEK293 cells),

suggesting the absence of differences at this general level.

Finally, we compared gene-specific translation estimates ob-

tained using RiboLace and Ribo-seq. In this way, we identified

populations of genes whose translation signal was specifically

enriched in either RiboLace or Ribo-seq (Figure 6B). This result

shows that, for both case studies we generated, the two tech-

niques significantly differ in translation estimates for hundreds

of genes. Functional enrichment analysis of these populations

suggested that RiboLace-enriched transcripts were more perti-

nent to the biological system under study (embryonic kidney

cells and brain extracts, respectively) in comparison to Ribo-

seq-enriched transcripts (Figure 6C). In addition, RiboLace-spe-

cific transcripts were enriched for translation-related genes in

both datasets (Figure 6C).

These results demonstrate that RiboLace is capable of

providing positional data of active ribosomes with nucleotide

resolution, starting frommuch less material than available proto-

cols, thereby facilitating reliable descriptions of bona fide trans-

lational events in vitro and in vivo.

DISCUSSION

During their lifetime in the cytoplasm, mRNAs are regularly

stored, degraded, and transported, with only a fraction being

actively translated to produce proteins at a specific point in

time (Morisaki et al., 2016; Wu et al., 2016). We estimated this

fraction to be between 80% and 60% of the total population, de-

pending on the cell type (Figure S6). All of these stages of the

mRNA life cycle are governed by cis- and trans-factors that

tightly regulate the uploading of mRNAs on polysomes and the

subsequent production of proteins. To generate an improved

understanding of these sophisticated and dynamic processes,

different methodological approaches have been developed to

determine, at the genome-wide scale, changes in RNA steady-

state levels (e.g., RNA sequencing [RNA-seq]), their engagement

with the translational machinery (e.g., Ribo-seq, polysomal

profiling) (Ingolia et al., 2011; Tebaldi et al., 2012), and changes

in protein production (e.g., stable isotope labeling by amino
Cell Reports 25, 1097–1108, October 23, 2018 1103
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Figure 5. Active Ribosome Profiling with RiboLace

(A) Schematic overview of the RiboLace protocol for the separation of ribosome-protected fragments from active ribosomes. (1) Cell lysates are prepared and

(2) treated with RNase I for 45 min; (3) the endonuclease digestion is stopped with an RNase inhibitor; (4) RiboLace beads are incubated with the digested cell

lysate and (5) washed to remove specifically bound molecules, (6) proteins, or RNA extracted.

(B) Immunoblotting of eEF1a, calnexin, RPL26, and RPS6 after applying the protocol described in (A) in HEK293 and HeLa. harr, harringtonine treatment; h.s.,

heat shock; nt., not treated; st., starvation (0.5% FBS); st. + EGF, starvation followed by the addition of EGF.

(C) Schematic overview of the protocol for parallel RiboLace Ribo-seq in mouse brain.

(D) Left, percentage of P-sites mapping to the 50 UTR, coding sequence (CDS), and 30 UTR ofmRNAs fromRiboLace and Ribo-seq data. Right, length percentage

of each mRNA region.

(E) Percentage of P-sites corresponding to the three possible reading frames in RiboLace (top) and Ribo-seq (bottom) along the 50 UTR, CDS, and 30 UTR,
stratified for read length. For each length and each region, the sum of the signal is normalized to 100%.

(F) Meta-gene profiles showing the density of P-sites around translation initiation sites (TISs) and translation termination sites (TTSs) for RiboLace (top) and Ribo-

seq (bottom). The peak corresponding to the fifth codon is highlighted with an asterisk.
acids in cell culture [SILAC], puromycin-associated nascent

chain proteomics [PUNCH-P]) (Aviner et al., 2014; Liu et al.,

2017; Ong and Mann, 2006). Although Ribo-seq remains a com-

plex technology that requires relatively large volumes of experi-

mental material, it has been shown to be extremely powerful for

identifying ORFs and translation initiation sites from (1) cell ly-

sates or ribosome pellets; (2) purified polysomal fractions (Junta-

wong et al., 2014); or, more recently, (3) tagged ribosomes (Jan
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et al., 2014; Shi et al., 2017). Unfortunately, however, the use

of cell lysates and ribosome pellets often introduces unwanted

background signals.

Here, we specifically designed RiboLace for ribosome

profiling experiments, to facilitate understanding of ribosome

dynamics along transcripts and to allow accurate estimates

of translation levels based on active ribosome footprints.

We sought to enhance Ribo-seq approaches by developing a
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Figure 6. RiboLace versus Ribo-Seq

(A) Dot plots showing the distribution of the ratios between the average number of P-sites on the CDS and the average number of P-sites on the first five codons

for RiboLace and Ribo-seq performed in HEK293 (left) and in mouse brain (right). The boxplots associated with the distributions are also reported, along with the

statistical significances from the Wilcoxon-Mann-Whitney test (***p < 0.001).

(B) Volcano plots comparing RiboLace and Ribo-seq transcript-specific translation estimates in HEK293 cells (left) and mouse brains (right). For each transcript,

the log2 fold enrichment of translation estimates (RiboLace versus Ribo-seq) was plotted against the statistical significance of the fold enrichment. Significantly

enriched transcripts are highlighted.

(C) Comparative annotation enrichment analysis of transcripts enriched in RiboLace and Ribo-seq in HEK293 cells (left) and mouse brains (right). The heatmap is

colored according to the significance of the enrichments. The analysis was performed on terms related to the specific biological system under consideration

(upper block) and to translation (lower block).
molecule (3P) that facilitates the selective capture of ribosomes

under active translation.We focused our attention on puromycin,

the well-known structural analog of the 30 end of aminoacyl-

tRNA, and tethered the a-amino group to a biotinylated linker.

We observed that 3P can interfere with eukaryotic translation

in vitro. We used 3P- functionalized beads (RiboLace) to capture

and enrich transcripts undergoing translation in eukaryotic

in vitro and in vivo systems.We observed that the elongation fac-

tor eEF1a, a key protein involved in delivering tRNAs to the ribo-

some, was the most enriched protein on RiboLace in all of our

experiments. This suggests that in the presence of cyclohexi-

mide treatments, 3P binding to the A-site of the ribosome in

the not-rotated state of the ribosome (Ferguson et al., 2015;

Lareau et al., 2014) is favored. Given the elongation speed of
�6 aa/s (Ingolia et al., 2011) and the duration of cycloheximide

treatment, all ribosomes in a different phase of the elongation

cycle at the beginning of the treatment (i.e., after peptide bond

formation but before translocation) have more than enough

time to move into the post-translocation cycle, be blocked by

cycloheximide, and be captured by RiboLace.

Comparing RiboLace sequencing with proteomics on a tran-

scriptome-wide scale, we obtained evidence to suggest that

RiboLace is a powerful and reliable alternative to quantify the

translation state of cells compared to standard transcriptome

and translatome profiling methods. We then demonstrated

that RiboLace is capable of providing positional data with

nucleotide resolution of translational events when used for ribo-

some profiling, requiring �40 times less material than current
Cell Reports 25, 1097–1108, October 23, 2018 1105



Ribo-seq protocols. We observed that >95% of ribosome-pro-

tected fragments were mapped on the coding region, with the

characteristic trinucleotide periodicity suggestive of active ribo-

somes flowing along the transcripts and almost no signal on

either the 50- and 30-UTRs of mRNAs.

We showed in two different case studies that RiboLace and

Ribo-seq significantly differ in translation estimates for hundreds

of genes. Functional annotation analysis suggests that Ribo-

Lace-enriched transcripts are more pertinent to the biological

system under study with respect to Ribo-seq-enriched tran-

scripts. In addition, RiboLace-specific transcripts are enriched

for translation-related genes.

Overall, our data suggest that RiboLace is an effective

approach for ribosome profiling experiments, in terms of

required-sample input and accuracy in ribosome-protected

fragments detection. RiboLace protocols can be further

adjusted to (1) isolate ribosomes from other organisms than hu-

man and mouse or to (2) isolate ribosomes from specific eukary-

otic cellular compartments such as the endoplasmic reticulum or

organelles such as mitochondria.

In summary, RiboLace can be used to capture ribosomes in

active translation with challenging or troublesome biological

samples with low-input material for reliable ribosome profiling.

Our method empowers scientists to efficiently and reproducibly

determine the actual translational state of a biological system.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPS6 Cell Signaling AB_331355

RPL26 Abcam AB_945306

eIF4B Abcam AB_11156354

eIF4A1 Abcam AB_732122

PABP Abcam AB_777008

hb-EGF Abcam N/A

CYP27A1 Abcam AB_11128459

H3 Abcam AB_302613

eEF2 Abcam AB_732081

RPL14 Abcam N/A

Pelo Abcam N/A

COX4 Abcam AB_2616599

PLK3 Thermo Scientific AB_2167750

PALLD Thermo Scientific AB_1115217

Calnexin Millipore AB_2069152

H3(K9)H3 Millipore AB_310625

EGFP Roche N/A

Actin Santa Cruz AB_1119529

Streptavidin-HRP Promega N/A

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide Sigma 01810

Tizol Sigma T9424

SUPERase In RNase Inhibitor Life Technologies AM2696

Epithelial Growth Factor RD System 236E4

Ribo-Zero rRNA Removal Kit Illumina MRZH11124

Small RNA chip Agilent 067-1548

Luciferase SP6 control DNA Promega L4741

pGEMEX-1 Promega P2211

D-Biotin Sigma B4501

N-hydroxysuccinimide Pierce HC102040

DMF Sigma 27056

N,N’-Dicyclohexylcarbodiimide Sigma D80002

CDI Sigma 21860

BOC anhydride Sigma 361941

Puromycin Sigma P8833

Trifluoroacetic acid Sigma 302031

Stationary phase RP18 Phenomenex Kinetex 00G-4601-E0

Dynabeads� MyOne Streptavidin C1 Life Technology 65001

Critical Commercial Assays

TnT Quick Coupled Transcription/Translation System Promega #L2881

Deposited Data

Sequencing data (mouse brain) This study GEO: GSE102354

Sequencing data (HEK293) This study GEO: GSE112353

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Sequencing data (MCF7) This study GEO: GSE112295

Proteomics data (MCF7) This study ProteomeXchange: PXD009417

Ribosome profiling data (mouse brain) Lauria et al., 2018 GEO: GSE102318

Reference mouse genome annotation Gencode M6 Gencode https://www.gencodegenes.org/

mouse_releases/6.html

Reference human genome annotation Gencode 25 Gencode https://www.gencodegenes.org/

releases/25.html

Experimental Models: Cell Lines

MCF7 ATCC ATCC� HTB-22

NSC34 CEDARLANE CLU140

HeLa N/A N/A

HEK293 N/A N/A

Experimental Models: Organisms/Strains

Wild-type mice University of Edinburgh,

Tom Gillingwater Lab

N/A

Oligonucleotides

qPCR primers for IVTT this paper See Table S1

Primes for ribosome profiling Ingolia et al., 2012 and

Illumina (Epicenter)

See Table S2 and ARTseq Ribosome

Profiling Kit (RPHMR12126)

Taqman probes Thermo Fisher Scientific See Table S3

Software and Algorithms

riboWaltz v1.0.0 Lauria et al., 2018 https://github.com/

LabTranslationalArchitectomics/riboWaltz

Tophat v2.0.14 https://ccb.jhu.edu/software/

tophat/index.shtml

N/A

R v3.3.0 https://www.r-project.org/ N/A

Bioconductor v3.3 https://www.bioconductor.org/ N/A

Cufflinks v2.2.1 https://github.com/cole-trapnell-

lab/cufflinks

N/A

Trimmomatic v0.36 http://www.usadellab.org/cms/

?page=trimmomatic

N/A

Bowtie2 v2.2.6 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

N/A

enrichR http://amp.pharm.mssm.edu/

Enrichr/

N/A

MaxQuant v1.6.1.0 http://www.biochem.mpg.de/

5111795/maxquant

N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gabriella

Viero (gabriella.viero@cnr.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissues, cell lines and growth conditions
Human MCF7 (ATCC catalog no. ATCC� HTB-22), HeLa cells and HEK293 cells and murine NSC34 (CEDARLANE catalog no.

CLU140) cell lines were seeded on adherent plates and maintained at 37�C, 5%CO2 in DMEM supplemented with 10% Fetal Bovine

Serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin and 100 mg/mL of streptomycin. Cells were used at 80% of confluence. For

starvation treatments cells were kept 0.5% FBS, 2 mM L-glutamine, 100 units/mL penicillin and 100 mg/mL of streptomycin for at

least 12. For EGF treatment, after starvation EFG was added at 1 mg/mL for 4 h.
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Wild-type mice mice were obtained from breeding stocks at the University of Edinburgh. All procedures were performed under

licensed authority from the UK Home Office (PPL 60/4569).

METHOD DETAILS

Chemical synthesis of the 3P molecule
A solution of DCC in DMF was added dropwise to Biotin and NHS in DMF, to obtain a white precipitate (Biotin-NHS). Biotin-NHS in

MeCN was added to a jeffamine (2,2ʼ-(Ethylenedioxy)bis(ethylamine) - MeCN solution to yield a white hygroscopic solid (BJ1), then

dissolved in dry pyridine and reacted with CDI to obtain a product called BJ10. Puromycin was dissolved in pyridine, reacted with CDI

and added to a BOC protected jeffamine in DCM. The product (PJ) was partitioned between DCM and water, evaporated and

triturated in ethyl acetate. Trifluoroacetic acid was added dropwise to a stirred suspension of PJ in DCM. The solution was cooled

and stirred overnight, diluted with chloroform and the solvent evaporated to give a yellow oil product (PJ0). BJ10 and PJ0 were dis-

solved in pyridine and stirred overnight under N2. The product (3P) was purified by column chromatography and preparative HPLC.

Depletion assay of 3P with streptavidin coated beads
A volume of 50 mL of 2 M NaCl, 1 mM 3P, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5 in DEPC water, was added to different amount

of magnetic beads and the suspension was incubated for 5 min at RT. After separation on a magnetic rack, the absorbance of

the supernatant was measured at 272 nm.

In vitro - cell free Transcription/Translation
In vitro translation reactions of the full-length Luciferase (inserted in SP6 DNA plasmid, Promega) and full-length EGFP (inserted in

the IP-PR2 plasmid) were obtained with the TnT Quick Coupled Transcription/Translation System (Promega) according to manufac-

turer’s instructions.

Preparation of RiboLace beads
For each sample, a volume of 20 mL of Dynabeads� MyOne Streptavidin C1 (Life Technology) or 30 mL of Streptavidin Mag

Sepharose (10%slurry, GEHealthcare Life Sciences) werewashed for 5minwith a 0.05MNaCl, 0.1MNaOH, in DEPC-treatedwater.

Then, beads were washed with 500 mL of nuclease free water and with Binding Buffer (2 M NaCl, 10 mM Tris-HCl, pH 7.5 in DEPC

water). For functionalization with 3P, 30 mL of a 1 mM solution of 3P in Binding Buffer was added to the beads followed by an incu-

bation of 1 h, mixing at 1400 rpm at 20�C. Beads were end-capped by incubating for 10 min at 1400 rpm at RT in the presence of

biotin-methoxypolyethylene glycol conjugate (mP, Creative Pegworks) at 0.5 mM. RiboLace beads were washed with 500 mL of

nuclease free water, placed on a magnet for 2 min, and washed with 500 mL of nuclease free water. The efficiency of binding was

calculated by measuring the ratio between the absorbance of the supernatant at 270 nm, and the absorbance at 270nm of a

1 mM starting solution. Finally, beads were washed twice with 500 mL of W-buffer (10 mM NaCl, 10 mMMgCl2, 20 mg/mL cyclohex-

imide, 10mMHEPES, pH 7 in DEPCwater) and used for active ribosome pull-down. As a negative control, beads were functionalized

with a 0.5 mM solution of a biotin-methoxypolyethylene glycol conjugate (1000 Daltons, Creative Pegworks).

RiboLace and IVTT system
IVTT mix reaction (Promega) was used with the abovementioned plasmids for 40 min. The reaction was stopped adding cyclohex-

imide (10 mg/mL) for 3minutes before addition ofW-buffer. The solution was divided into 3 vials, each containing 150 mL. The first was

used for the extraction of total RNA, the second used with RiboLace, and the third for control mP-beads. For RiboLace, the reaction

mix was added to the functionalized beads and incubated for 1 h in orbital rotation at 2 rpm at 4�C. The tube was then kept on ice on a

magnetic stand for 5min to pellet the beads–bounded-ribosomes. The supernatant was separated and beadswashed two timeswith

500 mL of W-buffer. Beads were dissolved in 100 mL of 100 mM NaCl, 10 mM MgCl2, Trizma HCL, pH 7.5 in DEPC water. RNA was

extracted from the beads–bounded-ribosomes with Trizol (Thermo Fischer Scientific) and solubilized in 30 mL of RNase-free water

and DNase I treated. cDNA was obtained synthesis and RT-qPCR were run using KAPA SYBT FAST qPCR kit (KAPA Biosystem)

according to the following protocol: 3 min - 95�C activation; 2 s - 95�C, 20 s – 57�C; 25 cycles; 65�C to 95�C melting ramp. Primers

are listed in Table S1. Data were processed with Bio-Rad CFX-Manager 1.6 software. The fold change ratio was determined as the

ratio between the DDCt of treated and not treated sample. The delta cross-threshold (DCt) was determined respect to the total RNA

and the relative DDCt calculated respect to the control (mP-beads DCt).

For determining the total amount of newly synthesized proteins, we employed ε-labeled biotinylated lysine-tRNA complex using

TranscendNon-Radioactive Translation Detection Systems according to themanufacturer’s instructions (Promega) and the effective

translation verified by SDS–PAGE.

Luciferase assay
Real-timemeasurements of luciferase activity were recorded at 37�Cwith 5%CO2 using the Infinite 200 PRO reader (Tecan), accord-

ing to manufacturerʼs instructions. In brief, the IVTT reactions were plated in a 96-well plate and the luciferase translation efficiency

was monitored by means of luminescence signal using the Bright-Glo Luciferase Assay System (Promega).
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Purification of active polysomes and ribosomes with RiboLace
MCF7, HeLa, HEK293 or NSC-34 cells were seeded at 1.53 106 cells/dish and kept in culture until reaching 80%of confluence. Cells

were then treated with 10 mg/mL of cycloheximide (CHX) for 5 min at 37�C before lysis. Cell lysates were obtained according to (Viero

et al., 2015). Tissues were dissected immediately following sacrifice and pulverized under liquid nitrogen using a pestle and a mortar

and the lysates was obtained according to (Bernabò et al., 2017), The lysate was aliquoted and stored at �80�C for not more than a

month, avoiding more than one freeze/thaw cycle.

RNA absorbance wasmeasured (260 nm) by Nanodrop ND-1000 UV-VIS Spectrophotometer and the lysate diluted to 0.5 - 1.7 a.u.

A260/mL with W-buffer (10 mM NaCl, 10 mM MgCl2, 20 mg/mL cycloheximide, 10 mM HEPES, pH 7 in DEPC water). For polysome

profiling with RiboLace, the solution obtained was added directly to the functionalized beads and the suspension incubated on a

wheel for 1 hour in orbital rotation, 3 rpm (StarLab Rotator), at 4�C. The tube was then kept on ice on a magnetic stand for 5 min

to pellet the beads–bounded-ribosomes and washed twice with W-buffer. RNA was extracted by acidic-phenol chloroform separa-

tion. The quality of the RNA samples was assessed using Agilent Bioanalyzer 2100 and Nanodrop ND-1000 Spectrophotometer

(Thermo Scientific). Whole transcriptome library preparation was performed starting from 1 mg of total RNA with RINR 8. Following

enrichment of poly-A containing mRNA molecules using poly-dT oligo-attached magnetic beads, all recovered RNA was processed

using the Illumina TruSeq RNA Sample Preparation Kit sequenced. Sequencing was carried out on Illumina HiSeq 2000 using the

protocol HCS 1.5.15.1 in single reads.

For ribosome profiling with RiboLace, a total volume of lysate corresponding to 0.3 A.U.260nm was treated with 1.5 U of Artseq

nuclease (Epicenter) or RNaseI for 45 min at 20�C. The reaction was stopped with 10U SUPERase In RNase inhibitor, 10 min on

ice. Then, the sample was incubated with RiboLace beads for 1 hour in orbital rotation, 3 rpm (StarLab Rotator) at 4�C. The tubes

were then kept on ice on a magnetic stand for 5 min to pellet the beads–bounded-ribosomes. The supernatant was discarded

(unbound fraction) and beads washed twice with W-buffer. Finally, beads were solubilized in 200 mL of W buffer containing 20 U

SUPERase In. The RNA was extracted using acid-phenol:chloroform (Ambion) after incubation with 1% SDS, 0.1 mg of

proteinase K (Euroclone) at 37�C for 75 min. Library preparation was adapted from a previous protocol (Ingolia et al., 2012). The ribo-

some profiling library PCR forward primer and indexed reverse primers are in Table S2. Libraries ( 175 nt) were PAGE purified from a

8% not-denaturing TBE polyacrylamide and characterized using the Agilent 2100 Bioanalyzer (High-Sensitivity DNA assay).

Ribo-Seq data were obtained using the protocol in (Ingolia et al., 2012).

RNA extraction for RNA-Seq and POL-Seq
For RNA-Seq the RNAwas extracted fromMCF7 cell lysates, obtained as previously described, with acid phenol:chloroform (Ambion

catalog no. AM9720) extraction. For total polysomal RNA extraction, polysomes were obtained according to (Viero et al., 2015) using

sucrose gradient fractionation. Briefly, sucrose fractions were collected and treated with 200 mg/mL proteinase K (Life technologies),

1% SDS in DEPC water and RNase Inhibitor (0.4 a.u./mL) for 1.5 h at 37�C. After phenol:chloroform extraction and isopropanol

precipitation, polysomal RNA was quantified by Nanodrop ND-1000 UV-VIS Spectrophotometer and Agilent 2100 Bioanalyzer

with RNA 6000 pico kit (Agilent).

Whole transcriptome library preparation was performed starting from 1 mg of total RNAwith RINR 8. Following enrichment of poly-

A containing mRNA molecules using poly-dT oligo-attached magnetic beads, all recovered RNA was processed using the Illumina

TruSeq RNA Sample Preparation Kit (Illumina #FC-122-1001 #FC-122-1002) and the protocol v2 Rev. C. Completed libraries were

evaluated by DNA quantification and Bioanalyzer analysis (mean fragment length = 274 bp), and then submitted for sequencing.

RNA-seq was constructed with barcodes to allowmultiplexing of 12 samples per lane. Sequencing was carried out on Illumina HiSeq

2000 using the protocol HCS 1.5.15.1 in single reads. Experiments were performed in biological duplicate.

Immunoblotting
Cell lysates were prepared in hypotonic lysis buffer (10 mM NaCl, 10 mM MgCl2, 10 mM Tris–HCl, pH 7.5, 1% Triton X-100, 1%

sodium deoxycholate, 5 U/mL DNaseI, 200 U/mL RNase inhibitor, 1 mM dithiothreitol and 10 mg/mL cycloheximide) or RIPA buffer.

Proteins were separated in SDS–polyacrylamide gel electrophoresis and transferred onto PVDF membranes. The membranes were

blocked in 5% BSA (Sigma) in TBS-Tween (0.1% Tween) for 1 hour, incubated in primary antibody o.n. The primary antibodies used

are listed in the STARMethods section. After incubation with secondary antibodies conjugated to horseradish peroxidase and exten-

sive washing, the blots were developed using ECL Plus (GE Healthcare,) or SuperSignal West Femto Maximum Sensitivity Substrate

(Thermo Scientific). Signals were acquired with ChemDoc-It (Bio-Rad) and analyzed with ImageJ software (v 1.45 s). All experiments

were run in triplicate.

qPCR
RNA expression was analyzed by TaqMan assay, the gene name, aliases, chromosome location and TaqMan ID are reported in

Table S3. All TaqMan probes were purchased from Life Technologies. Relative quantification of target genes was determined

calculating the delta cross-threshold (DCt) respect to the 18S housekeeping gene and the relative DDCt calculated respect to the

total RNA sample, according to the Pfaffl method. RT was performed using random hexamers, single strand reverse transcriptase

(RevertAid RT Reverse Transcription Kit, Life Technologies #K1622).
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Protein sample preparation for MS
MCF7 cells were grown in 100 mm Petri dishes in complete medium (10% FBS) or under starvation (1% FBK) for 12 h. Two dishes

were lysedwith RIPA buffer (50mMTris pH 7.4, 150mMNaCl, 0.25% Igepal, 1mMEDTA and 0.5%SodiumDeoxycholate) in the pres-

ence of 0.5% Phosphatase Inhibitor Cocktails, 5 mg/mL Peptastin A and 0.25% Protease Inhibitor Cocktail. After protein extraction

according to themethanol-chloroform procedure, proteins were solubilized in 6M urea/2M thiourea, 10mMHEPES pH 8.0 and incu-

bated at RT for 30min in the presence of 5mM DTT and for additional 20min with 5.5mM iodoacetamide. Peptides were obtained by

digestion with 1mg of LysC solution/50mg of protein for 3 hours at RT and then with 1mg of Trypsin/50mg protein overnight. Peptides

were purified on C18 Pipette Tips (Pierce, Thermo Scientific). Mass spectra were acquired in the Orbitrap Fusion Tribrid analyzer at

Thermo Fisher Scientific, Switzerland. Experiments were performed in triplicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis of RNA-seq and POL-seq experiments
Fastq fileswere checked for quality control with FastQC. Reads generated from each sample were aligned to the human genomewith

Tophat (version 2.0.14), using the Gencode 22 transcript annotation as transcriptome guide. All programs were used with default

settings. Mapped reads were assembled into transcripts guided by reference annotation (Gencode 22) with Cufflinks (version

2.2.1). Expression levels were quantified by Cufflinks with normalized FPKM (fragments per kilobase of exon per million mapped

fragments). Differential expression analysis was performed with Cuffdiff.

Data analysis of MS
The raw MS data were analyzed with MaxQuant software version 1.6.1.0 using default settings and Label Free Quantification (LFQ).

Data analysis of ribosome profiling experiments
For all ribosome profiling analyses we used riboWaltz (Lauria et al., 2018). Briefly, reads were processed by removing 5ʼ adapters,
discarding reads shorter than 20 nucleotides and trimming the first nucleotide of the remaining ones (using Trimmomatic v0.36).

For the mouse brain and the HEK293 dataset, respectively, reads mapping on the collection of M. musculus and H. sapiens rRNAs

(from the SILVA rRNA database, release 119) and tRNAs (from the Genomic tRNA database: gtrnadb.ucsc.edu/) were removed.

Remaining reads were mapped on the mouse transcriptome (using the Gencode M6 transcript annotations) or human transcriptome

(Gencode 25): antisense reads were removed and reads entirely mapping to the same nucleotides were considered identical and

collapsed. All the alignments were performed with Bowtie2 (v2.2.6) employing default settings. Normalization among replicates

was performed with the trimmed mean of M-values normalization method (TMM) implemented in edgeR. Protein coding transcripts

used for further analyses were selected using a threshold on their signal (FPKM and CPM values > 80th percentile). Differential an-

alyses between RiboLace and Ribo-Seq were performed with the edgeR Bioconductor package. Significantly enriched transcripts

were selected with the following thresholds: absolute log2 fold enrichment > 1, P value < 0.05, normalized number of ribosome-

protected fragment > 1 per million. Functional annotation enrichment analyses were performed with Enrichr (http://amp.pharm.

mssm.edu/Enrichr/).

DATA AND SOFTWARE AVAILABILITY

Raw and analyzed sequencing data have been deposited under GEO: GSE102354 (mouse brain), GSE112353 (HEK293), GSE112295

(MCF7). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD009417. Classic ribosome profiling (Ribo-Seq)

data from mouse brain were retrieved from GEO: GSE102318.
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