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ABSTRACT

We address the task of automatically predicting group satisfaction

in meetings using acoustic, lexical, and turn-taking features. Partic-

ipant satisfaction is measured using post-meeting ratings from the

AMI corpus. We focus on predicting three aspects of satisfaction:

overall satisfaction, participant attention satisfaction, and informa-

tion overload. All predictions are made at the aggregated group

level. In general, we find that combining features across modalities

improves prediction performance. However, feature ablation sig-

nificantly improves performance. Our experiments also show how

data-driven methods can be used to explore how different facets

of group satisfaction are expressed through different modalities.

For example, inclusion of prosodic features improves prediction of

attention satisfaction but hinders prediction of overall satisfaction,

but the opposite for lexical features. Moreover, feelings of sufficient

attention were better reflected by acoustic features than by speak-

ing time, while information overload was better reflected by specific

lexical cues and turn-taking patterns. Overall, this study indicates

that group affect can be revealed as much by how participants

speak, as by what they say.
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1 INTRODUCTION

Modeling group affect is an important part of understanding multi-

party interaction. In particular, estimating group satisfaction is

important for developing strategies for computer-aided decision
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making and robot interactions with groups, as well as helping

understand the cognitive states of individual participants. However,

there are multiple ways that a group may be satisfied with an

interaction which may, in turn, be reflected by different aspects of a

spoken dialogue. In this paper, we investigate how different spoken

language features can be used to detect varying aspects of group

satisfaction in multi-party meetings.

Previous computational work on dialogue satisfaction has gen-

erally focused on predicting dyadic call-center conversations. Such

studies have often highlighted the potential of speaker activity

patterns, particularly turn-taking behavior, for predicting user sat-

isfaction for both spoken dialogue systems and human-human

conversations [12, 30, 36]. In fact, Chowdhury et al. [11] find that

turn-taking features perform better than acoustic and lexical fea-

tures for human call center satisfaction prediction. While little work

has been done on predicting satisfaction in dialogues with more

than two participants, previous analyses also suggests that turn-

taking patterns are indicative of how well a multi-party meeting is

going [10, 18]. In particular, the analysis of meeting ratings in Lai et.

al [20] found that participants have a more positive attitude when

there is less silence, fewer barge-ins, more very short utterances,

and more unpredictable turn-taking.

In terms of understanding group interaction, previous work has

often focused on predicting group task performance [14, 19, 21],

or detecting emergent leadership and leadership styles [4, 17, 29].

Most such work has focused on developing multi-modal models

of non-verbal interaction. For example, Avci and Aran [2] identify

an HMM-based turn-taking influence measure and group looking

features as predictive cues of group performance. Similarly, Dong

and Pentland [13] find that more active and balanced group dis-

cussion improved performance in a social dilemma task. Beyan et

al. [3] show that acoustic features can be used to detect autocratic

and democratic leadership styles using multiple kernel learning,

although speaker activity features were found to be better discrimi-

nators than prosodic features.

Other related work has used acoustic and lexical features to

automatically detect sentiment and subjectivity in meetings. For

example, Raaijmakers et al. [27] use multi-modal features to detect

subjectivity expressed during AMI corpus meetings. However, the

subjectivity or sentiment expressed during a meeting may differ

markedly from a participants private views. In that sense, our task

of satisfaction prediction based on post-meeting ratings is more

similar to that of Murray [23], who predicts the sentiment levels

found in private meeting summaries authored by each participant.

In the following, we examine the utility of acoustic, lexical, and

turn-taking features for predicting group satisfaction ratings from

the AMI meeting corpus, where our outcomes of interest are taken

from individual participant questionnaires. Our general approach is

to use machine learning methods to understand the factors involved

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in successful group interactions. We address three tasks: predicting

overall satisfaction with the meeting, and the more specific tasks

of predicting whether participants felt that each member received

sufficient attention during the meeting, and whether participants

felt they were overloaded with information. We explore different

regression models and perform feature ablation studies to identify

what aspects of spoken interaction are likely to reflect different

aspects of meeting satisfaction.

2 CORPUS AND QUESTIONNAIRES

2.1 The AMI Corpus

We examine 120 scenario-based meetings from the AMI meeting

corpus [9].
1
This consists of 30 groups of 4 participants engaged in

a series of 4 meetings. The meeting briefs were about designing a re-

mote control and each participant was given a specific role (project

manager, user interface designer, marketing expert and industrial

designer) associated with specific information and materials. While

the groups were engaged in an artificial role-playing scenario, the

speech was spontaneous (unscripted), and each group had freedom

in their design solutions and decision-making processes. Audio

recordings of each meeting were manually transcribed, time aligned

at the word level, and segmented into Dialogue Acts (DAs).

2.2 AMI Meeting Satisfaction Ratings

We use ratings from the post-meeting questionnaire described in

[20, 26]. These questionnaires ask participants to rate various as-

pects of the meetings related to leadership, process satisfaction,

cohesiveness, and information processing. After each meeting, indi-

vidual participants rated their agreement with 16 statements about

the meeting, on a 1 (‘not at all’) to 7 (‘very’) scale.

We expect that different aspects of spoken language will bear

upon different aspects of meeting satisfaction. Thus, to explore

these differences, we focus on the following three questions:

• Q7: Overall Satisfaction:
‘All in all, I am very satisfied.’

• Q16: Attention Satisfaction:
‘All team members received sufficient attention.’

• Q15: Information Overload:
‘There was too much information.’

Q15 and Q16 ask participants to rate quite different aspects of the

meeting. In fact, based on previous work, we expect feelings about

the levels of attention paid to participants (Q16) to be reflected in the

distribution of participant speaking time and turn-taking structure

[20]. However, satisfaction related to cognitive load (Q15) might be

better reflected by vocal characteristics [5, 37]. We also wanted to

get an idea of how analyses of specific aspects of satisfaction may

differ from one based on a more general satisfaction rating (Q7).

We sum individual ratings per group to obtain group satisfaction

measures. We chose to focus on group measures as a starting point

for characterizing the group as a whole, as well as the attitudes of

specific individuals. We leave exploration of individual satisfaction

and other questionnaire items for future work.

1
http://corpus.amiproject.org/

3 PREDICTION FEATURES

3.1 Turn-taking Features

We consider a number of turn-taking features which were calcu-

lated using spurts (contiguous speech segments separated by at

least 500ms silence [31]) and dialogue act segments. The segment

times were induced frommanual transcription word timings. Imme-

diately preceding segments were identified as having the maximum

start time before the segment in question (similarly for following

segments), thus allowing for overlaps.

Dominance.We calculate Turn-Taking Freedom (i.e., predictabil-

ity of turn-taking) and Participation Equality as described in [20].

We also record the proportion of active meeting time of the partici-

pants who spoke the most and the least, the proportion of dialogue

acts uttered by those speakers, and the proportion of dialogue act

transitions that involve speaker changes.

Overlap.Wemeasure the followingmeeting averages over spurts

and DA segments: segment duration, minimum time between seg-

ment transitions, times from segment start (and end) to the start of

any barge-in, overlap duration, and uninterrupted speech duration.

We also record total overlap and uninterrupted speech durations.

Additionally, we measure the rate of speaker changes between seg-

ments, and separate barge-in rates for Very Short Utterances (VSUs)

[15] with durations less than 0.5s and 1s, and for all segments.

Pause. We include the total pause duration in seconds and as a

proportion of total meeting time, as well as the mean and standard

deviation over pause durations, and the maximum pause duration

calculated over spurts and DAs.

Activity. We note the total number of DAs and spurts, the total

number of laughs and words, laugh rate, and total meeting duration.

Individual Turn-Taking. To investigate the potential for role

based effects, we record participant specific turn-taking informa-

tion: the number of laughs, non-words, and words; total speaking

time, number of DAs, number of VSUs that barged into a speaker

segment and the times a speaker barged onto another, speaker

change rate, number of overlapped segments, total overlapped and

uninterrupted speaking time, and mean time from/to the previ-

ous/next segment.

3.2 Acoustic Features

We extract acoustic features corresponding to the Interspeech 2010

Paralinguistic Challenge feature set, using openSMILE [16]. This

feature set includes a number of standard spectral representations

of speech which are generally used to capture segmental aspects

of the signal but have also been used for emotion recognition: 15

Mel-Frequency Cepstral Co-efficients (mfcc); 8 Line Spectral Pair

frequencies (lsp); Log power of Mel-Frequency Bands 0-7 (lmfb),

and associated rate of change (delta) measurements. The feature set

also includes several prosodic (i.e. suprasegmental) features: speech

wave amplitude based loudness; Fundamental frequency (f0), i.e.

pitch, in terms of smoothed F0 envelope, F0 contour, and voicing

probability; and voice quality (vq) in terms of pitch-period jitter,

differential jitter, and shimmer, which indicate, for example, the

tenseness/laxness of the vocal tract.

Moving average smoothing is applied to frame level features be-

fore calculating aggregate statistics. In the following experiments,

we only look at meeting level standard deviation features to get an

http://corpus.amiproject.org/
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idea of how variability in these features relates to meeting satisfac-

tion and to abstract away from individual speaker patterns.

3.3 Lexical Features

We extract a number of transcript-based lexical features.

Psycholinguistic. Words are scored for their concreteness, im-

ageability, typical age of acquisition, and familiarity.
2
We also derive

SUBTL scores for words, which indicate how frequently they are

used in everyday life as based on a large corpus of television and

movie subtitles [8].

Dependency Parse Features. All sentences are parsed using

spaCy’s dependency parser.
3
We extract the branching factor of

the root of the dependency tree, the maximum branching factor of

any node in the dependency tree, sparse bag-of-relations features,

and the type-token ratio for dependency relations.

Sentiment. We use the SO-Cal sentiment lexicon [33], which

associates positive and negative scores with sentiment-bearing

words, and sum these scores over the meeting.

GloVeWord Vectors.Words are represented using GloVe word

embeddings,
4
with vectors summed over sentences. We then aver-

age the sentence vectors over the meeting. The first five dimensions

of the document vectors are used as features, in order to keep the

feature dimensionality low given our relatively small number of

observations.

Lexical Cohesion. We measure cohesion using the average

cosine similarity of adjacent GloVe sentence vectors in a document.

Sentence Rates. We include the average number of words per

sentence, and average number of sentences per meeting.

Part-of-Speech Tags.We use a sparse bag-of-tags representa-

tion from the spaCy POS tagger for the most frequent tags, as well

as the type-token ratio for tags.

Bag-of-Words. Finally, we use a bag-of-words representation

for the most common 200 non-stopwords in the dataset, and also

calculate the type-token ratio for words. We also record the number

of filled pauses.

4 EXPERIMENTAL SETUP

In this section we describe the machine learning models used, and

evaluation methods.

4.1 Regression Models

In these experiments, we examine the performance of three regres-

sion methods, which handle regularization in different ways, to see

if they produce consistent results for different types of features.

All models were trained using the Scikit-Learn Python package

[25]. We use default Scikit-Learn training parameters except where

noted below.

Bayesian Ridge Regression (BRR) [22] is a linear regression

approach which penalizes large model weights by associating them

with a spherical Gaussian prior. This provides some robustness

against feature collinearity and over-fitting. The variances of the

weight prior and model noise parameters are estimated from the

2
http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm

3
https://spacy.io/

4
https://nlp.stanford.edu/projects/glove/

Table 1: Results for Q7: Overall Satisfaction (MSE) for Ran-

dom Forest Regression (RFR), Support Vector Regression

(SVR), and Bayesian Ridge Regression (BRR) models: Mean

baseline 7.09

Feature set rfr svr brr

turn 6.51 6.54 6.36

acoustic 6.39 7.23 6.70

lex 6.67 7.05 6.76

acoustic+lex 6.19 6.95 6.49

acoustic+turn 6.16 6.64 6.34

lex+turn 6.40 6.53 6.10
acoustic+lex+turn 6.23 6.78 6.23

training data jointly with the model weights, assuming Gamma

prior distributions.

Random Forest Regression (RFR) [7] is an ensemble method

in which predictions are averages over a number of regression tree

estimators where each estimator is built from a bootstrap sample

of the training data. In our experiments, the estimators are limited

to 5 features as another means to limit over-fitting. The number of

regression tree estimators was tuned using 10 fold cross-validation

on the training data/fold using values between 50-500 estimators.

Support Vector Regression (SVR) [32] attempts to fit a func-

tion that deviates from the target by at most ϵ while minimizing the

norm of the estimated weights (‘flattening’ the model). A penalty

parameter C mediates regularization by weighting the cost of de-

viations larger than ϵ . We use an RBF kernel and tune C using 10

fold cross-validation on the training data/fold for values between

10
−3

and 10
2
.

4.2 Evaluation

We evaluate the accuracy of our models using Mean Squared Er-

ror (MSE). Given the small sample size, we employ leave-one-out

cross-validation to obtain test predictions. However, this makes it

difficult to assess training data related variability. Thus, we subse-

quently use repeated 10-fold cross-validation to investigate how

much the results vary due to the training data selection (Section 5.5).

We scale and center all input features based on the interquartile

range and median for each feature in the training set. We compare

performance of the three regression methods with respect to mod-

els built using just turn-taking, acoustic, and lexical features, and

combinations of those modalities.

5 RESULTS

In this section, we present the results for acoustic, lexical, turn-

taking, and combined models for our three questions using leave-

one-out cross-validation. We also present feature ablation exper-

iments (Section 5.4), estimate the variability of the results (Sec-

tion 5.5), and look at individual feature effects (Section 5.6).

5.1 Question 7: Overall satisfaction

Table 1 shows results for predicting overall satisfaction (Q7). We see

that the best unimodal model varies by regressionmethod. However,

combined acoustic and lexical models generally perform better than

purely lexical models. When we add turn-taking features we obtain

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
https://spacy.io/
https://nlp.stanford.edu/projects/glove/
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Table 2: Results for Q16: Attention Satisfaction (MSE), Mean

Baseline: 9.06

Feature set rfr svr brr

turn 8.72 9.03 8.84

acoustic 7.20 7.05 6.85

lex 7.68 7.95 7.74

acoustic+lex 6.94 7.38 6.90

acoustic+turn 6.93 7.01 6.65
lex+turn 7.88 7.82 7.43

acoustic+lex+turn 7.13 7.40 6.76

Table 3: Results for Q15: Information Overload (MSE), Mean

baseline 14.87

Feature Set rfr svr brr

turn 12.83 12.63 12.91

acoustic 13.75 12.72 14.39

lex 12.83 13.49 12.88

acoustic+lex 12.58 12.18 11.92

acoustic+turn 12.53 11.86 11.82

lex+turn 12.42 12.14 12.31

acoustic+lex+turn 12.13 11.66 11.65

best results from lex+turn for BRR and SVR models, with the BRR

model producing the best results overall. Nevertheless, the RFR

model appears to be better able to make use of acoustic features,

particularly in conjunction with turn-taking features. This suggests

that acoustic features are useful for modeling overall satisfaction,

though a different modeling approach may be required to make

use of acoustic features in conjunction with lexical and turn-taking

features.

It is also interesting to note that turn-taking models mostly

perform better than unimodal lexical and acoustic models. This

supports the idea that turn-taking patterns are an important pre-

dictor of group affect. However, other conversational modalities

are clearly required to understand meeting satisfaction.

5.2 Question 16: Attention Satisfaction

Acoustic features appear more useful for estimating group satis-

faction with the amount of attention everyone received (Q16). In

Table 2 we see that acoustic features generally perform better than

lexical features for all three regression methods. Moreover, using a

combination of acoustic and lexical features performs better than

either feature type alone. Models using just turn-taking features

generally perform poorly. However, again, adding turn-taking fea-

tures to other feature sets generally helps performance. The best

performance is obtained via the combination of acoustic and turn-

taking features. This suggests that perceived attention is related to

the manner of speaking as well as the amount of talk-time.

5.3 Question 15: Information Overload

Table 3 shows the results for predicting Information Overload (Q15).

As for overall satisfaction, the best unimodal model varies for the

different regression types, althoughwe see that turn-taking and lexi-

cal models generally perform better than acoustic models. However,

Table 4: Acoustic FeatureAblation (BRR). Negative values in-

dicate worse performance when the feature type is removed

(i.e. full model MSE < ablated model MSE).

Ablation_Features Q7 Q16 Q15

mfcc -0.16 -0.32 -0.18

lmfb -0.02 -0.01 0.07

lsp 0.03 -0.03 -0.13

f0 0.07 -0.02 0.28

voice quality 0.13 -0.03 -0.67

loudness 0.01 0.02 0.01

the best results for each regression type is the combined acoustic,

lexical and turn-taking model. This suggests the different modalities

provide complementary information in this task

Although all models perform better than the mean value base-

line, the MSEs are significantly higher than what was observed

for the overall and attention satisfaction. So, it seems that more

sophisticated approaches are necessary to explain the variance here,

particularly with respect to modeling lexical content. The follow-

ing sections further explore which specific aspects of speech are

important for this task.

5.4 Feature Ablation

Beyond understanding the relative utility of acoustic, lexical and

turn-taking features for predicting group satisfaction, we would

also like to explore the predictiveness of specific feature types. This

is particularly important in the current task given the small sample

size relative to the total number of extracted features. In the fol-

lowing, we investigate the usefulness of specific feature types via

ablation. We remove feature subsets from the combined acoustic,

lexical, and turn-taking feature set and report the difference be-

tween the original and modified model MSEs. For brevity, we only

report BRR results as it generally provided the best overall results

for our three questions in the previous experiments.

5.4.1 Acoustic Features. Table 4 shows the difference in perfor-

mance when acoustic feature subsets are removed. Interestingly,

we can see that including speech prosody features (F0, voice qual-
ity, loudness) produce worse performance for predicting overall

satisfaction (Q7), though their inclusion does help predict attention

satisfaction (Q16). This, again, suggests that quality of participa-

tion is reflected in how speakers speak. However, when it comes to

overall satisfaction, the relevant speech aspects are not captured by

our prosodic measures. Nevertheless, voice quality features appear

to be important for predicting information overload (Q15). This

is consistent with previous work arguing that cognitive load is

reflected in, for example, variation in the tenseness in the vocal

tract [37]

5.4.2 Turn-taking features. The ablation results in Table 5 sug-

gest that overlap and pause features are more useful for predicting

overall satisfaction than attention satisfaction. Conversely, activity

measures are predictive of attention satisfaction. However, remov-

ing these features does not have as great an impact on the results as

removing MFCC features. This supports the importance of acoustic

features for understanding attention satisfaction.
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Table 5: Turn-taking Feature Ablation (BRR)

Ablation_Features Q7 Q16 Q15

individual TT -0.11 -0.03 -0.16

dominance -0.05 -0.02 0.10

pause -0.05 0.01 0.08

overlap -0.02 0.04 0.00

activity 0.01 -0.02 0.04

Table 6: Lexical feature ablation (BRR)

Ablation_Features Q7 Q16 Q15

parse -0.07 -0.03 0.13

psycholinguistic -0.04 0.02 0.02

sentiment -0.01 0.00 0.01

coherence -0.01 0.00 -0.02

sentence rates 0.00 0.00 0.00

filled pause 0.00 0.00 -0.00

glove 0.00 0.00 -0.01

part-of-speech 0.00 0.02 0.21

bag-of-words 0.16 0.04 -0.65

Table 7: Results from removing feature sets that caused de-

creased performance in the different modalities (BRR).

Ablation Modality Q7 Q16 Q15

none 6.23 6.76 11.65

turn ablation 6.23 6.70 11.41

acoustic ablation 5.89 6.73 11.31

lexical ablation 6.05 6.60 11.35

all 5.57 6.52 10.60

The results also show that inclusion of individual turn-taking fea-

tures generally improved performance, particularly for predicting

information overload and overall satisfaction. These features are

quite specific to the AMI meeting structure. So, while we wouldn’t

expect models including these features to generalize directly to

other types of meetings, they do indicate that role specific depen-

dencies are important for predicting satisfaction. Thus, work on

identifying assigned versus emergent group leaders, for example,

is likely to be important for understanding meeting satisfaction.

5.4.3 Lexical Features. Lexical feature ablation results (Table 6)

show that the inclusion of more abstract lexical features (parse, psy-

cholinguistic, sentiment, coherence) are beneficial for predicting

overall satisfaction. Removing bag-of-words features improves per-

formance, although including aggregated sentiment scores helps

somewhat. This indicates that abstraction over affective lexical

content is necessary for this aspect of satisfaction.

Only the parse features were helpful for predicting attention sat-

isfaction, which supports the idea that non-lexical features are more

important for monitoring attention satisfaction. However, specific

lexical content features (GloVe and bag-of-words) were found to be

important for predicting information overload, suggesting specific

lexical content is important for this question.

5.4.4 Performance of Post-Ablation Models. Table 7 shows MSE

results after ablation of features from specific modalities with re-

spect to the full feature set. The experiments show that ablation in

single modalities generally results in improved performance. Using

only selected features from all modalities gives us our overall best

results for all three questions. Thus, for these sorts of machine

learning models features from some modalities can obscure the

usefulness of other modalities for the task.

5.5 Estimating Performance Variability

The results reported above are obtained using leave-one-out cross-

validation. To investigate the variability of our results, we instead

use repeated 10-fold cross-validation, randomizing the folds each

time. Figure 1 shows MSE for Bayesian Ridge Regression models

trained using turn, acoustic, lexical, and combined feature sets (full

and ablated) over 100 repetitions. We performed pairwise t-tests

over the distributions of results to identify significant differences

between models. We use p < 0.05 (Bonferroni corrected) as the

threshold for statistical significance.

As discussed above, we see that individual modalities have differ-

ent relationships with each aspect of satisfaction we investigated.

However, the usefulness of specific modalities can change with

ablation. For example, the turn-taking model is significantly more

predictive than the acoustic model for overall satisfaction (Q7).

However, the performance of the ablated acoustic model is not

significantly different from either the full or ablated turn-taking

models. Similarly, the full acoustic model is not significantly differ-

ent from the lexical model but the ablated version is.

Ablation does not make a significant difference to the turn-taking

model for overall satisfaction, although it does for the other modali-

ties, which follows from the fact that the most turn-taking features

are kept in the ablated model. Similarly, ablation of the acoustic

model does not improve performance for the attention satisfaction,

while ablation does not significantly improve the lexical model for

information overload prediction. This supports the idea that acous-

tic features are more indicative for the attention satisfaction, while

lexical features are more useful for detecting information overload.

However, ablation of the less predictive modalities helps for each of

our questions. Overall, we see that using a subset of features from

all modalities significantly improves performance, particularly for

prediction of overall satisfaction.

The graph of actual versus predicted values for the ablated mod-

els in Figure 2 shows these models capture continuous differences

between meetings, although there is clearly a lot of variance still

unaccounted for. This shows that using features from all modali-

ties helps improve prediction performance, as long as we perform

judicious feature selection.

5.6 Individual Feature Effects

We further investigate the predictiveness of individual features by

looking at the estimated feature coefficients from our Bayesian

Ridge Regression models. We take the mean over estimated coef-

ficient values for each of the models trained in the leave-one-out

cross-validation experiments described above. We take effect sizes

(coefficient magnitude) to be significant when they are more than

three standard errors away from zero. Of the features that passed
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Figure 1: MSE from 10-fold cross-validation repeated 100 times with random folds. Results are shown for full (left, blue) and

ablated (right, red) feature sets for different modalities.

Figure 2: Scatterplots of group scores vs best model predictions with linear model fit. Group scores are centered to the mean

value for each question: q7 = 22.25, q16 = 21.56, q15 = 12.39

ablation, only very few had effect sizes that where not significantly

different from zero.
5

In Table 8, we show the top 10 features with positive and neg-

ative effect sizes. For information overload, the top features are

dominated by lexical content and features describing the project

manager’s (PM) turn-taking behaviour. In particular, higher fre-

quency of the word ‘sorry’ is associated with a higher information

load, as is the attribution verb ‘said’. This indicates that further
analysis is warranted into how these sort of discourse markers are

related to break downs of communication or task structure and to

cognitive load.

Information overload appears to also be positively correlated

with overlaps and barge-ins on project manager turns and is de-

creased when the project manager keeps the floor more. This is

in contrast with the overall satisfaction, where large amounts of

uninterrupted speech from the project manager appears to decrease

satisfaction. In this vein, we see a positive effect for increased turn-

taking freedom (i.e. less predictability of who will speak next) for

overall satisfaction. Having a long pause also seems to be associ-

ated with increased satisfaction, as does use of more imageable and

concrete vocabulary.

5
Features with non-significant effects: Overall satisfaction: δ mfcc(8), total silence

duration, subtl score; Attention Satisfaction: dobj, number of laughs; Information

Load: δ mfcc(6), ‘hand’, ‘nt’, ‘room’, ‘second’, ‘start’, ‘um’

The top features for the attention satisfaction model highlight

more acoustic and syntactic features. We expect that voicing proba-

bility acts as a proxy for the amount of speaking time. In line with

this, we see more evenness in the proportion of speaking time asso-

ciated with each speaker is correlated with positive scores. It also

appears that certain complex syntactic structures may be useful

cues for this aspect of satisfaction. It is possible that participants

use more complicated syntactic structures when they feel they are

being attended to. However, a more fine-grained analysis of their

use (and similarly for the highlighted acoustic features) is required

to understand when and why they appear and how this is related

to participant satisfaction.

6 DISCUSSION

In general, this study is consistent with a long line of research that

has found that multi-modal approaches for understanding speaker

affect are better than unimodal ones [34, 35]. However, the current

work differs from much of past work in looking at multi-party

rather than dyadic conversation, and in the types of satisfaction

ratings collected. Thus, it is hard to directly compare results with

previous work. The most directly comparable work is [12] who

frame call-center user satisfaction prediction as a classification

task. Unlike that study we find that including modalities beyond

turn-taking improves performance. Interestingly, that work focused
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Table 8: Features with most positive and negative effects for the best Bayesian Ridge Regression models. smallcaps indicates

SpaCY based parse features, while ‘italics’ indicates specific word features. For acoustic features, δ indicates the first deriva-

tive of the named feature. Numbers in parentheses indicate coefficient for spectral feature types. For individual turn-taking

features: PM = Project Manager, UI = User Interface Designer

Q7: Overall Satisfaction Q16: Attention Satisfaction Q15: Information Load

Top Positive Effects
1 spurt max. pause duration 0.13 voicing probability 0.12 ‘sorry’ 0.36

2 dative 0.12 δ differential jitter 0.11 ‘having’ 0.27

3 imageability 0.11 parataxis 0.11 ‘kind’ 0.24

4 mfcc(6) 0.10 mfcc(6) 0.11 ‘said’ 0.22

5 DA max. pause dur 0.09 csubj 0.10 ‘decision’ 0.17

6 δ mfcc(3) 0.09 dobj||xcomp 0.10 ‘means’ 0.17

7 concreteness 0.08 δ voicing probability 0.10 PM overlap 0.16

8 punct 0.08 min speaker DA proportion 0.09 differential jitter 0.16

9 turn-taking Freedom 0.08 δ mfcc(14) 0.09 ‘maybe’ 0.15

10 δ mfcc(12) 0.08 lmfb(7) 0.09 PM barged into 0.15

Top Negative Effects
1 advmod||xcomp -0.17 advmod||xcomp -0.20 δ shimmer -0.28

2 PM no. words -0.13 δ lsp(0) -0.12 ‘let’s’ -0.20

3 xcomp -0.10 intj -0.12 mfcc(1) -0.18

4 familiarity -0.10 UI barged onto -0.10 δ jitter -0.18

5 dobj||xcomp -0.09 shimmer -0.09 PM mean time from prev. -0.17

6 attr -0.09 npadvmod -0.08 PM uninterrupted duration -0.17

7 PM uninterrupted duration -0.09 PM no. words -0.08 PM stay rate -0.16

8 PM sum duration -0.09 lsp(6) -0.08 ‘think’ -0.16

9 neg -0.08 conj -0.07 ‘nice’ -0.16

10 cohesion -0.08 max. speaker proportion -0.07 ‘possible’ -0.15

on prosodic features, whereas we found other acoustic features to

have more predictive power. The current work also includes more

abstract lexical features than in that study. This again suggests more

work needs to go into identifying aspects of spoken interaction

relevant to multi-party affect.

Unlike most previous work, the current study examines how

spoken language features relate to different aspects of satisfaction.

The cross-validation results indicate that the current findings are

representative of the types of meetings in this particular corpus.

However, the generalizability of these findings to other types of

multi-party spoken interaction is yet to be seen. A good test case

would be the ELEA corpus [29] where participants are not given

roles and there are clearer measures of task success. However, the

ELEA corpus does not include participant satisfaction ratings. Thus,

further data collection appears to be necessary to test the general-

izability of our approach. The GAP corpus [6] is an ongoing data

collection effort using the same winter survival scenario as the

ELEA corpus, and it does contain participant satisfaction ratings.

Future work will extend our analysis to the ELEA and GAP corpora.

The relatively small amount of available group data is a challenge

for developing data-driven systems in general. Collecting more

multi-party spoken dialogue and participant data to fill the gap is a

long term project. A promising avenue for data collection may be

to look at games that can be played in text or audio modality, e.g.

Settlers of Catan [1]. However, recent work by Murray and Oertel

[24] has found both domain adaptation and data augmentation

strategies substantially improved prediction of group performance

with the ELEA corpus. Thus, we expect these approaches could be

similarly harnessed for detecting group affect in the near future.

The small number of group ratings led us to focus on shallow

regression models with varying regularization components. From

these, Bayesian Ridge Regression appeared the most promising.

However, the results above indicate that modeling more complex

interactions between and within modalities could improve per-

formance for this task. Thus, we would like make use of neural

network based feature learning methods to learn appropriate multi-

modal feature representations given the raw audio and lexical input

[34]. However, given the small amount of labeled data we have for

this task, it is unlikely this will succeed without employing transfer

learning techniques. A potential source could be, for example, using

bottleneck-style features from a recurrent neural network based

turn-taking prediction model [28].

In the current work, we focused on regression analysis to see how

aspects of group satisfaction were reflected by different modalities.

However, to increase comparability with studies, we also plan to

carry out a similar analyses using classification instead of regression.

In particular, we plan to look at the properties and separability of

groups whose members are very satisfied or dissatisfied. We also

plan to investigate prediction of individual participant satisfaction

rather than aggregating at the group level, to provide insight into

cases where a single group consists of members with substantially

differing levels of satisfaction.
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7 CONCLUSION

We investigated using acoustic, lexical and turn-taking features for

predicting group meeting satisfaction as a regression task. Models

using just acoustic or lexical features perform better than the base-

line and the addition of turn-taking features consistently improved

performance. An approach using selected features from all modali-

ties produced the best overall results. That is, features from all three

modalities can be helpful for inferring the cognitive state of partici-

pants after a meeting. However, each aspect of group satisfaction

was reflected by different features from each modality. For example,

feature ablation experiments indicate that more abstract lexical fea-

tures were helpful for predicting overall satisfaction, while specific

lexical cues were important for predicting information overload.

A large range of acoustic features were identified as predictive

for attention satisfaction, while voice quality seemed much more

important for predicting information overload.

In general, it appears that a greater focus on extracting affective

lexical content from spoken interactions appears is warranted for

this task, as is further examination of potential interactions be-

tween features from different modalities in expressing participant

affect. A major constraint for this is the relatively small number of

observations. The discussion above pointed out potential avenues

for making up for this using data augmentation and domain adap-

tation. Future work will also look at how well the current approach

generalizes to the other AMI ratings, as well as understanding lead-

ership and satisfaction in other scenarios such as the ELEA and

GAP corpora.
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