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2 Università Ca’ Foscari Venezia, Italy
{marin,sabina.rossi}@unive.it
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Abstract. In this paper we study an information flow security property
for systems specified as terms of a quantitative process algebra, namely
Performance Evaluation Process Algebra (PEPA). Intuitively, we pro-
pose a quantitative extension of the Non-Interference property used to
secure systems from the functional point view by assuming that the ob-
servers are able to measure also the timing properties of the system, e.g.,
the response time or the throughput.
We introduce the notion of Persistent Stochastic Non-Interference (PSNI)
and provide two characterizations of it: one based on a bisimulation-like
equivalence relation inducing a lumping on the underlying Markov chain,
and another one based on unwinding conditions which demand proper-
ties of individual actions. These two different characterizations naturally
lead to efficient methods for the verification and construction of secure
systems. A decision algorithm for PSNI is presented and an application
of PSNI to a queueing system is discussed.

1 Introduction

In the last decades, security of information systems has become a crucial topic
of research. Finding a formal characterisation of the various properties defined
in the context of security, (e.g., confidentiality, anonymity, integrity, etc.) has
been an active field of research. Beside numerous definitions of security have
been proposed, very few results take into account the time behaviour of the
analysed system. However, it is well-known that from the observation of the
response times of a system, malicious observers can infer some characteristics
that may help an attack to succeed (see, e.g., [2, 3, 5]). In this paper, we propose
a first set of results to cover this gap. We consider systems specified as terms of
a quantitative process algebra, namely Performance Evaluation Process Algebra
(PEPA). In contrast with most the process algebras used in previous well-known
results (e.g., the CCS used for the Non-Interference property [6]), PEPA allows
us to specify random delays to model the quantitative properties of the system.
Besides, the results that we present can be applied to any Markovian formalism



with a synchronisation operator in the style of PEPA cooperation, e.g., the
Kronecker’s product for Stochastic Automata Networks (see [13, 12] and the
references therein).

Intuitively, the idea that we propose is a quantitative extension of the Non-
Interference property that has been widely used to secure systems from the
functional point view [4, 6–8, 18, 16, 17, 14, 15]. Let us consider a system that
performs some actions that are intended to be confidential and some others that
are observable by an external, possibly malicious, user. Roughly speaking, in
the standard, functional, definition of Non-Interference a system S is secure if
any external observer is not able to distinguish the behaviour of S performing
confidential, secret, activities from the behaviour of the same system but pre-
vented from performing any secret action. In our setting, the definition does not
change, however we assume that the observer is able to measure also the timing
properties of that system, e.g., the response time or the throughput. In this pa-
per we consider the strictest situation in terms of security requirements, i.e., the
observer can see any observable execution path with its delays, i.e., he/she can
see the transient behaviour of the system and study correlation properties, av-
erages, etc. The request that for any execution path of the model that performs
unobservable, private, actions there exists a corresponding execution path in the
model that does not perform private actions (and vice versa) clearly implies
that the two models are also indistinguishable when observed in steady-state.
However, as shown in the example of Section 5, the opposite is in general not
true.

We introduce a notion of stochastic Non-Interference which is persistent in
the sense that if a system is secure then all its reachable states are secure too. We
show that such property, named Persistent Stochastic Non-Interference (PSNI)
can be charaterized in terms of a bisimulation-like equivalence relation, between
the whole system and the system prevented from performing confidential activ-
ities. The property that we propose is strictly related to the lumping of Markov
chains since the observation equivalence at the base of our definition relies on
the notion of lumpability [10]. Moreover, we provide a characterization of PSNI
in terms of unwinding conditions which demand properties of individual actions.
These two different characterizations naturally lead to efficient methods for the
verification and construction of secure systems. We prove that PSNI can be
verified in polynomial time with respect to the number of states of a system.

We describe an application of PSNI to a simple queueing system in which
at random instants some private internal operations are performed. Although
the functionality of the system is not altered by these operations (and hence the
standard Non-Interference is satisfied), the response time is worsen and hence
private information can be leaked. We show a simple workaround that makes
the system secure and discuss its implications in terms of overall performance.

Structure of the paper. The paper is organized as follows. In Section 2 we
introduce the process algebra PEPA, its semantics, and the observation equiv-
alence named lumpable bisimilarity. The notion of Persistent Stochastic Non-
Interference (PSNI) and its characterizations are presented in Section 3. In Sec-
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R =
r1

rα(P )

r2
rα(Q)

min(rα(P ), rα(Q)) (α ∈ L)

Table 1: Operational semantics for PEPA components

tion 4 we describe an algorithm to decide whether a PEPA component is PSNI.
Section 5 presents a simple example of a queueing system in which some private
operations are preformed. Finally, Section 6 concludes the paper.

2 The Calculus

PEPA (Performance Evaluation Process Algebra) is a popular Markovian
process algebra introduced in [9] that allows one to model and study the quan-
titative properties of systems. It consists of two basic elements: the components
and the activities. Activities are pairs (α, r) where α is a label or action type
belonging to a countable set A, and r ∈ R+ ∪ {>} is its rate The duration of
an activity is a negative exponential distribution with mean r−1. Action type
τ ∈ A is the unknown type. Activity rates may be > which should be read as
unspecified. The syntax for PEPA terms follows the grammar:

P ::= P ��
L
P | P/L | S

S ::= (α, r).S | S + S | A

where S denotes a sequential component and P denotes a model component which
runs in parallel. Finally, A is a countable set of constants and C denotes the set
of all possible components.

Operational semantics. Table 1 shows the operational semantics of PEPA. The
component (α, r).P carries out the activity (α, r) of type α at rate r and subse-
quently behaves as P . When a = (α, r), the component (α, r).P may be written
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as a.P . P + Q specifies a system which may behave either as P or as Q and
where all the current activities of both P and Q are enabled. The first activity
to complete distinguishes one of the components, P or Q. The other component
of the choice is discarded. The component P/L behaves as P except that any
activity of type within the set L are hidden, i.e., they are relabelled with the un-
known type τ . The meaning of a constant A is given by a defining equation such

as A
def
= P which gives the constant A the behaviour of the component P . The

cooperation combinator ��
L

is in fact an indexed family of combinators, one for
each possible set of action types, L ⊆ A\{τ}. The cooperation set L defines the
action types on which the components must synchronise or cooperate (the un-
known action type, τ , may not appear in any cooperation set). It is assumed that
each component proceeds independently with the activities whose types do not
occur in the cooperation set L (individual activities). However, activities with
action types in L require the simultaneous involvement of both components. The
shared activity will have the same action type as the two contributing activities
and its rate is that of the slower component. If in a component an activity has
rate >, then we say that it is is passive with respect to that action type. In this
case the rate of the shared activity will be that of the other component. For a
given P and action type α, the apparent rate of α in P , denoted by rα(P ), is
the sum of the rates of the α activities enabled in P .

The semantics of each term in PEPA is given via a labelled multi-transition
system where the multiplicities of arcs are significant. In the transition system, a
state or derivative corresponds to each syntactic term of the language and an arc
represents the activity which causes one derivative to evolve into another. The
set of reachable states of a model P is termed the derivative set of P (ds(P ))
and constitutes the set of nodes of the derivation graph of P (D(P )) obtained by
applying the semantic rules exhaustively. We denote by A(P ) the set of all the
current action types of P , i.e., the set of action types which the component P may
next engage in. We denote by Act(P ) the multiset of all the current activities
of P . Finally we denote by A(P ) the union of all A(P ′) with P ′ ∈ ds(P ), i.e.,
the set of all action types syntactically occurring in P . For any component P ,
the exit rate from P will be the sum of the activity rates of all the activities
enabled in P , i.e., q(P ) =

∑
a∈Act(P ) ra, with ra being the rate of activity a. If P

enables more than one activity, |Act(P )| > 1, then the dynamic behaviour of the
model is determined by a race condition. As a consqeuence, the nondeterministic
branching of the pure process algebra is replaced by a probabilistic branching.
Thanks to the exponential assumption, the probability that a particular activity
completes is the ratio between its rate and the exit rate from P .

Underlying Markov Chain. Let P
def
= P0 with ds(P ) = {P0, . . . , Pn} be a fi-

nite PEPA model. Then, the stochastic process X(t) on the space ds(P ) is a
continuous time Markov chain [9].

The transition rate between two states Pi and Pj is denoted by q(Pi, Pj) and
corresponds to rate at which the system changes from behaving as component
Pi to behaving as Pj , i.e., it is the sum of the activity rates labelling arcs which
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connect the node corresponding to Pi to the node corresponding to Pj in the
derivation graph. Formally:

q(Pi, Pj) =
∑
a∈Act(Pi|Pj) ra

with Pi 6= Pj and Act(Pi|Pj) = {| a ∈ Act(Pi)| Pi
a−→ Pj |}. When Pj is not a

one-step derivative of Pi we set q(Pi, Pj) = 0. In the following, when possible,
we will write qij instead of q(Pi, Pj). In the definition of the infinitesimal gener-
ator Q of X(t), qij , i 6= j, are the off-diagonal elements of the matrix whereas
the diagonal elements are, as usual, the negative sum of the row non-diagonal
elements, i.e., qii = −q(Pi). For any finite and irreducible PEPA model P , the
steady-state distribution Π(·) exists and it may be found by solving the prob-
ability normalising equation and the linear system of global balance equations:∑
Pi∈ds(P ) Π(Pi) = 1 and ΠQ = 0. Another notion that will be used in the

paper is that of conditional transition rate from Pi to Pj via an action type α,
denoted by q(Pi, Pj , α). This is the sum of the activity rates labelling arcs con-
necting the corresponding nodes in the derivation graph which are also labelled
by the action type α. It is the rate at which a system behaving as component
Pi evolves to behaving as component Pj as the result of completing a type α
activity. The total conditional transition rate from P to S ⊆ ds(P ), denoted
q[P, S, α], is defined as

q[P, S, α] =
∑
P ′∈S

q(P, P ′, α)

where q(P, P ′, α) =
∑
P

(α,rα)−−−−→P ′
rα.

Observation Equivalence When we study a system by means of a process alge-
braic model, actions, rather than states, are used to capture its observable be-
haviour. Therefore, we introduce an equivalence notion in which components are
regarded as equal if an external observer sees them performing exactly the same
actions. In this section we recall a bisimulation-like relation, named lumpable
bisimulation, for PEPA models that we previously introduced in [10].

Two PEPA components are lumpably bisimilar if there exists an equivalence
relation between them such that, for any action type α different from τ , the total
conditional transition rates from those components to any equivalence class, via
activities of this type, are the same.

Definition 1. (Lumpable bisimulation) An equivalence relation over PEPA com-
ponents, R ⊆ C×C, is a lumpable bisimulation if whenever (P,Q) ∈ R then for
all α ∈ A and for all S ∈ C/R such that

– either α 6= τ ,
– or α = τ and P,Q 6∈ S,

it holds
q[P, S, α] = q[Q,S, α] .
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Notice that, in contrast with the notion of strong equivalence [9], lumpable
bisimulation allows arbitrary activities with type τ among components belonging
to the same equivalence class, and therefore it is less strict.

We are interested in the relation which is the largest lumpable bisimulation,
formed by the union of all lumpable bisimulations.

Definition 2. (Lumpable bisimilarity) Two PEPA components P and Q are
lumpably bisimilar, written P ≈l Q, if (P,Q) ∈ R for some lumpable bisimula-
tion R, i.e.,

≈l =
⋃
{R | R is a lumpable bisimulation}.

≈l is called lumpable bisimilarity and it is the largest symmetric lumpable bisim-
ulation over PEPA components.

In [10] we proved that lumpable bisimilarity is a congruence for the so-called
evaluation contexts, i.e., if P1 ≈l P2 then

– a.P1 ≈l a.P2;

– P1/L ≈l P2/L;

– P1 ��
L
Q ≈l P2 ��

L
Q for all L ⊆ A.

3 Persistent Stochastic Non-Interference

The security propery named Persistent Stochastic Non-Interference (PSNI)
tries to capture every possible information flow from a classified (high) level of
confidentiality to an untrusted (low) one. A strong requirement of this definition
is that no information flow should be possible even in the presence of malicious
processes that run at the classified level.

The definition of PSNI is based on the basic idea of Non-Interference [8]:
“No information flow is possible from high to low if what is done at the high
level cannot interfere in any way with the low level”.

More precisely, the notion of PSNI consists of checking all the states reach-
able by the system against all high level potential interactions.

In order to formally define our security property, we partition the set A\{τ}
of visible action types, into two sets, H and L of high and low level action types.
A high level PEPA component H is a PEPA term such that for all H ′ ∈ ds(H),
A(H ′) ⊆ H, i.e., every derivative of H may next engage in only high level actions.
We denote by CH the set of all high level PEPA components.

A system P satisfies PSNI if for every state P ′ reachable from P and for
every high level process H a low level user cannot distinguish P ′ from P ′ ��

H
H.

In other words, a system P satisfies PSNI if what a low level user sees of the
system is not modified when it cooperates with any high level process H.

In order to formally define the PSNI property, we denote by P \H the PEPA
component (P ��

H
H̄) where H̄ is any high level process that does not cooperate

with P , i.e., for all P ′ ∈ ds(P ), A(P ′)∩A(H̄) = ∅. Intuitively P \H denotes the
component P prevented from performing high level actions.
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First we prove that P \H is well defined, i.e., it does not depend on H̄. The
proof follows by structural induction on P .

Lemma 1. Let P be a PEPA component and H̄ be a high level process that does

not cooperate with P . P ��
H
H̄

(α,r)−−−→ Q if and only if Q is of the form P ′ ��
H
H̄

and P
(α,r)−−−→ P ′ with α ∈ L ∪ {τ}.

Notice that the above lemma applies also to P ′ and more in general to all the
processes in ds(P ), since they do not cooperate with H̄.

Lemma 2. Let P be a PEPA component. Let H̄1 and H̄2 be two high level pro-
cesses that do not cooperate with P , i.e., for all P ′ ∈ ds(P ), A(P ′)∩A(H̄i) = ∅
for i = 1, 2. The derivation graphs D(P ��

H
H̄1) and D(P ��

H
H̄2) are isomorphic

as graphs with labels on the edges.

The formal definition of PSNI is as follows.

Definition 3. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P ), ∀H ∈ CH ,

P ′ \ H ≈l (P ′ ��
H
H)/H .

We introduce a novel bisimulation-based equivalence relation over PEPA
components, named ≈hcl , that allows us to give a first characterization of PSNI
with no quantification over all the high level components H. In particular, we
show that P ∈ PSNI if and only if P \ H and P are not distinguishable with
respect to ≈hcl . Intuitively, two processes are ≈hcl -equivalent if they can simulate
each other in any possible high context, i.e., in every context C[ ] of the form
( ��

H
H)/H where H ∈ CH . Observe that for any high context C[ ] and PEPA

model P , all the states reachable from C[P ] have the form C ′[P ′] with C ′[ ]
being a high context too and P ′ ∈ ds(P ).

We now introduce the concept of lumpable bisimulation on high contexts: the
idea is that, given two PEPA models P and Q, when a high level context C[ ]
filled with P executes a cetain activity moving P to P ′ then the same context
filled with Q is able to simulate this step moving Q to Q′ so that P ′ and Q′ are
again lumpable bismilar on high contexts, and vice-versa. This must be true for
every possible high context C[ ]. It is important to note that the quantification
over all possible high contexts is re-itereted for P ′ and Q′.

We use the following notation. For a PEPA model P , α ∈ A, S ⊆ ds(P ) and
a high context C[ ] we define:

qC(P, P ′, α) =
∑

C[P ]
(α,rα)−−−−→C′[P ′]

rα

and
qC [P, S, α] =

∑
P ′∈S

qC(P, P ′, α) .

The notion of lumpable bisimulation on high contexts is defined as follows:
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Definition 4. (Lumpable bisimilarity on high contexts) An equivalence relation
over PEPA components, R ⊆ C×C, is a lumpable bisimulation on high contexts
if whenever (P,Q) ∈ R then for all high context C[ ], for all α ∈ A and for all
S ∈ C/R such that

– either α 6= τ ,
– or α = τ and P,Q 6∈ S,

it holds

qC [P, S, α] = qC [Q,S, α] .

Two PEPA components P and Q are lumpably bisimilar on high contexts, writ-
ten P ≈hcl Q, if (P,Q) ∈ R for some lumpable bisimulation on high contexts
R, i.e.,

≈hcl =
⋃
{R | R is a lumpable bisimulation on high contexts}.

≈hcl is called lumpable bisimilarity on high contexts and it is the largest sym-
metric lumpable bisimulation on high contexts over PEPA components.

The next theorem provides a characterization of PSNI in terms of ≈hcl .

Theorem 1. Let P be a PEPA component. Then

P ∈ PSNI iff P \ H ≈hcl P .

We now show how it is possible to give a characterization of PSNI avoiding
both the universal quantification over all the possible high level components and
the universal quantification over all the possible reachable states.

Before we have shown how the idea of “being secure in every state” can be
directly moved inside the lumpable bisimulation on high contexts notion (≈hcl ).
However this bisimulation notion implicitly contains a quantification over all
possible high contexts. We prove that ≈hcl can be expressed in a rather simpler
way by exploiting local information only. This can be done by defining a novel
equivalence relation which focuses only on observable actions that do not belong
to H. More in detail, we define an observation equivalence where actions from
H may be ignored. We introduce the notion of lumpable bisimilarity up to H.

Definition 5. (Lumpable bisimilarity up to H) An equivalence relation over
PEPA components, R ⊆ C × C, is a lumpable bisimulation up to H if whenever
(P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

– if α 6∈ H ∪ {τ} then

q[P, S, α] = q[Q,S, α] ,

– if α ∈ H ∪ {τ} and P,Q 6∈ S, then

q[P, S, α] = q[Q,S, α] .
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Two PEPA components P and Q are lumpably bisimilar up to H, written P ≈Hl
Q, if (P,Q) ∈ R for some lumpable bisimulation up to H, i.e.,

≈Hl =
⋃
{R | R is a lumpable bisimulation up to H}.

≈Hl is called lumpable bisimilarity up to H and it is the largest symmetric
lumpable bisimulation up to H over PEPA components.

The next theorem shows that the binary relations ≈hcl and ≈Hl are equivalent.

Theorem 2. Let P and Q be two PEPA components. Then

P ≈hcl Q if and only if P ≈Hl Q .

Theorem 2 allows us to identify a local property of processes (with no quantifi-
cation on the states and on the high contexts) which is a necessary and sufficient
condition for PSNI. This is stated by the following corollary:

Corollary 1. Let P be a PEPA component. Then

P ∈ PSNI iff P \ H ≈Hl P .

Finally we provide a characterization of PSNI in terms of unwinding condi-
tions which demand properties of individual activities. In practice, whenever a
state P ′ of a PSNI PEPA model P may execute a high level activity leading it
to a state P ′′, then P ′ and P ′′ are indistinguishable for a low level observer.

Theorem 3. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P ),

P ′
(h,r)−−−→ P ′′ implies P ′ \ H ≈l P ′′ \ H .

Using the equivalence relation ≈Hl this can be reformulated as follows.

Theorem 4. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P ),

P ′
(h,r)−−−→ P ′′ implies P ′ ≈Hl P ′′ .

Theorems 2, 3 and 4 provide different characterizations of PSNI which nat-
urally lead to efficient methods for the verification and construction of secure
systems. We also prove some compositionality results that allow us to check
the security of a system by only verifying the security of its subcomponents. In
particular we prove that PSNI is compositional with respect to the low prefix,
hiding, and cooperation over a set of low actions.

Proposition 1. Let P and Q be two PEPA components. If P,Q ∈ PSNI, then

9



– (α, r).P ∈ PSNI for all α ∈ L ∪ {τ};
– P/L ∈ PSNI for all L ⊆ A;
– P ��

L
Q ∈ PSNI for all L ⊆ L.

We also prove that if P ∈ PSNI then the equivalence class [P ] with respect
to lumpable bisimilarity ≈l is closed under PSNI.

Proposition 2. Let P and Q be two PEPA components. If P ∈ PSNI and
P ≈l Q then also Q ∈ PSNI.

4 A Decision Algorithm for PSNI

In this section we briefly describe an algorithm to decide whether a PEPA
component is PSNI. We first exploit the characterization of PSNI given in Corol-
lary 1, i.e., we provide an algorithm that given in input two PEPA components
P and Q having finite derivative graphs allows one to decide whether P ≈Hl Q.
In virtue of Corollary 1 this will allow us to decide whether a process is PSNI. As
observed in [10] even if the set C of PEPA components is infinite, since we are in-
terested in P ≈Hl Q we can safely focus on the graph D(P )∪D(Q). We intend to
exploit the algorithm introduced in [1] for solving the label-compatibility prob-
lem. To this aim we need to introduce the notion of directed labeled weighted
graphs, the label-compatibility problem, and to show how our problem can be
mapped into a label-compatibility one.

Definition 6. (Directed labeled weighted graph) A directed labeled weighted
graph is a tuple G = (V,Lab,E,w) where:

– V is a finite set of vertices;
– Lab is a finite set of labels;
– E ⊆ V × V × Lab is a finite set of labeled edges;
– w : E → R is a weighting function that associates a value to each edge.

Given V ′ ⊆ V , we denote by w(v, V ′, a) the sum of the weights of the edges
from v to V ′ having label a.

The following definition of compatibility introduced in [1] extends that of
[19] to directed labeled weighted graphs.

Definition 7. (Label-Compatibility Problem) Let G = (V,Lab,E,w) be a di-
rected labeled weighted graph and R ⊆ V ×V be an equivalence relation over V . R
is said to be label-compatible with G if for each a ∈ Lab, for each C,C ′ ∈ V/R,
and for each v, v′ ∈ C it holds that w(v, C ′, a) = w(v′, C ′, a).

Let G = (V,Lab,E,w) be a directed labeled weighted graph the labeled weighted
compatibility problem over G requires to compute the largest equivalence relation
label-compatible with G.

In [1] it has been proved that the label-compatibility problem always has a
unique solution. We now introduce the graph that allows us to map our problem
of deciding P ≈Hl Q into a label compatibility problem.
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Definition 8. (Up to H Lumping Graph) Let P and Q be PEPA components.
The up to H lumping graph of P ∪ Q is the directed labelled weighted graph
LHP∪Q = (VP∪Q,A, EP∪Q, wP∪Q), where:

– VP∪Q is ds(P ) ∪ ds(Q)
– EP∪Q is the set of labeled edges

EP∪Q = {(R,R′, α) |R (α,r)−−−→ R′} ∪ {(R,R, α) | and α ∈ H ∪ {τ}}

with R and R′ in VP∪Q
– wP∪Q is the function which associates to each edge in EP∪Q the value

wP∪Q(R,R′, α) =

{
q(R,R′, α) ifα 6∈ H ∪ {τ} ∨R 6= R′

−q[R, VP∪Q \ {R}, α] otherwise

When P and Q coincide we use LHP to denote LHP∪P .

Theorem 5. Let P and Q be two PEPA components. It holds that P ≈Hl Q if
and only if in the largest equivalence relation label-compatible with LHP∪Q the
vertices P and Q are equivalent.

As an immediate consequence of the above theorem we get that we can
directly exploit the algorithm presented in [1] with initial relation the total
relation over VP∪Q to decide ≈Hl in polynomial time with respect to the size
of the graph D(P ) ∪ D(Q). We refer to such algorithm as LCW ( )4.

Corollary 2. Let P and Q be two PEPA components. Let LHP∪Q be the up to
H lumping graph of P∪Q and LCW ( ) be the algorithm reported in the Appendix.
LCW (LHP∪Q) decides P ≈Hl Q in time O(|VP∪Q|+ |EP∪Q| log |VP∪Q|).

Notice that we are interested in deciding whether P is PSNI, i.e., whether
P \ H ≈Hl P . Exploiting the above result together with Corollary 1 this can
be done by computing both D(P \ H) and D(P ). From these two LH(P\H)∪P
can be determined in linear time and then LCW ( ) can be exploited. However,
from Theorem 5 together with Theorem 4 we can decide whether P is PSNI by
simply working on D(P ) as stated in the following theorem.

Theorem 6. Let P be a PEPA component. Let CompP be the largest equiv-
alence relation label-compatible with LHP . P is PSNI if and only if whenever

P ′
(h,r)−−−→ P ′′ with P ′ ∈ ds(P ) and h ∈ H it holds that (P ′, P ′′) ∈ CompP .

This last result lowers the multiplicative constants hidden in the complex-
ity result of Theorem 5, since it avoids the computation and also the manage-
ment of D(P \H). Moreover, it substantially reduces the effective complexity of
the computation for many non-PSNI processes. As a matter of fact during the
computation of CompP as soon as a split separates two vertices that are con-
nected through a high level transition we can stop the computation and return
P 6∈ PSNI. This also suggests strategies for correcting insecure processes.

4 Given a graph G = (V,Lab,E,w) the use of LCW (G) in this paper corresponds to
a call to LCW (G,V × V ) in [1].
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L, λL
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L, µL L, 2µLL, 2µL

H,λHH,λHH,λH H,µHH,µHH,µH

Fig. 1: LTS of the the model that does not satisfy PSNI.

5 Example

We consider a distributed system with n ≥ 2 servers where ordinary jobs
arrive according to a homogeneous Poisson process with intensity λL. Arrival and
departures of ordinary jobs can be observed by a malicious user. The system has
an internal job that alternates a phase of sleeping, whose duration is exponential
with mean λ−1H , and a phase of working where it uses one of the n servers for an
exponentially distributed time with mean µ−1H . Each of the ordinary customers
requires a service time which is exponentially distributed with mean µ−1L . If the
internal job becomes active and none of the servers is free, then one random
ordinary job is preempted and the internal job is executed immediately. Given
the exponential distribution of the service time, it is not necessary to discuss the
resume policy for the preempted jobs. The waiting room has infinite capacity.
The goal is that of hiding the state of the system when the internal process is
being executed to the external, possibly malicious, observers. These know how
the system works (including the value of µL) and the number of available servers.

Notice that in this setting the stability condition is given by:

λL < (n− 1)µL + µL
µH

µL + µH

where the last factor is the probability that the internal process is not active.
Fig. 1 shows the labelled transition system (LTS) of the PEPA specification of
our model as it has been described so far for n = 2. States n and nH denote
the system when it contains n ordinary jobs and the internal process is not
active (state n) and active (state nH), respectively. It is interesting to observe
that if the malicious user can only estimate the throughput of the ordinary
jobs, then the system could be considered safe since this must be λL if the
stability condition is met. Nevertheless, a smart observer could pay attention
to the transient behaviour of the system, and hence could reasonably estimate
the number of ordinary jobs in the system. For instance if n = 2, and in a time
interval we have k arrivals and h departures, such that k− h ≥ 2, then the next
departure of an ordinary job should occur in an expected time of (2µL)−1 if the
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0 1 2

L, λL

L, λLL, λL

L, λLL, λL

L, λL
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L, µL

L, µLL, µLL, µL

H,λHH,λHH,λH H,µHH,µHH,µH

Fig. 2: LTS of the model that satisfies PSNI.

0∗ 1∗ 2∗

L, λL L, λLL, λL

L, µLL, µLL, µL

Fig. 3: LTS of the model as seen by an external observer.

internal job is not active and µ−1L , otherwise. In other words, the observer can
apply some statistical methods to infer the probability that the internal job is
active from the observation of the transient behaviour of the system.

Formally, we can say that the model of Fig. 1 does not satisfy the conditions
of PSNI. In fact, the rate outgoing from state iH to (i − 1)H is different from
from that going from i to i − 1, where i > 1. One simple, but expensive, way
to obtain a secure system according to PSNI is that of devoting one server to
the execution of the internal process. The system of Fig. 1 can be modified
to obtain that shown in Fig. 2. With these modification, the observer cannot
distinguish the model of Fig. 2 from that of Fig. 3. However, in the general case
of n servers, the stability condition becomes λL < (n− 1)µL, and the expected
response time is higher than that of the original model. Finally, we notice that
due to the independence between the internal process behaviour and the ordinary
job service, in stability, the stationary probability π is:

π(i) =

{
(1− λL/µL)µH/(λL + µH)(λL/µL)i if i = 0, 1, . . .

(1− λL/µL)λH/(λL + µH)(λL/µL)i if i = 0H , 1H , . . . .

Clearly, the stationary probability of the model of Fig. 3 is that of a M/M/1
queue, i.e., π∗(i∗) = (1 − λL/µL)(λL/µL)i and we can observe that π∗(i∗) =
π(i) + π(iH), as expected by lumping theory [11].
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6 Conclusion

In this paper we presented a persistent information flow security property
for stochastic processes specified as terms of a quantitative process algebra,
namely Performance Evaluation Process Algebra (PEPA). Our property, named
Persistent Stochastic Non-Interference (PSNI ) is based on a bisimulation based
observation equivalence for the PEPA terms which induces a lumping on the
underlying Markov chain. The aim of our definition is that of protecting systems
from maliciuos attachers which are able to measure also the timing properties
of the system, e.g., the response time or the throughput.

In this paper we also deal with compositionality issues and prove that PSNI is
compositional with respect to low prefix, cooperation on low actions and hiding.

As a future work we plan to relax the definition of Non-Interference by in-
troducing metrics that allow us to measure the security degree of a system in
terms of probabilities.
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