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ABLE: blockwise site frequency spectra for
inferring complex population histories and
recombination
Champak R. Beeravolu1,2* , Michael J. Hickerson1,3,4, Laurent A. F. Frantz5,7 and Konrad Lohse6

Abstract

We introduce ABLE (Approximate Blockwise Likelihood Estimation), a novel simulation-based composite likelihood
method that uses the blockwise site frequency spectrum to jointly infer past demography and recombination. ABLE is
explicitly designed for a wide variety of data from unphased diploid genomes to genome-wide multi-locus data (for
example, RADSeq) and can also accommodate arbitrarily large samples. We use simulations to demonstrate the
accuracy of this method to infer complex histories of divergence and gene flow and reanalyze whole genome data
from two species of orangutan. ABLE is available for download at https://github.com/champost/ABLE.

Keywords: Inference, Population history, Composite likelihood, Recombination, Admixture, Orangutan

Background
Demographic history has played a major role in shaping
genetic variation. However, using this information in an
efficient way to infer even very simple models of pop-
ulation history remains challenging: a complete descrip-
tion of the history of genomic samples includes both the
ancestral process of coalescence and recombination, as
captured by the ancestral recombination graph (ARG).
While the ARG is straightforward to simulate, in practice,
the number of recombination and coalescent events in
any stretch of genome generally exceeds the information
(i.e. number of mutations) available to reconstruct them.
Thus, it is currently not feasible to perform demographic
inference by integrating over all realizations of the ARG
that are compatible with a genomic dataset [1].
Current methods dealing with genomic data tackle

this problem by making simplifying assumptions about
recombination [2]. Methods based on single nucleotide
polymorphisms (SNPs) ignore linkage information alto-
gether and make use of the site frequency spectrum (SFS)
[3, 4], which is a function only of the expected length of
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genealogical branches [5, 6]. While computing (or approx-
imating) likelihoods based on the SFS is very fast, much
of the information about past demography is sacrificed
and recent studies have shown that different demographic
histories can give rise to a similar SFS [7].
Other methods seek to use linkage information by

approximating recombination, i.e., the sequential transi-
tions between local genealogies along the genome, as a
Markov process [8, 9]. Methods based on the Sequen-
tial Markov Coalescent (SMC, [10]) are computationally
intensive, limited to relatively simple models [11] or small
samples [8, 12, 13] and require good genome assemblies
which are presently available only for a handful of species.
Multi-locus methods exploit information contained in

short-range linkage by assuming that recombination is
negligible within short blocks of sequence [14–18]. How-
ever, this approach potentially biases demographic infer-
ence and still loses information contained in longer range
linkage disequilibrium (LD), which is expected to result
from historical admixture or drastic changes in popula-
tion size. While recombination within blocks has been
included in multi-locus inference, this currently does not
scale up to whole genome data [19]. Interestingly, the few
methods capable of jointly inferring recombination (using
the SMC) and demography using whole genomes [12, 13]
can only analyze a couple of samples or are restricted to
specific population histories [20, 21].
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To overcome these limitations, we introduce a com-
posite likelihood (CL) framework which is highly flexible
both in terms of the demographic histories and data that
can be accommodated. We can infer arbitrarily complex
demographic histories along with the average recombina-
tion rate using multiple whole genomes or genome-wide
multi-locus data (e.g., RADSeq) catering to the needs
of researchers studying model or non-model organisms,
respectively. Our method builds upon an existing ana-
lytic approach [16, 18] that partitions the genome into
blocks of equal (and arbitrary) size and summarizes the
genome-wide pattern of linked polymorphism as a fre-
quency distribution of blockwise site frequency spectra.
We refer to this straightforward extension of the SFS as the
distribution of blockwise SFS configurations, or simply
the bSFS. The bSFS is a richer summary of sequence varia-
tion than the SFS, as it retains information on the variation
in genealogies contained within the blocks. We useMonte
Carlo simulations from the coalescent with recombination
to approximate the bSFS. This overcomes the limitations
of exact likelihood calculations [18, 22] based on the bSFS
by accommodating larger samples of genomes and includ-
ing recombination within blocks as a free parameter. Our
approach is implemented in the software Approximate
Blockwise Likelihood Estimation (ABLE) which is freely
available (https://github.com/champost/ABLE).
The paper is structured as follows: we first describe how

the bSFS can be approximated for samples from single and
multiple populations both with and without recombina-
tion. The accuracy of our approximation is assessed by
comparing it to analytic results for small samples in the
absence of intra-block recombination under three differ-
ent demographic models. We then illustrate the perfor-
mance of ABLE on real data by analyzing whole genomes
from the two species of orangutan (Pongo pygmaeus and
P. abelii) which inhabit the islands of Borneo and Suma-
tra, respectively [23, 24]. These sister taxa represent an
excellent test case as their demographic history has been
the subject of several previous analyses [12, 13, 19, 23–
25] and the geological knowledge of the Sunda shelf is
extensive [26]. The best supported history we infer is a
previously unexplored scenario of population divergence
(about a million years ago) followed by a discrete pulse
of bidirectional admixture which coincides with a cyclical
sea-level change in South East Asia [26]. We also obtain
plausible estimates for the per-generation genome-wide
recombination rate. Finally, we make use of extensive sim-
ulations to asses the inferential power of our approach.
We explore the ability of ABLE to distinguish between
various two-population models and investigate the effects
of sample and block size on parameter estimates. We
also compare the performance of a small-sample inference
with ABLE to that based on the SFS (∂a∂i [3]) using larger
samples.

Results
The blockwise SFS (bSFS)
Consider a random sample of sequence blocks of fixed
length. In practice, such sequence blocks (colored seg-
ments in Fig. 1a) may be obtained by partitioning an
available reference genome [22, 27] or from reduced
representation sequencing strategies, such as restriction
site-associated DNA (RADSeq, [28]).
Given a sample of b genomes, the polymorphic sites in

each sequence block can be summarized by a vector k of
length b − 1 (Fig. 1b). For a single panmictic population,
k is the SFS of the block and summarizes polymorphic
sites within it as counts of singletons, doubletons, etc.
Following [22], the bSFS is essentially a frequency spec-
trum of site frequency spectrum types across blocks (i.e.,
a histogram of histograms) and can be thought of as a
straightforward extension of the SFS that accounts for
linkage over a fixed length of sequence block (Fig. 1a).

a

b

Fig. 1 The blockwise SFS (bSFS). a The bSFS is computed by
partitioning sequences into short blocks, identifying mutation
configurations, and noting their respective counts. b Example bSFS
configurations for a sample from a single population. Genealogical
relationships for a sample of size 5 can be generated by three types of
topologies (top, middle, and bottom rows). Ignoring information on
the phase, the branches can be classified by the number of tips they
are ancestral to, i.e., singletons (red), doubletons (blue), tripletons
(orange), and quadrupletons (black). Further, mutations on these
branches give rise to different bSFS configurations, i.e., vectors k

https://github.com/champost/ABLE
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The bSFS readily extends to samples from multiple
populations where the entries of k are counts of muta-
tion types defined by the joint SFS [6]. One advan-
tage of the bSFS is that we only require unphased data
as mutations are not distinguished based on unique
branches but branch classes (singletons, doubletons, etc.,
see Fig. 1b). In the absence of outgroup information
and/or to avoid biases due to errors when polarizing with
distant outgroups, the bSFS may be folded. The analytical
treatment of Lohse et. al. [18] (see also [22]) assumes
non-recombining blocks and uses a recursion for the
generation function of genealogies to derive the probabil-
ity of bSFS configurations for small samples and simple
demographic histories involving one or two populations.
This allows for a direct comparison with the approximate
composite likelihood developed here.

Approximating the bSFS
The bSFS can be approximated for any given population
history while accommodating for intra-block recombina-
tion (see the “Methods” section). In summary, we use
coalescent simulations to sample the space of blockwise
ancestral recombination graphs (ARGs) and compute ana-
lytically the probability of observing all bSFS configura-
tions in the data conditional on a particular simulated
ARG. Dealing with mutations analytically minimizes both
error and computational costs: each simulation replicate
contributes to the approximate likelihood of all configura-
tions compatible with it. We used a two-step optimization
procedure to hone in on the maximum composite like-
lihood estimate (MCLE) for a given demographic model
(see the “Methods” section).

Extending the bSFS to arbitrarily large samples
In this paper, we also extend the bSFS by following an
obvious and popular [29, 30] strategy that allows analysis
of arbitrarily large samples at minimal computational cost
by calculating composite likelihoods across subsamples.
For instance, depending on the ploidy of the data, a three-
population sample containing 24, 50, and 10 genomes,
respectively, can now be represented by a cbSFS (or com-
posite bSFS) by subsampling a single genome per popula-
tion (for haploid data) or every two consecutive genomes

for diploid data and so forth. The size of the cbSFS is thus
significantly smaller compared to the bSFS of the three-
population example. This can be seen as a projection of the
bSFS (similar to a downprojection of the SFS in ∂a∂i) from
a larger sample size to a smaller sample size. The cbSFS
extension in ABLE also improves upon the classic bSFS
scheme [16, 27] which was limited to relatively small sam-
ple sizes due to the significant increase in size of the latter
with sample size (see Table 1 from [18]). Further informa-
tion on how to generate a cbSFS can be found online (see
“Availability of data and materials”).

Comparison with analytic results
To study how the number of sampled ARGs summarized
by the bSFS affects the convergence of the approximate CL
to the analytical expectations (i.e. assuming no recombi-
nation within blocks), we considered small samples under
three simple demographic models: a single population
(b = 4, no outgroup) which doubled in effective size (Ne)
at time T = 0.2 (Fig. 2a), a history of isolation between
two populations A and B (at time T = 1.2) followed by
continuous unidirectional migration (IM) at a rate M =
4Nem = 0.5 migrants per generation from A to B (b = 2
per population, no outgroup, Fig. 2b), and a history of
isolation between three populations (b = 1 per popu-
lation with outgroup) with a recent instantaneous and
unidirectional admixture (IUA) that transfers a fraction f
of lineages from population A to B (Fig. 2c). Parameters
under the latter model were chosen to correspond roughly
to the divergence and admixture history of humans and
Neandertals: f = 0.06, T2 = 0.6, T1 = 0.15, Tgf = 0.125
[27]. All times were measured in 2Ne generations. For the
sake of simplicity, the models in Fig. 2b, c assume identi-
cal Ne for all current and ancestral populations (see also
[31, 32]). The analytic solution for the bSFS under these
models was previously obtained using an automation
for the generating function implemented inMathematica
[18, 22, 27].
The Monte Carlo approximation to the distribution

of bSFS configurations matches the analytic prediction
extremely well (Fig. 3) even when only small samples of
genealogies are used, e.g., 1000 simulated replicates. This
is perhaps surprising, given that this sample size is on

Table 1 Point estimates for the demographic history of orangutan species obtained from 2-kb blockwise data (cf. Fig. 4)

Model NA r × 10−8 T NS NB αS αB 4NAmS→B 4NAmS←B T2 fS→B fS←B lnL

M1 18,200 1.58 387,000 − 907,477

M2 1380 2.06 294,000 22,100 8610 − 891,341

M3 2180 2.09 306,000 21,800 5490 − 0.003 − 0.728 − 891,308

M4 1260 2.11 320,000 22,300 8210 0.025 0.000 − 892,423

M5 1280 1.87 1,807,000 21,600 8850 1.568 2.202 274,000 − 892,225

M6 1420 2.73 816,000 22,400 8910 295,000 0.121 0.267 − 891,139



Beeravolu et al. Genome Biology  (2018) 19:145 Page 4 of 16

Fig. 2 Three demographic models for which ABLE was compared against analytic expectations for the bSFS. a A single population with a sudden
reduction in Ne . b IM: isolation between populations A and B followed by continuous unidirectional migration (from A to B) at rateMmigrants per
generation. c IUA: isolation between three populations A, B, and C followed by unidirectional admixture of a fraction f from A to B. Analytic
expectations for these models can be found in [18, 22, 27]

the same order as the number of unique bSFS configu-
rations. For example, for a sample of b = 2 from the
two populations IM model (Fig. 2b) and counting up to
kmax = 4 mutations per SFS type and block, there are 396
unique bSFS configurations. Interestingly, the probability

of bSFS configurations involving fixed differences (Fig. 3;
yellow middle row) can be approximated accurately with
fewer sampled genealogies than the probability of con-
figurations that include shared polymorphism (Fig. 3;
green middle row). This is expected given that we expect

Fig. 3 Convergence of the approximated bSFS. The probabilities of bSFS configurations approximated using ABLE converge to the analytic
prediction with increasing numbers of simulated genealogies (100, 1,000, and 10,000). Results are shown for models specified in Fig. 2a, b, c (top,
middle, and bottom rows) and assuming no recombination within blocks. Block lengths are given in terms of the scaled mutation rate per block and
were set to θ = 0.6, 1 and 2.4 for models shown in Fig. 2a, b, c respectively. For the IM model (Fig. 2b, middle row), bSFS configurations with shared
polymorphisms are shown in green, those involving fixed differences in yellow, and those with neither in blue. For the IUA model (Fig. 2c, here in
the bottom row), blocks with topology (A, (B, C)), (C, (A, B)), and (B, (A, C)) are shown in yellow, green, and orange, respectively. Topologically
uninformative blocks are in blue
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greater Monte Carlo error for incongruent genealogies
that can induce configurations involving shared polymor-
phisms because they have lower probability than con-
gruent genealogies (0.16 vs. 0.84 for the IM history we
consider). Likewise, for the IUA model, the probability
of bSFS configurations involving mutations shared by A
and B is harder to approximate than that of (B, (A,C))

configurations (green vs. orange in Fig. 3, bottom row).

Orangutan analyses
To demonstrate the performance of the ABLE frame-
work on real data, we re-analyzed whole genome data
[23, 24] for the two species of orangutan (Pongo
pygmaeus and P. abelii) which inhabit Borneo and
Sumatra, respectively (but see [33]). These sister taxa
are an excellent test case given that their demo-
graphic history has been the subject of several pre-
vious analyses [12, 13, 19, 23–25]. We selected a
subsample consisting of two diploid genomes per
species (i.e., b = 4 per island) and partitioned the
entire autosome into blocks of 2 kb (on average 8.22
SNPs/block). After filtering, a total length of 163 Mb
of sequence was retained in the final dataset (see the
“Data processing” section for details), which consisted
of 36,544 unique bSFS configurations. To investigate the
effect of block size on our inference, all analyses were
repeated using shorter blocks (500 bp; 9085 unique bSFS
configurations) which were obtained by dividing each
2-kb block.
To facilitate comparison with previous studies (in keep-

ing with the two-species paradigm), we fitted a series
of increasingly complex models of divergence with gene
flow (Fig. 4) to this data and estimated demographic
parameters along with the average genome-wide recom-
bination rate r under each model. All demographic

models included an instantaneous split at time T. We
allowed effective population sizes Ne to differ between
the two island populations and the ancestral population
(M2–M6). Additionally, we considered a model of diver-
gence followed by exponential growth (or decline) in each
population given by population-specific growth rates α

(M3). Asymmetric, bidirectional gene flow was modelled
either as a continuous process occurring at a constant rate
ofM = 4NAmmigrants per generation (M4 andM5) or as
an instantaneous (bidirectional) admixture pulse affecting
a fraction f of the admixed population (M6). We consid-
ered both an IM model with gene flow from time T to
the present (M4) and a more complex history of isolation
with initial migration (IIM) which assumes that migration
ceases at time T2 (M5) [34]. To convert time estimates
(scaled in 4NA generations) into absolute time, we fol-
lowed [23] and assumed a generation time of 20 years and
a mutation rate μ = 2 × 10−8 bp−1 per generation.
As expected, model support increased with increasing

complexity for nested models (i.e., M1 vs. M2 and M4 vs.
M5) (Fig. 5 and Table 1). The only exception was the IM
model (M4) which did not increase support compared to
a strict divergence history (M2). Interestingly, we found
greater support for instantaneous admixture (M6) com-
pared to a history of isolation and initial migration (IIM)
up to a time T2 (M5).
Regardless of whether gene flow was modelled as

a continuous process (M5) or a discrete admixture
event (M6), our analyses reveal greater gene flow from
Borneo into Sumatra than in the reverse direction.
The maximum composite likelihood estimate (MCLE)
under M6 (Table 1), the best supported model, sug-
gests a higher admixture fraction (fS←B ≈ 0.27)
and no significant admixture in the reverse direction
(fS→B ≈ 0.12).

M1 M2 M3

M4 M5 M6

Fig. 4Models of orangutan demography considered in this paper. All models assume a split between two populations at time T with an effective
ancestral population size NA . In M2–M6, the current population sizes are additional free parameters. M3 allows for exponential growth (or decline) in
each population. M4 and M5 assume continuous gene flow since the time of split to the present or to a stopping time T2, respectively. M6 considers
an asymmetric admixture event at time T2
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Fig. 5 Relative fit of demographic models. Histograms of 100 evaluations of the composite likelihood (CL) using one million ARGs at the MCLE for
each model (Table 1). The x-axis gives the per block CLs, i.e., downscaled with respect to the number of blocks. Models further to the right fit
relatively better than those to the left. Model M1 has the worst fit and is not shown (appears much further to the left)

Likewise, independent of any particular model, the esti-
mates for the effective size of the Sumatran species were
2.5-fold greater than those for the Bornean species. This
is in agreement with previous studies [23] and mirrors the
relative diversity in each species as measured by Watter-
son’s θ [35] (θW = 2.19 and 2.91 in 2-kb blocks for the
Bornean and Sumatran population, respectively).
To determine the confidence in MCLE under M6, we

carried out a full parametric bootstrap by simulating
long stretches of sequence under the full ARG and
determined 95% confidence interval (CI) as ± 2 SD
(standard deviations) across bootstrap replicates (see the
“Methods” section for details). The CIs in Table 2 (see also
Additional file 1: Figure S1) indicate that we have relatively
greater power to infer more recent aspects of orangutan
history (NS, NB, and T2) compared to the time of ini-
tial divergence (T) and the size of the common ancestral
population (NA). While the admixture fraction estimated
from Sumatra to Borneo (fS→B) was not significantly dif-
ferent from 0, admixture estimates in the reverse direction
had much tighter CI which clearly excluded zero.
While our study was construed with the long-standing

two-Pongo-species paradigm, a recent revision of the
orangutan history has led to the description of a new
species [33]. According to this study, the inferred diver-
gence between P. abelii and P. tapanuliensis was very
ancient (≈ 3.38 Mya), but indirect gene flow is still possi-
ble between P. abelii and P. pygmaeus at more recent time
scales (Fig. 3b in [33]), which still warrants the use of our
demographic models (Fig. 4). To assess the effect of a third
species, we excluded one of the two diploid genomes com-
ing from the P. tapanuliensis population (KB9258, see the
“Methods” section) and defined a cbSFS sampling scheme

consisting of a single diploid per population. The results
from this new analysis (Additional file 2: Table S5) con-
firm the main features of our previous results such as the
relatively larger effective population size of the Sumatran
population and the relatively lower ancestral population
size (Table 1 and Additional file 2: Table S1). However, the
cbSFS results from 500-bp blocks halved the divergence
time between the two species compared to the normal
bSFS results (Additional file 2: Table S1).

Effect of block length and sample size
We assessed how block and sample size affect ABLE’s abil-
ity to infer two-population histories and recombination in
two ways. First, we repeated the orangutan analyses using
shorter blocks (500 bp). Second, we used simulations to

Table 2 Ninety five percent confidence intervals obtained via a
parametric bootstrap

Parameter MCLE ± 2SD

NA 1180–1,670

r × 10−8 2.5–3

T 695,000–936,000

NS 21,200–23,600

NB 8400–9420

T2 284,000–306,000

fS→B 0–0.21

fS←B 0.2–0.33

One hundred datasets were simulated given the point estimates of the 2-kb
analysis and model M6 (cf. Table 1). Bootstrap replicates were generated by cutting
long (0.5 Mb) contiguous sequences into 2-kb blocks. Confidence intervals were
calculated as 2 standard deviations on either side of the maximum composite
likelihood estimate
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investigate how sampling additional genomes per popula-
tion affects our inferential power.

Block length
Comparing estimates based on 2-kb blocks (Table 1) to
shorter 500-bp blocks (Additional file 2: Table S1) sug-
gests that most, but not all, aspects of the inference were
fairly robust to block length. As expected, shorter blocks
led to a greater uncertainty in model and parameter esti-
mates (Additional file 2: Table S2). Importantly, however,
even with 500-bp blocks, M6 was identified as the best
fitting model and we found broad overlap in 95% CIs of
parameter estimates with the 2-kb analysis.
Both the divergence time T and the genome-wide

recombination rate r were poorly estimated with 500-bp
blocks. The 95% CIs of T for both 2-kb and 500-bp analy-
ses overlap. In contrast, while the 2kb analyses resulted in
fairly stable inferences for r (≈ 2× 10−8 bp−1 per genera-
tion) that agree with recombination estimates for humans
[36], the 500-bp estimates were two to four times greater
and had very wide 95% CIs (Additional file 2: Table S2).
To test whether our method has any inherent bias

to overestimate recombination with shorter blocks, we
simulated blockwise data under model M6 using the r
estimates obtained from the 2-kb data (Table 1). Apply-
ing ABLE to these simulated datasets and after taking
into account the Pongo sampling scheme (i.e., M6 2dp,
Additional file 2: Table S3), we noticed no significant
overestimation of recombination rates. To test whether
gene conversion, a significant feature at such short spa-
tial scales, has an effect on estimates of recombination,
we simulated a gene conversion scenario with a crossover
to non-crossover rate at 1 and mean conversion tract
length at 400 bp (Additional file 2: Table S3). The increase
observed in the inferred recombination rate does point to
gene conversion as a likely cause underlying the orangutan
data andwhich our inference ignores (see the “Discussion”
section).

Sample size
As expected, point estimates and power generally
improved (Additional file 2: Table S3 and Additional
file 1: Figure S2) with increasing sample sizes. While some
parameters, in particular r, appear non-identifiable with
minimal sampling (a single diploid genome per species),
all eight parameters of M6 are well estimated with just
two or three diploid genomes. We observed a fivefold
improvement in accuracy for r and up to twofold improve-
ment for demographic parameters when increasing sam-
pling effort from a single to two diploid genomes per
population.
Perhaps surprisingly, however, Additional file 1:

Figure S2 suggests that for histories similar to that
inferred for the two orangutan species, we can expect at

best slight improvements in power when adding a third
diploid genome per population. Given that analyzing
three diploid samples per population almost triples the
computation time (Additional file 1: Figure S3), this
suggests that (at least in the case of orangutans) analyzing
a total of four diploid genomes is a good compromise
between information and computational cost.

Modelmisspecification
When analyzing real data, the underlying true demogra-
phy is of course unknown. Thus, an important question
is to what extent alternative demographic histories can be
distinguished. We evaluated the ability of ABLE to dis-
tinguish between three progressively nested models (M1,
M2, and M6; see Fig. 4). For each scenarios, we simulated
20 datasets (see Additional file 2: Table S4) and com-
pared the overall fit to the true and alternative models.
As expected (given that models were nested), data gen-
erated under simple models did not give a better fit to
more complex histories (Fig. 6). In contrast, data gener-
ated under more complex histories showed a worse fit to
simpler scenarios than the truth.
However, given the increased dimensionality of more

complex models, the similar LnL values for nested mod-
els did not imply that the MCL estimates of demographic
parameters under the simpler models were a subset of
the corresponding estimates under the more complex
models (see Additional file 1: Figure S4, Figure S5, and
Figure S6). For instance, given M1 as the true model
(Additional file 1: Figure S4), the population split time
was largely overestimated under M6 as this model con-
tains a confounding demographic feature, a pulsed admix-
ture event subsequent to divergence. Interestingly, the
genome-wide recombination rate was fairly consistently
estimated among the various models, while the ancestral
population size was consistently underestimated.
To further investigate the ability to correctly identify

complex demographies involving post-divergence admix-
ture, we generated 20 simulated datasets under the most
complex model considered in the orangutan analysis
(M6). We considered nine different divergence/admixture
times which varied from 900 to 150 kya and from 600
to 75 kya, respectively, keeping all other parameters fixed
(Additional file 2: Table S4) and compared LnL at the
true parameter values with MCLE estimated for lower
dimensional modelsM1 andM2. Point LnLs were also cal-
culated for variants of the M1 and M2 models (M1R and
M2R, respectively) where the true divergence time was
instead replaced by the true admixture time of the sim-
ulated dataset (Additional file 1: Figure S7). This analysis
illustrates that the ability to identify population diver-
gence and subsequent admixture depends crucially on
the interval between these events. When the interval is
approximatelyT−T2 < 0.3 coalescent units,M2R andM6
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Fig. 6 Nested model fit under the true and alternative models. Point LnLs were evaluated at the MCLE under the true and alternative models and for
the 20 simulated datasets/model. Higher LnL values (i.e., closer to zero) indicate a better fit to the simulated data

become indistinguishable (Additional file 1: Figure S7),
which explains the difficulty in distinguishing betweenM2
and M6 (Fig. 6).

Comparison between ABLE and ∂a∂ i
Using simulated datasets, we compared the bias and accu-
racy of ABLE to those of a popular SFS-based method
∂a∂i [3]. We simulated data under three progressively
nested models, M1, M2, and M6 (Fig. 4). We simulated
10 replicate datasets per model (see Additional file 2:
Table S4), each consisting of five diploid genomes per pop-
ulation. The ∂a∂i analyses were based on the SFS from the
whole sample, while ABLE used two different sampling
schemes. The first was a bSFS for a random subsample of
two diploid genomes per population. The second was a
cbSFS consisting of all subsamples of two diploid genomes
per population.
Despite the fact that ABLE used less than half of the

data with the bSFS, it performed as well and in some
cases slightly better than ∂a∂i (Additional file 1: Figure S8,
Figure S9, and Figure S10). Overall, ∂a∂i estimates had less
variance than the ABLE estimates, mainly for the ances-
tral population size, divergence time, and admixture rates.
ABLE in general gave less biased estimates of divergence
and admixture times than ∂a∂i and the cbSFS results were
always slightly better than the bSFS estimates.

Discussion
Orangutan history
The best fitting demographic model (M6) suggests that
the two Pongo species diverged 650–1000 kya and expe-
rienced a burst of admixture around 300 kya. Given the
Pleistocene history of periodic sea-level changes in South
East Asia [26], such a scenario of secondary contact
seems biogeographically more plausible than continuous
migration. Reassuringly, our estimates of the divergence
time under M6 are consistent with previous estimates

based on the SMC [8, 24] and agree well with species
splits estimated for other island-endemic mammals in SE
Asia [26].
Overall, our results are in general agreement with pre-

vious analyses regarding the absence of recent gene flow
(< 250 kya) between Bornean and Sumatran orangutans
[13]. Likewise, our inference of a larger Ne in Sumatran
compared to Bornean orangutans agrees with relative
measures of nucleotide diversity and previous analyses
using various types of data [12, 19, 23, 25]. While we
infer a contraction for the Bornean population under
M3, in agreement with the simpler models explored by
[25], sampling at finer spatial scales would be required to
resolve substructure in both the Sumatran and Bornean
populations.
Reassuringly, the time of secondary admixture under

M6 agrees with the estimated split time between the two
Pongo species for simpler models M1–M4 (Table 1) which
are similar to those considered by Locke et. al. [23]. Using
the joint SFS (δaδi, [3]), Locke et. al. [23] estimate a
species divergence time of 400 kya, which is somewhat
older than our estimate (250–300 kya) under M1–M4.
However, a similar difference in estimates has already
been noted by the Hidden Markov Model approach of
Mailund et. al. [13] (see Supplemental Text S2 in [13])
which models a simplified demography of speciation with
continuous gene flow and recombination using whole
genome data.
Finally, the recent discovery of a new species (P. tapan-

uliensis, [33]) in Sumatra does not significantly affect our
overall results as illustrated by the cbSFS analysis exclud-
ing the individual from that population (Additional file 2:
Table S5). We do note that the newly inferred effec-
tive population sizes are lower than our previous esti-
mates which is to be expected as the removal of the
KB9258 individual (from the south of Lake Toba) will
have significantly reduced (given its “outlier” status, [37])
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the overall polymorphism contained in the cbSFS. In
this analysis, which attempts to account for the new
species, the genome-wide recombination rate was kept
fixed (2 × 10−8/bp/generation) to offset the loss of infor-
mation. This could explain the lower estimates of the
divergence times obtained with the cbSFS from 500-bp
blocks.

Absolute model fit and the effect of selection
Like most demographic inference methods, ABLE
assumes selective neutrality. Furthermore, efficient
calculation or approximation of the bSFS relies on
the assumption that blocks are statistically exchange-
able which ignores heterogeneity in mutation and
recombination rates.
We can visualize the absolute fit of our demographic

model to the data by comparing the observed distribu-
tion of bSFS configurations to that expected under M6
(obtained using 50 million simulated blockwise ARGs).
If the data were generated entirely by the inferred
demographic history, we would expect the most com-
mon bSFS configurations to fit this expectation most
closely (see Additional file 1: Figure S11). In con-
trast, Fig. 7 shows that, irrespective of which demo-
graphic model we assume, some aspects of the data
are poorly captured. In particular, bSFS configurations
with few (or no) mutations (shown in blue) are com-
mon and overrepresented in the data. This mismatch is
compatible with background selection [38] and/or posi-
tive selection reducing genetic diversity at a fraction of
blocks.
Linked selection may reduce estimates of ancestral Ne

under neutral assumptions. Which could explain why we
obtained a much smaller effective size for the ances-
tral population (Table 1 and Additional file 2: Table S1)
than previous studies [12, 19, 23, 25], while our Ne
estimates for the two current populations agree fairly
well [13]. As expected, this signature of linked selec-
tion disappears when we consider a bSFS with shorter
block size (Additional file 1: Figure S12). It will be
interesting to explore the possibility of jointly inferring
demography and various forms of selection using the
bSFS [39].

Effect of block length and sample size
An interesting property of the bSFS is that it collapses
to the SFS in both the limits of minimal block length
(one base) and maximal block length (all data in a sin-
gle block). At both extremes, all linkage information is
lost and so the information contained in the distribution
of bSFS types must be maximized at some intermediate
block length. While ABLE relies on an arbitrary partition-
ing of the genome into blocks of a fixed length, recom-
bination breakpoints in the ARG define real “blocks” of

sequence that are identical by descent (IBD) with a length
distribution that depends on the demographic history in
a complex way. Because the distance of IBD blocks is a
direct function of the length of genealogical branches,
information about different demographic processes is
maximized over different physical scales. For example,
a burst of recent admixture generates an excess of long
blocks that share descent via the admixture event but have
different ancestry prior to admixture. The fact that one
generally has little prior knowledge about the demography
makes it challenging to decide on the most informative
block length for a particular dataset.
However, given knowledge of the relative ratio of muta-

tion over recombination events μ/ρ and assuming that
information in the bSFS is maximized if blocks contain
on average some small number x of IBD tracts, block
length can be defined heuristically for a particular x.
For example, assuming μ/ρ ≈ 1 for Great Apes, our
2-kb blocks contain on average two to three recombina-
tion events within each Pongo species (given θW = 2.19
and 2.91 in 2kb blocks for the Bornean and Sumatran
populations respectively). A sensible upper (but equally
heuristic) bound for the block length is the length at
which the number of unique bSFS configurations is max-
imized which is around 5 kb for the history inferred for
the two orangutan species (Additional file 1: Figure S13).
However, attempts to partitioning the orangutan data into
blocksmuch longer than 2 kb led to substantial loss of data
(given the modest overall coverage), so we did not explore
this further.
The fact that ABLE and multi-locus approaches in gen-

eral rely on a fixed (and necessarily arbitrary) block length
is a definite limitation. Thus, an interesting direction for
future work would be to integrate CL estimates based on
the bSFS over a range of block sizes which should improve
the power to infer recent demographic events. A related
inference scheme that integrates over a range of window
sizes has recently been implemented [20].
Our finding of larger r estimates when using shorter

blocks for the orangutan data was surprising. Given
that our method ignores heterogeneity in both r and μ,
both of which increase auto-correlation across short dis-
tances, we expected to find the opposite, i.e., a decrease
in r estimates for shorter blocks. However, our simula-
tion analysis showed that ABLE gives relatively unbiased
estimates of r for short (500 bp) blocks when infer-
ence was performed with two or more diploid samples
per population (Additional file 2: Table S3). A plausible
explanation for the large r estimates for the orangutan
data could be gene conversion because conversion events
that span block boundaries are indistinguishable from
cross-over events. Results from a simple simulation of
a bSFS from 500-bp blocks with gene conversion do
highlight this as a probable cause for obtaining higher
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Fig. 7 Absolute model fit to the observed 2-kb bSFS for the most common configurations. Each point represents a unique mutational configuration
making up the bSFS. The expected bSFS (x-axis) was generated with ABLE using 50 million ARGs at the MCLE for each model (Table 1) and plotted
against the observed bSFS (y-axis) from the orangutan data. The diagonal black line indicates the perfect match between the expected and
observed. The colors represent the total number of SNPs contained in each configuration

recombination rate estimates (Additional file 2: Table S3).
Furthermore, gene conversion must have a diminishing
effect on the bSFS for blocks that are longer than the
typical conversion tract length of several hundred bases
(see Table 2 in [40]). In the future, it should be possi-
ble to use this dependence on block length to develop
explicit estimators for gene conversion and cross-over
rates.
Even under a complex demography such as M6,

our simulation-based power analyses indicate that most
demographic parameters can be reasonably recovered
with only a single diploid genome per population
(Additional file 2: Table S3). Increasing sample size to two
diploid genomes more than halved the standard devia-
tion in estimates for some parameters, most notably the
recombination rate (Additional file 1: Figure S2). How-
ever, a further increase in sample size gave a negligible
improvement, despite the considerable computational
cost (Additional file 1: Figure S3) involved: the num-
ber of unique bSFS configurations increased more than
threefold with three rather than two diploid genomes per
population. This diminishing return with increasing sam-
ple size (in terms of sequences) is a fundamental property
of the coalescent [41, 42]: going backwards in time, larger
samples in each species are likely to have coalesced down
to a small number of lineages (see Fig. 3 in [42]) before
the admixture event and so are unlikely to contribute
much additional information about older demographic
processes.

The SFS, the bSFS, and the cbSFS
In this paper, we have explored the intuition that using
linkage information contained in the bSFS should improve
demographic inference compared to the SFS which is only
a function of the expected length of genealogical branches
[5, 6]. It has previously been shown that the bSFS for a
small sample (n = 5) contains significantly more informa-
tion about past bottlenecks than the SFS for a large sample
(n = 20, see Fig. 3 in [22]). Likewise, our analysis com-
paring ABLE with the SFS-based ∂a∂i [3] for progressively
complex subdivided population scenarios (M1, M2, and
M6) resulted in improved inferences (with the bSFS) of
ancestral population sizes, divergence times, and admix-
ture rates albeit with increased variance in the estimates
(Additional file 1: Figure S8, Figure S9, and Figure S10).
However, we only make use of a subset of two diploid

genomes for the ABLE analysis compared to the whole
sample of five diploid genomes used by ∂a∂i. This increase
in performance can be explained by the fact that the
bSFS is a higher dimensional and therefore much richer
summary of sequence variation than the SFS [18, 22].
However, this increase in information comes at a compu-
tational cost (Additional file 1: Figure S3) and it may be
fruitful in general to narrow down parameter space using
SFS-based approaches such as ∂a∂i [3] prior to an ABLE
analysis. Finally, the cbSFS scheme provides for an alterna-
tive by considering all subsets of the original sample which
enables the analysis of arbitrarily large samples at minimal
computational cost.
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Limits to inference
While our choice of models was guided by previous
knowledge of the demographic history of orangutans
[13, 23–25], it remains to be determined what the lim-
its of model complexity and identifiability are with our
approach and to what degree the distribution of bSFS
patterns overcomes the non-identifiability of the SFS
[7, 43, 44]. Unlike analytic likelihood calculations (e.g.,
[18]), there is no significant increase in computational
cost with increasing model complexity when approximat-
ing the likelihood for a given point in parameter space.
However, searching parameter space carries an obvious
and rapidly increasing cost with greater model complex-
ity. Like all approximate likelihood approaches, ABLE
requires the user to make careful choices about the num-
ber of parameters, the number of genealogies to sample
per point in parameter space, and the search bounds
for the MCLE, all of which are crucial elements of the
optimization strategy [4]. In this regard, we suggest that
simple pilot analyses varying some or all of the factors
mentioned above (see Additional file 1: Figure S14 and
Figure S13) should help to inform the inference strategy.
It is also clear that, independent of the inference

approach, the information in the data is finite, so there
must be a hard limit on how realistic a history one can
hope to infer. Thus, the fact that ABLE can, in principle,
be used for fitting any demographic model puts the onus
of constraining inference to scenarios that are both sta-
tistically identifiable and biologically interpretable on the
user. Evaluating the relative fit of simpler nested models
is an important sanity check on the limits of informa-
tion in the data. For instance, our comparison of analyses
based on 2-kb and 500-bp blocks (Fig. 5 and Additional
file 1: Figure S15, respectively) highlights the limits of our
inference scheme for short block lengths.
The inferential approach implemented in ABLE makes

use of the coalescent simulator ms [45] for sampling
blockwise genealogies or ARGs. In principle, ABLE can
accommodate other simulators and is thus amenable
to include additional processes such as linked selection
[46, 47]. Another interesting avenue for further research is
to apply approximate composite likelihoods based on the
bSFS along the genome. Such an approach would not only
help improve upon recombination maps for non-model
organisms but could also provide a robust framework
to identify outlier regions of the genome under positive
selection and/or affected by introgression from another
species.

Conclusion
We have developed a flexible, efficient, and widely appli-
cable simulation-based approach to simultaneously infer
complex demographic histories and average genome-wide
recombination rates under the full ARG. This method

overcomes the limitations of previous approaches that
either ignore recombination [3, 4], use fixed estimates
[19], approximate recombination as a Markov process
along the genome [8, 11–13], or are limited by the type
of population histories they infer [20, 21]. Using the bSFS
as a data summary, ABLE captures linkage information
at the scale of hundreds to thousands of base pairs and
allows researchers to efficiently fit realistic demographic
models across the variety of genome scale datasets that
are becoming available for a rapidly growing number of
species.
The quick asymptotic convergence of the bSFS approx-

imated by ABLE to the expected bSFS under various
demographic scenarios (Fig. 3) in the absence of recom-
bination is reassuring and distinguishes our method from
related multi-locus approaches that integrate over pos-
sible genealogies locus by locus [19]. Furthermore, the
extension of the bSFS to the cbSFS now allows the analyses
of arbitrarily large samples of whole genomes.

Methods
Approximating the bSFS
A single population
It is easiest to first consider the simpler case of non-
recombining blocks and a sample of b genomes from a sin-
gle panmictic population. We assume an arbitrary popu-
lation history which is described by a vector of parameters
�. In the simplest case, � consists of the scaled mutation
rate θ = 4Neμ, where Ne is the effective population size
and μ the mutation rate per site per generation.
The branches of a given genealogy corresponding to

our population sample can be partitioned into a vector t
whose entries ti ∈[t1, t2, . . . , tb−1] denote the total length
of all branches with i descendants (Fig. 1b). The probabil-
ity of observing ki mutations on a branch class ti is given
by a Poisson distribution with rate parameter θ ti > 0:

p(ki | ti) ∼ (θ ti)kie−θ ti

ki!
. (1)

Because mutations occur independently on different
branch types, the joint probability of seeing a specific con-
figuration kj = {k1,j, k2,j, . . . , kb−1,j} in a sequence block j
and for a given branch length vector t is then a product of
Poisson distributions

p(kj | t) =
b−1∏

i=1
p(ki,j | ti). (2)

The likelihood L(�) at a point in parameter space � ∈
R

+ is calculated as

L(�) ∝ p(D | �) =
∑

G
p(D | G,�)p(G | �), (3)

where G is the (unknown) genealogy and D the data [48].
Summarizing genealogies G by t and D by kj and drawing
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M random samples of t from p(t | �), the Monte Carlo
approximation of Eq. 3 can be obtained

p̂(kj | �) ≈ 1
M

M∑

d=1
p(kj | t d,�). (4)

In theory, each block in a dataset might have a unique
bSFS configuration. In practice, however, for short blocks
spanning a handful of SNPs (e.g., < 10), the number
of observed bSFS configurations will be much smaller
than the number of blocks. Assuming that blocks are
equivalent and independent, that is, they have the same
length, per basemutation and recombination rates and are
unlinked, we can summarize the entire genome into block-
wise data (Fig. 1a) by counting the number of each unique
bSFS type nkj . Thus, the approximate joint composite log
likelihood for a sample of n genomes is given as

ln(L(�)) =
∑

kj

ln(p̂(kj))nkj . (5)

Multiple populations
TheMonte Carlo approximation detailed above extends to
the joint bSFS [6, 18] for multiple populations. Assuming
a sample from X populations, the (unfolded) joint bSFS
defines

(∏X
x=1 bx + 1

)
− 2 site types, where bx denotes

the number of genomes sampled from population x. Some
branches will be specific to a single population, while oth-
ers are shared between populations. Thus, the vectors t
and k have entries corresponding to the joint bSFS. Note
that one specific configuration which we denote as k0
refers to monomorphic blocks.

The ancestral recombination graph
In the presence of recombination, the ancestry of a
sequence block is described by the ancestral recombi-
nation graph A [1] which can be partitioned into a
set of marginal genealogies corresponding to the non-
recombining segments that make up the block [49]. Here,
� consists of the scaled mutation rate θ and the scaled
recombination rate ρ = 4Ner, where r is the recombi-
nation rate per site per generation. For a given A, let S
be the number of non-recombining blocks with respec-
tive (sequence) lengths w1,w2, . . . ,wS such that the size of
the sequence block L = ∑S

p=1 wp. Let t p be the marginal
branch length vector for each non-recombining segment
p. The total length of the ith branch class over the graph
A is then given by

t{i,A} = 1
L

S∑

p=1
wpt{i,p} (6)

Following Eq. 1, we can write the joint probability
of observing a specific bSFS configuration over the
entire recombining block as p(k{i,A} | t{i,A}) ∼
Poisson(k{i,A}; θ t{i,A}) (analogous to Eq. 2). Drawing M
random samples of A from p(A | �) and replacing
p(kj | t d,�) with p(kAj | tAj ,�, ρ) in Eqs. 4 and 5 give
the approximate likelihood for a point in parameter space
�, ρ ∈ R

2+ (see also [19]). However, note that � ∈ R
2+

can be too restrictive a criterion for some parameters of
complex demographies such as coefficients of exponential
population expansion/contraction where αS,αB ∈ R (see
Fig. 4).

Implementation
The ABLE implementation includes a seamless integra-
tion (invisible to the user) of the simulator ms [45] for
sampling genealogies from p(G | �) or p(A | �). Cru-
cially, for each simulated genealogy, we only record the
total branch lengths of all SFS classes t{i,A} in each ARG.
This is a sum over marginal genealogies contributing to
the ARG, each weighted by its length. From these, we can
tabulate the probabilities (conditional on G) of all bSFS
patterns compatible with that ARG. This task is extremely
efficient compared to previous multi-locus methods that
sample G separately for each locus (see [19, 50]).
Note that ABLE differs from previous, analytic calcula-

tions based on the distribution of the bSFS configurations
in an important way. Lohse et al. [18] tabulate probabili-
ties of all bSFS configurations up to a maximum number
of mutations (kmax) in each category and lump all config-
urations > kmax mutations.

p(ki > kmax | ti) = 1 −
kmax∑

ki=0
p(ki | ti), (7)

and

p(ki = 0 | ti) = 1
p(ki > 0 | ti) = 0 , ∀ ti = 0. (8)

Bounding the table of mutational configuration in this
way makes analytic computations feasible and ensures
that the table of probabilities sums to unity. However,
choosing kmax involves a trade-off between computational
efficiency (low kmax) and information (high kmax). In con-
trast, ABLE only computes probabilities for mutational
configurations that are observed in the data without set-
ting any bounds on the space of possible configurations.
ABLE is implemented in C/C++, follows closely the

command-line structure of ms [45] along with a brief
configuration file with additional instructions, and is
freely available for download from https://github.com/
champost/ABLE.

https://github.com/champost/ABLE
https://github.com/champost/ABLE
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Data processing
Raw reads were downloaded from the NCBI Sequence
Read Archive (SRA) for two individual genomes each
from Borneo (B) and Sumatra (S): KB5405 (B, male,
SRS009466), KB4204 (B, male, SRS009464), KB9258 (S,
female, SRS009469), and KB4361 (S, female, SRS009471).
Mean depth of coverage was between 7.25 and 8.06 per
individual. The alignment was performed using BWA-
MEM [51] v0.7.5, with a re-alignment step using GATK
v.3.3 [52]. For each sample, we estimated a 95% depth
of coverage interval using BEDTools [53]. To call geno-
types, we used a simple approach [54, 55]: we generated
pileup files using samtools v1.3 “mpileup” (0.1.19) [56]
with default settings. Pileup files were then filtered, for
each sample, using the following criteria:

• Minimum depth of coverage ≥ 4 reads with mapping
quality ≥ 30

• Excluded all sites in region of high DoC (top 5%)
(coded as N to avoid copy number variant)

• Excluded all sites within 5 bp of an indel (coded as N
to avoid indel misalignments)

• Only bases with quality ≥ 30 within reads with
mapping quality ≥ 30 were used.

• Minimum fraction of reads supporting heterozygous
(variant allele frequency [VAF] ≥ 0.2). Sites that did
not pass this criterion (0 < VAF < 0.2) were coded as
missing (N).

Thereafter, we binned the genome into non-overlapping
blocks of fixed length l = 2 kb and sampled the first
0.8 × l = 1600 bases in each block that passed filter-
ing in all individuals (a python script is available online,
see “Availability of data and materials”). Blocks with fewer
bases post filtering were excluded. The 500-bp dataset was
generated by partitioning each post-filtered 1.6-kb block
into four blocks of equal size. The 500-bp and 2-kb block
datasets used in this study are available for download from
the aforementioned website.

Optimization
Because ABLE approximates the likelihood function
(Eq. 5) using Monte Carlo simulations—which induces
some variability in the CL obtained (Additional file 1:
Figure S14)—algorithms based on the gradient of the
CL surface (e.g., [3, 9]) are not reliable [4]. In addi-
tion, due to the possibility of multiple local optima in
the likelihood surface, we adopted a two-step search
heuristic.
We initially searched parameter space between broad,

user-specified non-linear bounds as part of a global search
step. Search bounds during this step spanned several
orders of magnitude for all parameters. Upper bounds
of some parameters were set on the basis of simple data

summaries, e.g., effective population sizes were bounded
by Watterson’s θW [35]. Fifty thousand ARGs were used
to approximate the CL at each point in 10 replicate
global searches. These were then used to set narrower
bounds for a local search based on 500,000 ARGs/point
which was repeated 20 times. In Table 1 and Additional
file 2: Table S1, we report the best MCLEs whose like-
lihoods have been evaluated using 1M ARGs. For some
models for which replicate local searches did not con-
verge sufficiently, a second round of local searches was
used.
ABLE employs several search algorithms implemented

in the Non-Linear optimization library (NLopt ver-
sion 2.4.2, [57]). Both global and local searches used
the improved penalization provided by the Augmented
Lagrangian algorithm [58] to navigate the non-linear
delimitation of parameter space. A controlled random
search with rules for the evolution of a population of
points given by the Local Mutation algorithm [59] was
used for global searches. Local searches used the Sub-
plex algorithm [60], a variant of the Nelder-Mead simplex
with start points that were randomly chosen within the
parameter bounds set by the global searches.
Finally, tolerances for terminating MCLE searches

were determined by probing the CL surface (e.g.,
Additional file 1: Figure S14). The command lines and
configurations used to analyze the orangutan data are
available online (see “Availability of data and materials”).

Parametric bootstrap and simulation analysis
While the CL is a statistically consistent estimator of
demographic parameters and recombination (in the limit
of large data, [61]), it suffers from severe overconfi-
dence because correlations between blocks due to their
physical linkage are ignored. To obtain meaningful mea-
sures of confidence, we conducted a full parametric
bootstrap under the best fitting model (M6) and param-
eter estimates (Table 1). We simulated 100 replicate
datasets of 164 Mb each using a modified version of
ms [45] (using SimLinkedBSFS; see “Availability of data
and materials”) and under the best model (i.e., M6)
and MCLE (Table 1 and Additional file 2: Table S1).
Blocks in each dataset were assumed to be completely
linked (given our estimate of per site r) across 0.5-Mb
stretches of sequence. These simulations represent an
extreme case of linkage and are thus conservative. Indeed,
our real data contain large gaps between blocks espe-
cially due to the highly repetitive nature of the orangutan
genome. As we wish to know the local variability of the
bootstrap inferences around the MCLE obtained from
the orangutan data, we only carried out local searches
for each bootstrap replicate (using the boundaries and
step sizes obtained in the analysis of real data, see
above).
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The simulation-based power test exploring the effect of
sample size (one to three diploid genomes per population)
was based on inferences using simulated data followed
by a full parametric bootstrap. Given the computational
effort required (see Additional file 1: Figure S3), we
restricted our study to 500-bp blocks with values for
the demographic parameters chosen to represent the
results inferred from the real data under M6 (Table 1
and Additional file 2: Table S1). Parametric bootstrap
datasets were generated with linkage (under the full ARG)
exactly analogous to the bootstrap in the real data analysis.
An additional dataset (using 500-bp blocks) was simu-
lated with gene conversion to check whether an inference
with ABLE (which ignores non-crossover events) results
in higher recombination rate estimates. This dataset was
generated with the crossover to non-crossover rate at
1, mean conversion tract length at 400 bp, and keep-
ing all other demographic parameters the same as above
(Additional file 2: Table S3).

Evaluating nested model misspecification
To evaluate model misspecification, we compared the
overall fit of several models to a dataset simulated under a
specific model. Thus, datasets were generated under three
two-population demographic scenarios M1, M2, and M6
(4). For each scenario, two diploid genomes per popula-
tion sample were simulated (usingms [45]); each of which
had a size of 200 Mb (made up of independent 1-Mb
blocks) and two diploid samples/population. The values
used for the simulation can be found in Additional file 2:
Table S4. Under any given model, the MCLE search strat-
egy consisted of three global searches of the parameters
with successive refinement of the parameter bounds and
finally a local search. The final likelihoods were evaluated
using 1M genealogies.
Assuming that the parameter values used to simu-

late data would have been close to the inferred global
maximum under both the true and alternative mod-
els, we also attempted an illustration of model choice
with ABLE by comparing LnLs under M1, M2, and
M6 in the tricky situation when M6 is the true model
(Additional file 1: Figure S7). Twenty datasets were simu-
lated under model M6 and nine different split/admixture
times. Split times varied from 900 to 150 kya whereas
admixture times varied from 600 to 75 kya and sample
sizes were the same as in the previous section. Model
fit was assessed using point LnLs calculated at the true
parameter values of each simulated dataset which meant
using only a subset of those values for the lower dimen-
sional models M1 and M2. Point LnLs were also calcu-
lated for variants of the M1 and M2 models (M1R and
M2R, respectively) where the true split time was instead
replaced by the true admixture time of the simulated
dataset.

Comparison between ∂a∂ i and ABLE
We compared (under models M1, M2, and M6) the per-
formance in terms of parameter inference between ∂a∂i
[3] and ABLE when the latter uses either a single subset
of every simulated dataset or every subset of all simu-
lated datasets. Akin to the previous section, we simulated
2 population demographic scenarios under M1, M2, and
M6. Each simulation consisted of five diploid genomes
per population sample and each genome was made up of
1M 2-Kb blocks (i.e., 200 Mb in total size). A total of 10
datasets were simulated for each of the three scenarios
(see Additional file 2: Table S4). Each dataset was either
summarized as the folded SFS (for a subsequent ∂a∂i
analysis), the folded bSFS by randomly sampling two
diploid genomes from each population, and the folded
cbSFS by sampling all diploid genomes from each popula-
tion (the latter two for a subsequent ABLE analysis).
Parameter inference under M1 and M2 for both ∂a∂i

and ABLE analyses was performed using 10 independent
(local) searches on each simulated dataset. For the M6
scenario, ABLE analyses followed a global search with suc-
cessive refinement due to the high dimensional search
space while ∂a∂i analyses were consistent with its previ-
ous strategy. Python scripts defining the models M1, M2,
and M6 to facilitate a ∂a∂i analysis and the bioinformatic
pipeline for obtaining a bSFS/cbSFS have beenmade avail-
able online (see “Availability of data and materials”).

Additional files

Additional file 1: Figures S1–S15. Supplementary figures. (PDF 1193 kb)

Additional file 2: Tables S1–S5. Supplementary tables. (PDF 120 kb)
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