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ARTICLE

A Dominantly Inherited 50 UTR Variant Causing
Methylation-Associated Silencing of BRCA1
as a Cause of Breast and Ovarian Cancer

D.Gareth R. Evans,1,2,3,4,8,* Elke M. van Veen,1,5,8 Helen J. Byers,1,5 Andrew J. Wallace,5

Jamie M. Ellingford,1,5 Glenda Beaman,1,5 Javier Santoyo-Lopez,6 Timothy J. Aitman,6 Diana M. Eccles,7

Fiona I. Lalloo,5 Miriam J. Smith,1,5,8 and William G. Newman1,4,5,8,*

Pathogenic variants in BRCA1 or BRCA2 are identified in�20%of families withmultiple individuals affected by early-onset breast and/or

ovarian cancer. Extensive searches for additional highly penetrant genes or alternativemutationalmechanisms altering BRCA1 or BRCA2

have not explained the missing heritability. Here, we report a dominantly inherited 50 UTR variant associated with epigenetic BRCA1

silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of

ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 patho-

genic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes

was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified

in 2 of 49 families in whichmultiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1

promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was �50%

methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed

the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.�107A>T

in the BRCA1 50 UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 50 UTR variant

associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be un-

dertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1

or BRCA2 pathogenic variant.
Introduction

Breast cancer (MIM: 114480) is the most common form of

cancer in women.1 Germline heterozygous pathogenic var-

iants in BRCA1 (MIM: 113705) and BRCA2 (MIM: 600185)

account for 2%–3% of all cases2 and up to 15% of cases of

epithelial ovarian cancer (MIM: 167000).3 In families with

multiple individuals affected by early-onset disease, these

percentages increase substantially: BRCA1 and BRCA2 vari-

ants explain approximately 20% of familial breast cancer

and a higher proportion of familial ovarian cancer.4

Over the past 20 years, there have been exhaustive ef-

forts to identify other breast and ovarian cancer suscepti-

bility genes. This missing heritability has been postulated

to be due to other highly penetrant genes, including

TP53 (MIM: 191170); genes of modest effect, including

PALB2 (MIM: 610355) and ATM (MIM: 607585); or poly-

genic risks due to the combination of multiple small-effect

variants.5 However, no other genes that confer a high risk

of both breast and ovarian cancer have been identified.

Genetic testing by DNA sequencing and copy-number

analysis for pathogenic exonic variants in BRCA1 and
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BRCA2 is highly sensitive (it is estimated to detect

over 90% of pathogenic variants)6,7 and is now offered

routinely to individuals at high familial risk of breast

and/or ovarian cancer. Our previous studies using RNA

sequencing in high-risk families have shown that deep in-

tronic variants in BRCA1 or BRCA2 do not contribute

significantly to this mutational spectrum.7 Detection of

pathogenic variants is important for determining appro-

priate cancer surveillance for at-risk relatives, for reassuring

relatives without the familial causative variant of their risk

and removing the burden of unnecessary screening, and

informing treatment choice, especially for poly ADP ribose

polymerase (PARP) inhibitors.8

Gene promoter methylation has been proposed as an

alternative mechanism for the transcriptional silencing

of cancer-associated genes.9 Promoter hypermethylation

has been associated with tumor-suppressor genes, both in

the germline and as a somatic (acquired) event in tumor

tissue,9 and results in transcriptional silencing.

Promoter hypermethylation of BRCA1 is present in the

tumor tissue of approximately 10% of sporadic breast

cancers10,11 and in breast tumors of women with BRCA1
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germline pathogenic variants12 and ismore common in tri-

ple-negative (estrogen receptor, progesterone receptor, and

HER2) breast cancer.13 Constitutional methylation of the

BRCA1 promoter has been reported in individuals with

breast cancer,14 but this has always been at low ‘‘mosaic’’

levels (maximum 20%), and there has been no convincing

evidence that this is inherited from one generation to the

next. In contrast, inherited variants associated with pro-

moter hypermethylation of MLH1 (MIM: 120436)15 and

MSH2 (MIM: 609309)16 have been reported in familial colo-

rectal cancer (MIM: 114500). In this study, we describe two

families who are affected by breast and ovarian cancer and

carry an inherited germline variant that results in transcrip-

tional silencing of BRCA1 through promoter hypermethy-

lation (secondary epimutation). This mutational mecha-

nism for BRCA1 has important implications for diagnostic

testing of individuals at high risk of breast and/or ovarian

cancer and for optimum treatment selection.17
Material and Methods

Subjects and Family Members
Screening for BRCA1 promotermethylation was undertaken in the

lymphocyte-derived DNA of 49 unrelated individuals from fam-

ilies affected by breast and/or ovarian cancer and with a Manches-

ter score > 34 without a germline BRCA1 or BRCA2 pathogenic

variant. A Manchester score represents the likelihood of detecting

a pathogenic variant in BRCA1 or BRCA2.7,18,19 In our local popu-

lation, 158 of 220 (71.8%) families with a Manchester score > 34

have had pathogenic variants in BRCA1 or BRCA2 identified by

conventional genetic testing of DNA sequencing and multiplex

ligation-dependent probe analysis (MLPA).

Blood, buccal mucosa, tumor, and hair samples were collected

(where possible) from affected and unaffected family members

with breast or ovarian cancer when BRCA1 promoter methylation

was detected. Cancer diagnoses were confirmed from hospital re-

cords or through the North West (England) Cancer Intelligence

Service, which has data on all individuals with any malignancy

from 1960 onward. DNA was extracted from blood by Chemagen

(Perkin Elmer), from hair with the QIAamp DNA Investigator

Kit (QIAGEN), from buccal mucosa with the QIAGEN EZ1 system,

and from tumor cells with the Cobas DNA Sample Preparation

Kit (Roche). The study was approved by the Central Manchester

Research Ethics Committee (10/H1008/24 and 11/H1003/3), and

written informed consent was obtained from each participant.
BRCA1 Promoter Methylation Assays
Genomic DNA was bisulfite converted with the EZ DNA Methyl-

ation Kit (Zymo Research) for distinguishing between methylated

and unmethylated DNA. BRCA1 promoter methylation was deter-

mined by pyrosequencing (QIAGEN) across 10 CpG dinucleotides

within the BRCA1 promoter. The core promoter of BRCA1 encom-

passes the non-coding exon 1 and part of intron 1 of BRCA1 and

exon 1 and part of intron 1 of the neighboring gene NBR2, as

annotated by Ensembl (chr17: 43,168,800–43,172,601). The 10

CpG dinucleotides fall within the non-coding exon 1 of BRCA1.

The methylation status was quantified in DNA derived from hair

follicles, buccal mucosal cells, peripheral-blood lymphocytes,

and tumor cells (Supplemental Material and Methods).
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Clonal bisulfite sequencing on aminimum of 37 clones was per-

formed for determining whether the methylation pattern was

allele specific (Supplemental Material and Methods).

RNA and DNA Analysis
To measure BRCA1 expression, we collected whole blood in

PAXgene Blood RNA tubes (PreAnalytiX) and extracted RNA.

RNA was converted to cDNA by RT-PCR with the High-Capacity

RNA-to-cDNA Kit (Applied Biosystems). We genotyped five SNPs

in BRCA1 exon 11 (rs1799949, rs16940, rs799917, rs16941, and

rs16942) by Sanger sequencing to determine whether there was

a difference in allelic ratios between the RNA and DNA genotypes

and thus silencing of one allele (Supplemental Material and

Methods and Table S1).

Haplotype Analysis
To determine relatedness between families identified with BRCA1

promoter methylation, we genotyped 12 BRCA1 intragenic SNPs

by Sanger sequencing to determine ancestral haplotypes (Supple-

mental Material and Methods).20 In addition, genotyping using

Affymetrix Genome-Wide SNP6.0 arrays was undertaken accord-

ing to the manufacturer’s protocol. Genotypes and copy-number

data were generated within the Affymetrix Genotyping Console

(v.4.1.3.840) via the Birdseed V2 algorithm and SNP 6.0 CN/LOH

algorithm, respectively.

Whole-Genome Sequencing
We performed whole-genome sequencing in order to identify any

potential unique variants present in individuals with promoter

methylation and not in unaffected individuals. PCR-free paired-

end whole-genome sequencing (TruSeq DNA PCR-Free, Illumina)

was undertaken on a HiSeqX platform. Reads were aligned against

the human assembly GRCh38 (UCSC Genome Browser) via the

Burrows-Wheeler Aligner (v.0.6.2), and variants were called with

the Genome Analysis Toolkit (3.4-0-g7e26428). Annotation was

performed with Ensembl v.89 and compared with variation iden-

tified in the Genome Aggregation Database (gnomAD)21 (Supple-

mental Material and Methods).
Results

To determine whether promoter hypermethylation of

BRCA1 could result in familial breast and/or ovarian can-

cer, we undertook methylation assays. BRCA1 promoter

hypermethylation was identified in two women from a

screen of 49 unrelated individuals with familial breast

and/or ovarian cancer (and a Manchester score > 34) in

whom previous Sanger sequencing and MLPA of BRCA1

and BRCA2 coding exons had not identified a pathogenic

single-nucleotide or copy-number variant. In individuals

with a Manchester score > 34, there is a >70% likelihood

of detecting a BRCA1 or BRCA2 germline pathogenic

variant.7,18,19 Promoter hypermethylation was detected

in a woman (II-4 in family 1; Figure 1A) with a strong fam-

ily history of breast cancer and in whom breast cancer was

diagnosed at 39 years of age and a poorly differentiated se-

rous ovarian cancer was diagnosed at 48 years (Manchester

score 43) and in a woman (III-2 in family 2; Figure 1B) in

whom bilateral grade 3 triple-negative breast cancer was
2, 2018



Figure 1. Pedigrees of Families Carrying
the 50 UTR BRCA1 Variant
Pedigrees of family 1 (A) and 2 (B). Abbre-
viations are as follows: Y, age (in years)
tested; uMe, unmethylated BRCA1 pro-
moter; Me, methylated BRCA1 promoter;
WT, wild-type; and NT, not tested. Arrows
indicate probands.
detected at 38 and 46 years of age (Manchester score 35). In

the two women, pyrosequencing assays on lymphocyte-

derived DNAwere consistent with BRCA1 promoter hyper-

methylation across 10 CpG dinucleotides (Figure 2A) (aver-

ages 43% and 41%), indicating that one allele was fully

methylated (Table 1, Figures 2B and 2C, and Figure S1).

This hypermethylation pattern was consistent in DNA

extracted from buccal mucosa (54% and 69%) and hair fol-

licles (38% and 43%) (Table S2), representing endoderm

and ectoderm derived tissues, respectively. Clonal bisulfite

sequencing orthogonally confirmed the BRCA1 promoter

hypermethylation pattern in the two affected women

(Figure 2D).

Segregation analysis for BRCA1 promoter hypermethyla-

tion was undertaken in the two families. In family 1, the

proband’s identical twin (II-5), affected by bilateral grade 3

breast cancer at age 30 and 32 years (no receptor status

available) and colorectal cancer at 64 years, and II-5’s

daughter (III-5), who had been affected by high-grade tri-

ple-negative breast cancer at 39 years (Figure 1A), both

had hypermethylation of the BRCA1 promoter at allele fre-

quencies similar to that of the proband (Table 1 and Table

S2). Samples from the parents of the affected twins were

not available, but both were deceased and neither had a

history of cancer.

Samples from seven other familymembers (II-1, II-2, II-7,

III-1, III-2, III-3 and III-4) were available. Of these, four

showed a soma-wide hypermethylated BRCA1 promoter

in blood, buccal mucosa, and hair follicles, and three

showed a normal methylation pattern (Table 1, Table S2,
The American Journal of Human Ge
Figures 2B and 2C, and Figure S1). In

family 2, the maternal first cousin

(III-3) of the proband (III-2) had been

diagnosed with high-grade serous

ovarian cancer at 48 years and also

had soma-wide hypermethylation of

the BRCA1 promoter. The mother of

III-2, who had no history of cancer,

was deceased (as a result ofmyocardial

infarction at 76 years of age). Her sister

and themother of III-3 (II-4), who also

had no history of cancer, was alive at

85 years and had a similar level of hy-

permethylation (43%) as her affected

daughter and niece. The healthy

brother (III-1) of the proband also

showed hypermethylation of the

BRCA1 promoter.
DNA extracted from formalin-fixed paraffin-embedded

breast tumor was available from individual III-5 (family 1).

Genotyping showed loss of the wild-type allele across five

informative intragenic SNPs (Table S3) (i.e., only the alleles

of the variants not expressed in the cDNA were present),

consistent with loss of BRCA1 as the second hit in the tu-

mor tissue.

Expression analysis of BRCA1 in RNA extracted from

lymphocytes was undertaken in individuals with pro-

moter hypermethylation. Absence of heterozygosity

across five SNPs with high minor allele frequencies

within the BRCA1 cDNA suggested allelic imbalance

(Figure 3A) secondary to the loss of expression of one

allele as a result of hypermethylation of the BRCA1

promoter (Figure 3C). Sanger sequencing upstream of

the BRCA1 translation start site identified the heterozy-

gous variant c.�107A>T (g.43125358A>T [GenBank:

NM_007294.3]) in a woman affected by BRCA1 promoter

hypermethylation in each family (Figure 3B). This variant

segregated with the hypermethylated BRCA1 allele in all

tested individuals in both families and was absent in in-

dividuals lacking the hypermethylated allele, confirming

that it was in cis (Table 1 and Table S2). None of the

other 47 families carried this variant. This variant was ab-

sent in gnomAD,21 a database that includes whole-exome

and whole-genome sequencing data on 123,136 and

15,496 individuals, respectively. The variant has not

been reported in any individual with breast or ovarian

cancer in disease-specific databases, including the BRCA

Exchange.
netics 103, 213–220, August 2, 2018 215



Figure 2. Methylation Analysis of BRCA1 Promoter Region
(A) Schematic overview of BRCA1 promoter region (black dots, CpG sites; blue star, c.�107; green dot, rs799905; arrows, primer locations
for clonal bisulfite sequencing; dotted lines, pyrosequencing regions [A and B]).
(B and C) Representative pyrograms (region B) show the level of BRCA1 promoter methylation in lymphocytes, buccal mucosa, and hair-
derived DNA of an affected and unaffected individual. Five CpGs and a control site (0%) (to ensure complete bisulfite conversion) are
shaded, and the level of methylation as a ratio of C:T peak heights is calculated at each site (representing methylated versus unmethy-
lated cytosine). (B) Affected individual II-4 from family 1. (C) Unaffected individual II-1 from family 1. Further pyrogram data (region A)
indicating methylation across the BRCA1 promoter are available in Figure S1.
(D) Schematic overview of clonal bisulfite sequencing results. Allelic discrimination is made on the basis of rs799905 C>G (orange, C;
green, G). The variant c.�107A>T is present on the methylated allele (yellow, A; blue, T; black, methylated; white, unmethylated).
The two families (both non-consanguineous white

British families from North West England) were not know-

ingly related to each other. All individuals in the two fam-

ilies with promoter hypermethylation and the c.�107A>T

variant carried the previously described B1 haplotype

(Tables S4 and S5).20 To identify any additional germline

variants that could result in promoter hypermethylation,

we undertook SNP arrays and whole-genome sequencing.

SNP array analysis of II-5, III-2, and III-5 (family 1) and

III-2 and III-3 (family 2) did not identify any other

rare or unreported copy-number variants. Whole-genome

sequencing analysis was restricted to a candidate region

(chr17: 42,044,295–44,215,483, UCSC Genome Browser

hg38) 1 Mb upstream and downstream of BRCA1. We per-

formed segregation analyses to identify variants in a het-

erozygous state in the two unrelated affected individuals

(III-5 in family 1 and III-2 in family 2) and absent in the

unaffected individual (II-2 in family 1). This restricted

analysis identified 14 variants that were absent from

both the gnomAD dataset and dbSNP. Two variants (one

in intron 2, c.80þ661_80þ667delAAAAAAA [g.43123349–

43123356delAAAAAAA (GenBank: NM_007294.3)] [Sup-

plemental Material and Methods and Figure S3], and the
216 The American Journal of Human Genetics 103, 213–220, August
previously identified c.�107A>T) were determined to

be within the genomic region for BRCA1. Three variants

within the candidate interval were present within

DNase I hypersensitivity sites characterized across 125

cell types. In combination, these analyses identified

c.�107A>T as single candidate variant linked to hyperme-

thylation of the promoter (Figure S2).
Discussion

Here, over 20 years after the initial report that pathogenic

variants in BRCA1 result in familial breast cancer,22 we

demonstrate a previously undescribed dominantly in-

herited 50 UTR variant associated with epigenetic silencing

of BRCA1 in two families affected by early-onset breast and

ovarian cancer. A constitutional epimutation describes an

epigenetic change (e.g., promoter hypermethylation) that

results in the transcriptional silencing of a gene that is nor-

mally active across a range of normal tissues and predis-

poses to disease. Sloane et al.23 set out four criteria for es-

tablishing the presence of a constitutional epimutation,

and these criteria were met in our two families in that
2, 2018



Table 1. Summary of BRCA1 Promoter Methylation Status in Lymphocyte-Derived DNA and Clinical Phenotypes and Genotypes for the
c.�107A>T Variant in All Tested Individuals

Individual
BRCA1 Promoter
Methylation (Mean %) c.�107A>T

Clinical Status
(Age at Diagnosis in Years) Sex

Age Tested
(Years)

Family 1

II-1 1 AA unaffected female 80

II-3 0 AA unaffected female 74

II-4 43 AT breast (39) and ovarian (48) cancer female 68

II-5 37 AT bilateral breast cancer (30 and 32),
colorectal cancer (64)

female 68

II-7 41 AT unaffected male 63

III-1 38 AT unaffected male 43

III-2 1 AA unaffected female 41

III-3 44 AT unaffected male 31

III-4 41 AT unaffected female 49

III-5 32 AT breast cancer (39) female 43

Family 2

II-4 44 AT unaffected female 85

III-1 44 AT unaffected male 58

III-2 41 AT bilateral breast cancer (38 and 46) female 56

III-3 43 AT ovarian cancer (48) female 61
promoter hypermethylation is confined to one allele

in normal tissues derived from the mesoderm (blood),

hair follicles (ectoderm), and buccal mucosa (endoderm);

the level (�50%) and presence of hypermethylation are

demonstrated by at least two independent methods (pyro-

sequencing and clonal bisulfite sequencing); and the

methylated allele is transcriptionally silent and co-segre-

gates with the phenotype.23

Inherited variants resulting in epigenetic silencing

have rarely been described in familial cancer, notably in

Lynch syndrome, which is due to hypermethylation of

the MLH1 promoter15 or MSH2 promoter.16 MLH1 pro-

moter hypermethylation has been reported both in the

context of a cis-acting germline variant, c.�27C>A, and

more recently c.�63�delins18 (secondary epimutations)

and in the absence of any detectable genetic alteration

(primary epimutation).24,25 In contrast, MSH2 promoter

hypermethylation has always been associated with a cis-

acting deletion encompassing the 30 end of the adjacent

EPCAM.16,26 Here, we identified a BRCA1 exon 1 variant,

c.�107A>T, in cis with the hypermethylated promoter

and confirmed that it segregates with the phenotype in

both families.

In these families, we found no evidence to determine

whether male-to-female vertical transmission of BRCA1

promoter methylation results in a breast or ovarian cancer

phenotype in the next generation. Future predictive

testing of the at-risk daughters of male carriers will be

able to establish this. However, given that there is a

linked upstream variant (c.�107A>T), it is likely that trans-
The Americ
mission will result in promoter methylation and a

phenotype.

The c.�107A>T BRCA1 variant is found on an ancestral

B1 haplotype20 in both families. Although the families are

not known to be related to each other, this indicates that

the two families could share a common ancestry. It will

be important to determine whether this variant occurs in

other affected individuals to establish whether this variant

has arisen more than once and whether other non-coding

variants can result in BRCA1 promoter hypermethylation.

The c.�107 nucleotide is not highly conserved through

mammalian species, and in silico tools are not informative

when predicting its pathogenicity. Notably, exon 1 is not

normally sequenced in clinical BRCA1 testing, and so the

c.�107A>T variant would not have been detected by

routine testing. Even if it had been identified by sequence

analysis, without the methylation studies it would be clas-

sified as a variant of unknown significance. Therefore,

studies of promoter methylation should clarify the func-

tional effect of all rare or previously unreported 50 variants
in BRCA1. The specific mechanism by which the 50 variant
results in promoter hypermethylation remains unknown.

Importantly, the clinical presentation of the affected in-

dividuals in the two families is consistent with the pheno-

type in other families affected by BRCA1 pathogenic vari-

ants and does not indicate any specific clinical features

that would prioritize individuals with familial breast or

ovarian cancer without coding BRCA1 pathogenic variants

for methylation analysis. Although based on two families,

the penetrance of the variant causing a hypermethylated
an Journal of Human Genetics 103, 213–220, August 2, 2018 217



Figure 3. DNA and RNA Analysis of BRCA1
(A) Representative Sanger sequencing traces demonstrating allelic loss of expression of rs1799917 C>T in exon 11 of BRCA1. In the DNA
trace, both the C and T nucleotides are present, whereas in the cDNA trace only the C nucleotide is present.
(B) Representative Sanger sequencing traces for the heterozygous c.�107A>T variant, which is present in the individual with a methyl-
ated BRCA1 promoter and absent in an individual with an unmethylated promoter.
(C) Schematic representation of the normal pattern of gene expression and transcription and abnormal gene expression and transcrip-
tion caused by a germline variant (c.�107), the latter of which results in hypermethylation of the promoter (secondary epimutation) and
silencing of one allele.
BRCA1 promoter is 71.4% in informative women. This is

consistent with estimates of cumulative risks by age 80

years for females with pathogenic BRCA1 variants of 75%

for breast cancer.5 The two unaffected female variant car-

riers were born before 1940, when the penetrance of

BRCA1 pathogenic variants was much lower.27 For the

male relatives, as expected, there is no evidence of an

elevated cancer risk.28 Variable (mosaic) levels of BRCA1

promoter methylation were detected in normal somatic

tissues from individuals carrying the 50 variant and ranged

from 24% in hair in individual II-5 in family 1 to 69% in

buccal mucosa in individual III-2 in family 2; both women

have bilateral breast cancer. There is no correlation be-

tween these levels of promoter methylation and the clin-

ical phenotype; for example, the variant carrier (II-4) in

family 2 has >40% methylation but does not have cancer

at 85 years of age.

We detected the secondary epimutation in 2 of 49 fam-

ilies ascertained in North West England with a Manchester

score> 34. Therefore, this mechanism accounts for at least

1.25% of BRCA1 pathogenic variants in our very high-risk

familial breast and ovarian cancer cohort and increases

sensitivity from 71.8% to at least 72.7% in families with

a high likelihood of a BRCA1 or BRCA2 pathogenic variant.

Therefore, this mechanism is more common in our popu-

lation than deep intronicmutations.7 Further, in our famil-

ial breast and ovarian cancer cohort, next-generation

sequencing of a panel of genes associated with an

increased risk of breast cancer increased the diagnostic

yield for familial breast cancer by a similar amount but re-

vealed variants in genes (ATM and CHEK2 [MIM: 604373])

with less clear actionability.5,7 The uplift achieved by

methylation testing would argue that testing for BRCA1

promoter methylation is a valuable adjunct to sequence
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and copy-number analysis for individuals with a strong

family history of breast and/or ovarian cancer.

In summary, we have identified two families carrying the

dominantly inherited 50 UTR variant c.�107T>A linked to

allele-specific promoter methylation of BRCA1; it is present

in all three germ layers and results in transcriptional

silencing of one allele. This mechanism could explain

some of the missing heritability in families affected by

familial breast and/or ovarian cancer.
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