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Quantifying the impact of social groups
and vaccination on inequalities in
infectious diseases using a mathematical
model
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Abstract

Background: Social and cultural disparities in infectious disease burden are caused by systematic differences
between communities. Some differences have a direct and proportional impact on disease burden, such as health-
seeking behaviour and severity of infection. Other differences—such as contact rates and susceptibility—affect the
risk of transmission, where the impact on disease burden is indirect and remains unclear. Furthermore, the
concomitant impact of vaccination on such inequalities is not well understood.

Methods: To quantify the role of differences in transmission on inequalities and the subsequent impact of
vaccination, we developed a novel mathematical framework that integrates a mechanistic model of disease
transmission with a demographic model of social structure, calibrated to epidemiologic and empirical social contact
data.

Results: Our model suggests realistic differences in two key factors contributing to the rates of
transmission—contact rate and susceptibility—between two social groups can lead to twice the risk of infection in
the high-risk population group relative to the low-risk population group. The more isolated the high-risk group, the
greater this disease inequality. Vaccination amplified this inequality further: equal vaccine uptake across the two
population groups led to up to seven times the risk of infection in the high-risk group. To mitigate these
inequalities, the high-risk population group would require disproportionately high vaccination uptake.

Conclusion: Our results suggest that differences in contact rate and susceptibility can play an important role in
explaining observed inequalities in infectious diseases. Importantly, we demonstrate that, contrary to social policy
intentions, promoting an equal vaccine uptake across population groups may magnify inequalities in infectious
disease risk.
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Background
Reductions in global infectious disease burden have un-
covered inequalities in infectious disease health outcomes
[1–7]. These inequalities often reflect a disproportionately
high incidence observed amongst the most deprived and
vulnerable in society [4, 8–10]. Implementing equitable
public health care relies on prioritising effective interven-
tions that control the drivers of these inequalities [11].
There may be many contributing factors to inequalities

in reported infectious disease health outcomes. Some of
these factors have a direct and proportional impact on
the relative reported disease burden between social
groups, for example, the severity of disease experienced
[12, 13], the propensity to seek health care [14] and the
reporting rate of disease [15]. In contrast, other factors
affect the transmission of infection and may result in
non-linear changes in the relative disease burden be-
tween social groups. This latter group of factors include
differences in social contact, both within and between
social groups, and differences in the susceptibility to in-
fection and infectiousness.
Although indistinguishable when their effects are mea-

sured using reported disease burden, these drivers have
different implications for delivering equitable public
health interventions. For example, in the 2009 H1N1 pan-
demic influenza A (pH1N1) disparities in health outcomes
between social groups were identified globally. In particu-
lar, British Pakistanis had a 3.4 times increased risk of
mortality relative to the White British population [16];
many ethnic minority groups (Black, South Asian and
Southeast Asian) had a higher risk (odds ratio (OR) of
1.33–4.5) of exposure than white Canadians in Ontario
[17]; Pacific populations were twice as likely to be exposed
to infection than the rest of the New Zealand population
[18]. Although these examples would likely present as in-
creased clinical burden in particular sub-groups, the
drivers of these differences are difficult to determine. Even
though the results from New Zealand indicate differences
in transmission rate between sub-groups, the seropreva-
lence data do not provide enough information to identify
the specific driver responsible.
Vaccination is an important intervention in infectious

disease control because it reduces disease burden in
those vaccinated as well as reducing onward transmis-
sion to unvaccinated people. The strength of this indir-
ect protection non-linearly depends on the transmission
rate [19]. Therefore, if inequalities are caused by differ-
ences in transmission between social groups, vaccination
may benefit some groups more than others. The impact
of vaccination on inequality in infectious disease out-
come is therefore unclear.
To address this gap in our knowledge, we developed a

novel mathematical model of the transmission of two
vaccine-preventable infections circulating in a population

with two social groups characterised by different transmis-
sion properties. To quantify the effect of differences in
transmission on disease inequality between the social
groups, we parameterised the model using realistic esti-
mates of susceptibility and contact structure informed by
empirical social mixing data. Using our model, we investi-
gated how the overall impact of vaccination is distributed
between two social sub-groups, as well as the effect on
inequality in disease incidence.
In addition, we determined the optimal vaccine alloca-

tion needed to eliminate inequality.

Methods
We developed a novel mathematical model to evaluate
whether differences in contact rate and the susceptibility
to infection between two social groups can explain dis-
ease inequality across a population. We used this model
to quantify how a vaccination programme affects these
inequalities. Our mathematical model combined a dy-
namic epidemiological model of disease transmission
with an age-structured population model of two distinct
social groups (Fig. 1).

Population model
To simulate the demographics of a high-income country,
we modelled a stable age distribution with birth rate equal
to death rate, a life expectancy of 80 years and mortality
only occurring after 70 years of age at a constant rate. The
population model was stratified into nage = 15 age groups
(0–4, 5–9, …, 65–69, 70+ years) with continuous ageing
between age groups. The age-structured population model
was further stratified into two social groups of equal size,
with the same proportion of male and female and an iden-
tical age structure. Throughout the paper, the social
groups with high and low transmission are labelled group
H and group L, respectively.

Epidemiological model
Our dynamic transmission model tracked the proportion
of the population as susceptible (S), infected but not
infectious (E), infectious (I) and permanently immune to
infection (R) (Fig. 1a).
The transmission between and within the two social

groups was captured by three mechanisms. The first two
control the underlying differences between the two so-
cial groups that are potential drivers of inequality: (1) a
difference in contact intensity between the two groups,
expressed as the relative rate at which members of group
L interact with members of their own group, compared
to the rate at which members within group H interact
with one another (‘contact intensity’, 0 < χ < 1), and (2) a
difference in susceptibility to infection, expressed as the
relative susceptibility for members of group L compared
to members of group H (‘susceptibility’, 0 < η < 1). The
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third mechanism determines the integration of the two
social groups: (3) the relative rate at which individuals
from one social group contact members of the opposite
social group (‘integration’, 0 < ξ < 1). For example, ξ = 0.15
corresponds to contact between group H and group L at
15% of the rate of contact within group H. The rate of
contact between the groups remained symmetrical; i.e. the
rate of contact from group H to group L was the same as
the rate of contact from group L to group H. The force of
infection, λ, for the susceptible population in age group i
and social group H or L is therefore dependent on the
social group-specific susceptibility, the age- and social
group-specific contact rate and the reproductive number,
R0, of the disease (Fig. 1c) and can be expressed as:

λi;H ¼
X15

j¼1

rβij I j;H þ ξI j;L
� � ð1Þ

λi;L ¼
X15

j¼1

rηβij ξI j;H þ χI j;L
� �

ð2Þ

where βij is the age-specific transmission rate from age
group j to age group i, and Ij, H and Ij, L are the

proportion infectious in age group j and social groups H
and L, respectively.
To keep R0 constant when the relative contact rate (χ),

susceptibility (η) and integration (ξ) of the social groups
were changed, we scaled the force of infection using a
linear operator, r. This approach allows parameters of
interest (relative contact rate (χ), susceptibility (η), inte-
gration (ξ) and R0) to be varied independently from each
other (Additional file 1). All modelling and analysis was
performed using Python 2.7.12 [20].

Parameterisation
Disease scenarios
We parameterised our model for two vaccine-preventable
diseases: seasonal influenza and rubella. We quantified the
incidence in the total population for both diseases. For in-
fluenza, we also quantified the incidence in those aged
60 years and over, who are at risk for severe complications
following infection. For rubella, we quantified the inci-
dence in women of childbearing age (WCA) (15–45 years),
who serve as a proxy for children born with congenital ru-
bella syndrome after their mothers become infected dur-
ing pregnancy. The reproduction number, incubation
period and infectious period for both diseases were

Fig. 1 Summary of the mathematical model used to quantify inequalities between social groups H (high risk) and L (low risk). a The
epidemiological model, where Si,G, Ei,G, Ii,G. Ri,G and λi,G are the proportion susceptible, infected but not infectious, infectious, recovered and
force of infection in age group i and social group G (either group H or group L), ρ is the proportion vaccinated, σ is the rate at which infected
individuals become infectious and γ is the rate of recovery from infection. Population also moves out of these groups into other age groups and
are removed when they die (not shown in this schematic). b A schematic of the population model with higher contact rate in group H than
group L; the groups also differ in susceptibility (not shown). c An example transmission matrix, showing the relative transmission rate between
age and social groups with all social mixing and susceptibility assumptions included with parameterisation χ = 0.6, η = 0.6, ξ = 0.05 (rates
normalised such that the highest transmission group 10–14 years old in group H has a rate of 1. The same age group has a rate of 0.36 within
group L (low susceptibility and reduced contact rate, χ and η), 0.05 from group L to group H (between-group contact rate, ξ) and 0.03 from
group H to group L (between-group contact rate and reduced susceptibility, ξ and η)

Munday et al. BMC Medicine  (2018) 16:162 Page 3 of 12



parameterised from the literature (Table 1). The contact
rate between age groups was parameterised with empirical
social mixing data collected in the UK arm of the POLY-
MOD contact survey [21].

Inequality mechanisms

Integration We informed the parameterisation of ξ, the
rate of contact between social groups, relative to the rate
of contact within group H, using social contact data
from the UK arm of the POLYMOD study [21]. We as-
sumed that all household contacts were within their own
social group, with a further 70–90% of non-household
contacts also within their own social group. The relative
rate of contact between social groups, ξ, was estimated
as 0.05–0.25 (Additional file 1).

Relative contact rate The feasible range for the contact
intensity parameter, χ, the relative rate contact within
group L compared to group H, was also informed by
the POLYMOD contact data. For each of the 15 age
groups we sorted the participants into quintiles by
their household size. We then recombined the age
groups, quintile by quintile, to recover five equally
sized groups. For each participant, we calculated the
total number of contacts from within each person’s
own social group (using the same assumption as
above that all household contacts and 70–90% of
non-household contacts were with members of their
own social group). The contact intensity parameter χ
was then estimated by evaluating the ratio of the total

number of within-group contacts for individuals in
every unique pair of quintiles. We estimated the
range of ratios as 0.65–0.95 (Additional file 1).

Relative susceptibility Given the disease-specific con-
sideration regarding previous exposure to obtain a par-
ameter for the relative susceptibility (ξ), we investigated
the same range of 65–95% susceptibility in group L
compared to group H.

Primary analysis: quantifying inequalities
The inequality in the population was expressed by the
relative risk of infection in the high mixing group (group
H) relative to the low mixing group (group L). We calcu-
lated this relative risk across the overall population and
for the disease-specific risk groups. For influenza, we
calculated the cumulative relative risk over the course of a
single outbreak. For rubella, we measured the relative
annual infection risk at endemic equilibrium to ensure
that both rate of transmission and age-specific prior ex-
posure to infection were accounted for in our calculation.

Vaccination
For both diseases, we assumed that a proportion of indi-
viduals become immunised after vaccination—an ‘effective
coverage’. Consistent with disease-specific immunity pro-
files, we assumed no waning of vaccine protection over
the period of evaluation (lifetime for rubella or one influ-
enza season). Effective coverage for influenza vaccination
was identical across all age groups from the beginning of
the season; for rubella, vaccine was administered at birth.

Table 1 Model parameter values used in base case and sensitivity analyses
Symbol Primary analysis Sobol

rangeb

Population parameters

Difference in transmission (either):a

Within-group mixing (’contact’) χ 0.65–0.95 0.65–1.54

Relative susceptibility of group L to group H (’susceptibility’) η 0.65–0.95 0.65–1.54

Quantity of out-group mixing relative to within-group mixing of group H (’integration’) ξ 0.05–0.25 0.05–0.25

Relative vaccine uptake in group H to group L VH/VL 1.0 0.70–1.43

Epidemiological parameters

Basic reproduction number [48, 49] R0

Influenza 1.8 1.5–4.0

Rubella 6.5 5.0–8.0

Pre-infectious period (days) [50] σ

Influenza 2.6 2.6

Rubella 14.0 14.0

Infectious period (days) [50] γ

Influenza 4.0 4.0

Rubella 11.0 11.0
aOne parameter value set to 1.0 whilst the other adjusted over the ‘primary analysis range’
bRanges were set so the mid value is the ‘base case’, which was 1.0 (no difference) for factors which vary for group L relative to group H
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To allow comparison of results between the two diseases
with different R0 values, we express the effective vaccine
coverage as a fraction of the critical vaccination threshold
(CVT), 1 – 1/R0, i.e. the minimum proportion of the
population required to be vaccinated to interrupt trans-
mission. We evaluated the relative risks of infection with
no vaccination and with vaccination at 80% of the CVT.
Unless otherwise stated, the effective coverage was as-
sumed to be identical between social groups.

Identifying the drivers of inequality
To evaluate the relative importance of the model param-
eters as drivers for inequality, we used a variance-based
global sensitivity analysis, the total Sobol′ sensitivity
index (ST) [22, 23], which calculates the proportion of
the variance in the relative risk attributable to each par-
ameter and combinations thereof.

Results
Underlying epidemiology
We ran simulations with no vaccination and no epi-
demiological differences between group H and group L
(i.e. setting χ, η, ξ = 1). We found that the influenza

epidemic lasted approximately 21 weeks with a cumula-
tive attack rate of 62% across all age groups and 40%
amongst those older than 60 years. For rubella at en-
demic equilibrium 99.4% of the population were infected
before death (95% before the age of 30 years), and the
mean age of infection was 8 years. The annual incidence
amongst WCA was 66 per 100,000 (Fig. 2).

Pre-vaccination inequalities
Influenza
Without vaccination, introducing a relative contact rate of
0.65–0.95 within group L compared to group H led to a
change in cumulative attack rate in both social groups, and
hence a change in the relative risk of infection between the
two groups (Fig. 2). In particular, across base case values of
susceptibility and integration, group H experienced a rela-
tive risk of infection 1.04–1.44 compared to group L
(Fig. 3a). This relative risk increased to 1.06–1.62 (an in-
crease of 1–12%) amongst the elderly in group H. Less inte-
gration between the two groups exacerbated this inequality;
when contact between groups was decreased by 67% com-
pared to the base case scenario (ξ= 0.05), the relative risk
for group H increased to 1.06–1.84 (Fig. 4a).

Fig. 2 Epidemiology predicted by the mathematical model for seasonal influenza and rubella with no differences between two population
groups (black dashed line) and with differences in susceptibility and contact rate for group H (orange region) and group L (navy region) across
feasible range of contact rate within social groups (χ = 0.65 – 0.95) and base case values of integration (ξ = 0.15) and susceptibility (Table 1). a
Cumulative incidence of influenza over a single outbreak with no vaccination. b Proportion of population infected with rubella by age at
endemic equilibrium with no vaccination. c Proportion of all infections acquired in each 5-year age group, with no vaccination. d Cumulative
incidence of influenza with 37% vaccine uptake (80% of the critical vaccination threshold (CVT)). e Proportion of population infected with rubella
by age with 67% vaccine uptake (80% of the CVT). f Proportion of all infections acquired in each 5-year age group, with 67% vaccine uptake (80%
of the CVT)
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Reducing the susceptibility in group L by a factor of 0.65–
0.95 relative to group H, whilst maintaining base case values
of within-group contact and between group integration, led
to 1.05–1.63 times more infections in group H than group L
over the course of the outbreak (Fig. 3b). Again, the relative
risk amongst the elderly in group H was higher than that of
the social group as a whole, with a relative risk of 1.05–1.63
under base case assumptions of integration. Relative risk of
infection in group H increased when the social groups were
less integrated relative to the base case scenario to 1.08–2.04
(ξ = 0.05) and up to 2.49 in the elderly.

Rubella
Unlike our influenza model results, differences in con-
tact rate and susceptibility between the social groups did
not result in an inequality in the risk of rubella infection in
the whole population (Fig. 3). However, a more intense

contact rate in group H or a lower susceptibility in group L
led to a lower age of infection in group H relative to group
L (Fig. 2). This difference in the age of infection resulted in
a relative risk of infection for WCA in group H of 0.64–
0.95 across feasible ranges of both within-group contact
rates and susceptibility. In contrast to the influenza risk
group, therefore, our model suggests there is an elevated
risk for the low-transmission social group (Fig. 3). Again, in
contrast to the influenza model results, varying the level of
integration between social groups only marginally affected
the relative risk of infection across WCA (Fig. 4b).

Post-vaccination inequalities
Influenza
Vaccination with a 37% uptake (80% of the CVT) re-
duced the cumulative attack rate of seasonal influenza
from 62% to 30% when transmission in the social groups

Fig. 3 Risk of infection in group H relative to group L in the total population and in risk groups, elderly and women of childbearing age (WCA). Relative
risks shown with no vaccination and vaccination at 80% of critical vaccination threshold (37% for influenza and 67% for rubella). Forest plots show ranges
of relative risk for fixed integration of ξ = 0.15 and a range of a ratio of in-contact rate in social groups (χ = 0.65–0.95) and b ratio of susceptibility in social
groups (η = 0.65–0.95)

Fig. 4 Full range of relative risk in a influenza in the elderly (60+ years) and b rubella in women of childbearing age (15–45 years), due to
differences in contact rate (χ= 0.6–0.9) as isolation between sub-groups varies (ξ = 0.05–0.15). Red shaded region shows range of relative risk with
no vaccination, blue shaded region shows relative risk with vaccination at 80% of the critical vaccination threshold (37% coverage for influenza,
67% coverage for rubella)
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was identical (Fig. 2d). However, with differences in
contact rate and susceptibility between the two social
groups, introducing vaccination increased the inequal-
ity between the social groups (Fig. 3). For example
the relative risk of 1.04–1.84 before vaccination in-
creased to 1.11–2.18 after vaccination with differences
in contact rate, and for differences in susceptibility
relative risk increased from 1.05–2.04 before vaccin-
ation to 1.13–3.00 after vaccination (with base case
integration, ξ = 0.15).
Consistent with the results without vaccination, rela-

tive risk of infection for group H increased when the
two social groups were less integrated (Fig. 4a). When
the inequality was driven by feasible changes in either
within-group contact rate or susceptibility to infection,
the relative risk across the whole of group H reached
4.83 and 6.99, respectively, when integration was at its
lowest value (ξ = 0.05). Therefore, vaccination increased
the inequality of disease risk in the social group most at
risk of infection by 5–241% (Table 2).
Although the percentage increase in relative risk after

vaccination was less amongst the elderly in group H
(5–203%), the relative risk remained higher than in the
total population, with a maximum relative risk of 5.19
and 7.52 for differences in contact rate and susceptibility,
respectively (Fig. 4a).
The marked increase in inequality in risk of influenza

infection as a result of vaccination corresponds to the
social group H benefiting substantially less from the
vaccination programme than group L.
Sensitivity analysis shows robustness of these results

to variation in the relative size and community structure
of group L and group H (Additional file 1: Figure S15).

Rubella
An effective vaccination uptake of 67% (80% of the
CVT) greatly reduced lifetime risk of rubella in both
social groups, with less than 40% of the unvaccin-
ated population experiencing infection over their
lifetime (Fig. 2d). With differences in contact rate
between the social groups, vaccination caused an in-
equality to emerge. Specifically, the relative risk of
infection in group H relative to group L increased
from 1.01–1.02 to 1.02–1.42, across a feasible range
of within-group mixing patterns (Fig. 3a). The same
result was found as a consequence of susceptibility
differences (Fig. 3b).
Furthermore, vaccination reduced the difference in the

age of infection between the two social groups (Fig. 2).
The combination of changes in relative risk of infection
before death and in age at infection caused a switch in
the group most at risk for infection in WCA. Before
vaccination the highest relative risk was amongst women
in group L, whereas with vaccination the WCA in group
H tended to have a higher risk, with relative risk ranging
from 0.99 to 1.16.
Sensitivity analysis shows robustness of these results

to variation in the relative size and community structure
of group L and group H (Additional file 1: Figure S16).

Vaccinating to prevent inequality
By increasing the vaccine uptake in group H relative
to group L, the inequalities driven by vaccination,
differences in contact rate and differences in suscep-
tibility can be mitigated. To achieve equality in risk
of infection for influenza across the entire popula-
tion, group H had to receive 52–70% of the total
number of vaccine doses across the feasible ranges
of population parameters (Fig. 5a). In contrast, small
changes in vaccine dose allocation were required to
curb inequality in rubella (50.3–52.3%) (Fig. 5b). The
level of integration between the two social groups
did not affect the vaccine uptake required in each
group to eliminate inequality (results not shown).

Ranking drivers of inequalities
Pre-vaccination era
Without vaccination the magnitude of the inequality (i.e.
relative risk of infection for the high-transmission group)
in influenza was most sensitive to the relative suscepti-
bility of the social groups (ST = 0.55) and their relative
contact rate (ST = 0.48) (Fig. 6a). The same was true for
rubella (for relative susceptibility ST = 0.58; for relative
within-group contact rate ST = 0.46). By comparison,
sensitivity to integration between the two groups was
relatively small, however greater for influenza than ru-
bella (ST = 0.03 vs. 0.004, respectively) (Fig. 6b).

Table 2 Percentage increase in risk of infection in group H
relative to group L due to vaccination

Driver of inequality Infection Population
group

Increase in relative
risk

Difference in contact
rate

Influenza All 4–162%

Elderly 3–137%

Rubella All 2–39%

WCA 4–72%

Difference in
susceptibility

Influenza All 5–241%

Elderly 5–203%

Rubella All 2–49%

WCA 5–86%

Percentage increases in relative risk of infection for the total population (all),
women of childbearing age (WCA) and elderly. Results calculated when either
the relative within-group contact rate of the two social groups is varied
(‘contact’ parameter) or when the relative susceptibility of group L to group H
is varied (‘susceptibility’ parameter) (Table 1). Integration between the social
groups is set at its base case value

Munday et al. BMC Medicine  (2018) 16:162 Page 7 of 12



Fig. 5 Optimal vaccine allocation between social groups required to control disease inequalities in a influenza and b rubella. Results shown for
ratio of contact rate in social groups (χ = 0.65–0.95) and ratio of susceptibility in social groups (η = 0.65–0.95). The total vaccination coverage is
80% of the critical vaccination threshold (37% vaccine uptake for influenza, 67% vaccine uptake for rubella)

Fig. 6 Total Sobol′ indices, ST, for contact (χ), susceptibility (η), integration (ξ), infectivity (R0) and difference in vaccination coverage (VH/VL) relative risks
for rubella and influenza. a Influenza in the elderly (60+ years) with no vaccination. b Rubella in women of childbearing age (15–45 years) with no
vaccination. c Influenza in the elderly with vaccination coverage at 37% (80% of the critical vaccination threshold). d Rubella in women of childbearing
age (15–45 years) with vaccination coverage at 67% (80% of the critical vaccination threshold). Error bars show 95% confidence interval
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Vaccination era
Additional variance introduced by differences in vaccine
uptake between social groups caused a reduction in the
relative sensitivity of inequalities to all other parameters,
with the exception of integration. Nonetheless, for influ-
enza, inequality in the disease risk between the two so-
cial groups remained most sensitive to relative
susceptibility and contact rate (ST = 0.48; ST = 0.37). In
contrast, inequalities were relatively insensitive to rela-
tive vaccine uptake (ST = 0.35) (Fig. 6c). Sensitivity to the
integration between social groups also increased relative
to no vaccination (ST = 0.13). For rubella, relative vaccine
uptake between the two social groups had the greatest
influence on inequality (ST = 0.91), diminishing the rela-
tive sensitivity of inequality to relative susceptibility and
contact rate of the social groups such that they were
negligible (Fig. 6d).

Discussion
Differences in incidence of infectious diseases between
social groups have been observed; however, the factors
that drive these inequalities are not well quantified.
Moreover, the impact of vaccination on these inequal-
ities is unclear. We developed a novel mathematical
model to simulate influenza and rubella in two con-
nected social groups and assessed the role of differences
in two key factors—contact rate and susceptibility—on
inequalities as well as the impact of vaccination. Our
model suggested that these factors could be responsible
for substantial differences in disease epidemiology be-
tween social groups. Therefore, these factors may play a
significant role in driving observed inequalities in infec-
tious disease outcomes. Furthermore, the results suggest
that the impact of these factors on inequalities depends
on the characteristics of the pathogen, as we show that
the same differences in transmission are likely to cause
greater inequality in influenza than rubella. Vaccination
can exacerbate the inequalities even when the uptake is
equal between the groups.
These observations have four important implications

for public health and immunisation strategies. First, in-
equality in health is an area of high importance amongst
public health authorities [5, 24]. As such, there is an ap-
petite for policy that avoids and reduces inequalities in
infectious disease outcome [25, 26]. To this end, effort is
spent attempting to provide equal distribution of vaccin-
ation across social groups in the population [27].
However, our results indicate that equal vaccination
uptake could, paradoxically, increase inequalities into
high-transmission groups, if the vaccine coverage is not
high enough to eliminate disease. This result indicates
that equal vaccination is not an appropriate measure of
equitable intervention, and inequality in disease burden
must be evaluated directly.

Second, groups who have social characteristics that
place them at a higher risk of infection and who also
have a reduced vaccination uptake may be vulnerable
to amplified inequalities. For example, during pH1N1
in 2009, Black and Hispanic populations had a lower
uptake of influenza vaccination than the White popu-
lation in the USA [28]. In addition, countries with
self-financed or partially self-paid vaccination programmes
may discourage more materially deprived groups from
vaccinating; studies [29, 30] in Poland and South Korea
have identified that lower uptake of vaccination correlates
with low socio-economic status. This leaves the possibility
that low uptake may correlate with factors contributing to
transmission.
Third, the factors that most influence inequality depend

on the underlying disease dynamics; therefore, interven-
tion efforts must be disease- and population-specific.
For example, our results indicate that differences in
vaccine uptake are more important in creating inequal-
ities in rubella than differences in factors associated with
transmission rate. This is reflected in the small (0.3–2.3%)
change from equal vaccine uptake required to mitigate
differences in contact rate or susceptibility (Fig. 4).
However, inequalities in influenza are more sensitive
to differences in transmission-related factors than dif-
ferences in vaccine uptake. This contrast was evidenced
when low vaccine uptake in more affluent social groups
created ’a reversal of health inequalities’ with higher
prevalence in more affluent areas during a measles out-
break in London, UK in 2001–2002 [31]. In contrast, the
same geographical region saw a higher attack rate of
pH1N1 in more deprived areas [9] only 7 years later. This
finding suggests that, notwithstanding the potential to in-
crease existing inequalities, for diseases like rubella, equal
vaccine uptake may be the most practicable target for
minimising post-vaccination inequalities in disease bur-
den. However, the same approach may not be optimal for
influenza.
Finally, we identified that inequalities resulting from

differences in transmission are highly sensitive to the
level of integration of sub-groups. The importance of
integration between social groups becomes more pro-
nounced for diseases with sub-optimal vaccine uptake.
This result suggests that inequalities driven by differ-
ences in transmission rate or a difference in vaccine up-
take may be more likely to occur in highly segregated
populations. Our finding could explain inequalities in
incidence of infectious disease in urban centres, where
there is geographical clustering of social and ethnic
groups. For example, central Birmingham, UK, which
was heavily affected by pH1N1 in 2009, is an area where
up to 80% of the population is South Asian, an ethnic
group associated with higher risk of transmission [8].
This phenomenon may also contribute to increased risk
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of outbreaks of measles, often observed in isolated com-
munities with low vaccination coverage [32, 33]. Our find-
ings reinforce the notion that communities that are more
isolated should be of particular focus when considering
public health strategies for infectious disease. Further, our
results highlight the importance of understanding the role
of transmission-related factors in inequality in populations
where social and ethnic groups are becoming more segre-
gated, as inequalities could be set to increase [34].
Our influenza model predicts a relative risk of infec-

tion in an unvaccinated population of up to 2.05, within
feasible values of social group mixing and susceptibility.
This is broadly consistent with data from the pH1N1
epidemic in 2009. For example, a case-control study
from Ontario, Canada shows that East/Southeast Asian,
South Asian and Black ethnicities had a significantly in-
creased risk of acquiring pH1N1 relative to White Cana-
dians (OR 1.33–4.50) [17]. Similarly, in New Zealand a
seroprevalence study showed that Pacific Island popula-
tions were twice as likely to be infected during the 2009
pandemic than those of European ethnic identity [18].
Whilst there are many examples of observed inequalities
in influenza [8, 9, 35–39], studies of inequalities associ-
ated with rubella and other endemic childhood infec-
tions are often focused on disparities in vaccine uptake
rather than disease outcome [40].
Whilst much attention has been given to investigating

the impact of transmission heterogeneity on the overall
effectiveness of control strategies [41, 42], we build on
this work by considering the role of heterogeneity in in-
fluencing inequalities in infectious disease outcomes, ra-
ther than the overall disease burden. Transmission
models have previously been developed to evaluate the
impact of social structure on observed inequalities in re-
ported incidence of pandemic and seasonal influenza
[43, 44]. By using socio-economic census data, these
studies can replicate some of the location-specific in-
equalities between pre-defined social groups. However,
because it is difficult to disentangle the drivers of in-
equality underlying these socio-economic groups, the
models do not provide a fully generalisable framework
in which to evaluate inequality. To overcome this issue,
we developed a ‘bottom up’ approach, in which potential
transmission-related drivers of inequality are isolated
and evaluated. By parameterising our model with empir-
ical social mixing data, we can explicitly capture the
contact patterns between age and social groups and the
effect of vaccination. Our generalised framework there-
fore allows us to disentangle the relative impact of differ-
ent drivers of inequality and the impact of vaccination
on this inequality.
To enable a mechanistic understanding of the drivers

of inequality, we made some simplifying assumptions.
We assumed that the two social groups in our model

have identical age structures and birth rates. It has been
shown that differences in age structure and other demo-
graphic differences such as birth rate can also result in
changes in transmission which lead to inequalities in in-
cidence [43, 44] and the effectiveness of vaccination
[45]. To remain consistent with this assumption, we cor-
rected for age distribution when we calculated the range
of differences in contact rate between the groups. Fur-
thermore, we assumed gender non-specific contact pat-
terns. In some settings gender differences may exist,
particularly in rates of contact between adults and in-
fants [46, 47]. Whilst this gender difference may also dif-
fer between social groups, a recent survey suggests that
contact rates between mothers and children are broadly
consistent across ethnic and socio-economic groups
[47]. Our approach is general and aims to establish the
relative impact of various drivers of inequality. As such,
our results should not be considered as indicative of the
magnitude of specific inequalities, but rather as the po-
tential for difference in transmission to explain inequal-
ities and the qualitative nature of the inequalities that may
arise from such drivers. We hope the results can be used
to target additional analyses at specific scenarios where
differences in transmission may arise, for example, where
differences in household size distribution or high levels of
segregation between social groups prevail.

Conclusion
Differences in contact behaviour and susceptibility to infec-
tion could cause substantial inequality in infectious
disease-related health outcomes, particularly those related
to influenza outbreaks or infections with similar epidemi-
ology. Such inequalities have a highly non-linear relation-
ship with vaccination, which is sensitive to the underlying
epidemiology of the infection, ultimately resulting in an in-
crease in inequality after sub-optimal vaccination, even
when uptake is equal across the entire population. As such,
we advocate measurement of health outcomes rather than
vaccination coverage when quantifying the equality of pro-
tection across multiple social groups. Moreover, targeted
vaccination in known risk groups may reduce overall in-
equalities in the case of influenza outbreaks. However, due
to the high sensitivity of rubella inequalities to differences
in vaccination coverage, this is not a recommended course
of action in this case or for similar infections.
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