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RESEARCH Open Access

Genotype effects contribute to variation in
longitudinal methylome patterns in older
people
Qian Zhang1* , Riccardo E Marioni2,3, Matthew R Robinson1, Jon Higham4, Duncan Sproul4,5, Naomi R Wray1,6,
Ian J Deary2,7†, Allan F McRae1† and Peter M Visscher1,6†

Abstract

Background: DNA methylation levels change along with age, but few studies have examined the variation in the
rate of such changes between individuals.

Methods: We performed a longitudinal analysis to quantify the variation in the rate of change of DNA methylation
between individuals using whole blood DNA methylation array profiles collected at 2–4 time points (N = 2894) in
954 individuals (67–90 years).

Results: After stringent quality control, we identified 1507 DNA methylation CpG sites (rsCpGs) with statistically
significant variation in the rate of change (random slope) of DNA methylation among individuals in a mixed linear
model analysis. Genes in the vicinity of these rsCpGs were found to be enriched in Homeobox transcription factors and
the Wnt signalling pathway, both of which are related to ageing processes. Furthermore, we investigated the SNP effect
on the random slope. We found that 4 out of 1507 rsCpGs had one significant (P < 5 × 10−8/1507) SNP effect and 343
rsCpGs had at least one SNP effect (436 SNP-probe pairs) reaching genome-wide significance (P < 5 × 10−8). Ninety-five
percent of the significant (P < 5 × 10−8) SNPs are on different chromosomes from their corresponding probes.

Conclusions: We identified CpG sites that have variability in the rate of change of DNA methylation between
individuals, and our results suggest a genetic basis of this variation. Genes around these CpG sites have been reported
to be involved in the ageing process.

Keywords: DNA methylation, Longitudinal analysis, Methylation change, G by AGE

Background
DNA methylation is a widely studied epigenetic modifica-
tion with a role in the regulation of gene expression [1].
Local levels of DNA methylation differ within and
between individuals. This variation in local methylation is
associated with both genetic and environmental factors
[2–5]. The majority of DNA methylation studies in human
are based on cross-sectional cohorts. Such studies have
reported that methylation levels at many CpG sites in the
genome correlate with age [6–10]. Therefore, age is
frequently treated as a covariate and adjusted for in a

linear regression framework in which differences of DNA
methylation between cell types, tissues and diseases are
tested [11–13]. One implicit assumption behind this
correction is that the rate of change at a methylation CpG
site across time is constant between individuals, which
may not be true. Several studies have revealed that there is
a potential change in variability of DNA methylation with
age [14, 15], indicating that the rate of change of DNA
methylation is different between individuals.
Estimation of the variation in such trajectories of DNA

methylation with age between individuals is possible in a
longitudinal analysis. Previous longitudinal analyses have
investigated the relationship between SNPs and longitu-
dinal DNA methylation [16, 17]. Other studies focused on
the association between DNA methylation and a phenotype
measured on the same individual [18–20]. Differences
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between individuals in the pattern of change of DNA
methylation over time were not considered in these studies.
Here, we estimate the variation in trajectories of DNA
methylation change among individuals in a longitudinal
analysis. This approach may elucidate how epigenetic
marks change differently between individuals and whether
this variation is associated with genetic factors and
biological function.
In this study, we estimated between-individual variation

in the rate of change of DNA methylation at 344,000 loci
in a longitudinal sample of older people from the Lothian
Birth Cohorts 1921 and 1936. For each CpG site, we esti-
mated the variation in the rate of change in each individ-
ual. Furthermore, the identification of such probes
facilitates the estimation and partitioning of the variation
underlying DNA methylation changes, for example, the
contribution of genetic factors. We identified genetic loci
that are associated with differences in the longitudinal
changes in DNA methylation across individuals.

Methods
Methylation data
DNA was extracted from whole blood samples in Lothian
Birth Cohort 1921 (LBC1921) at MRC Technology, West-
ern General Hospital, Edinburgh (LBC1921), and the
Wellcome Trust Clinical Research Facility (WTCRF),
Western General Hospital, Edinburgh (LBC1936), using
standard methods. Methylation typing of 485,512 probes
was performed at the WTCRF. Bisulphite converted HD
Methylation protocol and Tecan robotics (Illumina). Raw
intensity data were background-corrected and normalized
using internal controls, and methylation M values were
generated using the R minfi package [21]. Detailed further
quality control steps are given in Additional file 1.

Batch and covariate adjustment
Our analysis was based on the M value of DNA methyla-
tion. We regularized the M value by constraining it to be
in the interval between − 9.96 and 9.96 (corresponding to
the interval 0.001 to 0.999 of the beta-value). Furthermore,
for each probe, we removed individuals with DNA methy-
lation three standard deviations above and below the
mean M value to exclude outliers. On average, 34 (out of
2894 samples, 1.2%) outliers were removed for each probe.
DNA methylation (M value) in most (79.5%) of these out-
liers is in the range between − 6.6 and 6.6 (corresponding
to the interval 0.01 to 0.99 of the beta-value), suggesting
the “abnormal” DNA methylation values in the majority of
outliers are not extreme values caused by the transform-
ation from beta-value to M value. Covariates including
sex, age and cell counts (CC), and batch effects including
position in array (PIA), hybridization date (HD), set ID
(SI), plate ID (PI) and array ID (AI, both PI and AI were
regarded as random effects), were corrected for each

probe. We used the residuals after this adjustment for fur-
ther analysis. If yj is the DNA methylation value for probe
j, then we used the residuals from the model

y j � sexþ ageþ CCþ PIAþHDþ SIþ PIþ AIþ e j:

LBC genotype and imputation
Individuals from LBC1921 and LBC1936 were genotyped
on Illumina 610-Quad Beadchip arrays. Full details of
genotyping procedures are given elsewhere [22]. Stand-
ard QC filters were applied, and remaining genotyped
SNPs were phased using HAPI-UR [23] and imputed
using 1000 Genomes Phase I Version 3 [24] with Impute
V2 [25]. Raw imputed SNPs were filtered to remove
any SNPs with low imputation quality as defined by
an R2 < 0.8. Subsequent quality control removed SNPs
with MAF < 0.01, those with HWE P < 1 × 10−6 and a
missing rate > 10%. After filtering, 7,760,689 SNPs
remained for further analysis.

Estimation of random slope effects
For each probe, we fitted a mean level and a rate of
change of DNA methylation for each individual and tested
whether the variance due to these random effects was
significantly larger than zero, using the mixed model

yij ¼ u1 þ u2 � tij þ ai þ bi � tij þ eij

ai
bi

� �
� N 0;Ωð ÞwithΩ ¼ σ2a σab

σab σ2
b

� �
andeij � N 0; σ2e

� �
:

where yij is the methylation residual after QC steps, i
is the ith individual, j represents the jth observation in
individual i, u1 is the mean effect, u2 is the mean age
effect, ai and bi are the random intercept (mean level of
DNA methylation in each individual) and random slope,
tij represents standardized age (mean = 0 and variance =
1) and eij is the random error. The random effects of eij,
ai and bi are assumed to follow a normal distribution. σ2a
and σ2

b are the variances of ai and bi, respectively. σab is
the covariance between ai and bi, it was set to be zero
under the assumption of independence between ai and
bi. The likelihood ratio test (LRT) was used to test if σ2a
and σ2b are equal to zero.
We obtained a P value from the LRT using a χ2(1)

distribution and then dividing the P value by two. This
can be justified since under the null hypothesis, in 50%
of cases, the test statistic is zero (or, follows a χ2(0)), and
in 50% of cases it follows a χ2(1) [26]. Probes with a P
value smaller than 1.5 × 10−7 (0.05/344,000) for the
random slope are defined as rsCpG.
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Covariance between ai and bi
We applied an extended model that included the covari-
ance σab between the random intercept and random slope
to quantify the effect of covariance on the estimation of
random effects. We calculated the Pearson corrections be-
tween the estimated random slope effects before and after
incorporating the covariance term. All correlations were
larger than 0.7 in the 1507 rsCpGs (mean correlation =
0.93). These results indicated that the introduction of the
covariance term did not alter the results substantially.

Quadratic effect
We investigated the effect of modelling a quadratic average
trajectory by adding a squared term for age (t2) in the
model yij ¼ u1 þ u2 � tij þ ai þ bi � tij þ t2ij þ eij . All the

correlations of the probes with and without fitting this
additional term were found to be larger than 0.98 in 1507
rsCpGs.

Estimating the confidence interval of the correlation
based on bootstrapping
Considering the background correlation of DNA methy-
lation between CpG sites, we used bootstrapping to
calculate the 95% confidence interval of the correlation
(of the estimated variances) between two groups of indi-
viduals. We resampled 344,000 pairs of variances with
replacement from the original data and estimated the
correlation based on these pairs. We repeated this step
30,000 times to calculate the 95% confidence interval of
the correlation.

GWAS on random effects
Based on the random effects estimated from the above
mixed linear model, we performed a series of
genome-wide association studies by using the random
effects as the dependent variables with the software
PLINK2 [27]. All QC-ed SNPs were used, and P value
threshold for the significance was Bonferroni corrected
(P < 5 × 10−8/1507).

Permutation analysis of the random slope test statistics
The mean and median test statistic across CpG sites for
the effect of the random slope was very large, with a λ
inflation value (mean test statistic) of 11.0. To verify if
the results are inflated under the null hypothesis, we
permuted ages across individuals and waves 500 times.
For each round, we re-fitted the full model on the
permuted data, and the mean chi-square among the
probes was calculated. The mean of this distribution was
around 0.73 (SD = 0.32), which shows no significant
difference (P = 0.48) with the expected value of 0.5 under
the null hypothesis. This indicates the statistical signifi-
cance of the estimated effects of a random slope is not

caused by the violations of the assumptions of the distri-
bution of the test statistic under the null hypothesis.

Mapping CpG Islands and differently methylated region
(DMR)
Genomic positions of the CpG island were obtained
from the UCSC Genome Browser [28]. Annotation
information of the differently methylated region (DMR)
was from the Illumina DNA methylation annotation file
(GEO ID GPL13534). The significance of enrichment
analysis was assessed by permutation.

PANTHER over-representation test
We used all 25,537 genes that are adjacent to the QC-ed
344,000 probes as the background. Eighteen thousand
six hundred seven of the genes overlapped with the gene
list in the PANTHER database. Ten thousand twenty
out of 1235 rsCpG nearby genes were in the PANTHER
database. The enrichment test was based on Fisher’s
exact test, and protein classes with a false discovery rate
(FDR) smaller than 0.05 were selected.

Heritability of probes
We utilized the heritability of the significant probes esti-
mated in the Brisbane Systems Genetics Study (BSGS)
cohort [29, 30] to validate the genetic contribution to
these probes. The significance of the difference from the
null distribution of the mean heritability was estimated
based on the average heritability of 1507 randomly
selected probes from 30,000 permutation tests.

SNP by age effect on DNA methylation
The SNP effect on random slope can be defined as slopei
= βk × dik + ei, i is the ith individual, βk is the effect size of
SNP k on random slope, and dik is the dosage of SNP k in
individual i. Since the DNA methylation of individual i at
time point tij is yij = slopei × tij + eij = (βk × dik + ei) × tij + eij
= βk × dik × tij + ei × tij + eij (main effects are ignored here),
the SNP effect on random slope can be interpreted as
SNP by age effect on DNA methylation. To compare the
power in detecting these two effects, we simulated 3000
individuals, each with three age points sampled at round
60, 70 and 80 years old. DNA methylation of individual i
at time point tij was simulated by using yij = (βk × dik + ei) ×
tij + eij. dik was sampled from (0,1,2) assuming Hardy–
Weinberg equilibrium, the minor allele frequency of the
SNP ranges from 0.05 to 0.5, the random error eij and
random slope ei (not explained by SNP) are assumed to
follow a standard normal distribution. The effect size βk of
the SNP on the random slope was simulated in two ways:
(1) βk was sampled from a uniform distribution in the
range of − 0.1 to 0.1 and (2) βk was set to zero. For each
type of data, we obtained P values in three ways: (1) from
association between the SNP and the estimated random
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slope from a mixed linear model, (2) from association be-
tween DNA methylation and a SNP by age effect and (3)
from association between DNA methylation and a SNP by
age effect with random slope fitted as a covariate. We
repeated this simulation 300,000 times and compared
P values and median chi-square (λmedian) between
these associations. Based on the simulated data with
no SNP effect on the random slope (βk = 0), we found
the P values from the second analysis method were
inflated (λmedian = 2.01). P values from the other two
ways were not inflated (λmedian = 1.00), and no differ-
ence in the detecting power was identified between
these two ways based on the simulated data with SNP
effect on the random slope (βk~U(− 0.1,0.1)).

Linkage disequilibrium (LD) clumping
We applied LD clumping on the GWAS significant SNPs
using PLINK2 [27], and imputed LBC genotype data was
used as the reference. For each significant (P < 5 × 10−8)
SNP, LD (R2) between this SNP and other significant (P <
5 × 10−8) SNPs within 1 Mbp distance were calculated and
SNPs with LD larger than 0.1 were defined as a clump.
Within each clump, only the SNP with smallest P value
would be selected during LD clumping.
All analysis was performed by using R package, version

3.2.2 [31]. Figures were generated using ggplot2 [32].

Results
Data
DNA methylation was measured on individuals from
Lothian Birth Cohort 1921 (LBC1921) and Lothian
Birth Cohort 1936 (LBC1936) [33, 34] using Illumina
Infinium HumanMethylation450K BeadChip arrays.
There were 3471 samples across all waves of data
collection (Additional file 1: Table S1), and 344,000
DNA methylation probes remained after removing
probes encompassing SNPs annotated by Illumina
(GEO ID GPL13534) and probes identified as poten-
tially cross-hybridizing [35] (see details of quality con-
trol steps in Additional file 1). Only individuals with
DNA methylation measured at two or more different
time points were considered, and samples with inconsist-
ent measurements (match rate < 0.8) of control probes
within individuals were removed (Additional file 2: Figure
S1), leaving 2894 samples from 954 individuals (Table 1).
Among them, 283 individuals had DNA methylation mea-
sured at two time points, and 356 and 315 individuals
were measured at three and four time points, respectively.
The effects of covariates (sex, age and cell counts) and
batches (position in the array, hybridization date, set ID,
plate ID and array ID) on DNA methylation were removed
before further analysis (‘Methods’, Additional file 1: Figures
S2 and S3).

Identification of CpG sites with a random slope in
methylation
For each CpG site, we estimated the variance of the rate
of change (random slope) between individuals in a
mixed linear model (‘Methods’). A non-zero variance in-
dicates the existence of individual differences in the rate
of change in DNA methylation across time. Forty-two
thousand two hundred fifty-three probes were found to
have a statistically significant random slope (likelihood
ratio test, P < 0.05/344,000, Bonferroni corrected) based
on 2894 samples. Permutation test analyses indicated
that the statistical significance of the estimated effects of
the random slope is not caused by the violations of the as-
sumptions of the test statistic (‘Methods’, Additional file 2:
Figures S4 and S5). Moreover, no substantial impact on
the estimation of random effects was found by introducing
a covariance (‘Methods’, Additional file 2: Figure S6A)
between the random slope and the mean level of DNA
methylation in each individual into the model, or the
inclusion of additional corrections for age effects such as a
quadratic term (‘Methods’, Additional file 2: Figure S6B).
To obtain a robust set of CpG sites with a statistically
significant variation in the rate of change, we divided the
individuals into two groups according to the number of
time points for which they have a measurement. One
group contains individuals with two or three time points,
and the other group has individuals with four time points.
We applied the mixed linear model on each of these two
groups and found that the estimated variances of random
slopes for each CpG site were correlated between these in-
dependent groups (R = 0.41, 95% bootstrap CI 0.40–0.42,
bootstrapping was repeated 30,000 times, ‘Methods’,
Fig. 1a). One thousand five hundred seven CpG sites were
identified to have a statistically significant (p < 0.05/
344,000) variation in the rate of change of DNA methyla-
tion in both groups (rsCpGs, Fig. 1b, Additional file 3:
Table S2). The overlap is statistically significant (odds
ratio = 4.9, P < 3.3 × 10−5, permutation test, 30,000 times),
and these 1507 rsCpGs were used for further analysis. A
summary of chi-square statistics for the variance of the
random slope is presented in Table 2.

Table 1 Description of the DNA methylation samples in the
LBC cohorts, for individuals with DNA methylation measured in
at least two waves

Cohort wave Mean age (SD) Age range Female Male Total

LBC1921W1 79.1 (0.6) (77.9,80.6) 77 63 140

LBC1921W3 86.6 (0.4) (85.8,87.5) 82 71 153

LBC1921W4 90.2 (0.1) (90,90.6) 42 36 78

LBC1936W1 69.6 (0.8) (67.7,71.3) 326 359 685

LBC1936W2 72.5 (0.7) (70.9,74.2) 353 399 752

LBC1936W3 76.3 (0.7) (74.7,77.7) 284 312 596

LBC1936W4 79.3 (0.6) (78.0,80.9) 240 250 490
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We observed a larger variation in DNA methylation
of rsCpGs compared to randomly selected probes in
each wave (Additional file 2: Figure S7). Moreover, an
increase in the variability of DNA methylation with
age can be identified in most of these rsCpGs
(Fig. 1c). These rsCpGs overlapped with probes
identified by Slieker and colleagues [14]. Based on a
cross-sectional study, Slieker et al. identified 6366 po-
sitions that showed changes in variably of methylation
with age using 3295 whole blood DNA methylation
profiles. Among those positions, 540 probes overlap
with the 1507 rsCpGs in our study. This highly
significant overlap (odds ratio = 45.9, P < 3.3 × 10−5,

permutation test, 30,000 times) provides an independ-
ent confirmation of our results.

Genomic locations of CpG sites with random effects
The dynamicity of DNA methylation varies across the
human genome [36, 37]. To investigate whether the
rsCpGs locate in the more variable genomic regions, we
mapped these CpG sites to the genome and applied an
enrichment test on these probes (‘Methods’). We
observed an enrichment of rsCpGs in the Shore region
of CpG islands (regions within 2 kb upstream or down-
stream of a CpG island are called north shore and south
shore, respectively). Genomic positions of the CpG

Fig. 1 a Comparison of estimated variances of random slopes between the group of individuals with four time points and the group of
individuals with two or three time points. b Comparison of chi-square test statistics for the variance of random slope between the group of
individuals with four time points and the group of individuals with two or three time points. c The change of standard deviation (SD) in 1507
rsCpG across waves (mean age in each wave in parentheses). Each point represents the SD of DNA methylation for one CpG site in each wave,
and the SD of each CpG site in different waves are connected by lines. The overall level of SD across all CpG sites in each wave is shown as a
boxplot. The red dashed line is the median SD in wave 1 of LBC1936
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island were obtained from the UCSC Genome Browser
[28]), with an odds ratio (OR) of 2.0 for both the north
shore (p < 3.3 × 10−5, permutation test, 30,000 times) and
the south shore (P < 3.3 × 10−5, permutation test, 30,000
times) (Fig. 2). DNA methylation in the shore region
was previously reported to be more dynamic than that
in CpG islands [36], and our results indicate that CpG
sites with random slopes locate in the regions with more
malleable DNA methylation. Similarly, rsCpGs were
found to be enriched in reprogramming-specific differ-
ently methylated regions (RDMR, regions differentially
methylated in the reprogramming process) [37].

Biological enrichment of CpG sites with random effects
To explore the biological function of the rsCpGs, we ap-
plied a gene over-representation test on the nearest genes
of rsCpGs using PANTHER (version 13.1) [38] (‘Methods’).
The result showed that 1235 genes around the 1507
rsCpGs were statistically significantly (Fisher’s exact
test, P = 3.7 × 10−10, FDR = 3.9 × 10−8) enriched in Homeo-
domain (Homeobox) transcription factor (PC00119) pro-
tein class (Table 3). We also investigated the significance
of these protein classes using a permutation test and
found they remained significant (100 repeats). Further-
more, we performed Gene Ontology (GO) analysis on

Table 2 The summary of chi-square statistics for the variance of random slope in different groups of individuals

λmean/λmedian Number of probes with
significant random slopes

Largest χ2 Proportion of zero χ2 (χ2

< 10−5) (%)
λmean/λmedian of
non-zero χ2

All individuals 11.0/13.9 42,253 206.2 21.3 14.0/22.1

Individuals with 2 or 3 time points 7.9/9.6 20,291 139.1 21.3 10.0/15.5

Individuals with 4 time points 3.8/1.9 6729 128.2 30.6 5.4/5.9

Fig. 2 Enrichment analysis of rsCpGs in different CpG regions based on the permutation test. For each CpG region, the distribution of odds ratio
based on permuted data (30,000 times) and the odds ratio based on the original data (red dashed line) are presented. DMR: differentially
methylated region; CDMR: cancer-specific DMR; RDMR: reprogramming-specific DMR; NONE_DMR other CpGs not in DMR. Island: CpG island
provided by UCSC [28]; N_Shore: 0–2 Kb upstream of CpG island; S_Shore: 0–2 Kb downstream of CpG island; N_Shelf: 2–4 Kb upstream of CpG
island; S_Shelf: 2–4 Kb downstream of CpG island; Sea: 4 Kb away from CpG island. Enhancer: Predicted enhancer elements determined by
ENCODE Consortium [46]
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these genes and found that ectoderm development (GO
0007398, P= 5.9 × 10−18, FDR = 1.5 × 10−15) and develop-
mental process (GO 0032502, P = 1.8 × 10−17, FDR = 2.2 ×
10−15) were the most significantly over-represented bio-
logical processes (Additional file 4: Table S3). Cadherin
signalling pathway (P00012), Wnt signalling pathway
(P00057) and Heterotrimeric G-protein signalling
pathway-Gq alpha and Go alpha-mediated pathway
(P00027) were found to be significantly enriched pathways
for genes around rsCpGs in a PANTHER pathway analysis
(Table 3). Since there are only 177 primarily signalling
pathways in PANTHER database [38], we further per-
formed the pathway analysis in an integrated pathway
database ConsensusPathDB (version 33) [39]. This ana-
lysis on the same gene sets showed that the most signifi-
cant pathway for rsCpGs was “Neuronal System” (P =
1.4 × 10−9). Full details of significant pathway results are
given in the Additional file 5: Table S4.

Genetic effects on the random slope
rsCpGs were found to be enriched in the CpG sites with
large heritability (p < 3.3 × 10−5, permutation test, 30,000
times, ‘Methods’, Fig. 3a), indicating a substantial genetic
component to their variation. To examine the genetic
contribution on the random effects of rsCpGs, we per-
formed genome-wide association studies (GWASs) using
PLINK2 [27], fitting the predicted random slope for each
person (obtained from the mixed model analysis) as the
dependent trait (‘Methods’). Results showed that there
were four significant SNP-probe pairs in total (P < 5 ×
10−8/1507, after linkage disequilibrium (LD) clumping,
‘Methods’), three of them are cis (in same chromosome)
(Table 4, Fig. 3b). In addition, 343 rsCpGs were identified
to have at least one genome-wide significant (P < 5 × 10−8,
after LD clumping) SNP effect (436 SNP-probe pairs).

Ninety-five percent of the SNPs are on different
chromosomes from their corresponding probes (Fig. 4,
Additional file 6: Table S5). The SNP effect on the random
slope can also be interpreted as the SNP by age effect on
DNA methylation (‘Methods’, Additional file 2: Figure S8).
Van Dongen et al. reported 71,894 CpG sites to have an
interaction between genetic effects and age (P < 0.05) on
DNA methylation [5], and the 343 rsCpGs with a signifi-
cant SNP effect on the random slope from our analyses
were enriched (P < 3.3 × 10−5, permutation test, 30,000
times) in these probes (Additional file 2: Figure S9). This
provides an independent confirmation of our results.

Relationship between rate of DNA methylation change
and covariates
To detect a possible contribution of the covariates in
estimating the random slope of DNA methylation, we
investigated two covariates that were previously identi-
fied to have a change of variation with ageing: body mass
index (BMI) and walking speed (the time to walk 6 m)
[20, 40]. We fitted each of the covariates in the full
model and re-estimated the significance of the variance
of random slope. No significant changes were observed
(Additional file 2: Figure S10), implying no contribution
of these two covariates to variation of the random slope.

Discussion
We estimated the variation in the rate of change of
DNA methylation for each probe by implementing a
mixed linear model in a longitudinal analysis. One thou-
sand five hundred seven probes (rsCpGs) were found to
have statistically significant variation in the rate of
change between individuals. These rsCpGs were
enriched in the shore region of CpG island, which is

Table 3 Gene enrichment test on the 1235 genes around the 1507 rsCpGs. Only protein classes with FDR smaller than 0.05 are
listed

Reference genes
(18607)

Test
genes

Expected
genes

Over/
under

Fold
enrichment

Raw
P value

FDR

PANTHER protein class

Homeodomain transcription factor (PC00119) 101 27 5.5 + 4.9 3.7 × 10−11 3.9 × 10−8

Basic helix-loop-helix transcription factor (PC00055) 76 13 4.2 + 3.1 6.7 × 10−4 2.4 × 10−2

Helix-turn-helix transcription factor (PC00116) 176 36 9.7 + 3.7 3.1 × 10−10 6.6 × 10−8

G-protein coupled receptor (PC00021) 250 31 13.7 + 2.3 1.0 × 10−4 4.5 × 10−3

Receptor (PC00197) 644 71 35.3 + 2.0 1.7 × 10−7 1.2 × 10−5

Transcription factor (PC00218) 1073 95 58.8 + 1.6 1.2 × 10−5 6.6 × 10−4

PANTHER pathway

Cadherin signalling pathway (P00012) 157 27 8.6 + 3.1 1.0 × 10−6 1.7 × 10−4

Wnt signalling pathway (P00057) 307 39 16.8 + 2.3 6.3 × 10−6 5.2 × 10−4

Heterotrimeric G-protein signalling pathway-Gq
alpha and Go alpha-mediated pathway (P00027)

123 18 6.7 + 2.7 3.8 × 10−4 1.6 × 10−2
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consistent with more dynamicity of DNA methylation in
CpG island shore region than the CpG island itself [37].
We found that the closest genes of rsCpGs were

enriched in the Homeobox gene cluster, which was also
reported in Slieker et al. to be associated with age-related
variably methylated positions (aVMP) in cis [14]. The
Homeobox gene cluster is involved in the process of cell
development [41], and recent evidence showed that it is
related to ageing [42, 43]. Pathway analysis on these genes
in PANTHER database indicated they were enriched in
Wnt signalling pathway (P00057), which was also reported
to be related to the ageing process [44, 45]. One of the
most significantly over-represented Gene Ontology (GO)
category in these genes was the developmental process
(GO 0032502), which was discovered to be significant for
the probes that consistently drift among twins over time
[16]. These results indicate the rsCpGs may be involved in
the developmental process (such as ageing) by regulating
their nearby genes.

There is a significant higher heritability of the 1507
rsCpGs compared to the overall level. GWAS results on
the random slope identified 436 SNP-probe pairs (343
rsCpGs) with a genome-wide significant association (P <
5 × 10−8), suggesting a SNP by age effect on the CpG sites.
Among them, 95% of the SNPs were on different chromo-
somes from their probes, which (in the absence of
non-identified confounders) indicated a potential major
trans SNP by age effect on DNA methylation of rsCpGs.
Our study has several limitations. Although the per-

mutation test indicates our results will not be inflated
by the violations of the assumptions of the distribu-
tion of the test statistic under the null hypothesis,
our results could be inflated by unknown confound-
ing factors. We adjusted for known possible con-
founders, including the chronological age at which
the samples were taken, but cannot exclude the possi-
bility of unknown confounders that have effects on
the mean or variance of the measured DNA

Table 4 Four SNPs with significant (P < 5 × 10−8/1507) effects on the random slope

SNP ID SNP CHR SNP POS Probe ID Probe CHR Probe POS Beta SE P value

rs3796839 4 10009917 cg21795255 4 10009916 − 0.095 0.0066 2.8 × 10−42

rs10948674 6 51978145 cg26820259 6 51953096 0.081 0.0067 3.2 × 10−31

rs190148485 20 4776083 cg24804768 12 754911 0.089 0.013 1.5 × 10−11

rs8015861 14 22372304 cg12819537 14 22372304 0.046 0.0053 4.6 × 10−18

Fig. 3 a The distribution of estimated heritability of 1507 rsCpGs and all probes. The heritability of rsCpGs is normally distributed, with a mean of
0.40 (SD = 0.21). It is significantly larger (P < 3.3 × 10−5, permutation test, 30,000 times) than the overall level. No significant correlation (R = − 0.005,
P = 0.27) was found between heritability of probes and the distance to their meQTLs [47]. However, there is a small but significant association
(R = 0.07, P < 2.2 × 10−16) between the heritability and the mean phenotypic correlation (R2) between a target probe and other probes on the
same chromosome. This indicated that CpG sites with substantial heritability could contribute to the estimation of heritability of other CpG sites
that they correlate with. b An example to show the significant association between SNP dosage and the random slope of DNA methylation
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methylation. The effects of covariates including age,
sex and cell counts were adjusted in our quality con-
trol steps, and we further confirmed that BMI and
walking speed have no effects on the rate of change
in DNA methylation. However, other exposures, like
medication, smoking status and disease status may
potentially contribute to this variation, which can
influence the estimation of random effects. Neverthe-
less, the 1507 rsCpGs that have a statistically signifi-
cant random slope in two separate groups of
individuals indicate that these results should be ro-
bust. There was no gene expression data on the same
individuals available, and we simply assume that the
expression of a gene can be regulated by its closest

DNA methylation CpG site, which may not be true.
Finally, our results are based on older individuals and
may not apply to different age ranges.

Conclusions
Ageing is strongly correlated with changes in DNA
methylation, and the rates of change over time at one
CpG site can differ between individuals. We detected
CpG sites with different changing rates (random slope)
using a mixed linear model and found 1507 CpG sites
that have a statistically significant rate of change in
methylation between individuals, and that these different
rates of change can be partially explained by genetic ef-
fect. Genes around rsCpGs were enriched in Homeobox

Fig. 4 a The distribution of SNPs with a significant (P < 5 × 10−8) effect on the random slope of DNA methylation. The 14 SNPs associated with
the random slope of cg08773226 (with the largest number of associated SNPs) are marked as diamonds. b The Manhattan plot to show the
GWAS result on the random slope of cg08773226
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gene clusters and Wnt signalling pathway, both of which
have been reported to be involved in the ageing process.
Our results imply that the changing rate of DNA methy-
lation varies between individuals at several CpG sites,
and this difference is associated with genetic factors.
These CpG sites might be useful markers to better
understand individual differences in ageing.
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