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ARTICLE

Characterisation of the British honey bee
metagenome
Tim Regan 1, Mark W. Barnett1, Dominik R. Laetsch 2, Stephen J. Bush1, David Wragg1, Giles E. Budge3,4,

Fiona Highet5, Benjamin Dainat6, Joachim R. de Miranda 7, Mick Watson 1,

Mark Blaxter2 & Tom C. Freeman1

The European honey bee (Apis mellifera) plays a major role in pollination and food pro-

duction. Honey bee health is a complex product of the environment, host genetics and

associated microbes (commensal, opportunistic and pathogenic). Improved understanding of

these factors will help manage modern challenges to bee health. Here we used DNA

sequencing to characterise the genomes and metagenomes of 19 honey bee colonies from

across Britain. Low heterozygosity was observed in many Scottish colonies which had high

similarity to the native dark bee. Colonies exhibited high diversity in composition and relative

abundance of individual microbiome taxa. Most non-bee sequences were derived from known

honey bee commensal bacteria or pathogens. However, DNA was also detected from addi-

tional fungal, protozoan and metazoan species. To classify cobionts lacking genomic infor-

mation, we developed a novel network analysis approach for clustering orphan DNA contigs.

Our analyses shed light on microbial communities associated with honey bees and demon-

strate the power of high-throughput, directed metagenomics for identifying novel biological

threats in agroecosystems.
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The European honey bee, Apis mellifera Linnaeus, has a
global distribution and a major role in pollination and food
production1. Like other pollinators, honey bee populations

face multiple threats. There is increasing evidence of pollinator
decline globally. Whilst flowering crops benefit greatly from a
diversity of insect pollinators2, managed honey bees are a major
global contributor, providing nearly half of the service to all
insect-pollinated crops on Earth3,4. Despite the recent increase in
non-commercial beekeeping, the number of managed honey bee
colonies is growing more slowly than agricultural demand for
pollination5. The decline in pollinators is not thought to be
caused by a single factor but may be driven by a combination of
habitat fragmentation, agricultural intensification, pesticide resi-
due accumulation, new honey bee pests and diseases, and sub-
optimal beekeeping practices6–8. Trade in honey bees from
different regions of the globe have unquestionably contributed to
a rise in infectious disease and there may be transmission between
honey bees and wild pollinators9–11.

The genetic structure of British honey bee populations has
undergone large changes over the last 100 years. The native M-
lineage subspecies, A. m. mellifera, had predominated in Britain,
but the population was decimated in the early 20th century by a
combination of poor weather and chronic bee paralysis virus,
thought to have been the cause of Isle of Wight disease12. Fol-
lowing this, the practice of bee importation increased dramati-
cally. In Britain today there is a growing industry that imports
bees from mainland Europe, particularly the Italian honey bee (A.
m. ligustica) and Carniolan honey bee (A. m. carnica), both C-
lineage subspecies. Importation of queens has for a long time
been used as a means to compensate for the loss of colonies and
the Southern European strains are often viewed as a means to
improve honey production. It had been assumed that the native
British bee was extinct, but new molecular studies have shown
that colonies robustly assigned to A. m. mellifera still exist in
Northern Europe13,14. The genetic diversity of British honey bee
populations is poorly understood. The genetic makeup of bee
populations not only influences production traits and the ability
to survive under less favourable conditions, but also plays a vital
role in disease resistance15.

The health of British honey bees is under threat from a range of
native and non-native bacterial, fungal and viral pathogens.
While known ‘notifiable diseases’ can be risk assessed and regu-
lated by law, emergent diseases such as Nosema ceranae16 may be
spread globally before they have been properly identified and risk
assessed. Nosemosis is one of the most prevalent honey bee dis-
eases and is caused by two species of microsporidia, Nosema apis
and Nosema ceranae, that parasitise the ventriculum (midgut).
Although infected bees often show no clear symptoms, heavy
infections can result in a broad range of detrimental effects17–22.
N. ceranae, a native parasite of the Asiatic honey bee (Apis cer-
ana), has been detected in Apis mellifera samples from Uruguay
predating 1990 but is now present in Apis mellifera worldwide16.
Notifiable diseases, American foulbrood (AFB) and European
foulbrood (EFB), are caused by the bacteria Paenibacillus larvae
and Melissococcus plutonius, respectively23,24. Acarine disease is
caused by a mite found throughout Britain which infests the
trachea of honey bees25. Protozoans such as gregarines and the
emergent trypanosomatid Lotmaria passim, also infect honey
bees. The most devastating of all introduced pathogenic species in
recent years is the hemophagous mite Varroa destructor, which
shifted hosts from A. cerana to A. mellifera sometime in the first
half of the 20th century26. Varroa mites feed on the haemolymph
of both larval and adult stages of the honey bee. More impor-
tantly, V. destructor transmits several bee viruses, generating
epidemics that kill colonies within 2–3 years unless the Varroa
population is kept under control. Among the most important and

lethal viruses in this regard are deformed wing virus (DWV)27,
acute bee paralysis virus complex (ABPV), Kashmir bee virus
(KBV), and Israeli acute paralysis virus (IAPV)28. Sacbrood virus
(SBV) can also be transmitted but without major epidemic con-
sequences and is primarily indirectly affected by Varroa26,29,30.

In several species, the core commensal microbiome can med-
iate disease susceptibility and the internal ecology of the host can
greatly affect disease outcome31, e.g. bumblebee gut microbiota
composition has a stronger effect on susceptibility to the parasite
Crithidia bombi than host genotype32. In addition to immuno-
logical health and essential nutrient provision, microbial meta-
bolism affects the growth, behaviour and hormonal signalling of
honey bees33. Unlike most host species, the core microbiota of the
honey bee has relatively little diversity34–40. Snodgrasella alvi
(Betaproteobacteria), Gilliamella apicola (Gammaproteobacteria),
two Lactobacillus taxa (Firm-4 and Firm-5)36,37, and Bifido-
bacterium asteroides are common and abundant41,42. There are at
least four less common species: Frischella perrara43, Bartonella
apis44, Parasaccharibacter apium39 and Gluconobacter-related
species group Alpha2.137. Metagenomic analyses have revealed
high between-isolate genetic diversity in honey bee microbiotal
taxa, suggesting they comprise clusters of related taxa45. These
bacteria maintain gut physiochemical conditions and aid their
host in the digestion and metabolism of nutrients, neutralisation
of toxins, and resistance to parasites40,46,47. Gilliamella species
digest pectin from pollen, and the Lactobacillus species inhibit the
growth of foulbrood bacteria48. However, F. perrara may cause a
widespread scab phenotype in the gut49. A negative correlation
was found between the presence of Snodgrasella alvi and patho-
genic Crithidia in bees50, but pre-treatment of honey bees with S.
alvi prior to challenge with Lotmaria passim (an A. mellifera
pathogen closely related to Crithidia) resulted in greater levels of
L. passim compared to bees which were not pre-treated51. Thus,
commensal microbiome species can have beneficial, mutual or
parasitic relationships with their hosts, and in particular, different
combinations of species – different microbiota communities –
may be associated with variations in honey bee health.

With recent significant reductions in the cost of high
throughput sequencing, metagenomics could be a useful tool for
analysing genetic lineage, gut health and pathogen load as part of
routine testing and/or monitoring imports for novel pathogens.
Here, to establish baseline figures and test the suitability of this
approach, we applied deep sequencing of the honey bee meta-
genome together with a novel network analysis framework, to
examine the genomes of honey bees and their symbiotic and
pathogenic cobionts in British apiaries.

Results
Metagenome sequencing of honey bees and their cobionts. We
performed full metagenomic sequencing of 19 samples of British
honey bees (Supplementary Table 1). Samples were obtained
from hives located across Scotland and England (Fig. 1a), each
sample comprised of 16 workers collected from a single colony.
Duplicates of samples 1–4 were analysed at a lower sequencing
coverage to assess cobiont and genomic variant discovery (sam-
ples 8–11). While the sample size was limited, the colonies
sequenced were selected so as to represent bees from diverse
geographical locations and to be representative of the phenotypic
diversity of honey bees currently managed by British apiarists.
Notably, representatives of the Buckfast bee and the Colonsay
“native” black bee lines were included in the sampling. The entire
thorax and abdomen was processed for genome sequencing, thus
including gut microorganisms, organisms attached to the outside
of the bees, and haemolymph/tissue parasites. Between 15 and 45
million 125 base paired-end reads were generated per sample on
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the Illumina HiSeq 2500, equivalent to between 17- and 50-fold
coverage of the honey bee genome (Amel 4.5).

Genomic diversity of sampled honey bees. DNA sequence data
were mapped onto the honey bee reference genome (version Amel

4.552) and variants identified. Overall 3,940,467 sites were called as
polymorphic, ranging from 962,775 to 2,586,224 single nucleotide
variants (SNVs) per sample (Fig. 1b). A network graph derived
from a matrix of identity-by-state (IBS) at each variant position for
all samples was used to define related groups of samples (Fig. 1c).
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Group 1, which includes the native black bee sample from
Colonsay (samples 2 and 9), was less heterozygous than Group 2
(Fig. 1d). ADMIXTURE53 analyses were used to explore
population subdivision in the data following removal of SNVs
in linkage disequilibrium. ADMIXTURE cross-validation (CV)
error values increased as the number of populations (K) assumed
to be contributing to the variation were increased (K= 1, CV=
0.562; K= 2, CV= 0.601; K= 3, CV= 0.712; K= 4, CV= 0.853;
K= 5, CV= 1.007). At K= 2 the Buckfast (samples 3 and 10)
and Carniolan (samples 4 and 11) C lineage samples were
distinguished from the M lineage A. m. mellifera samples, while
K= 3 further discerns the “native” A. m. mellifera sampled from
Colonsay (samples 2 and 9), the Buckfast sample at K= 4 and the
A. m. mellifera breeding project (samples 1 and 8) at K= 5
(Fig. 1e).

ADMIXTURE was originally designed to estimate ancestry in
unrelated individuals rather than pooled DNA from several
individuals, as analysed here. To address this, genotypes were
simulated for 10 individuals per pooled DNA sample, using allele
sequence depth to estimate allele frequency under an assumption
of Hardy–Weinberg equilibrium and analysed using ADMIX-
TURE. The CV error values decreased as K was increased (K= 1,
CV= 0.980; K= 2, CV= 0.835; K= 3, CV= 0.795; K= 4, CV=
0.763; K= 5, CV= 0.736). At K ≤ 3 the simulated data results
were consistent with those from the actual pooled genotypes,
while K= 4 distinguished samples from the A. m. mellifera
breeding project (samples 1 and 8), and K= 5 assigned a distinct
genetic background to bees sampled from Wigtownshire (sample
15) (Fig. 1e). k-nearest neighbour (kNN) network analysis of the
pooled genotype data using NetView54,55 also identified 2
clusters, separating C and M lineage samples in the same manner
as the ADMIXTURE analyses (Supplementary Fig. 1). Together,
these results support a model of two genetic backgrounds in the
British bee populations sampled, most likely representing the C
and M lineages, with evidence of a distinct A. m. mellifera
background in bees originating from Colonsay and other areas of
Scotland, and differentiation of Buckfast and Carniolan bees
(Fig. 1f).

The microbiome of honey bees. The majority of the data (~90%
of reads) from each sample mapped to the honey bee reference
genome. Reads that did not map to the honey bee reference were
collated and used for a metagenomic assembly. This resulted in
over 35,000 contigs greater than 1 kb in length. Contigs were
assigned to a taxonomic group by comparison to a series of
curated databases in a defined order (Fig. 2a) using BlobTools56.
First, contigs were compared to the bee cobiont sequence data in
the HoloBee Database (v2016.1)57, followed by genomes
and proteomes of species identified as being bee-associated58,59,
and finally by comparison of contigs against the NCBI Nucleotide
and UniProt Reference Proteome databases. Patterns of coverage,
GC% and taxonomic annotation of contigs were explored to
identify likely genomic compartments present (Fig. 2b, c). We

discarded contigs with read coverage lower than 1, as these were
likely an artefact of pooling reads, yielding a final set of 31,386
metagenome contigs, spanning 140Mb. Taxon assignments are
summarised in Supplementary Table 2. Correlation graphs were
generated in order to examine: (1) how similar bees were based
on the overall composition of their microbiome; (2) to group
contigs based on their relative abundance across samples. Clus-
tering samples based on the composition of their microbiome did
not recapitulate their clustering by honey bee genome SNVs
(Fig. 2d). A graph was also constructed where nodes represented
individual contigs and the relationships between them (edges),
were defined by the correlation between their abundance profiles
(base coverage) across samples (Fig. 3). A high correlation
threshold (r= 0.99) was used, to minimise spurious correlations,
although ~35% of the contigs were unconnected and do appear in
the graph. The highly structured multi-component graph was
subdivided using the MCL algorithm60 into clusters of contigs
whose abundance across the samples was very similar. Many of
these clusters were made up of contigs derived from the same
species or in a number of cases from strongly co-occurring
species.

Rarefaction analysis of ribosomal RNA sequences present in
the assembled data was used to estimate the species richness
discovered as a function of sequencing depth (Supplementary
Fig. 2). While there was variation between samples in terms of
species richness at all sequencing depths, even the lowest coverage
achieved (17x reference genome coverage) was likely to be
sufficient to capture most A. mellifera cobionts present, as
samples with higher coverage contained few new cobionts over
samples at lower coverage.

We examined graph clusters further. One (Fig. 4a) contained
1.33 Mb of sequence, most of which had no match in public
databases, but contained some contigs that had significant
similarity to sequences from other Apis species (Fig. 4b). The
number of reads mapping to these contigs was proportional to the
depth of sequencing (Fig. 4c) and we infer that they likely
represent contigs from the A. mellifera genome not present in the
honey bee reference genome (Fig. 4d). Others in this cluster,
spanning 0.01Mb, matched sequences from Ascophaera apis
(chalkbrood), an endemic fungal associate of honey bees61.

Most of the other groups of contigs could be assigned to
cobiont organisms. The contribution of non-A. mellifera reads
varied between samples, a pattern that may be partly explained by
the presence in some samples of eukaryotic pathogens such as
Nosema microsporidians and the trypanosomatid L. passim,
which have larger genomes. The most abundant non-pathogenic
bacterial cobionts identified were Gilliamella apicola, Bartonella
apis, Frischella perrara, Snodgrassella alvi, “Firm-4” firmicutes53

(Lactobacillus mellis and Lactobacillus mellifer), “Firm-5” firmi-
cutes53 (Lactobacillus melliventris, Lactobacillus kimbladii, Lacto-
bacillus kullabergensis, Lactobacillus sp. wkB8, Lactobacillus
helsingborgensis and Lactobacillus sp. wkB10), Lactobacillus
kunkeei and Bifidobacterium asteroides (Supplementary Table 2).
Each species varied in its abundance across the samples. In some

Fig. 1 Apis mellifera diversity. a A map of the UK with the location of colonies sampled. b The number of SNVs from all samples presented across A. mellifera
chromosomes 1 to 16 in 100 kb consecutive windows. c A network based on the identity by state (IBS) similarity score of sample variants identifying Group
1 in the centre and Group 2 in the periphery of the major cluster while Carniolan and Buckfast samples remain distinct. This includes sequencing duplicates
(01–04 and 08–11). Strength of edges is represented on a scale from thin and blue (weak) to thick and red (strong). d The heterozygosity level across
consecutive window of size 100 kb comparing groups 1 and 2 identified from the network graph. e ADMIXTURE analyses of pooled DNA (left) and
genotypes simulated assuming Hardy Weinberg equilibrium (right); colours indicate the distinct genetic backgrounds identified assuming K backgrounds.
f Map of sampling locations indicating ADMIXTURE results at K= 3. Maps were obtained from © EuroGeographics. Original product is available for free at
www.eurogeographics.org Terms of licence available at https://eurogeographics.org/services/open-data/topographic-data/
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nominal species, contig clustering suggested the presence of
multiple distinct genotypes of cobionts. For example, contigs
ascribed to Bartonella apis together had a total span of 11.7 Mb,
almost five times longer than the reference B. apis genome, and
formed a connected network module (Fig. 5a). The three largest
B. apis clusters had distinct distribution across the samples, which
likely reflects the presence of distinct genotypes of B. apis with
varying abundance across the samples. Similarly, contigs ascribed
to Gilliamella apicola, the most abundant species identified in the
bee microbiome, were distributed across a number of clusters
with related but different abundance profiles (Fig. 5b). Clusters
containing contigs from several closely related but distinct
Lactobacillus species were identified: Firm-4 lactobacilli (clusters
25 and 40) or Firm-5 lactobacilli (clusters 16, 20, 21 and 24)
(Fig. 5c). These Lactobacillus groups may represent a distinct
cobiont community whose abundance is linked, but sufficiently
different to allow separation of their contigs. The exception was
cluster 21, which contained contigs assigned to a mix of Firm-5
species: this may represent a core genome component conserved
between species. Cluster 29 comprised contigs assigned to
Lactobacillus kunkeei that formed an unconnected graph
component. L. kunkeei is thought to be an environmental rather
than a gut microbiome organism. Some connected components
were more complex. Cluster 32 contained contigs assigned to

several prevalent honey bee cobionts, including G. apicola, F.
perrara, B. asteroides, S. alvi, B. apis, S. floricola and P. apium.
The co-clustering of genomic segments from multiple species is
likely to reflect a strongly interacting community of organisms
where the relative abundance of each is regulated
homeostatically45,59,62.

Some clusters had very restricted presence in the sample set. For
example, cluster 3 was largely restricted to sample 4 (Supplemen-
tary Fig. 3e). These are likely to derive either from rare members
of the honey bee cobiont community or opportunistic infections.
Several clusters had little to no annotation (Supplementary Fig. 3f).
The coverage of these contigs was also usually derived from
individual samples. They may represent novel species, or divergent
or novel genomic regions of known species.

Honey bee pathogens. Known honey bee pathogens were
detected in many samples. One of the largest components of
clustered contigs was assigned to the trypanosomatid parasite
Lotmaria passim, with a combined span of 16.3 Mb (Fig. 6a).
While sequences were detected from notifiable pathogens Meli-
sococcus plutonious and Paenibacillus larvae (European and
American foulbrood), no distinct cluster was identified and the
<1Mb total combined span of matched sequences was relatively
minor (Supplementary Table 2).
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Both Nosema species N. apis (Fig. 6b) and N. ceranae (Fig. 6c)
were identified. N. ceranae was more prevalent (5/19 colonies vs. 2/
19 colonies). Contigs matching the pathogen causing “chalk brood”
(Ascophaera apis) were found in cluster 2 and were derived almost
exclusively from sample 23 (Fig. 6d). Cluster 47 contained contigs
assigned to the parasitic mite V. destructor and contigs assigned to
Apis mellifera filamentous virus (AmFV), found in 6/19 colonies
(Fig. 6c). The largest source of reads mapping to these contigs was
sample 23, which also had a high prevalence of chalkbrood.
Blobplots describing the taxonomy and cumulative span for each
panel in Fig. 6 are available in Supplementary Fig. 3d–j.

The ‘completeness’ of the metagenomic assemblies was analysed
for each of the clusters using checkM and compared to the
metagenomic binning as performed by MetaBAT63. MetaBAT uses
both coverage information and sequence context (tetranucleotide
frequencies) to bin genomes, while our network clustering relied on
coverage information alone. CheckM uses a set of pre-computed
core genes to assess the completeness and contamination. MetaBAT
yielded eighteen bacterial genome assemblies at >80% complete
compared totwenty assemblies using our method. Results are
displayed in Supplementary Tables 4 and 5. CheckM also attempts
to assign a taxonomic level to each metagenome assembled genome,
but is not appropriate for eukaryotic genomes. For this, we used
Benchmarking Universal Single-Copy Orthologs (BUSCO)64 to
analyse the clusters associated with Ascophaera apis, Lotmaria
passim, Nosema apis, Nosema ceranae and Varroa destructor
genomes (Supplementary Figure 4).

To validate the metagenomic hits, we employed PCR to screen
our samples for B. apis, Nosema ceranae and L. passim. All
samples in which we identified sequences deriving from these
organisms were positive by PCR. However, we also identified the
presence of species in additional samples not scored as positive by
sequencing, suggesting that the PCR assays are more sensitive
than bulk sequencing (Supplementary Fig. 5a–c). We also
identified a small cluster containing only one contig matching
to a recorded genome sequence, Apicystis bombi, a gregarine
known to parasitise honey bees65. To identify the exact species
present, we sequenced the PCR results of custom primers against
the largest contig in this cluster, in conjunction with primers
encompassing the 18 S and ITS2 rDNA regions, as used by Dias
et al. for the characterisation of novel gregarine species66

(Supplementary Fig. 5d). The contig sequence matched various
gregarine species, while the ribosomal DNA sequence confirmed
the species present to be Apicystis bombi (Supplementary Fig. 5e).

Discussion
A healthy population of honey bees is crucial for the security of
the ecosystem service of pollination. With the continued and
sometimes unregulated global transport of A. mellifera, the
introduction of invasive pests and parasites is a continuing threat,
as is the genetic dilution or extinction of locally adapted sub-
species. Here we used metagenomic analyses of nineteen honey
bee colonies from around Britain to compare host genetics,

20,474 nodes (contigs)
3,660,265 edges (r > 0.99)
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abundance profile was r > 0.99. Each contig is coloured according to the species it maps to, white nodes represent contigs for which no significant
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examine the complexity and connectedness of the bee micro-
biome, and quantify disease burden.

Using the reference honey bee genome and sequence data from
16 worker bees from each colony, we defined over five million
SNVs with a relatively even distribution across all 16 chromo-
somes (Fig. 1). We also identified putative honey bee-derived
sequences not represented in the reference C-lineage genome,
likely because the reference is incomplete or because of genome
variation between honey bee sub-species. The island of Colonsay
in Scotland is a reserve for the northern European bee, A. m.
melifera. Given the level of bee imports into Scotland, it was
therefore reassuring – and perhaps surprising – to observe that
the genotypes of other colonies from around Scotland were close
to that of the Colonsay sample, although distinct from samples
from A. m. mellifera breeding programmes in England. The low
heterozygosity of Scottish A. m. mellifera and continued survival
in face of imports may reflect natural selection for A. m. mellifera
genotypes in the colder climates and shorter foraging season of
northern Europe.

The whole organism-derived sequence data was also used to
explore the composition of the communities of organisms living
in or on honey bees. Non-A. mellifera-mapping reads were de
novo assembled into contigs to generate 160Mb of genomic
sequence. Contigs were then assigned to species based on com-
parison to known genomes. A correlation network based on
comparing the per-sample read coverage of these contigs (Fig. 2d)
did not fully match the relatedness of the source bees (Fig. 1c),
suggesting that both environmental and host genetic components
drive microbiome composition. Our limited sampling (only

nineteen colonies) is not sufficient to unpick these interdependent
drivers, but we note that samples from the Scottish coast, the
central belt of Scotland and from England were grouped sepa-
rately. These data are congruent with previous analyses of the
roles of climate and forage in determining microbiome structure
of honey bees67,68.

In many animals, the gut microbiota form quasi-stable com-
munities, with individual hosts harbouring somewhat predictable
communities of different bacterial taxa. These different micro-
biome types have been associated with different gross physiolo-
gical performance. In addition, changes in microbiota
composition (dysbiosis) have been associated with the promotion
of disease states in humans and other mammals69,70. Dysbiosis in
honey bees may be an important correlate of bee and colony
health49,71–73.

In the honey bee gut, bacterial numbers are highest in the
rectum, followed by the ileum, mid-gut and crop71. Lactobacilli
are mainly found close to the rectum and, together with bifi-
dobacteria, greatly outnumber other species71. We identified
several contig clusters that likely represented single Lactoba-
cillus species as well as a mixed-origin cluster (Fig. 4). Most of
these were interlinked, revealing patterns of co-occurence of
individual taxa. In contrast, L. kunkeei, an environmental
cobiont reportedly indicative of poor health71, formed a dis-
tinct, unlinked cluster. Samples 2 and 9 were technical repli-
cates, and both had reduced diversity, containing only G.
apicola and Lactobacillus species. The reason for this is unclear,
but there was no evidence of pathogenic disruption of the
sampled bees.
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Nosema infection has been linked to immune suppression and
oxidative stress of bee hosts74. Similarly L. kunkeei and P. apium,
which are adapted to fluctuating oxygen levels predicted for the
gut75, have been associated with disease states in social bees, and
negatively correlated with the amount of core commensal bacteria
present71. The microbiome from sample 23 had a preponderance
of reads mapping to the L. kunkeei cluster (Supplementary
Fig. 3c), evidence of P. apium presence, much reduced repre-
sentation of other Lactobacillus species, and the highest read

coverage of contigs associated with the pathogens V. destructor,
AmFV and A. apis. Sample 23 may be an example of pathogen-
induced dysbiosis, or of invasion by pathogens of a resident
microbiome disturbed by other drivers. There was a high level of
co-occurrence of different pathogens across samples, implying
that colonies infected with one pathogen may be more susceptible
to others. A meta-stable community may exist in the case of
Varroa destructor and AmFV (Fig. 6c). However, we note a recent
study reported identifying 0.5 Mb of sequence from Varroa
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reference genome to be of AmFV origin76. It is therefore possible
that several of the contigs in our study matched with Varroa
destructor are in fact of AmFV origin.

Several distinct contig clusters were assigned to G. apicola and
B. apis suggesting the existence of genetically distinct subtypes of
these highly prevalent bacteria. (Fig. 5a, b). G. apicola has a high
diversity of accessory genes, associated with adaptation to dif-
ferent A. mellifera ecological niches77,78. Increased relative
abundance of G. apicola has been associated with dysbiosis and
host deficiencies71. Similarly, extreme displacement of S. alvi by F.
perrara and G. apicola (and to a lesser extent by the opportunists
P. apium and L. kunkeei) has been strongly associated with
reduced bacterial biofilm function and host tissue disruption by
scab-inducing F. perrara49,73, leading to poor host development
and early mortality. Blooms of B. apis have also been associated
with poor health. This species exploits stressed, young, and old

bees, showing sporadic abundance in whole guts of newly
emerged workers58 and occurring uniformly across putatively
dysbiotic foragers56. In support of this theory, samples from our
study with the highest coverage of G. apicola and B. apis contigs
also contained reads from pathogens such as L. passim or Nosema
species. Significant positive correlation has been reported between
infection levels of these parasites79.

Our novel use of correlation networks (Fig. 3) to organise
contigs based on their relative abundance across samples parti-
tioned ~65% of contigs into clusters of sequences derived from an
individual species and distinct micro-communities. Some sample-
specific clusters, such as clusters 3 and 32, contained several core
microbiome taxa. This may be a reflection of substrate speciali-
sation based on host foraging80. However, several sample specific
clusters contained contigs that had no informative taxonomic
annotation, potentially revealing uncharacterised species. We
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identified a cluster of unclassified contigs derived from a gre-
garine, with closest match to Apicystis bombi. The accuracy of our
metagenomic analyses was confirmed by PCR and ribosomal
DNA primers verified the species as Apicystis bombi. This is
further evidence that managed honey bees can act as a reservoir
for wild pollinator pathogens65; through increased understanding
of honey bee molecular ecology and preventing disease trans-
mission, we can indirectly improve wild pollinator health81. To
our knowledge Lotmaria passim had not been previously identi-
fied in the UK. Its presence was confirmed for the first time in our
study using the primers designed by Stevanovic et al.82, further
validating our sequencing inference. Other metagenomic binning
approaches, such as MetaBAT, use both coverage information
and sequence context (tetranucleotide frequencies) to bin gen-
omes. Many parts of microbial genomes (e.g. 16 S/18 S cassettes,
prophage, transposons, plasmids, AMR cassettes etc.) display
different sequence composition than their host genome, but do
show similar coverage patterns across multiple samples. For this
reason, we wanted to avoid separation due to sequence compo-
sition, and therefore used only coverage in our network approach.
We ran a MetaBAT pipeline and compared assemblies using
CheckM which estimates completeness and contamination of
bacterial genome assemblies based on the presence of unique
genes63. On comparison, we found that MetaBAT results (Sup-
plementary Table 4) were no better than those produced by our
network approach (Supplementary Table 5). MetaBAT yielded
eighteen bacterial genome assemblies at >80% complete com-
pared to twenty assemblies using our method. However, assembly
contamination levels (defined as % single copy genes seen more
than once) ranged from 0–12% using MetaBAT compared to
0–18% seen using our method. Moreover, MetaBAT appeared to
split certain eukaryotic clusters, e.g. the Lotmaria passim cluster
(identified as Leptomonas by MetaBAT) was split into two bins
and other clusters were missed entirely by MetaBat.

A whole-organism metagenomics approach has allowed us to
describe the complexity of host-microbiome biology of British
honey bees. Despite the limited size of our dataset and the
incomplete genomic information for honey bee cobionts available
to us, we have demonstrated the power of this approach using
pooled samples in dual characterisation of the genotypic diversity
of the honey bee, and the genomic diversity of its cobionts.
Correlation networks are a powerful analytical approach that
allowed us to cluster the sequence data to reveal interacting
networks of bacterial and eukaryotic microbiota, in addition to
classifying novel genomic sequences. As with the human and
other animal microbiome projects, the precision of these analyses
improves with additional data, permitting definition (and ulti-
mately whole genome assembly) of novel genotypes of cobionts.
To this end, the raw data from this project can be accessed
through the Bee Microbiome Database, established and managed
by the Bee Microbiome Consortium, a non-profit organisation of
bee scientists for collecting, curating and analysing bee micro-
biome data59. While the sensitivity of metagenomic analyses is
lower than that of PCR at present, complementation of cheap
short-read data with low-coverage long-read data from isolated
gut contents enhances the contiguity of assemblies and the
functional inferences that can be derived them. This study
highlights the potential to use this approach in routine screening,
breeding programmes and horizon scanning for emerging
pathogens.

Methods
Samples. Nineteen samples of honey bee (each comprising sixteen workers col-
lected from a single colony) were obtained from beekeepers in Scotland and
England, with the help of Science and Advice for Scottish Agriculture (SASA) and
Fera Science Ltd. The heads were not included in DNA extraction to avoid PCR

inhibitors present in the compound eyes of honey bees83. Wings and legs were not
included as they were retained for wing morphometry and as a source for further
DNA extraction. The thorax and abdomen of the sixteen bees from each colony
were homogenised together in 2% CTAB buffer (100 mM Tris-HCl pH 8.0, 1.4 M
NaCl, 20 mM EDTA pH 8.0, 2% hexadecyltrimethylammonium bromide, 0.2% 2-
mercaptoethanol). Samples were incubated at 60 °C with proteinase K (54 ng/µl)
for 16 h before incubating with RNaseA (2.7 ng/µl) at 37 °C for 1 h. After two
chloroform:isoamyl alcohol (24:1) extractions, samples were ethanol precipitated,
washed three times in 70% ethanol and resuspended in 0.1 TE. All genomic DNA
samples were analysed for quantity (Qubit dsDNA HS Assay Kit, Thermo Fisher
Scientific, Waltham, MA, USA), purity (Nanodrop, Thermo Fisher Scientific,
Waltham, MA, USA) and quality (TapeStation, Agilent Technologies, Santa Clara,
CA, USA).

Sequencing. All sequencing was performed by Edinburgh Genomics. DNAs were
prepared for whole genome sequencing using the TruSeq DNA PCR-free gel free
library kit (Illumina, Cambridge, UK) and, for eight samples, using the TruSeq
DNA Nano gel free library kits (Illumina). For comparison, both types of libraries
were prepared for four samples. 125 base paired-end sequencing was performed on
an Illumina HiSeq 2500. Four samples were sequenced at 50× coverage, eight at
25X (including repeat sequencing of the four 50X samples) and 12 at 17X coverage.
Data were screened for quality using FastQC v0.11.2 (Available online at: http://
www.bioinformatics.babraham.ac.uk/projects/fastqc), and trimmed of low quality
regions and adaptors using Trimmomatic v0.3584 with parameters ‘TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:100.’ These parameters remove bases from the
end of a read if they are below a Phred score of 20, clip the read if the average
Phred score within a 4 base sliding window advanced from the 5′ end falls below
20, and specify a minimum read length of 100 bases (the parameters used for all
informatics analyses are also detailed in Supplementary Table 3).

Variant calling on honey bee. Reads were aligned to the reference A. mellifera
genome, Amel_4.5 (INSDC assembly GCA_000002195.1) using BWA-MEM
v0.7.885 with parameters -R and -M. Output files were merged and duplicates
marked using Picard Tools v2.1.1 to create one BAM file per sample. This was
filtered using SAMtools view v1.386 to retain only the highest confidence align-
ments using the parameters -q 20 (to remove alignments with a Phred score < 20)
and -F 12 (to remove all reads that are not mapped and whose mate is not
mapped).

Variants were called using GATK v3.5 in accordance with GATK best practice
recommendations87,88. Local realignments were performed and base quality scores
recalibrated using bee SNVs from dbSNP89 build ID 140 (ftp://ftp.ncbi.nlm.nih.
gov/snp/organisms/bee_7460/VCF/, downloaded 1 January 2016). GATK
HaplotypeCaller was used with parameters emitRefConfidence, - GVCF variant
index type – LINEAR, variant index parameter −128000, stand emit conf – 30,
stand call conf - 30. The resulting VCFs, one per sample, were merged to create a
single gVCF file using GATK GenotypeGVCFs to allow variants to be called on all
samples simultaneously. Variant quality score recalibration was performed on this
file using GATK VariantRecalibrator with parameters badLodCutoff – 3, -an QD,
-an MQ, -an MQRankSum, -an ReadPosRankSum, -an FS, -an DP (specifying the
above dbSNP data as both the truth set [prior= 15.0] and training set [prior=
12.0]). To identify any effect these variants may have upon protein-coding genes in
the reference annotation, we used SNPeff v4.290. A total of 5,302,201 variants were
identified across the 19 samples.

Population genetics analyses. To give an initial overview of population structure,
an Identity By State (IBS) analysis was performed using the R/Bioconductor
package, SNPRelate91. Briefly, colonies were compared using the gVCF (see above)
using autosomal and monomorphic SNPs only. The values of the resultant IBS
matrix ranged from zero to one. Using this matrix, we constructed a network
correlation graph for all of the samples, using the network analysis tool Graphia
Professional (Kajeka Ltd., Edinburgh, UK), where each node represented a sample,
and edges between nodes represented a correlation above the defined threshold
between those samples (Fig. 1).

A more conservative approach was used to further examine the substructure of
the population. SNVs were filtered using Plink v1.992; again removing those not
mapped to the autosomes, but also removing SNVs with a low genotyping call rate
(<0.9), low minor allele frequency (<0.1), and pairwise linkage disequilibrium
r2>0.1 (for SNVs in 50 kb windows with a 10 kb step). The resulting 58,354 SNVs
were submitted to unsupervised analyses in ADMIXTURE93 for 1 ≤ K ≤ 5 genetic
backgrounds. To explore consequence of analysing genotypes from pooled DNA,
individual genotypes simulated for 10 individuals per sampling location for each
SNV were subjected to ADMIXTURE analysis. Briefly, for each SNV the allele
frequency observed in a pooled sample was calculated from the read counts for
each allele, and used to simulate ten genotypes assuming Hardy–Weinberg
equilibrium. The efficacy of this process was tested using data from Harpur et al.94,
details of which are provided in the supplementary information (Supplementary
Data 3). A distance matrix from the pooled DNA genotypes used in ADMIXTURE
analyses was generated with Plink and analysed using the R package netview54,55

(https://github.com/esteinig/netview), which analyses genetic structure using
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mutual k-nearest neighbour (kNN) graphs. Graphs were created assuming 2 ≤ k ≤
20 nearest neighbours. The k-selection plot of these results together with the kNN
= 2 network is presented in Supplementary Figure 1.

Detecting regions of homozygosity. We detected regions of homozygosity – from
which can be inferred a reduction in selection strength relative to drift, or a recent
selective sweep – using the pooled heterozygosity (Hp) method95. Sliding windows
of 100 kb were advanced across each autosome with a step size of 50 kb. Within
each window, we counted the number of reads corresponding to the most and least
abundant SNP alleles (nmaj and nmin, respectively), then calculated Hp=
2∑nmaj∑nmin/(∑nmaj+ ∑nmin)2. Only biallelic SNPs in the gVCF (see above) are
included in this analysis. As certain genomic regions are harder to sequence at high
depth, such as repetitive regions and areas of high GC content96, we also controlled
for per-site on-target read depth (considered a good predictor of variant detection
sensitivity97) by restricting the analysis to those loci with a minimum read depth of
5 reads per locus per sample, i.e. accounting for regions under-covered for the
purpose of variant detection (Fig. 1).

De novo assembly and analysis of non-honey bee data. De novo assembly was
performed on all of the reads which did not map to the Apis mellifera reference
genome using SPAdes v3.8.198. The resulting contigs were filtered by length (>1 kb)
and coverage (>2). BWA-MEM85 was used to identify and remove reads mapping
to these contigs and de novo assembly was performed on the remaining reads. This
process was repeated for a total of five iterations. Input reads from each sample
were mapped to each contig using BWA-MEM and base coverage/contig was
calculated. Contigs with a cumulative base coverage from all samples less than half
the SPAdes overall coverage were discarded. Using BLAST99, contigs were com-
pared to a set of custom databases: (1) HB_Bar_v2016.157; (2) HB_Mop_v2016.157;
(3) nucleotide sequences of core microbiome species identified from
literature40,45,59,78; 4. protein sequences of these species40,45,59,78; (5. NCBI nt100; 6.
UniProt Reference Proteomes101 using BLAST99 and Diamond102. Files of all six
sequence similarity searches were provided as input to BlobTools in the listed order
under the tax-rule ‘bestsumorder’, i.e. a contig is assigned the NCBI taxid of the
taxon providing the best scoring hits within a given file, as long as it has not been
allocated a NCBI taxid in a previous file. BlobTools was used to visualise the
coverage, GC% and best BLAST similarity match of the assembly, and to build a
table of base coverage of contigs in each sample together with their taxonomic
annotation. A network graph was constructed using r value of 0.99 comparing
samples to each other based on correlations between their overall microbiome
content, as well as contig coverage across the dataset (Fig. 2). This follows the
approach used to compare gene expression values in transcriptomics data103.

Assessing genome completeness from metagenomic binning. Using our
assembled non-Apis mellifera contigs, we ran a metagenomic binning pipeline
based on MetaBAT which uses both coverage information and sequence context
(tetranucleotide frequencies) to bin genomes63. We then compared genome
completeness from this analysis against our own using checkM (Supplementary
Table 4). Because checkM is more appropriately applied to bacterial and archaeal
genomes, we used BUSCO64 to analyse our eukaryotic genome bins for Ascophaera
apis (chalk brood), Lotmaria passim, Nosema ceranae, Nosema apis and Varroa
destructor (Supplementary Figure 4).

Primer design for identification of cobionts using PCR. Custom primers were
designed against the longest contigs we generated matching Bartonella apis (Bar-
tonella_Fw 5′-CAGCAGCGCTTATTCCGTTC-3′, Bartonella_Rv 5′-AGTCAC-
GAGCAACAATCGGT-3′) and the Gregarine species (Gregarine_F 5′-
GACCACCGTCCTGCTGTTTA-3′, Gregarine_R 5′-GAGGTATCGGGTGC-
CATGA-3′). Primers were run through NCBI BLAST to confirm specificity99.
Apicystis bombi specific primers were used as described in Dias et al.66. Specific
primers against Nosema ceranae were used as described by Chen et al.104 and
Lotmaria passim specific primers were used as described by Stevanovic et al.82.

Rarefaction analysis of microbiome sampling. “Mean species richness” was
calculated using the R package ‘vegan’105 for each sample at each of the sequencing
depths used. Assembled contigs were analysed against the SILVA rDNA (16 S and
18 S) databases106 instead of the NCBI nt database to assess species composition.
Each contig identified as being from a unique species was counted as one “count”
or incidence of discovering that species in the sample (Supplementary Figure 2).

Data availability
Raw sequencing reads are freely available on the Short Read Archive (SRA) under
BioProject ID PRJNA494922 (http://www.ncbi.nlm.nih.gov/bioproject/494922). A
complete list of non-honey bee reference contigs and the BAM files indicating
coverage of each contig from the 23 samples used in this study is freely available on
Edinburgh DataShare. A table containing taxonomical annotation and the mean
base coverage of each sample for each contig is also available here. This table was
used to make the correlation network graph in Fig. 3 (http://dx.doi.org/10.7488/ds/

2453). All scripts used are available in Supplementary Software or Github systems-
immunology-roslin-institute/Honey-bee-metagenomics.
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