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Abstract
Multiphasic multidetector computed tomographic angiography is a standard diagnostic test for

canine abdominal vascular disorders. Three imaging protocols have been previously described.

The test-bolus protocol allows precise timing but can be time consuming to perform. Bolus-

tracking software is fast and easy to use but can be problematic for exact timing of vascular

phases. A recently described fixed-injection-duration protocol is not influenced by body weight

and provides a wider temporal window for arterial acquisitions. Objectives of this retrospective

and prospective, multicentric, method comparison study were to determine which of the three

multidetector computed tomographic angiography protocols allows best vascular conspicuity of

the canine abdomen and to assess the influence of different multidetector computed tomography

(CT) scanners on study quality. Triple-phase multidetector computed tomographic angiography

canine abdominal studies from 30 dogs were retrospectively retrieved from three different insti-

tutions. Each institution performed one of the three computed tomographic angiography proto-

cols (4-row and 16-row multidetector CT). Prospectively, the three protocols were also acquired

with similar conditions on a 64-row MDCT in 21 dogs. Main abdominal vessels were scored by

blinded readers for each phase. The fixed-injection-duration protocol had the best combined arte-

rial and portal vascular conspicuity on scanners of limited speed, while the test-bolus protocol

provided the best overall vascular conspicuity on 64-row multidetector CT scanner. The qual-

ity of arterial studies performed on 64-row MDCT scanner was improved compared to the ones

performed on four- to 16-rowmultidetector CT scanners. Findings supported the fixed-injection-

duration protocol as the best compromise between an ideal portal vascular enhancement and an

easily reproducible protocol on scanners with low and high number of detector rows.
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1 INTRODUCTION

Multiphasic multidetector computed tomographic angiography is

currently a standard diagnostic test for canine vascular disorders such

as portosystemic shunts, arteriovenous fistulae, or vascular tumor

invasion.1–3 This method is also commonly used for characterizing

parenchymal disease such as pancreatic insulinoma and may help

Previous presentation: Portions of this study were presented at the Annual European Veterinary Diagnostic ImagingMeeting, August 30th–September 2nd 2017, Verona, Italy.
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characterizing benign and malignant lesions.4–8 A major advantage of

multiphasic multidetector computed tomographic angiography is the

ability to separate the arterial from the portal and systemic venous

phases in order to reach an optimal visualization of each vascular bed

and to identify hypervascular or hypovascular parenchymal lesions.9

The test-bolus multidetector computed tomographic angiogra-

phy protocol has been used for more than a decade in veterinary
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patients.2,10,11 This protocol is based on the initial injection of a

low dose of contrast medium, i.e., test bolus, to determine the peak

of aortic and portal enhancement using time attenuations curves

followed by a dynamic angiography with a full dose of contrast agent.

This technique has the advantage of being specifically adapted to the

patient, which is valuable in animals with impaired cardiovascular

function. The bolus-tracking multidetector computed tomographic

angiography protocol uses software tools tomonitor the arrival of con-

trast medium into a vessel and triggers an automatic or manual start

of the acquisition once the preset density threshold has been reached.

This type of protocol provides an individualized timing of the arterial

phase.8,12,13 The fixed-injection-duration multidetector computed

tomographic angiography protocol is another technique that has been

recently described in cats and dogs using a fixed injection duration of

20 s and adjusted injection rate.14–16 This newmethod triggers a later

and lower peak of aortic enhancement with good separation between

the arterial and portal phases. An advantage of this new technique is

a more homogeneous pattern of vascular enhancement regardless of

the body weight. Another advantage is a wider temporal window for

acquiring the arterial phase.

A previous study compared bolus-tracking and test-bolus tech-

niques for thoracic computed tomographic angiography in healthy

beagles and did not identify differences in image quality, consistent

with previously published data in human medicine.17,18 An increas-

ing number of publications have described multiphasic multidetec-

tor computed tomographic angiography protocols for investigations of

parenchymal disorders.5–7 However, the choice of a particular abdom-

inal multidetector computed tomographic angiography protocol may

possibly influence the parenchymal enhancement and have an impact

on subsequent results. Newmultidetector computed tomography (CT)

scanners have been recently introduced that have a higher number of

detector rows and can therefore offer shorter acquisition times.19 A

detailed comparisonof differentmultidetector computed tomographic

angiography protocols was not found in the veterinary literature.

The aim of this study was to compare the conspicuity of vessels in

the cranial abdomen using three different protocols of triple-phase

multidetector computed tomographic angiography (test-bolus, bolus-

tracking, and fixed-injection-duration protocols). We also aimed to

determinewhich protocol allows the best vascular visualization and to

assess the influence of the canine weight and different multidetector

CT scanners on the quality of the studies. We hypothesized that there

is a difference in vascular conspicuity between the threemultidetector

computed tomographic angiography protocols and that the quality of

these studies depends on the number of detector rows used and body

weight.

2 MATERIALS AND METHODS

2.1 Sample population

This retrospective and prospective, multicentric, method comparison

study gathered triple-phase abdominalmultidetector computed tomo-

graphic angiography studies performed on dogs under general anes-

thesia presented for clinical reasons unrelated to the abdominal vascu-

lature. Decisions for study inclusion and exclusionweremade by a final

year small animal imaging resident (F.T.). Studies were included if the

injection of contrast medium was performed via a cephalic vein and if

the arterial, portal and late venous phases included the abdomen from

the diaphragm to the caudalmost kidneymargin. Dogswere excluded if

any vascular impairment ormalformationwas present in the abdomen.

Images were acquired in ventral recumbency under general anesthe-

sia during apnea following hyperventilation in order to avoid motion

artifacts. A precontrast study of the abdomenwas acquired in all dogs.

All contrast medium injections were performed with a power injector

without theuseof saline chaser.All late venousphaseswereperformed

within 5min after contrast medium injection.

2.2 Retrospective computed tomographic data

Canine abdominal multidetector computed tomographic angiography

studies were retrospectively retrieved from three different institu-

tions. The sample size for each institution group was matched and

based on the maximal number of studies available at the University of

Edinburgh that fitted the inclusion criteria. Each institution performed

one of the three multidetector computed tomographic angiography

protocols. As part of the inclusion criteria, the same test-bolus protocol

was performed at the Royal (Dick) School of Veterinary Studies of the

University of Edinburgh with the following protocol. First, a 0.5 mL/kg

bolus of contrast medium (185 mg Iodine/kg) was injected. A dynamic

acquisition in a single location at the porta hepatis was performed

at the start of the contrast medium injection every 2 s during 40 s.

Regions of interestwere placed in the aorta and portal vein by an imag-

ing resident or a board-certified veterinary radiologist. Time attenua-

tion curves were used to establish optimal timings for the arterial and

portal acquisitions. The arterial acquisition delay was set at the peak

of aortic contrast enhancement. The minimum interscan delay was

4 s. The portal delay was initiated shortly before peak portal enhance-

ment or following the minimum reset time between two phases. The

full bolus of contrastmedium (700–740mg I/kg)was injected at 3mL/s

in dogsweighing less than10 kg and at 5mL/s if over 10 kg as per previ-

ous publication.10 The arterial phasewas performed in a caudo-cranial

direction, the portal and late venous phase were scanned in a cranio-

caudal direction.

The bolus-tracking protocol was performed at the Istituto Veteri-

nario di Novara. As part of the inclusion criteria, the following pro-

tocol was used. A premonitoring transverse scan was set at the cra-

nial aspect of the diaphragm, and designated as the start location of

the arterial acquisition. A region of interest was placed in the aorta

by an imaging resident, and the automated bolus-tracking set at 100

Hounsfield units (HU) with a cycle time of 3 s. The bolus of contrast

medium (700mg I/kg) was performed in all dogs at 3mL/s. The arterial

phase was run in a cranio-caudal direction, the portal phase scanned

immediately after the minimum reset time in a caudo-cranial direction

and the late venous phase in a cranio-caudal direction. The minimum

interscan delay was 2 s.

The fixed-injection-duration protocol was performed at theUniver-

sity of Sydney. As part of the inclusion criteria, the following protocol
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was followed. Bolus-tracking software and fixed delay times after

contrast arrival were used for the arterial and portal scans. Contrast

medium was injected over 20 s for all dogs and the injection rate was

adjusted accordingly. A pre-monitoring transverse scan was set at

the cranial aspect of the diaphragm. A region of interest was placed

in the aorta by an imaging resident and the automated bolus-tracking

set at 100 HU with a cycle time of 2 s. The time-to-aortic-arrival

was defined as the time elapse from the beginning of the contrast

medium injection to the time when the aortic attenuation reached

100 HU. The delay for arterial acquisition was similar for all dogs

and equal to 10 s after time-to-aortic-arrival in order to scan during

the arterial peak or immediately after. The minimum interscan delay

was 2 s. The portal acquisition was automatically triggered 35 s after

time-to-aortic-arrival. The arterial phase was run in a cranio-caudal

direction, the portal phase scanned in a caudo-cranial direction, and

the late venous phase in a cranio-caudal direction.

2.3 Prospective computed tomographic data

Twenty-one canine abdominal computed tomographic angiography

studies were prospectively acquired at the Royal (Dick) School of

Veterinary Studies of the University of Edinburgh. The sample size

was chosen based on a consensus opinion of the authors, one of whom

was a statistician. The Veterinary Ethics and Welfare Committee of

the Royal (Dick) School of Veterinary Studies of the University of

Edinburgh granted approval for the prospective study prior to publica-

tion (Veterinary Ethics andWelfareCommittee reference 106.17). The

test-bolus, bolus-tracking, and fixed-injection-duration protocolswere

identical to the retrospective part of the study but performed on a

64-rowmultidetector CT scanner (Somatom R© Definition AS Siemens,

Erlangen, Germany). Injections of 700 mg I/kg of Iopamidol (Niopam

350 R©, Bracco UK Ltd) were performed with Empower CTA R©+ Injec-

tor System (Bracco R© injeneering S.A.,Milan, Italy) setwith amaximum

pressure of 325 psi. Dogs were randomly allocated to a protocol

according to their weight in order to achieve similar body weight dis-

tribution in each group of seven dogs. All acquisitions were performed

by the same operator (F.T.). Scan settings included a collimator pitch

of 1.4, tube potential of 100–120 kVp, reference tube current of 250–

320mA, slice thickness of 2mm,matrix 512× 512, and reconstruction

with low frequency algorithms. Scan tube currentwasmodulated by an

automatic exposure control system (Care Dose 4D, Siemens Medical

Solutions, International). Theminimum interscan delay was 2 s.

2.4 Computed tomographic data recorded

All retrospective multidetector computed tomographic angiography

studies were randomized, reviewed by a board-certified veterinary

radiologist (T.S.) and an imaging resident (F.T.), and scored by consen-

sus. All studies were anonymized and reviewers were blinded to the

angiographic protocol used. All assessments and measurements were

performed using dedicated DICOM viewer software (OsiriX v5.8.5

64-bit, Geneva, Switzerland). Awindowwidth of 350HUand awindow

level of 100 HU were used in order to allow optimal visualization of

vascular streaming artifacts. The abdomen was divided into three

regions of different vascular beds. During the arterial phase, each

main abdominal vessel was subjectively scored using a binary grading

system (+1or –1). The sameprocesswas repeated for the portal phase.

The most cranial abdominal region was established from the cranial

aspect of the liver to the first hepatic vein ramification allowing scoring

of the aorta and caudal vena cava. The mid-abdominal region extend-

ed from the first hepatic vein ramification to the gastroduodenal

vein entrance into the portal vein, allowing scoring of the aorta,

hepatic arteries, caudal vena cava, hepatic veins, intrahepatic portal

branches, and extrahepatic portal vein. The caudal abdominal region

included the portion of the abdomen between the gastroduodenal vein

entrance into the portal vein and the jejunal veins, allowing scoring

of the aorta, celiac and cranial mesenteric arteries, caudal vena cava,

extrahepatic portal vein, gastroduodenal vein, and splenic vein. For

example, to achieve a satisfactory score of +1 in the aorta during the

arterial phase, the aorta had to present with a homogeneous strong

vascular enhancement and absence of contrast streaming artifact.

An ideal arterial phase of a computed tomographic angiography was

defined as having strong contrast enhancement in the aorta, hepatic

arteries, and celiac arteries but none in the systemic venous and portal

vasculature (Figure 1). The portal phase was considered optimal if

the entire portal vasculature, splenic vein included, presented strong

contrast enhancement compared to the caudal vena cava and hepatic

veins (Figure 2). During the arterial phase, the arterial index was equal

to the summation of all vascular scores given for the three abdomi-

nal regions. The maximal arterial index was 15 and minimal arterial

index –15. Similarly, the portal index resulted from the sumof all scores

given for the abdominal vessels during the portal phase. The maximal

portal index was 10 and minimal portal index –10. We summed both

arterial and portal indices to create a combined vascular index. The

same subjective scoring process was repeated for the prospective

multidetector computed tomographic angiography studies.

A small animal imaging resident (F.T.) performed a quantitative

scoring by placing a 10 mm2 region of interest in the main abdominal

vessels during the arterial and portal phases. A region of interest

was placed as appropriate in the aorta, caudal vena cava, and portal

vein in the three abdominal regions. The attenuation values were

then averaged per dog and per phase for each vessel. Any vascular or

extra-vascular artifact was recorded. The same quantitative scoring

process was repeated for the prospective multidetector computed

tomographic angiography studies.

2.5 Data analyses

Statistical analysis was performed by a statistician (I.H.) using a free

software (R Core Team 2017, R: A language and environment for

statistical computing, R Foundation for Statistical Computing, Vienna,

Austria). We investigated the relationship between weight, scan

duration, scanner type, and protocol on index for the two phases

separately and in combination using a linear regression model with

index as the dependent variable. Although index is derived from

ordinal scores the overall index was treated as a numerical variable.

Models were assessed by inspection of histograms of their residuals.

Summary estimates of the relationship between protocol and index
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F IGURE 1 Optimal arterial phase illustrated by a transverse plane for each abdominal region (A–C) in a dog using the bolus-tracking protocol on
64-rowmultidetector computed tomography unit. Note the strong contrast enhancement in the aorta, celiac and hepatic arteries (arrows) but
none in the portal and venous vasculature (arrowheads)

were estimated using the Least-Squares means (Lsmeans) R-package

and reported as estimate and 95% confidence interval. In order to

investigate any difference of scan duration between four- and 16-slice

CT units, a Kruskal–Wallis test was performed. The significance level

for statistical tests was set at 0.05.

3 RESULTS

3.1 Retrospective computed tomographic data

A total of 30 dogs were included in the sample (10 dogs from each

institution). At the Royal (Dick) School of Veterinary Studies of the

University of Edinburgh, computed tomographic imageswere acquired

using the test-bolus protocol with a four-row multidetector CT unit

(Somatom R© Volume Zoom, Siemens, Germany) over a 6-year period.

Scan settings included slice thickness 3 mm, pitch between 1 and 1.5,

tube potential 120 kVp, tube current 120–150 mA, matrix 512 × 512.

Injections of 350–370 mg I/mL Iopamidol (Niopam R© , Bracco UK Ltd)

were performed with Mark V power injector (Medrad R©, PA, USA) set

at 300 psi injection pressure.

At the Istituto Veterinario di Novara, computed tomographic

images were acquired using the bolus-tracking protocol with a

16-row MDCT unit (Light Speed, GE Medical Systems, Milan, Italy)

over a 8-month period. Scan settings included slice thickness between

1.25 and 2.5 mm, pitch 0.938, tube potential 100–120 kVp, tube

current 180–200 mA, matrix 512 × 512. Injections of 350 mg I/mL of

iohexol (Omnipaque R©, GEHealthcare, Princeton, NJ) were performed

with Medrad R© envision CT injector (Medrad Italia, Cava Manara,

Italy) set at 300 psi injection pressure.

At the University of Sydney, computed tomographic images were

acquired using the fixed-injection-duration protocol with a 16-row

MDCT unit (Phillips 16 Slice, Brilliance R© CT V2.3, Phillips Medical

Systems Netherlands, the Netherlands) over a 6-month period. Scan

settings included slice thickness between 1 and 2 mm, pitch between

0.813 and 0.938, tube potential 120 kVp, tube current 100–250 mA,

matrix 512 × 512. Injections of 350 mg I/mL of iohexol (Omnipaque R©,

GE Healthcare, Princeton, NJ) were performed with Empower CTA R©

F IGURE 2 Optimal portal phase illustrated by a transverse plane for each abdominal region (A–C) in a dog using the fixed-injection-duration
protocol on 16-rowmultidetector computed tomography unit. Note the strong contrast-enhancement in the portal vein (arrowhead) in
comparison to the caudal vena cava (arrow)
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F IGURE 3 Dotplot representing the total scan duration (sum of
arterial scan and portal scan duration in seconds) for each protocol
andmultidetector computed tomography scanner (●, four- and
16-rowmultidetector computed tomography scanners;✯, 64-row
multidetector computed tomography scanner; —, mean)

power injector (E-Z-EM Inc., Westbury, New York) set at 300 psi injec-

tion pressure.

Various breeds were represented. The median weight of dogs was

12 kg (n = 10, range: 7–38 kg) in the test-bolus group, 26 kg (n = 10,

range: 7–47 kg) in the bolus-tracking group, and 24 kg (n = 10, range:

7–43 kg) in the fixed-injection-duration group. The test-bolus group

gathered seven female and three male dogs, the bolus-tracking group,

five females and five males, and the fixed-injection-duration group,

four female and six male dogs. The median age of dogs was 5 years

(n = 10, range: 0.3–12 years) in the test-bolus group, 9 years (n = 10,

range: 2–14 years) in the bolus-tracking group, and 5 years (n = 10,

range: 2–11 years) in the fixed-injection-duration group. Among all

groups, nine of 30 dogs had no significant abnormality and nine of 30

dogs had a final diagnosis of neoplasia. Other disorders included hep-

atopathy (3/30), thoracic or subcutaneous abscesses (2/30), nephropa-

thy (2/30), lymphadenomegaly (2/30), ureteral ectopia (1/30), gastric

foreign body (1/30), and pelvic fracture (1/30). In the test-bolus group,

the portal acquisition was initiated following the minimum reset time

between two phases in seven dogs. These seven dogswere small breed

dogs weighing up to 15 kg. The median injection rate for the fixed-

injection-duration protocol was 2.3 mL/s (n = 10, range: 0.7–4.3 mL/s).

The median time-to-aortic-arrival of the contrast medium bolus was

9 s (n = 10, range: 2–14 s) for the test-bolus protocol, 15 s (n = 10,

range: 4–19 s) for the bolus-tracking protocol, and 15 s (n = 10, range:

8–22 s) for the fixed-injection-duration protocol. The median time for

initiation of the portal acquisition scan was 15 s after time-to-aortic-

arrival (n = 10, range: 10–17 s) for the test-bolus protocol, 28 s after

time-to-aortic-arrival (n = 10, range: 21–32 s) for the bolus-tracking

technique, and 35 s after time-to-aortic-arrival (n=10, range: 35–35 s)

for the fixed-injection-duration protocol. Duration of the arterial and

portal scans is summarized in Figure 3. The total scan durationwas not

significantly different between the four-slice CT scanner and both 16-

sliceCTunits (n=30,df=2, 𝜒2 =4.43,P=0.109). These scannerswere

therefore grouped together in the following linear regressionmodels.

The mean indices are summarized in Table 1. During the arterial

phase, the fixed-injection-duration protocol had the narrowest disper-

sion of data. Quantitatively, the arterial phase of the test-bolus pro-

tocol had the highest mean arterial index compared to the other two

protocols, while the portal phase of the fixed-injection-duration proto-

col offered the highest mean portal index. Overall, the fixed-injection-

duration protocol has the highest mean combined vascular index and

narrowest dispersion of data.

On the arterial phase of the fixed-injection-duration protocol, con-

trast enhancement was visible in the portal vein at the porta hepatis in

nine of 10 dogs consistent with a late arterial acquisition. In the test-

bolus group during the portal phase, contrast streaming artifact was

reported in the portal vein in four dogs and in the caudal vena cava in

six dogs. This artifact was less commonly noted in the bolus-tracking

group (2/10 dogs) and the fixed-injection-duration group (4/10 dogs)

during the portal phase.

During the arterial phase, the mean aortic attenuation was quan-

titatively higher for the test-bolus protocol compared to the bolus-

tracking and fixed-injection-duration protocols (Table 2). These two

last protocols nevertheless achieved acceptable aortic enhancement.

During the portal phase, the mean aortic attenuation was lower for

the fixed-injection-duration protocol compared to the test-bolus and

bolus-tracking protocols.

3.2 Prospective computed tomographic data

Various breeds were represented among which Retrievers (7/21) and

collie (3/21) breeds were common. The median weight of dogs was

25 kg (n = 7, range: 5–37 kg) in the test-bolus group, 25 kg (N = 7,

range: 6.5-36 kg) in the bolus-tracking group and 19 kg (N = 7, range:

9-36 kg) in the fixed-injection-duration group. Each group gathered 3

female and 4 male dogs. The median age of dogs was 8 years (N = 7,

range: 2-10 years) in the test-bolus group, 11 years (N= 7, range: 6-16

years) in the bolus-tracking group and 10 years (N = 7, range: 0.6–11

years) in the fixed-injection-duration group.

Among all groups, 15/21 dogs had a final diagnosis of neoplasia

while one of 21 dogs had no significant abnormality. Other disorders

included pulmonary disease (2/21), sialadenitis (1/21), brachycephalic

obstructive airway syndrome (1/21), and retrobulbar abscess (1/21).

Themedian injection rate for the fixed-injection-duration protocolwas

2.0mL/s (n=7, range: 0.9–3.6mL/s). Themedian time-to-aortic-arrival

of the contrast medium bolus was 10 s (n = 7, range: 9–14 s) for the

test-bolus protocol, 11 s (n = 7 range: 5–15 s) for the bolus-tracking

protocol and 10 s (n= 7, range: 7–12 s) for the fixed-injection-duration

protocol. The median time for initiation of the portal acquisition

scan was 11 s after time-to-aortic-arrival (n = 7, range: 7–18 s) for

the test-bolus protocol, 8 s after time-to-aortic-arrival (n = 7, range:

7–14 s) for the bolus-tracking technique and 35 s after time-to-

aortic-arrival (n = 7, range: 35–35 s) for the fixed-injection-duration

protocol. Duration of the arterial and portal scans is summarized in

Figure 3.

The mean indices are summarized in Table 1. The arterial phase

of the bolus-tracking protocol had the highest mean arterial index

and narrowest dispersion of data compared to the other two proto-

cols. The portal phase of the fixed-injection-duration protocol offered

the highest mean portal index and narrowest dispersion of data. The
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TABLE 1 Arterial, portal, and combined indices for each protocol andmultidetector computed tomography scanner

Test-bolus
protocol

Bolus-tracking
protocol

Fixed-injection-duration
protocol

4 and 16MDCT (n= 3) Mean arterial index 7.9 (SD 7.1) 2.4 (SD 6.2) 3.1 (SD 3.4)

Mean portal index 1 (SD 5.3) 6.2 (SD 3.6) 7.2 (SD 3.9)

Mean combined arterial and portal index 8.9 (SD 10.4) 8.6 (SD 8.2) 10.3 (SD 6.1)

64-rowMDCT (n= 2) Mean arterial index 11.3 (SD 4.4) 15 (SD 0) 4 (SD 2.8)

Mean portal index 2.9 (SD 5.0) −1.1 (SD 3.2) 8 (SD 2)

Mean combined arterial and portal index 14.1 (SD 4.7) 13.9 (SD 3.2) 12 (SD 4.5)

Abbreviation:MDCT, multiphasic multidetector computed tomography; SD, standard deviation.

mean bolus-tracking portal index, on the other hand, was lower than

the two other protocols due to a very premature acquisition. Over-

all, the test-bolus protocol had the highest mean combined vascular

index.

On the arterial phase of the fixed-injection-duration protocol,

contrast enhancement was visible in the portal vein at the porta

hepatis in five of dogs consistent with a late arterial acquisition. In

the bolus-tracking group during the portal phase, contrast stream-

ing artifact was present in the portal vein in all seven dogs and in

the caudal vena cava in five dogs (Figure 4). This artifact remained

common in the test-bolus group (4/7 dogs) but was never present in

the studies of the fixed-injection-duration group during the portal

phase.

During the arterial phase, the mean attenuation in the portal vein

and caudal vena cava was quantitatively higher for the fixed-injection-

duration protocol compared to the other two protocols, consistent

with a late arterial acquisition (Table 2). During the portal phase,

the mean aortic attenuation was quantitatively lower for the fixed-

injection-duration protocol compared to the test-bolus and bolus-

tracking protocols.

3.3 Linear regressionmodel for combined vascular

index

The factor scan duration was found to be non-significant and strongly

correlated to the scanner type (𝜌 = 0.836). This factor was dropped

from initial model, which was then re-estimated.

The variable weight (estimate ± standard error = –0.043 ±
0.043, t = 0.991, P = 0.324) and scanner type (estimate ± standard

error= –2.130± 1.195, t= –1.783, P= 0.078) had no significant effect

on the combined index. This combined index for the fixed-injection-

duration protocol was not significantly different from the test-bolus

(estimate ± standard error = 0.073 ± 1.436, t = 0.051, P = 0.959) or

from the bolus-tracking protocol (estimate ± standard error = –0.380

± 1.460, t= –0.260, P= 0.795) (Figure 5).

3.4 Separated linear regressionmodels for arterial

and portal phases

Similarly, the factor scan duration was found to be non-significant and

strongly correlated to the scanner type (𝜌=0.815 for the arterial phase

TABLE 2 Vascular contrast attenuation in Hounsfield units during the arterial and portal phase for each protocol andmultidetector computed
tomography scanner

Test-bolus
protocol

Bolus-tracking
protocol

Fixed-injection-duration
protocol

4- and 16-rowMDCT (n= 30) Arterial phase Mean aortic attenuation 760 (SD 438) 433 (SD 132) 556 (SD 159)

Mean portal attenuation 86 (SD 62) 114 (SD 42) 123 (SD 60)

Mean caudal vena cava
attenuation

119 (SD 81) 158 (SD 43) 179 (SD 72)

Portal phase Mean aortic attenuation 314 (SD 93) 250 (SD 49) 207 (SD 69)

Mean portal attenuation 268 (SD 79) 249 (SD 59) 236 (SD 66)

Mean caudal vena cava
attenuation

240 (SD 77) 218 (SD 48) 205 (SD 56)

64-rowMDCT (n= 21) Arterial phase Mean aortic attenuation 713 (SD 132) 757 (SD 351) 604 (SD 104)

Mean portal attenuation 99 (SD 46) 52 (SD 29) 145 (SD 71)

Mean caudal vena cava
attenuation

120 (SD 55) 49 (SD 16) 168 (SD 55)

Portal phase Mean aortic attenuation 370 (SD 101) 363 (SD 227) 244 (SD 36)

Mean portal attenuation 246 (SD 47) 226 (SD 100) 263 (SD 45)

Mean caudal vena cava
attenuation

262 (SD 91) 216 (SD 86) 228 (SD 41)

Abbreviation:MDCT; multiphasic multidetector computed tomography, SD; standard deviation.
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F IGURE 4 Portal phase in a dog using the bolus-tracking protocol
on a 64-rowmultidetector computed tomography unit. Note the
contrast streaming artifact in the portal vein (arrowhead) due to
arrival of unenhanced blood from the splenic vein (arrow)

and 𝜌=0.857 for the portal phase). This factorwas dropped from initial

models, which were then re-estimated.

The variable weight had no significant effect on the arterial

index (estimate ± standard error = 0.105 ± 0.054, t = 1.930,

P = 0.060). The scanner type (four- to 16-row unit vs. 64-row unit)

had a significant effect on the arterial index (estimate ± standard

error = –5.866 ± 1.502, t = –3.905, P = 0.0003). Indeed the arterial

studies performedon the64-row scanner had significantly higher arte-

rial indices. The arterial index of the fixed-injection-duration was sig-

nificantly lower and different from the test-bolus protocol (estimate±
standard error = 5.931 ± 1.805, t = 3.285, P = 0.002) but not differ-

ent from the bolus-tracking protocol (estimate ± SE = 3.474 ± 1.835,

t= 1.893, P= 0.065) (Figure 6A).

For the portal phase, the variable weight (estimate ± standard

error = –0.019 ± 0.047, t = –0.411, P = 0.683) and scanner type (esti-

F IGURE 5 Dotplot representing the correctedmean (lsmean)
combined index with 95% confidence intervals for each protocol on all
four-, 16-, and 64-rowmultidetector computed tomography scanners

F IGURE 6 Dotplot representing the correctedmean (lsmean)
arterial index (A) and portal index (B) with 95% confidence intervals
for each protocol on all four-, 16-, and 64-rowmultidetector computed
tomography scanners

mate ± standard error = 1.605 ± 1.295, t = 1.240, P = 0.221) had no

significant effect on the portal index. The portal index of the fixed-

injection-duration was significantly higher and different from the test-

bolus protocol (estimate ± standard error = −5.784 ± 1.556, t = –

3.717, P = 0.0005) and from the bolus-tracking protocol (estimate ±
standard error= –4.235± 1.582, t= –2.677, P= 0.010) (Figure 6B).

4 DISCUSSION

Findings from this study support our primary hypothesis in that

there was a difference of vascular conspicuity between protocols

during the arterial and portal phase in the separated linear regres-

sion model. The quality of arterial studies performed on the 64-row

multidetector CT scanner was improved compared to the ones per-

formed on four- to 16-row multidetector CT scanners. This effect was

not demonstratedduring theportal phase. Contrary toour last hypoth-

esis, body weight had no effect on image quality.

The lack of difference in overall vascular conspicuity between the

different protocols in the combined linear regression model does not
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fully reflect the more detailed results for each vascular phase. In fact,

the test-bolus andbolus-tracking protocols provided arterial studies of

better quality than the fixed-injection-duration protocol while it was

the contrary during the portal phase, and these effects cancelled each

other out. In order to interpret the specificity of each protocol during

each phase, we chose to focus the rest of our discussion based on the

separated linear regressionmodel.

The choice of protocol had an effect on the quality of studies. The

test-bolus protocol offered the best arterial conspicuity on a four-row

multidetector CT scanner, while the bolus-tracking protocol exceeded

this quality on a 64-row multidetector CT scanner. This finding high-

lights that an automated scan trigger associated with a fast scanning

timeproduces the best arterial result. Indeed, the use of bolus-tracking

software also allows individual variations such as cardiac output and

triggers the acquisition sooner if the bolus of contrast medium has

an early arrival. The fixed-injection-duration protocol offered the best

portal vascular conspicuity of multidetector computed tomographic

angiography studies performed on slow and fast multidetector CT

units. This result confirms that a slow and fixed injection duration

yields homogeneous and strong portal enhancement due to its wide

bolus geometry.

On 64-rowmultidetector CT unit, the fixed-injection-duration pro-

tocol scoring results suffered because the arterial phase was often

scanned too late. To optimize the arterial phase of the fixed-injection-

duration protocol, we have since the cessation of the study shortened

the arterial scan delay after time-to-aortic-arrival from 10 s to 7 s with

good empirical results. This avoids streaming artifacts in veins, which

can be confused with arterial flow. By using a shorter arterial delay

on a 64-row multidetector CT unit, the overall arterial conspicuity is

expected to reach similar excellent quality as the bolus-tracking proto-

col on such a fast scanner.

Our hypothesis that image quality depends on the number of detec-

tor rows of a CT scanner was confirmed for the arterial phase but

not for the portal phase. The arterial phase was of higher quality on

a 64-row MDCT scanner. Indeed, a low number of detector rows rep-

resents a limitation to the scanner speed. By increasing detector row

numbers in multidetector CT, scanning time is reduced, and thus, the

image quality is more homogeneous for each vascular phase.19 On fast

CT units, bolus-tracking software is optimal to trigger an arterial phase

of excellent quality as shown in this study. In practice, on MDCT scan-

nerswith a lownumber of detector rows, the portal phase of the bolus-

tracking protocol can be run immediately after the arterial phase and

result in a study of acceptable quality. Unfortunately, if the exact same

protocol is run on a fast multidetector CT unit, like in the prospective

part of this study, it will trigger a very premature portal phase. The

absence of optimal portal timings explains the overall lowquality of the

portal phase using the bolus-tracking protocol on 64-row multidetec-

tor CT scanner. Previous publications have established optimal delays

using bolus-tracking technique for the pancreas and liver, although the

need for organ-specific delays is not practical for daily use.8,13 Weight

is another variable that has to be taken into account for the bolus-

tracking protocol since the time-to-arterial peak is influenced by body

weight when the injection rate is fixed.14 The bolus-tracking protocol

needs to be adapted for fast multidetector CT scanners with a high

number of detector rows by establishing longer delays between the

arterial and portal phases.

Depending on the protocol and the multidetector CT scanner used,

studies had wide to narrow variation of quality. Overall, the fixed-

injection-duration and the bolus-tracking protocol presented the nar-

rowest data dispersion for all phases combined. These two protocols

are therefore better reproducible compared to the test-bolus tech-

nique. This finding may be related to human errors. Indeed, for the

test-bolus protocol, the operator has to select the optimal timings on

the time-attenuation curves of the test bolus, which is often done by

observing a graph, rather than using displayed time figures. The retro-

spective studies of the test-bolus protocol highlighted an unexpected

wide variation of quality. The low number of detector rows and long

scan duration are likely responsible for this qualitative variation during

the arterial phase. The variation in portal phase imaging is more diffi-

cult to explain. The time-attenuation curve of the portal phase is sup-

posed to be the shape of a plateau,10,11 however, in reality it is often

more shaped like awedge,with a steep rise and slowdecline.Operators

had no instructions which time point to choose from the portal attenu-

ation curve, which likely introduced variability in vascular conspicuity.

If the phase of the test-bolus protocol is, for example, acquired at the

beginning of the portal plateau, as performed for some of the data of

this study, it will likely result in poorer quality of the portal enhance-

ment with contrast streaming artifact arising from the non-enhanced

splenic vein. Establishing theoptimal portal timingon time-attenuation

curves was considered by the authors as the main source of variability

of the portal phase and limitation to the test-bolus protocol. Another

possible reason explaining the poor quality of some test-bolus studies

is the potential discrepancy between timings established via a small

test bolus of contrast medium and the real timings after a full bolus

of contrast medium. Indeed, a test bolus has a different volume and

dose in relation to body weight compared to the full bolus of contrast

medium causing different bolus geometry.12,17,20 Its optimal arterial

and portal timingsmay not be representative of the optimal delays of a

full bolus.

The fixed-injection-duration protocol was designed to suppress

the variability of vascular enhancement due to weight and to have a

wide temporal window to acquire the arterial phase.14 A slow injec-

tion of contrast medium over 20 s triggers a later and lower aortic

peak enhancement due its wider bolus geometry.14–16,21 On four- and

16-row multidetector CT scanners, the aortic attenuation during the

arterial phase was indeed lower compared to the test-bolus protocol

but higher than the bolus-tracking protocol. On 64-row multidetec-

tor CT scanner, the three protocols had similar aortic attenuation dur-

ing the arterial phase. The bolus-tracking protocol had nevertheless a

wide distribution of data for the aortic attenuation. For a fixed injec-

tion rate, the time to arterial peak is influenced by body weight.14 A

short acquisition time thus increases the variability of aortic attenu-

ations between dogs of different body weights. Overall, the choice of

protocol for the arterial phase appears to have little impact on the aor-

tic contrast enhancement. During the portal phase, however, the aor-

tic contrast enhancement was lower with the fixed-injection-duration

protocol. This is most likely due to a later portal acquisition compared

to the other two protocols.
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Surprisingly, the scan duration had no effect on vascular con-

spicuity in this study. It has been suggested that contrast medium

injection rate should be increased with fast CT acquisition in

order to match the fast scanning duration.16,19 The disadvantage

of decreasing the injection duration is the narrowing of the tem-

poral window for the arterial scan. Given the good quality of the

portal phase of the fixed-injection-duration protocol, we therefore

recommend to keep a long injection duration of 20 s for this

protocol.

Contrast streaming artifact was commonly reported in early-

performed portal studies. Non-contrast enhanced blood of the splenic

vein mixes with contrast-enhanced blood in the portal vein and causes

this artifact when the portal phase is performed too early. In the

caudal vena cava, contrast streaming artifact is visible when early

renal contrast-enhancing venous flowmixes with non-enhancing caval

blood. In the authors’ opinion, streaming artifact in the caudal vena

cava or portal vein can be considered as a goodmarker of a premature

portal phase. In the test-bolus group, 11/17 studies demonstrated this

vascular artifact during theportal phasewhile itwas rarely noted in the

fixed-injection-duration group.On a 64-rowmultidetector CT unit, the

portal phases of the bolus-tracking groupwere all performed too early,

which was confirmed by the low portal index and commonly reported

contrast streaming artifact.

Due to the multicentric nature of the study, different MDCT scan-

ners have been used by different operators, which may have influ-

enced the quality of the acquisitions. Several anesthetic protocols have

been performed, which may have triggered different cardiovascular

response and affected the timings of vascular enhancement. Indeed, it

has been demonstrated that peak and time to peak of aortic contrast-

enhancements increase when the cardiac output is reduced due to an

increased circulation time.20,22 It does however reflect the reality of

daily practice. Having larger groups of dogs might have yielded further

meaningful statistics. Due to the retrospective nature of part of the

study, the median weight of dogs in the test-bolus group was smaller

compared to the other groups, which may have affected the vascular

conspicuity.

In conclusion, the three multidetector computed tomographic

angiography protocols yielded different abdominal vascular conspicu-

ity. The fixed-injection-duration protocol performed by multiple oper-

ators had the best vascular conspicuity on scanners of limited speed,

while the test-bolus protocol performed by a single operator provided

the best vascular conspicuity on fast MDCT scanner. The number of

detector rows influenced the quality of the arterial phase due to scan-

ner speed limitation but it did not affect the quality of the portal

phase. In the authors’ opinion, themain disadvantages of the test-bolus

protocol were the increased dose of contrast medium required, and

being operator dependent. Authors propose that the fixed-injection-

duration protocol offers a good compromise between an ideal vascu-

lar enhancement during the portal phase and an easily reproducible

protocol on scanners with low and high number of detector rows.

For the arterial acquisition of this protocol, we recommend improv-

ing it by using a fixed delay of 7 s after time-to-aortic-arrival and

keeping the delay of 35 s after time-to-aortic-arrival for the portal

acquisition.
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