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Abstract 

Aims 

JNJ-64179375 (hereafter JNJ-9375) is a first-in-class, highly specific, large molecule, exosite 1 

thrombin inhibitor. In preclinical studies, JNJ-9375 demonstrated robust antithrombotic 

protection with a wider therapeutic index when compared to apixaban. The purpose of the 

present study was to examine for the first time the antiplatelet, anticoagulant and antithrombotic 

effects of JNJ-9375 in a translational model of ex vivo human thrombosis.  

 

Methods and Results 

Fifteen healthy volunteers participated in a double-blind randomized crossover study of JNJ-

9375 (2.5, 25 and 250 μg/mL), bivalirudin (6 μg/mL; positive control) and matched placebo. 

Coagulation, platelet activation and thrombus formation were determined using coagulation 

assays, flow cytometry and an ex vivo perfusion chamber respectively. 

 

JNJ-9375 caused concentration-dependent prolongation of all measures of blood coagulation 

(prothrombin time, activated partial thromboplastin time, thrombin time; p<0.001 for all) and 

agonist selective inhibition of thrombin (0.1 U/mL) stimulated platelet p-selectin expression 

(p<0.001) and platelet-monocyte aggregates (p=0.002). Compared to placebo, JNJ-9375 (250 

g/mL) reduced mean total thrombus area by 41.1% (95% confidence intervals, 22.3 to 55.3%; 

p<0.001) at low shear and 32.3% (4.9 to 51.8%; p=0.025) at high shear. Under both shear 

conditions, there was a dose-dependent decrease in fibrin-rich thrombus (p<0.001 for both) but 

not platelet-rich thrombus (p=ns for both). 

 

Conclusion 

Exosite 1 inhibition with JNJ-9375 caused prolongation of blood coagulation, selective 

inhibition of thrombin-mediated platelet activation, and reductions in ex vivo thrombosis driven 
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by a decrease in fibrin-rich thrombus formation. JNJ-9375 represents a novel class of 

anticoagulant with potential therapeutic applications. 
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Introduction  

The coagulation cascade plays a central role in thrombosis and the pathophysiology of  

thromboembolic events, the leading cause of global mortality.1 Anticoagulants are of proven  

benefit in a wide range of thromboembolic disorders, but despite recent improvements,  

important limitations persist. All the currently licensed agents, including direct oral  

anticoagulants (DOACs), act to either inhibit thrombin generation or block the active site of the  

protease directly.2 Consequently they provide broad inhibition of all thrombin activity, which  

although efficacious, invariably fails to discriminate between protease interactions relating to  

thrombosis and those essential to haemostasis. Treatment related bleeding remains a major  

concern and for many patients this leads to dosing restrictions or exclusion from anticoagulation  

altogether.3-9  

  

JNJ-64179375 (hereafter JNJ-9375) is a first-in-class, recombinant, fully human, IgG4  

monoclonal antibody anticoagulant that binds reversibly and with high affinity and specificity to  

the exosite 1 region of thrombin.10 Exosite 1 is a positively charged domain on the surface of  

thrombin that together with exosite 2 serves to regulate enzymatic activity of the protease by  

providing an initial binding site for substrates, co-factors and inhibitors.11-13 JNJ-9375 therefore  

acts to inhibit the interaction of thrombin with its exosite 1 substrates, which include fibrinogen,  

but retains function of both the active site and exosite 2.10 This capacity to inhibit fibrinogen  

binding while preserving other (non-exosite 1) protease interactions offers the potential for a  

wider therapeutic index, and in preclinical animal models JNJ-9375 was associated with  

substantially less bleeding when compared to apixaban at doses of equivalent antithrombotic  

efficacy.10 In the present study we sought to examine for the first time the anticoagulant and  

antithrombotic effects of exosite 1 thrombin inhibition with JNJ-9375 in human blood using a  

translational model of ex vivo thrombosis.    
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Methods  

Study Population  

Healthy non-smoking male and female volunteers aged between 18 and 45 years  

(inclusive) with a body-mass index (BMI) of 18 to 35 kg/m2 were enrolled in this study. All  

volunteers underwent a detailed screening assessment for eligibility. Exclusion criteria included  

women who were pregnant or still lactating, or any clinically significant coexisting condition  

including hypertension, hyperlipidaemia, diabetes mellitus, cardiovascular disease, recent  

infective or inflammatory condition, coagulopathy, known liver disease or screening blood tests  

indicative of renal, liver, clotting, thyroid or haematological abnormality. Volunteers were not  

permitted to take any prescription or non-prescription medication (including acetylsalicylic acid,  

paracetamol, vitamins and herbal supplements) within 14 days of an experimental visit. Prior to  

each visit, volunteers must have abstained from alcohol for 24 hours and food including  

caffeine-containing products for 8 hours. Informed written consent was obtained from all  

volunteers before enrolment. The study was approved by the local research ethics committee  

(reference 16-HV-025) and conducted in accordance with the Declaration of Helsinki.  

  

Study Design  

This was a double-blind randomised controlled five-way crossover study conducted at a  

single site (Clinical Research Facility, Royal Infirmary of Edinburgh, Scotland) between the 24th  

May 2016 and 1st July 2016. Study measures were performed during extracorporeal infusion of  

JNJ-9375 (estimated final concentration of 2.5, 25 and 250 μg/mL), bivalirudin (positive control;  

estimated final concentration of 6 μg/mL; The Medicines Company, Abingdon, UK) at a dose  

equivalent to recommendations at the time of percutaneous coronary intervention (PCI), and  

matched placebo (10 mM phosphate, 8.5% (w/v) sucrose, 0.04 % (w/v) polysorbate 20, 10  

μg/mL EDTA, pH 7.1; Janssen Research and Development) upstream of the perfusion chambers.  

Three perfusion chamber studies were performed at the first experimental visit and two  

perfusion chamber studies at the second experimental visit.  
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Study Objectives 

The primary objective was to assess the relationship of JNJ-9375 dose concentrations to 

ex vivo thrombus formation under conditions of both low and high shear stress, and to compare 

these effects with placebo under the same rheological conditions. Bivalirudin, which blocks both 

exosite 1 and the active site of thrombin, was used as a positive control. Secondary objectives 

included a similar comparison of compound effects on platelet activation, markers of 

coagulation, and the fibrin and platelet components of thrombus formation. Finally, correlations 

between measured chamber concentrations of study drug and pharmacodynamic end-points were 

explored. 

 

Perfusion Chamber Experiment 

Thrombus formation was assessed using the Badimon chamber, a well validated 

perfusion model for measuring the effect of study drugs on ex vivo human thrombus 

formation.14-21 In brief, a pump was used to draw native (unanticoagulated) blood from an 

antecubital vein directly through a series of three cylindrical perfusion chambers maintained at 

37°C in a water bath. Each chamber contained a strip of porcine aorta from which the intima and 

a thin layer of media had been removed. Rheological conditions in the first chamber were set to 

simulate those of patent medium-sized arteries (inner lumen diameter, 2.0 mm; vessel wall shear 

rate, 212 s-1; mean blood velocity, 5.3 cm/s; Reynolds number: 30), whereas those in the second 

and third chambers were set to simulate those of mild to moderately stenosed coronary arteries 

(inner lumen diameter, 1.0 mm; vessel wall shear rate: 1690 s-1; mean blood velocity, 21.2 cm/s; 

Reynolds number: 60). Shear conditions at the vessel wall were calculated from the theoretical 

expression for shear rate given for a Newtonian fluid in tube flow.22,23 Each study lasted for 

exactly 5 min during which flow was maintained at a constant rate of 10 mL/min. All studies 

were performed using the same perfusion chamber and by the same operator. 
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Study Outcome Measures 

Chamber concentrations of study drug 

Blood samples for determination of serum JNJ-9375 and plasma bivalirudin 

concentrations were taken immediately distal to the perfusion chamber into 3.5 mL serum gel 

and 2.7 mL sodium citrate (3.2%) tubes (Becton-Dickinson, Cowley, UK). JNJ-9375 samples 

were allowed to clot for 30 min then centrifuged at 1500 g (20 °C) for 20 min. Bivalirudin 

samples were centrifuged at 1500 g (15 °C) for 15 min within 1 hour of collection. Samples 

were then aliquoted and stored immediately at -70 °C before analysis. Concentrations of JNJ-

9375 were determined by electrochemiluminescence using the Meso Scale Discovery platform 

and plate reader (Rockville, Maryland, USA). JNJ-9375 concentrations were regressed from the 

standard curve in Watson LIMS (version 7.4.1, Thermo, PA, USA) using a five-parameter 

logistic regression model with 1/Y2 weighting.  

 

Coagulations assays 

Blood samples for coagulations assays (prothrombin time, activated partial 

thromboplastin time and thrombin time (undiluted and diluted)) were collected immediately 

distal to the final perfusion chamber into 4.5 mL sodium citrate (0.38% final v/v) tubes (Becton-

Dickinson). Samples were centrifuged at 1500 g (15 °C) for 20 min within 1 hour of collection. 

Plasma was then aliquoted and stored immediately at -70 °C before analysis using a STA-

Compact-Max analyser (Stago, Parsippany, NJ, USA). The following reagents were used, for 

prothrombin time, STA-Neoplastine CI Plus, for activated partial thromboplastin time, STA-

PTT Automate, and for thrombin time, STA-Thrombin. 

 

Platelet activation 

Platelet p-selectin expression and platelet-monocyte aggregates are sensitive markers of 

in vivo platelet activation.24-26 Blood (2.7 mL) was collected immediately distal to the final 

perfusion chamber into tubes containing 0.3 mL of 3.8% sodium citrate and Pefabloc FG (final 
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concentration 1.5 mg/mL; Quadratech Diagnostics, Surrey, UK). After 5 min, samples were  

aliquoted into Eppendorfs pre-filled with or without agonist (adenosine diphosphate 20 M,  

Sigma-Aldrich, Gillingham, UK; human alpha thrombin 0.1 U/mL, Enzyme Research  

Laboratories, Swansea, UK) and the following conjugated monoclonal antibodies:  

allophycocyanin (APC)-conjugated CD14, phycoerythrin (PE)-conjugated CD62P and  

fluorescein isothiocyanate (FITC)-conjugated CD42a (Becton-Dickinson). All antibodies were  

diluted 1:10. Samples were incubated for 15 min at room temperature before fixing with 1 %  

paraformaldehyde (p-selectin) or FACS-Lyse (Becton-Dickinson; platelet-monocyte  

aggregates). All samples were analysed within 24 h using a FACSCalibur flow cytometer  

(Becton-Dickinson). Data analysis was performed using FlowJo v10 (Treestar, Oregon, USA).  

  

Thrombus Formation  

After each perfusion experiment, the porcine strips with attached thrombus were  

removed and fixed in 4 % paraformaldehyde for 72 h at 4 ºC prior to being prepared for  

histological analysis. As thrombus forms longitudinally along the entire length of the exposed  

porcine aortic strip, the mean cross-sectional area gives a reliable representation of total  

thrombus formation.27 Following fixation, the proximal and distal 1 mm of the exposed substrate  

were discarded and the remainder cut into eight segments. Segments were embedded in paraffin  

wax and 4-m sections prepared.  

  

To detect total thrombus area, endogenous hydrogen peroxide activity was blocked  

using 3 % hydrogen peroxide solution (Leica Microsystems GmbH, Wetzlar, Germany) for 5  

minutes. Sections were then incubated at room temperature for 1 hour with polyclonal rabbit  

anti-human fibrin(ogen) antibody (1.2 μg/mL, Dako, Glostrup, Denmark; Cat. No. A0080) and  

monoclonal mouse anti-human CD61 antibody (1.28 μg/ml, Dako; Cat. No. M0753). Antigen  

visualisation was performed using a Bond Polymer refine detection kit (Leica Microsystems  

GmbH) and treatment with 3,3'-diaminobenzidine substrate chromogen (66 mM, Dako). Finally,  
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sections were counterstained with a modified Masson’s trichrome (hematoxylin and sirius red 

0.1 %). 

 

To examine the effect of study drug(s) on fibrin-rich and platelet-rich thrombus 

formation, endogenous hydrogen peroxide activity was blocked using 3 % hydrogen peroxide 

solution (VWR, Radnor, PA, USA) for 10 min and non-specific binding blocked using 20 % 

normal goat serum (Biosera, Nuaille, France) in Tris-Buffered Saline with 0.01% Tween 

(TBST)). Sections were then incubated with polyclonal rabbit anti-human fibrin(ogen) antibody 

(1.2 g/ml) to detect fibrin and CD61 monoclonal mouse anti-human antibody (0.32 g/ml) to 

detect platelets. Following TBST washes, goat anti-rabbit peroxidase (1:500; Abcam, 

Cambridge, UK) was applied and the presence of antigen visualised with Tyramide Cy3 (1:50; 

Perkin Elmer, Boston, MA, USA; Cat. no. NEL744B001KT) and FITC (1:50; Perkin Elmer, 

Waltham, MA, USA; Cat. no. NEL741B001KT) before nuclear counterstaining with DAPI (5 

g/ml; Sigma-Aldrich; Cat. No. D9542). 

 

A semi-automated slide scanner (Axioscan Z1; Zeiss, Jena, Germany) and image 

analysis software (Definiens, Munich, Germany) were used by a blinded operator to quantify 

thrombus area and composition. Digital images of each section were acquired at ×20 

magnification. High-resolution classifiers based on colour were established to detect total 

thrombus area, fibrin-rich thrombus area and platelet-rich thrombus area.  

 

Statistical Analysis 

After study completion, the database was locked and all statistical analyses carried out 

by an independent statistician. Categorical variables are expressed as percentages, continuous 

variables are expressed as mean ± standard deviation (SD). The effects of study compounds on 

study end-points were assessed by general linear mixed effect models with period and study 

compound as fixed effects, subjects as random effects. Chamber end-points were log-
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transformed and assessed separately by shear rate (low and high). From the models, point and 

interval estimates for means and mean differences versus placebo (absolute and %) were 

generated and analysed using the Least Significance Difference (LSD) test. The correlation 

between plasma JNJ-9375 concentrations and study end-points were determined by Pearson’s (r) 

or Spearman’s rank-order correlation (ρ) as appropriate. Two-sided p values of ≤0.05 were 

considered statistically significant. All statistical calculations were performed using SAS version 

9.4. 
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Results 

All 15 enrolled volunteers (10 male) completed the study in full, with no safety 

concerns. Mean age of the volunteers was 26±5 years with a body-mass index of 24±3 kg/m2. 

 

Chamber concentrations of study drug 

Compound concentrations in the effluent of the perfusion chamber (JNJ-9375 

1.93±0.68, 22.3±5.86, and 214.0±20.8 g/mL; bivalirudin 6.92±11.3 g/mL) closely matched 

the targeted concentrations (JNJ-9375 2.5, 25 and 250 g/mL; bivalirudin 6 g/mL).  

 

Effect of JNJ-9375 on coagulation assays 

JNJ-9375 caused dose-dependent prolongation of all measured blood coagulation 

markers, with thrombin time the most sensitive to the anticoagulant effect (Table 1). Pearson’s 

correlation coefficient between chamber plasma concentrations of JNJ-9375 and coagulation 

assays was 0.98 for prothrombin time, 0.87 for activated partial thromboplastin time, and 0.91 

for thrombin time (p<0.001 for all; Supplementary S1). 

 

Effect of JNJ-9375 on ex vivo platelet activation 

Compared to placebo, JNJ-9375 2.5, 25 and 250 g/mL inhibited thrombin (0.1 U/mL) 

stimulated platelet p-selectin expression (geometric mean fluorescent intensity, GMFI) by 46.5% 

[95% confidence intervals (CI), 4.6 to 97.5%; p=0.07], 95.2% [95% CI, 43.2 to 147.2%; 

p<0.001] and 99.0% [95% CI, 46.1 to 151.9%; p<0.001] and platelet-monocyte aggregates 

(GMFI) by -3.4% [95% CI, -56.1 to 49.4%; p=0.90], 56.3% [95% CI, 2.2 to 110.4%; p=0.04] 

and 69.9% [95% CI, 16.2 to 123.6%; p=0.01]. Chamber plasma concentrations of JNJ-9375 

correlated with both platelet p-selectin expression (ρ=-0.83, p<0.001) and platelet-monocyte 

aggregates (ρ=-0.64, p <0.001). In contrast, JNJ-9375 had no effect on ADP (20 M) stimulated 

platelet activation (p=ns for all). Bivalirudin exhibited a similar selective profile (Table 1; Figure 

1). 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article-abstract/doi/10.1093/cvr/cvy227/5089939 by Edinburgh U

niversity user on 27 Septem
ber 2018



CVR-2018-754 

 12 

 

Effect of JNJ-9375 on ex vivo thrombus formation 

Ex vivo total thrombus formation was reduced at both low and high shear stress at the 

250 g/mL concentration (Figure 2). Compared to placebo, JNJ-9375 (2.5, 25 and 250 g/mL) 

reduced mean total thrombus area by -7.4% (95% CI, -41.6 to 18.5%; p=0.60), 6.6% (95% CI, -

23.1 to 29.2%; p=0.62) and 41.1% (95% CI, 22.3 to 55.3%; p<0.001) at low shear and by 9.8% 

(95% CI, -26.6 to 35.7%; p=0.54), 3.3% (95% CI, -35.8 to 31.1%; p=0.85) and 32.3% (95% CI, 

4.9 to 51.8%; p=0.025) at high shear. Chamber plasma concentrations of JNJ-9375 correlated 

with total thrombus area at low (ρ=-0.56, p<0.001) and high (ρ=-0.32, p=0.03) shear 

(Supplementary Figure S1). 

 

Reductions in total thrombus area were driven by a dose-dependent decrease in fibrin-

rich thrombus deposition under both shear conditions (Figure 3). At peak dose (250 g/mL), 

JNJ-9375 reduced fibrin-rich thrombus area by 59.5% [95% CI, 37.8 to 73.7%; p<0.001] at low 

shear and 51.8% [95% CI, 37.7 to 62.7%; p<0.001] at high shear. There was no reduction in 

platelet-rich thrombus area (p=ns for all). Chamber plasma concentrations of JNJ-9375 

correlated with fibrin-rich thrombus area at low (ρ=-0.66, p<0.001) and high (ρ=-0.70, p<0.001) 

shear (Supplementary Figure S1). 

 

Effect of bivalirudin on ex vivo thrombus formation 

Bivalirudin reduced total thrombus area at both low and high shear, also driven by a 

decrease in fibrin-rich thrombus formation (Figures 2 and 3). In contrast to JNJ-9375, there was 

a modest reduction (p=0.01) in platelet-rich thrombus formation at high shear (Figure 3). 
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Discussion  

In this double-blind randomised controlled crossover study, ex vivo administration of  

JNJ-9375, a highly specific exosite 1 thrombin inhibitor, resulted in dose-dependent  

prolongation of blood coagulation and selective inhibition of thrombin-stimulated platelet  

activation. Thrombosis was reduced under rheological conditions of both low and high shear  

stress, driven principally by a reduction in fibrin-rich thrombus formation. We conclude that  

JNJ-9375 holds promise as an anticoagulant for the prevention and treatment of thromboembolic  

events, and our results provide further insights into the role of exosite 1 in human  

thrombogenesis.   

  

The outstanding challenge in anticoagulation is the development of drugs that can  

provide equivalent (or superior) antithrombotic efficacy but with a significantly lower bleeding  

risk. While the safety of JNJ-9375 has yet to demonstrated in clinical trials, several lines of  

evidence indicate the potential for favourable outcomes. On a mechanistic level, selective  

inhibition of thrombin through exosite 1 specific antagonism is attractive because of the  

potential to inhibit fibrinogen binding without overly interfering with other (active site and  

exosite 2 dependent) protease interactions relating to haemostasis. For example, both the active  

site and exosite 2 are involved in catalytic feedback activation of clotting cofactors V, VIII, XI  

and XIII, with deficiencies of each of these factors associated with bleeding diatheses.28-31   

  

Thrombin is also a potent platelet agonist, and whilst over-aggregation may lead to  

pathological events, early platelet responses are central to haemostasis. Thrombin activates  

platelets through binding to platelet surface GPIb and protease-activated receptors 1 (PAR1) and  

4 (PAR4).32 Exosite 1 interacts with PAR1 to facilitate efficient receptor cleavage,33 whereas  

PAR4 activation and GPIb binding are largely dependent on the active site and exosite 2  

respectively.34,35 In the present study, JNJ-9375 selectively inhibited thrombin stimulated platelet  

activation but was not associated with a reduction in platelet deposition. This is consistent with  
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previous reports that exosite 1 inhibition only weakly inhibits thrombin-induced platelet 

aggregation and does not affect platelet collagen binding.36,37 Collectively, these results suggest 

potentially favourable differential effects on thrombin-platelet responses, that could be 

especially useful in clinical situations where combined treatment with an antiplatelet is 

required.38,39 This is speculative and requires further exploration. Future studies examining the 

effects of JNJ-9375 on platelet adhesion, thrombosis and bleeding, alone and in combination 

with existing antiplatelet agents would be of interest.    

 

 Mechanistic evidence that exosite 1 thrombin inhibition may be associated with a low 

haemorrhagic potential is supported by data from animal studies of thrombosis and bleeding. 

Using a baboon arteriovenous shunt model, Cadroy and colleagues found that exosite 1 thrombin 

inhibition prevented thrombus formation, but did not affect the ability to form haemostatic 

plugs.37 More recently, JNJ-9375 demonstrated a substantially wider therapeutic index when 

compared to apixaban in rats and cynomolgus monkeys.10 Further insight comes from the case 

report of an anti-exosite 1 thrombin IgA antibody (from which JNJ-937 was subsequently 

synthesised to mimic) identified in a patient presenting with a large traumatic sub-dural 

haematoma and persistently abnormal clotting studies.40 Despite evidence of intense 

anticoagulation (prothrombin time, 40 s; activated partial thromboplastin time, 240 s; thrombin 

time with bovine thrombin, 173 s), the patient made a full recovery without surgical intervention 

and had no abnormal bleeding events during 8 years of follow up. 

 

Anticoagulants must in addition to avoiding unwanted bleeding provide clinically 

efficacious antithrombotic protection. Examination of the effect of exosite 1 thrombin inhibition 

on human thrombosis has previously been limited to studies using heparinised blood in a rabbit 

aortic angioplasty model41 and cone and plate chamber.42 This is the first description of the ex 

vivo antithrombotic effects of exosite 1 thrombin inhibition in native human blood under flow 

conditions. At a dose of 250 g/mL, JNJ-9375 reduced total thrombus area by over 40% and 
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30% at low and high shear respectively. Under the same conditions, high dose bivalirudin 

(equivalent to that used at the time of PCI) reduced thrombus formation by 65% at low shear and 

56% at high shear; while in previous studies reductions of 14% with heparin (70 IU/kg bolus 

plus 15 IU/kg/h infusion),19 26-28% with oral edoxaban (60 mg)43 and up to 40% with serial 

dosing of the parenteral direct factor Xa inhibitor, DX-9065a,20 were reported. Importantly 

therefore, we have shown that exosite 1 thrombin antagonism alone with JNJ-9375 substantially 

reduces ex vivo human thrombus formation. Moreover, reductions were comparable (if not 

superior) in magnitude to the clinically approved anticoagulant edoxaban suggesting a high 

probability of in vivo antithrombotic efficacy. 

 

JNJ-9375 resulted in dose-dependent prolongation of prothrombin time, activated partial 

thromboplastin time and thrombin time. As expected, thrombin time was most sensitive to the 

anticoagulant effect. Although direct oral anticoagulants are licensed for use without the need 

for routine monitoring, there are clinical situations in which readily available assays to measure 

anticoagulant activity may be useful. Our data suggests that if indicated, thrombin time, and to a 

lesser extent prothrombin time and activated partial thromboplastin time, may provide a useful 

assay for measuring the effect of exosite 1 inhibition and JNJ-9375 activity. 

 

Our study has some potential limitations. First, only a modest number of volunteers 

were studied. However, problems associated with intra-group variability were minimised by the 

crossover design that allowed each volunteer to serve as their own control. Second, although the 

exposed porcine aortic media used in the perfusion model presents many of the common 

constituents of an injured human blood vessel (including type I collagen), it is unlikely to 

contain tissue factor (TF).44-46 Tissue factor (TF) activates the coagulation cascade and is an 

important contributor to thrombogenicity.47,48 Nevertheless, this does not overly limit our model 

for the assessment of thrombosis because binding of blood borne circulating TF is sufficient to 

allow activation of the coagulation cascade and thrombus propagation.44,45,49-51 Indeed, previous 

studies have confirmed that thrombus formed from human blood perfused over porcine tunica 
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media (devoid of TF) stains heavily for TF.44,45 Third, we used an anti-fibrin(ogen) antibody, 

which recognises both fibrinogen and fibrin, to examine the fibrin component of thrombus 

formation. However, the chamber is perfused by saline at the end of the experiment washing 

away unbound cells, proteins and other molecules, such as fibrinogen, leaving only adherent 

thrombus. Thus, histomorphometric quantification of fibrin-rich thrombus area is unlikely to be 

affected by this cross-reacting antibody and our findings are consistent with previous studies 

using the same immunohistochemical approach.52-55 Fourth, while we have shown that exosite 1 

thrombin inhibition reduces fibrin-rich thrombus formation, determining how JNJ-9375 alters 

the dynamics of clot development, stabilisation and dissolution might further inform therapeutic 

potential and are areas for future exploration. Finally, the study included ex vivo experiments 

only and thus lacked hard clinical end-points necessary to draw any conclusions regarding the 

safety or efficacy of this novel anticoagulant in practice. However, given this was a translational 

study designed to examine for the first time the effects of exosite 1 thrombin inhibition with 

JNJ-9375, we felt our study design appropriate.   

 

In conclusion, JNJ-9375, a highly specific exosite 1 thrombin inhibitor, demonstrated 

substantial reductions in ex vivo thrombosis in native human blood under flow conditions. These 

reductions were driven by a decrease in fibrin-rich thrombus formation and were comparable in 

magnitude to clinically approved anticoagulants. Our findings suggest JNJ-9375 represents a 

promising novel class of anticoagulant, and that further clinical studies are warranted. A phase 2 

trial comparing the safety and efficacy of JNJ-9375 to apixaban in patients undergoing elective 

total knee replacement surgery is currently underway (ClinicalTrials.gov, NCT03251482). 
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Figure Legends  

Figure 1. The effect of study compound on ex vivo platelet activation.  

Extra-corporeal administration of JNJ-9375 inhibited thrombin-simulated [A] p-selectin  

expression and [B] platelet-monocyte aggregates in a dose-dependent manner, but had no  

effect on ADP activity. Data shown are the adjusted means (± 95% confidence intervals) and  

individual points. Statistical comparisons (Least Significance Difference test) versus placebo  

are represented above each plot: * p<0.05, ** p<0.01, *** p<0.001. Abbreviations used:  

ADP, adenosine diphosphate; PMA, platelet-monocyte aggregates; GMFI, geometric mean  

fluorescent intensity.  

  

Figure 2. The effect of study compound on ex vivo total thrombus formation  

Extra-corporeal administration of JNJ-9375 inhibited total thrombus formation in a dose- 

dependent manner at both [A] low shear stress (212 s-1) and [B] high shear stress (1690 s-1)  

shear stress. Data shown are the adjusted means (± 95% confidence intervals) for [Log] total  

thrombus area (m2/mm) and individual points. Statistical comparisons (Least Significance  

Difference test) versus placebo are represented above each plot: * p<0.05, ** p<0.01, ***  

p<0.001. Abbreviations used: 9375, JNJ-9375.  

  

Figure 3. The effect of study compound on the components of thrombus formation  

Extra-corporeal administration of JNJ-9375 inhibited fibrin-rich thrombus deposition in a  

dose-dependent manner at both [A] low shear stress (212 s-1) and [C] high shear stress (1690  

s-1) shear stress, as compared to placebo. JNJ-9375 had no effect on platelet-rich thrombus  

deposition at either shear stress. Bivalirudin reduced fibrin-rich thrombus deposition at low  

and high shear stress, and platelet-rich thrombus deposition at high shear stress. Data shown  

are the adjusted means (± 95% confidence intervals) for [Log] fibrin- or platelet-rich  

thrombus area (m2/mm) and individual points. Statistical comparisons (Least Significance  

Difference test) versus placebo are represented above each plot: * p<0.05, ** p<0.01, ***  
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p<0.001. Abbreviations used: 9375, JNJ-9375. 
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Table 1. Summary of means from statistical analysis of end-points 

 Placebo 
JNJ-9375 

(2.5 g/ml) 

JNJ-9375 

(25 g/ml) 

JNJ-9375 

(250 g/ml) 

Bivalirudin 

(6 g/ml) 

PT (secs) 13.7 [10.5, 16.9] 13.9 [10.7, 17.1] 15.8 [12.6, 19.0] 30.0 [26.8, 33.2] 36.6 [33.4, 39.8] 

APTT (secs) 28.9 [23.3, 34.6] 31.4 [25.7, 37.0] 41.6 [35.9, 47.3] 63.5 [57.8, 69.2] 91.5 [85.8, 97.2] 

TT (secs) 15.6 [-12.7, 43.8] 24.9 [-3.3, 53.2] 80.9 [52.6, 109.2] 245.6 [217.3, 273.9] 351.2 [323.0, 379.5] 

Dilute TT (secs) < LLOQ < LLOQ < LLOQ 151.5  [126.5, 176.6] > 501* 

P-Selectin GMFI      

Unstimulated 4.6 [3.6, 5.6] 3.9 [2.9, 4.9] 3.7 [2.7, 4.7] 3.9 [2.9, 4.9] 3.2 [2.2, 4.2] 

ADP 20 M 17.8 [11.6, 24.0] 12.1 [6.0, 18.1] 17.8 [11.9, 23.8] 15.6 [9.7, 21.6] 15.3 [9.4, 21.2] 

Thrombin 0.1 U/ml 161.6 [100.3, 222.8] 86.5 [28.0, 145.0] 7.8 [-53.5, 69.1] 1.6 [-62.8, 65.9] -1.6 [-59.6, 56.3] 

PMA GMFI      

Unstimulated 33.0 [20.6, 45.4] 35.6 [24.0, 47.3] 27.6 [15.9, 39.3] 25.0 [13.3, 36.7] 25.0 [13.3, 36.7] 

ADP 20 M 48.9 [28.2, 69.5] 54.9 [35.8, 73.9] 48.5 [30.1, 67.0] 50.1 [31.7, 68.6] 46.4 [28.0, 64.8] 

Thrombin 0.1 U/ml 401.0 [180.3, 621.6] 414.6 [193.3, 635.8] 175.3 [-45.7, 396.3] 120.7 [-99.5, 340.9] 85.0 [-123.2, 293.3] 

Total Thrombus area (m2/mm)     

Low shear 9571 [7669, 11945] 10283 [8239, 12834] 8936 [7161, 11153] 5640 [4519, 7039] 3318 [2659, 4141] 

High Shear 14367 [10734, 19229] 12961 [9684, 17347] 13898 [10384, 18602] 9729 [7269, 13022] 6312 [4716, 8448] 

Platelet-rich thrombus area (m2/mm)    

Low shear 1255 [834, 1889] 1610 [1055, 2456] 1117 [742, 1681] 1200 [798, 1806] 832 [545, 1269] 

High Shear 7302 [4790, 11131] 5844 [3834, 8909] 6405 [4202, 9763] 5463 [3584, 8327] 4111 [2697, 6267] 

Fibrin-rich thrombus area (m2/mm)    

Low shear 10349 [7535, 14212] 10634 [7651, 14782] 9865 [7183, 13547] 4190 [3051, 5755] 1162 [836, 1616] 

High Shear 9598 [7997, 11521] 9176 [7645, 11014] 8100 [6749, 9722] 4625 [3854, 5552] 1776 [1480, 2132] 

Data shown are means with 95% confidence intervals. *14 of 15 results > 501 s. Abbreviations used: PT, prothrombin time; APTT, activated partial thromboplastin time; TT, 
thrombin time; GMFI, geometric mean fluorescent intensity; ADP, adenosine diphosphate; and LLOQ, less than lower limit of quantification. 
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