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NAVIER-STOKES EQUATION IN THE PRESENCE OF MODEL ERROR
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Abstract. Bayesian state estimation of a dynamical system from a stream of noisy measurements is im-

portant in many geophysical and engineering applications where high dimensionality of the state space,

sparse observations, and model error pose key challenges. Here, three computationally feasible, approx-

imate Gaussian data assimilation/filtering algorithms are considered in various regimes of turbulent 2D

Navier-Stokes dynamics in the presence of model error. The first source of error arises from the necessary

use of reduced models for the forward dynamics of the filters, while a particular type of representation

error arises from the finite resolution of observations which mix up information about resolved and unre-

solved dynamics. Two stochastically parameterised filtering algorithms, referred to as cSPEKF and GCF,

are compared with 3DVAR - a prototypical time-sequential algorithm known to be accurate for filtering

dissipative systems for a suitably inflated ‘background’ covariance. We provide the first evidence that

the stochastically parameterised algorithms, which do not rely on detailed knowledge of the underlying

dynamics and do not require covariance inflation, can compete with or outperform an optimally tuned

3DVAR algorithm, and they can overcome competing sources of error in a range of dynamical scenarios.

1. Introduction

State estimation of a dynamical process given its noisy and incomplete measurements arriving in a

time-sequential manner is of importance in a wide range of applications. Examples include atmosphere-

ocean science (e.g., [56]) or engineering problems (e.g., [39]) where online predictions are required in

the presence of uncertainty in the initial conditions, the observations, and in the dynamics itself. Such

problems can be cast within the Bayesian framework which allows for a systematic combination of incoming

observations with a dynamical model in order to solve a sequence of inverse problems on the current state

of the estimated process. In principle, when an exact dynamics is known subject to uncertain initial

conditions, the posterior/filtering distribution on the system state given the observations can be derived.

This may be performed exactly for linear systems subject to Gaussian noise, leading to the Kalman

filter (e.g., [55, 2, 53, 45]). In nonlinear and non-Gaussian scenarios the particle filter (e.g., [6, 30])

provably approximates the true posterior distribution as the number of particles increases. Standard

implementations of this method perform poorly in high-dimensional systems [91] although there is a

growing literature on particle filtering in high-dimensional systems [66, 88, 101, 10, 70, 85].

The field of data assimilation (DA) has grown out of the necessity to obtain computationally feasible

approximations to the filtering distribution when one is faced with a high-dimensional state estimation

and/or imperfect knowledge of the underlying dynamics, and a vast amount of incoming data (e.g., weather

prediction). In such situations one is typically forced to employ approximations based on physical insight
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2 M. BRANICKI, A. MAJDA, K. LAW

and computational expediency, while the incoming data are used to compensate for modelling errors and

uncertainty in the initial conditions. The development of practical and robust DA algorithms for high-

dimensional dynamics is an active research area (e.g., [20, 21, 22, 31, 77, 78, 100, 101]). Majority of

DA algorithms invoke some form of Gaussian approximation which generally destroys optimality1 of the

estimates and might cause filter divergence (e.g., [69, 43, 59]). The study of accuracy and stability2 of DA

algorithms in the presence of model error has been a developing area over the last few years. A recent series

of papers provides a generalisation of the theory in [92, 97] to infinite-dimensional dissipative dynamical

systems which are prototypical of the high-dimensional problems to which filters are applied in practice

[17, 13, 58, 5, 12, 46]. In many cases carefully tuned approximate filters can be stable and accurate for

estimating mean dynamics but they typically perform poorly when predicting the associated uncertainty

(e.g., [65, 41, 79, 67, 102, 103]). Model error in the forward dynamics of DA algorithms is compounded

by sparsity of observations which has adverse effects on the resulting estimates [20, 97].

Here, we provide the first evidence that a class of computationally cheap, approximate Gaussian,

stochastically parameterised filtering algorithms introduced in [37, 36, 77] is capable of overcoming com-

monly encountered uncertainties due to model error and sparsity of observations to produce accurate mean

estimates in realistic models of turbulent dynamics. We compare the performance of two such algorithms,

referred to as cSPEKF and GCF, with a ‘reference’ algorithm - 3DVAR [71] - which is prototypical of

approximate Gaussian filters used in practice and has its origin in weather forecasting (e.g., [4, 25, 65]). All

three algorithms introduce model error by simplifying the forward dynamics - though in a very different

way - and by employing Gaussian approximations of the posterior/filtering distributions. Amongst the

possible approximate Gaussian nonlinear filtering algorithms these are the simplest and least expensive

which guides the choice for this study.

The 3DVAR method and its generalisations such as the Extended Kalman filter (ExKF, [53]) and the

Ensemble Kalman filter (EnKF, [31]), are observed to be accurate - especially in the absence of model

error (the perfect model scenario) - provided that appropriate covariance inflation is used to weigh the

observations in favour of the model [65, 96]. In the classical data assimilation literature ‘covariance

inflation’ typically refers to online adjustment of a time-dependent approximate covariance of the forecast

error to preserve stability of the estimates. It is worth noting that appropriate covariance inflation can

be automated, and there are a number of interesting works along this direction, especially for ensemble-

based DA (e.g., [14, 96, 80]) which is not discussed in this work; here, ‘inflation’ simply refers to a one-off

adjustment of the structure and the norm of a time-independent background error covariance to optimise

accuracy of estimates while preserving their stability. Analytical results for filtering dissipative PDEs using

a tuned 3DVAR in an idealised case when noisy observations of individual spectral modes are available

may be found in [17, 13] which exploit techniques from [46, 83, 12]; the latter body of work has been

extended also to spatial observations [5] following on from [35, 54, 34, 61].

Given that the perfect model scenario does not apply in practice and one has to contend with a

significant model error in the forward dynamics, the stochastically parameterised algorithms have been

introduced as an efficient alternative way of dealing with this issue. Here, the stochastic parameterisation

approach exploits cheap, exactly solvable, conditionally Gaussian forward models in the spectral domain

to accommodate and mitigate model error, allow for a systematic model reduction, and to propagate the

1 Optimality of the posterior mean implies minimisation of the variance between itself and the true signal over all

estimators constructed as L2 functions of the observation sequence [6, 53].
2 Informally, filter accuracy concerns the closeness of filter estimates to the true signal underlying the data, and stability is

concerned with long-time convergence between two sequences of filter estimates driven by the same noisy data but initialised

differently (see, e.g., [63] for details).
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covariance information via an online learning of certain auxiliary processes that dynamically adapt the

dynamics of the forward model based on the incoming data. Importantly, these filters do not rely on the

detailed knowledge of the underlying dynamics and do not require covariance inflation. This approach to

state estimation in turbulent systems has been successful on a range of test models [37, 36, 44, 38, 15,

57, 77], and it was extended in [76, 16] to superresolving the state of one-dimensional PDE models from

sparse aliased observations. Operational DA schemes in geosciences often rely on the spectral expansion

of meteorological fields to estimate the background covariance (e.g., [84, 29, 7, 8, 9, 27]) although the

assimilation/analysis step is predominantly executed in the physical domain (e.g, [60]) due to the nature

of correlations in the observation data. However, formulating the analysis problem in spectral space has

the advantage that reasonable homogeneous, isotropic background error covariances are easily defined

and applied [84, 32, 29, 86]. Moreover, construction of DA algorithms in the spectral domain allows for

a systematic model and dimensionality reduction, leading to computationally tractable propagation of

the prior/forecast statistics; additionally, this approach prevents generation of discontinuities in estimates

resulting from data selection and fusion. While the numerical evidence for efficacy of SPEKF-type filters

is very promising, rigorous analysis poses a number of technical challenges, especially for spatially sparse

observations. Mindful of these difficulties we focus for now on a detailed numerical study of performance

of SPEKF-type algorithms. This work focuses on analysing the interplay between different sources of

error and its mitigation by different and computationally implementable DA algorithms in a realistic yet

controllable ‘academic’ setting, rather than on tests including all operational constraints.

Two sources of model error in filtering are considered: The first one stems from the necessary use of

finite-resolution approximations for the forward dynamics, while the second source of error is a consequence

of spatially sparse observations which, in the spectral domain, is manifested by some degree of mode

aliasing. We stress that the aliasing is a direct consequence of the spatial sparsity of observations and it

is not an additional issue introduced by the spectral representation. The spectral projection is necessary

for dynamical model reduction and efficient state estimation in the SPEKF-type filters (see §4.2.1) which,

in turn, necessitates a spectral projection of the sparse observations onto the modes resolved by the

approximate forward model; this results in scrambling up the information about resolved/unresolved

dynamics and it is used in our setup as a particular incarnation of so-called representation error [71, 51, 40].

Here, this error arises from the fact that the aliased modes are present in the observations but they are

not necessarily represented in the dynamics of the forward models of the filters; see [49, 1] for further

discussion of these issues. In this setup we find that cSPEKF and GCF outperform optimally tuned 3DVAR

algorithms in a wide range of dynamical scenarios. SPEKF-type algorithms can learn and to some extent

filter-out the unresolved modes from the scrambled observations, thus correcting aspects of representation

error on-the-fly. This is important and encouraging given that these stochastically parameterised filters

are computationally cheap and they do not rely on the detailed knowledge of the underlying dynamics. A

survey of other recent multi-scale approaches to filtering and prediction can be found in [74].

The rest of the paper is structured as follows: In section 2 we outline the main characteristics of the 2D

Navier-Stokes dynamics which is used as a test-bed for comparing the performance of data assimilation

algorithms in various turbulent regimes. The Navier-Stokes dynamics is a prime example of a dissipative

infinite-dimensional dynamical system prototypical of the high-dimensional state estimation problem to

which data assimilation is applied in practice. Section 3 outlines the main concepts leading to the derivation

of approximate Gaussian filters which are used throughout this paper; the three specific algorithms,

3DVAR, cSPEKF, and GCF, are described in section 4. The bulk of numerical tests are discussed in

section 5. We conclude in section 6, summarising the main findings and outlining directions for future work.



4 M. BRANICKI, A. MAJDA, K. LAW

2. Test Problem

Comparison of data assimilation algorithms requires a tuneable test-bed dynamics for generating the

truth signal and the observation data, as well as for constructing the forward dynamics with model error

used in the subsequent state estimation. A version of the two-dimensional Navier-Stokes equation provides

such a benchmark problem which, as a prime example of a dissipative infinite-dimensional dynamical

system with a wide range of dynamical regimes, is prototypical of the high-dimensional state estimation

to which data assimilation is applied in practice. Some necessary concepts used in the subsequent sections

are introduced below. Further details concerning the subsequent state estimation are discussed in §3.

2.1. Incompressible 2D Navier-Stokes equation with a linear drag. We consider the dissipative

dynamics with a global attractor given by a modified version of the incompressible Navier-Stokes equation

on the torus T2 := [0, L)× [0, L), L > 0, with an additional linear dissipative term:

∂tu+ κ2u− ν∆u+ u · ∇u+∇p = f, for all (x, t) ∈ T2 × (0,∞),(1)

∇ · u = 0, for all (x, t) ∈ T2 × (0,∞),(2)

u(x, 0) = u0(x), for all x = (x1, x2) ∈ T2.(3)

Here u : T2 × (0,∞)→ R2 is a time-dependent vector field representing the velocity, p : T2 × (0,∞)→ R
represents the pressure, f : T2 → R2 is the forcing. We assume throughout that u0 and f average to zero

over T2 which implies that u(·, t) solving (1)-(3) has zero average over T2 for t > 0. Both the viscosity ν > 0

and the linear drag coefficient κ induce dissipation in the dynamics (1)-(2) but their effects on the long-time

dynamics are very different. The above system has a global attractor whose dimensionality grows with

the ratio of forcing to dissipation (e.g., [23, 93]); increasing the dimension of the unstable manifold of the

attractor and the number of positive Lyapunov exponents results in dynamics that becomes progressively

less predictable (e.g., [54, 83, 46]), and thus more attractive for testing data assimilation algorithms. It is

noted that short-term predictability is governed by eigenfunctions corresponding to finite-time Lyapunov

exponents, which may also include algebraically growing modes. Such eigenfunctions have been used to

design effective filters for example in the work [64]. Here, the additional linear damping term generates

a more suitable attractor dynamics with less energy at the large scales compared to the standard 2D

Navier-Stokes dynamics (i.e., κ = 0 in (1)); this modification takes account of a large-scale dissipation

and is commonly used in modelling quasi-2D turbulence encountered in experiments [19, 89, 99, 98]. In

the subsequent sections, we consider three dynamical regimes of the system (1)-(3) with different energy

spectra on the attractor (see Figure 3).

The infinite-dimensional dynamical system corresponding (1)-(3) is derived in a standard fashion from

the functional representation of the above equations; more details can be found in, e.g., [93], but we repeat

the main steps and notions since they will be needed in subsequent considerations. First, consider the

Hilbert spaces H and H1 given by the closures of the set of divergence-free functions

T :=

{
u( · , t) ∈ L2(T2,C2) : u( · , t) trig. polynom., ∇ ·u( · , t) = 0,

∫

T2

u(x, t)dx = 0

}
,(4)

in, respectively, L2(T2,C2) and H1(T2,C2). Denote the inner product in H1 by 〈〈·, ·〉〉 and the induced

norm by ‖ · ‖. The inner product in H is denoted by 〈·, ·〉 with the induced norm denoted by | · |. The

inclusion H1 ↪→ H is compact by the Rellich-Kondrachov theorem. Then, any real-valued u ∈ H, including

weak solutions of (1)-(3), can be represented as

(5) u(x, t) =
∑

k∈Z2\{0}
uk(t)ψk(x), u−k = −u∗k,
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where k = (k1, k2) ∈ Z2 \ {0}, and {ψk}k∈Z2\{0}, ψk : T2 → C2, is the orthonormal basis in H

(6) ψk(x) :=
k⊥

|k|
exp

(
2πi k · x

L

)
, k⊥ := (k2,−k1)T, |k| = (k2

1 + k2
2)1/2.

The basis {ψk}k∈Z2\{0} is related to the Fourier basis {φk}k∈Z2\{0} via φk = |k|−1(k⊥ · ψk). We confine

attention to time-independent Kolmogorov forcing f ∈ H (e.g., [72])

(7) f(x) =
∑

k=SNf

fk ψk(x), f−k = −f∗k ,

which acts at a subset of the wavenumbers SNf
:= {ki ∈ Z2 \ {0} : |ki| = Nf}. Such a special forcing has

an attractive mathematical theory (see [72, Chapter 2]) and it is sufficient for our purposes.

The functional form of (1)-(3) is obtained via the orthogonal (Leray) projection PL : L2(T2,C2) →
L2(T2,C2) with the range in H so that

(8)
du

dt
+ νLu+ B(u, u) = f, u0 ∈ H,

which is understood in the dual ofH1. Here, B(u, v) = PL

(
(u·∇)v

)
is a bilinear form inH with domainH1,

and L = −PL(∆−κ2/ν) is a closed positive operator in H with the domain of definition H2(T2,C2)∩H1

and eigenvalues (2π/L)
2

+ κ2/ν = λ̃1 < λ̃2 < . . . , which are related to the eigenvalues, {λi}i∈N, of the

(closed positive) Stokes operator, A = −PL∆, via λ̃i = λi+κ
2/ν. Classical theorems (see, e.g., [23]) imply

that, for all u0 ∈ H, the system (8) has a unique weak solution u ∈ Cb(H,R+)∩Cloc(H1,R+)∩L2
loc(H1,R+),

where the one-parameter semigroup Ψt : H1 → H1, t > 0, may be extended to act on H so that

u(t) = Ψt(u0) for u0 ∈ H. The existence of the global attractor for the system (8) stems from the

fact that L : H → H is a coercive linear operator satisfying

(9) 〈Lu, u〉 > λ̃1|u|2,

and the bilinear operator B : H1 ×H1 → H satisfies

(10) 〈B(u, u), u〉 = 0, 〈B(u, v), v〉 ≤ C ‖u‖‖v‖ |v|, C > 0, ∀ u, v ∈ H1.

The global upper bound on the norm of the solution of (8) is obtained (see, e.g. [93, 24]) by combining

the above properties with the Gronwall lemma, and it is given by

(11) |u(t)|2 6 |u(0)|2e−νλ̃1t +
|f |2

ν2λ̃2
1

(
1− e−νλ̃1t

)
, t > 0.

Consequently, the system (8) has a global attractor A ⊂ H satisfying

A :=



u0 ∈

⋂

t>0

ΨtH : |Ψtu0| 6
|f |2

ν2λ̃2
1

, t ∈ R



 ,

which is the smallest compact, connected subset of H that attracts all the solutions. Global attractors

for the Navier-Stokes equations have been studied extensively in, e.g., [23, 93]. The nature of long-time

dynamics of (8) depends on the number of positive Lyapunov exponents which are controlled by the forcing

f and dissipation ν parameters, and are a proxy for the dimensionality of the unstable manifold of the

attractor. Thus, the dynamics of (1)-(3) or (8) provides a useful test problem with which to examine some

of the issues inherent in data assimilation, given the possibility of generating different dynamical regimes

with a controllable effective dimensionality of the long-time dynamics. In the subsequent sections we focus

on estimating finite-dimensional dynamics derived from the spectral truncation of (8) and evolving on the

attractor AΛ, Λ <∞ (see §3.1 and, e.g., [95, 94]).
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3. Approximate Gaussian framework for time-sequential data assimilation

The canonical stochastic filtering problem aims at a sequential-in-time, Bayesian estimation of the

state u(x, t) solving (8) relies on combining its observations with the forward dynamics. In general the

observations of u(x, t) are corrupted by noise and are sparse in both time and space. Assuming that the

observations of the true state are known at discrete times {tn}n∈N, the goal of data assimilation stochastic

filtering is to find a map

(12) Pn(u | Yn)
F−→ Pn+1(u | Yn+1),

where
{
Pn(u | Yn)

}
n∈N denotes an ordered sequence of conditional probability measures on the state

u(x, tn) given the sequence of observations Yn of that state up to time tn. However, simulating the infinite-

dimensional dynamical system (8) is not possible even if the truth dynamics and the initial condition are

known. Moreover, the probability measures in (12) are defined on the function space H which points to a

further computational intractability of filtering PDE dynamics.

Here, we study approximate Gaussian filtering or data assimilation algorithms which combine noisy

observations of the truth with forward dynamics obtained from a finite-dimensional approximation of the

original dynamics (see, e.g., [63, 77] for details). Despite important differences between various approxi-

mate Gaussian algorithms, they all share the same general structure, owing to the same approximations

imposed on the underlying prior and posterior probability densities. Numerical tests of performance of

three such algorithms, 3DVAR, SPEKF and GCF, which are described in §4, are presented in §5.

The key to deriving a tractable Bayesian data assimilation framework for nonlinear problems arising

from PDE’s lies in imposing Gaussian constraints on the prior and posterior probability measures. In

what follows we assume that the considered probability measures have a density; in particular, assume

that the measure on the initial conditions has a Gaussian density

(13) P0(u) ' N (m0, C0).

Here, the truth is represented by the solution to (8) and given by u(x, t) = Ψt(u0(x)), where Ψt is generated

by the truth dynamics and given by a one-parameter semigroup on H (see §2.1). Let H denote a linear

operator from H into some Polish space Y , and assume that one observes the state at equally-spaced time

intervals tn = n∆, 0 < ∆ <∞, and that the observations are of the form

(14) yn = HΨn∆(u0) + ηn, n ∈ N,

where {ηn}n∈N is an i.i.d sequence, independent of u0, with ηn ∼ N (0,Γ). The truth process {un}n∈N at

the sequence of the observation times {tn}n∈N can be written as

(15) un+1 = Ψ∆(un),

where un = Ψtn(u0) := Ψn∆(u0) so that un+1 = Ψ∆ ◦Ψn∆(u0) = Ψ(n+1)∆(u0) and, consequently,

(16) Pn(y |un) ' N (Hun,Γ).

The aim of the filtering/data assimilation algorithm is to find the conditional (or filtering) density

Pn(u | Yn) given the observations Yn := {yi}ni=1, n ∈ N (see, e.g, [6] for a rigorous formulation). In

what follows, we consider approximate Gaussian filtering algorithms which enforce

(17) Pn(u | Yn) ' N (mn, Cn).

Consequently, designing an approximate Gaussian filter relies on constructing an update rule (e.g., [63, 77])

(18) (mn, Cn)→ (mn+1, Cn+1).
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This update rule is determined directly by imposing another Gaussian constraint on the prior density

(19) Pn+1(u | Yn) ' N (m̂n+1, Ĉn+1),

and utilising the linear form of the observations in (14) with additive Gaussian noise ηn ∼ N (0,Γ). In

situations when the observation sequence is discrete in time, the update (18) is usually split into two parts

(20) (mn, Cn)
P−→ (m̂n+1, Ĉn+1)

A−→ (mn+1, Cn+1).

The prediction (or forecast) step P is the map

(21) (mn, Cn)→ (m̂n+1, Ĉn+1),

and the subsequent analysis A step is given by

(22) (m̂n+1, Ĉn+1)→ (mn+1, Cn+1).

Consecutive prediction and analysis steps are iterated by imposing

(23) m̂n+1 = M∆(mn, Cn), Ĉn+1 = C∆(mn, Cn),

where the choice of the maps M∆,C∆ depends on the specific filter (see §4), and it represents an approx-

imation unless the dynamics in (15) is linear3. For the analysis step the assumptions (17), (19) imply

(24) Pn+1(u | Yn+1) ' N (mn+1, Cn+1),

and an application of the Bayes’ rule yields the following Kalman-type map for the analysis step:

Cn+1 = Ĉn+1 − Ĉn+1H
∗(Γ +HĈn+1H

∗)−1HĈn+1,(25)

mn+1 = m̂n+1 + Ĉn+1H
∗(Γ +HĈn+1H

∗)−1(yn+1 −Hm̂n+1),(26)

where mn+1 represents the filter estimate of the state un+1 in (8), and Cn+1 is a linear symmetric positive-

definite operator from H into itself. The term

(27) Kn+1 = Ĉn+1H
∗(Γ +HĈn+1H

∗)−1,

in (25)-(26) is referred to as the (Kalman) gain. The structure of (25)-(26) is the same as in the standard

Kalman filter (e.g., [63]) and the estimates are linear in the incoming observations yn+1. However, none

of the approximate Gaussian filters studied in §4, 5 reduce to the standard (optimal) Kalman filter;

this is only possible when filtering in the prefect model scenario and when Ψ∆ in (15) is linear so that

m̂n+1 = Ψ∆mn and Ĉn+1 = Ψ∆CnΨ∗∆ so that (25) reduces to the algebraic Riccatti equation and the

filter estimates are optimal w.r.t. the mean square error (e.g., [33, 2]). The above requirement cannot

be satisfied in the present setting, since the truth dynamics (8) is non-linear. Both filters considered in

the subsequent sections will share the same structure of the update map, (26)-(25), but they will employ

different forward dynamics with model error and they will use different approximations in the updates

(M∆,C∆) of the mean and covariance (m̂n, Ĉn) in the prior density (19); these differences will be shown

to have important consequences on the performance of the filters.

3For linear dynamics in (15) with a Gaussian initial condition and linear Gaussian observations yn the maps M∆,C∆

coincide with those of the Kalman filter. Note that if the map M∆(mn, Cn) = Φ∆(mn) is linear but Φ∆ 6= Ψ∆, the resulting

Kalman filter estimates will not, in general, be optimal (see footnote 1 and, e.g., [33, 2]).
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3.1. Generation of the synthetic truth in tests of filtering algorithms. We follow the standard

setup when considering the performance of filtering algorithms from the numerical viewpoint. In the

subsequent experiments the ‘synthetic’ truth is generated from a numerical simulation of (1)-(3) on the

torus T2 := [0, L)× [0, L), L > 0, resolving a large but unavoidably finite number of modes ψk (6). That

is, the synthetic truth is given by

(28) uΛ(x, t) =
∑

0<|k|6Λ

uk(t)ψk(x), u−k = −u∗k, 1� Λ <∞,

and it solves the dynamics on HΛ ⊆ H (HΛ is spanned by {φk}0<|k|6Λ)

(29)
duΛ

dt
+ νLΛuΛ + PΛB(uΛ, uΛ) = PΛf, u0 ∈ HΛ ⊂ H,

where LΛ := PΛL and PΛ denotes the projection onto HΛ and uΛ(t) = ΨΛ
t (u0). Note that L, defined

below (8), is diagonal in the basis {ψk} by construction. Thus, we focus on estimating finite-dimensional

dynamics derived from the spectral truncation of (8) and evolving asymptotically on the attractor AΛ,

Λ <∞ (see, e.g., [95, 94]). The numerical simulation of the dynamics in (29) is carried out in a standard

fashion via Galerkin approximation of the velocity field and solved by a pseudo-spectral method in the

divergence-free basis (6) which is combined with a Runge-Kutta time-stepping; here, we use a modification

of the fourth-order Runge-Kutta method, ETD4RK [26], in which the heat semigroup is used together

with Duhamel’s formula to solve exactly for the diffusion term. A spectral Galerkin method [47] is used

in which the convolutions arising from products in the nonlinear term are computed via FFTs. A double-

sized domain in each dimension is used, buffered with zeros, and only half the modes are retained when

transforming back into spectral space in order to prevent dealiasing, which is avoided as long as fewer than

2/3 the modes are retained. Data assimilation in practice has to contend with poor spatial resolution,

particularly in the case of the atmosphere-ocean applications. Here, the important resolution consideration

is that the unstable modes are resolved, which in the case of (1)-(2) have long spatial scales and support

in low wavenumbers (e.g., [23, 34, 35, 93]). Therefore, the objective is to obtain high temporal resolution

rather than high spatial resolution.

3.2. Forward model dynamics in filters. The filtering algorithms we study operate on a finite-

dimensional subspace HN ⊆ HΛ ⊆ H, N � Λ; this set-up is dictated by the computational constraints

and the desire to adhere to realistic scenarios. Consequently, the forward dynamics in the filters is based

on spectrally truncated models with solutions spanned by a finite set of modes {ψk}0<|k|6N spanning

HN ⊂ H so that

(30) uN (x, t) =
∑

0<|k|6N
uk(t)ψk(x), u−k = −u∗k, N � Λ <∞;

note that uN is represented by ((2N+1)2−1)/2 independent coefficients. The forward dynamics Φ∆ in

the filter update (26)-(25) depends on the filtering algorithm.

In the 3DVAR algorithm (§4.1) the forward dynamics is given by the truncated dynamics of (8)

(31)
duN
dt

+ νLNuN + PNB(uN , uN ) = PNf, u0 ∈ HN ⊂ H,

where LN := PNL, PN : H → HN , PN ◦ PN = PN , and uN (t) = ΦNt (u0) with ΦNt : HN → HN .

In the SPEKF algorithm (§4.2) the forward dynamics on HN will be given by a linear stochastic non-

Gaussian model which is statistically exactly solvable and thus computationally inexpensive. Note that,

as long as N < Λ, the forward dynamics in both algorithms will contain a model error; this configuration

aims at mimicking realistic scenarios in which the true dynamics is not known exactly.
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3.3. Generation of observations. In line with the setup of §3, the observations (14) are linear in the

state variable and corrupted by an additive i.i.d. Gaussian noise. Moreover, we assume throughout that

the observation operator H in (14) is trace-class but it need not be diagonal in H. We consider two classes

of observations which will have important consequences on the output of the filtering algorithms.

3.3.1. Non-aliased observationsNon-aliased observationsNon-aliased observations. In this idealised case noisy observations of (2M+1)× (2M+1) modes4 of

the truth process u(x, t) solving (1)-(2) are available, i.e., we have

(32) y m(x, tn) =
∑

0<|k|6M
yk(tn)ψk(x) =

∑

0<|k|6M

(
uk(tn) + ηk

)
ψk(x), n,M ∈ N,

where ηk ∼ N (0,Γ) for any 0< |k|6M . The observations y m(x, tn) can be represented as

(33) Yn = HMUn + η, η ∼ N (0,Γ), n ∈ N,

where Yn :=
(
yk(tn)

)
0<|k|6M , Un :=

(
uk(tn)

)
k∈Z2\{0}, and the linear operator HM is diagonal in the basis

{ψk}0<|k|6M spanning HM ⊆ H.

The configuration in (32) is unrealistic from the practical viewpoint since it implies the ability to observe

the dynamics of individual modes ψk, 0< |k|6M , which correspons to spatially continuous observations.

However, this setup is amenable to detailed analysis, especially for the 3DVAR filter in [13], which is why

we consider it here and compare filter performance given this type of observations in §5.

3.3.2. Aliased observationsAliased observationsAliased observations. Sparse, finite observations, including irregularly spaced ones with missing

data, scramble up the observed information about resolved/unresolved dynamics; this is manifested dif-

ferently in the spatial domain and in the spectral domain but the source of this lack of information is

ultimately the same. Thus, in practice one has to contend with spatially coarse observations or with some

degree of aliasing in the spectral domain. Dynamical model reduction in the stochastically parameterised

filters outlined in §4.2.1 requires spectral projection of the dynamics, allowing for computational efficiency

due to systematic approximations. Data assimilation in this framework necessitates a spectral projection

of the observations onto the modes resolved by the forward dynamics; thus, in this case the sparsity of

observations leads to a particular incarnation of so-called representation error (e.g., [71, 51, 40]). Here, we

assume that the state u(x, tn) solving (1)-(2) is observed at nodes of a finite equi-spaced grid in the spatial

domain, xij := (ih, jh), 1 6 i, j 6 2M + 1, (2M + 1)h = 2π (see Figure 1), so that the nodal observations

are given by

(34) y m
ij (tn) = u

(
xij , tn

)
+ ζ i,j , 1 6 i, j 6 2M + 1, M, n ∈ N,

where ζ is an uncorrelated Gaussian field with ζi,j ∼ N (0,Γ0). Irregular observations help mitigate the

effects of aliasing but they do not remove them (e.g. [18]). The special case of spatially sparse observations

in (34) is considered for a number of reasons: (i) the standard aliasing is easier to represent and control in

our test problem, (ii) aliasing can be used to study some aspects of the interplay between representation

error and the gained computational efficiency (see §5). Moreover, as a follow up to [16], we use the

special case of equally-spaced observations to analyse the potential of the three algorithms for a dynamic

superresolution of spatially sparse observations which, if need be, can be interpolated on to a regular grid.

As shown in [76, 42], spatially sparse regular measurements will alias the observed information from

modes |k1| ∨ |k2| > M of the truth signal into modes |k1| ∧ |k2| 6 M (see Figure 1). In fact, that the

4The observations are represented by ((2M)2 − 1)/2 distinct coefficients due to the reality constraint u−k=− u∗k for the

coefficients in the basis {ψk}k∈Z2\{0}.
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observation process (34) can be written as

(35) y
A{m}
ij (tn) =

∑

0<|`|6M

( ∑

k∈A(`)

uk(tn) + η `,n

)
ψ`(xij), n ∈ N, 1 6 i, j 6 2M + 1, M 6 N,

where u−k = −u∗k and η l,n ∼ N
(
0,Γ0/(2M+1)2

)
. The disjoint sets of aliased modes A(`), with `=(`1, `2),

and 0 < |`| 6M , are defined as

(36) A(`) =
{
k ∈ Z2\{0} : k1,2 = `1,2 +Mq1,2, q1,2 ∈ Z

}
.

The aliasing sets A(`) are indexed by the primary modes, `=(`1, `2), which are determined by the reso-

lution of the observation grid {xij}06i,j62M+1. Similar to the case of non-aliased observations §3.3.1, the

observations yA{m}(x, tn) can be represented in the basis {ψk}k∈Z2\{0} as

(37) Y A{m}n = HA{m}Un + ηn, n ∈ N, ηn ∼ N (0, Γ̃),

where HA{m} is a linear operator which, in contrast to the setup of §3.3.1, is not diagonal in HM .

In the numerical tests in §5 we consider two distinct filtering configurations with aliased observations

which depend on the choice of the spectral resolution, (2N+1)2, of the forward model (cf. §3.2) relative

to the spectral resolution, (2M+1)2, of the observation grid. These two scenarios correspond to

(i)(i)(i) N = MN = MN = M . In this configuration only the primary modes, determined by the resolution of the observation

grid, are estimated from the aliased observations (34). Here, in contrast to (32), observations of the

primary modes are corrupted by both the aliased modes |k| > M and by the observation noise.

(ii)(ii)(ii) N = PMN = PMN = PM , P ∈ N+. This configuration allows to superresolve the observations within the Bayesian

filtering framework and to provide estimates on modes beyond the spectral resolution of the observation

grid [16, 76, 44, 78]. Superresolution with SPEKF-type algorithms was studied in [16] for a variety of

one-dimensional PDE dynamics; below, we extend this to the case of 2D Navier-Stokes dynamics.

4. Filtering algorithms

The general framework for data assimilation exploiting approximate Gaussian filters (cf. §3) admits

various algorithms which all utilise the same analysis update (25)-(26). Important differences between

these algorithms appear at the prediction step (21) which is reflected in the choice of the maps, M∆,C∆,

in the update of the prior mean and covariance (m̂n, Ĉn) in (23). In the numerical tests discussed in §5,

we consider three approximate Gaussian filtering algorithms which are described below.

4.1. 3DVAR. This algorithm has its origin in weather forecasting [71] and it is prototypical of many

approximate Gaussian filters used in practice when dealing with high-dimensional estimation problems.

Recall that the analysis update in (25)-(26) requires the knowledge of the prior mean and covariance,

(m̂n, Ĉn). In high-dimensional nonlinear problems, such as those arising in filtering truncations of non-

linear PDEs, brute-force attempts at updating the prior covariance quickly become computationally in-

tractable. The simplest approximation, which drastically reduces the computational cost of the time-

sequential estimation in (25)-(26), is to assume M∆(mn, Cn) = ΦN∆(mn) (see §3.2) and set C∆(mn, Cn) to

some empirically estimated background covariance. In applications, there exist various ways for estimating

the background covariance based on a limited amount of noisy observations and imperfect forward model

dynamics (e.g., [84, 82, 56]). Here, we set the (constant) background covariance as

(38) Ĉn = C∆(mn, Cn) = α+ βC0 =: Ĉα,β , α, β > 0,
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where C0 is estimated empirically from the attractor dynamics and the constants α, β are referred to as

the additive and multiplicative covariance inflation5 parameters; see Appendix A for details and remarks

on other methods for estimating the background covariance. Covariance inflation is observed to lead to

accurate mean estimates when applied in the absence of model error in the forward dynamics, i.e., for

M∆(mn, Cn) = Ψ∆(mn) in (23), provided that appropriate inflation is used to weigh the observations in

favour of the model [65]; theoretical results explaining the numerical evidence in the case of 3DVAR may be

found in [17]. Ĉα,β is usually assumed to be diagonal in the basis {ψk}k∈Z2\{0} which reduces computational

complexity; here, we also assume that Ĉα,β is diagonal but this is not strictly necessary provided that

one can reliably estimate the off-diagonal covariance terms. Given the above ad-hoc simplification of the

update (25)-(26), the 3DVAR algorithm [71] for the mean estimate is described by

(39) mn+1 = (I −K)ΦN∆(mn) +Kyn+1,

where the gain operator K in (27) simplifies to

(40) K = Ĉα,βH
∗(Γ +HĈα,βH

∗)−1.

Note that K is generally not diagonal in the basis {ψk}k∈Z2\{0} because the observation operator H is

generally not diagonal in that basis (cf. §3.3). The case corresponding to non-aliased observations (§3.3.1),

was studied in [17, 13] where the diagonal observation operator H = PM projecting onto {ψk}0<|k|6M
was assumed to commute with the diagonal operators

(41) Ĉ0,β ψk ∝ η2 |k|−2ζψk, Γψk ∝ |k|−2γψk,

so that the gain in (40) is

(42) Kψk ∝





0 · ψk for |k| > M,

η2|k|2(γ−ζ)(1 + η2|k|2(γ−ζ))−1
ψk for |k| 6M.

Thus, increasing η corresponds to variance inflation which results in weighting the estimates in favour of

observations on the resolved modes, as can be seen from (39). In the numerical tests of §5 we consider

3DVAR filtering with both the aliased and non-aliased observations, keeping in mind that the case of non-

aliased observations provides analytical simplifications at the expense of abandoning realistic constraints.

A more general case was considered subsequently in [81].

4.2. Stochastic parameterisation Kalman filters (SPEKF). There are two logical steps beyond the

3DVAR algorithm within the approximate Gaussian framework. One approach is to use approximate

dynamics in order to make the update of the prior covariance in (25)-(26) computable. For example, the

Extended Kalman filter (ExKF), utilises a linear tangent approximation of the flow map Φ∆ of the forwad

model so that M∆(mn, Cn) = Φ∆(mn), C∆(mn, Cn) = ∇Φ∆(mn)Cn(∇Φ∆(mn))∗ in (23) so that the prior

mean and covariance can be updated in a similar way to the Kalman filter algorithm at the expense of

a potential filter divergence [69, 43, 59, 15]. Nevertheless, in high-dimensional state estimation problems,

such prior covariance updates become computationally expensive. A class of so-called Ensemble Kalman

filters (EnKF), which proved popular and reliable in applications (e.g., [56]), reduces this computational

complexity by estimating the prior covariance from a finite ensemble of predictions propagated by the

(nonlinear) flow map Φ∆ (e.g., [63]). Another approximation - one we exploit here - relies on constructing

5 We use the term ‘inflation’ in a slightly different way than the classical DA literature but in line with [17, 13, 64, 63]

which is more suitable for theoretical considerations. Here, ‘covariance inflation’ simply refers to an off-line choice of α, β

in (38) which are time-independent and are such that the filter is asymptotically stable. ‘Optimal inflation’ refers to the

choice of α, β so that the variance of the error between the analysis estimate and the truth signal is minimised for given C0.



12 M. BRANICKI, A. MAJDA, K. LAW

a reduced stochastic model of the forward dynamics which is non-Gaussian but linear in the spectral

basis {ψk}k∈Z2\{0} and statistically exactly solvable, thus providing an efficient way of updating the prior

statistics in the update (25)-(26) via explicit maps M∆,C∆. This so-called SPEKF approach originated

from [42, 44, 78, 77, 37, 36], where it was demonstrated that it can be effective for filtering chaotic systems

in high dimension. Further extensions in [15, 16] showed the efficacy of this approach for superresolving

one-dimensinoal PDE dynamics from aliased observations. We first provide a formal derivation of a general

family of reduced stochastic models which can be used in the SPEKF framework and then describe how

this approach may be used in filtering turbulent regimes of the Navier-Stokes dynamics.

4.2.1. The forward model in SPEKF filters. It is important to note that the forward model dynamics in

SPEKF filters relies on the general structure of the truth dynamics as in (8) subject to (9) and (10).

However, as remarked at the end of this section, the forward dynamics in SPEKF’s does not require

a detailed knowledge of the truth dynamics, and it trades in a dynamically adjusted model error for

computational speed. Consider the truth in the form (8) on the Hilbert space H and a family of projections

{PA(`)}`∈Z2\{0} on the disjoint aliasing sets A(`) in (36) so that uA(`) = PA(`)u ∈ HA(`), where HA(`) ⊆ H
is spanned by the modes in the respective aliasing set. Then, the evolution of modes within any aliasing

set A is obtained from (8) as

(43)
duA
dt

+ νPALuA + PAB(u, u) = PAf, uA ∈ HA ⊆ H, u ∈ H,

where L and B were defined in §2.1, and we skip the explicit dependence on the primary wavenumbers

` indexing the aliasing sets A in (36). The nonlinear term PAB in (43), which couples the evolution of

modes in A to the remaining modes, can be decomposed as

PA B(u, u) = PA
(
B
(
uA, uA

)
+ B

(
uA, (1−PA)u

)
+ B

(
(1−PA)u, uA

)
+ B

(
(1−PA)u, (1−PA)u

))
.

Then, the crucial and simple observation [16] is that the projection of the nonlinear interactions on the

aliasing set vanish, i.e.,

(44) PA B
(
uA, uA

)
= 0, or 〈uA,B(uA, uA)〉 = 0,

implying a lack of direct nonlinear interactions between the aliased modes. The remaining nonlinear terms

need to be approximated in order to enforce the invariance of HA w.r.t. the dynamics of the aliased modes;

this is achieved via the Kraichnan’s decimated-amplitude scheme [62], namely

(45) − PA
(
B
(
uA, (1− PA)u

)
+ B

(
(1− PA)u, uA

))
≈ −

(
ΓA(t) + iΩA(t)

)
uA,

where ΓA,ΩA ∈ HA are real and trace-class, ΓA ∈ HA is positive-definite, and

(46) PA B
(
(1− PA)u, (1− PA)u

)
dt ≈ −BA(t)dt− ΣAdWA(t),

where BA ∈ HA, ΣA is a trace-class operator, and WA(t) is a cylindrical Wiener process on HA. The

above approximations are not rigorously derived and are based on a physical reasoning in the context of

turbulent dynamics with quadratic nonlinearities, including the Navier-Stokes equation (8). The idea for

replacing nonlinear interactions between spectral modes by multiplicative stochastic damping/frequency

corrections and additional stochastic forcing arises from stochastic modelling of shear turbulence [90, 28].

The resulting stochastic approximation has the form of a linear SPDE on HA

(47) duA =
(
−
(
LA + ΓA(t) + iΩA(t)

)
uA +BA(t) + fA

)
dt+ ΣAdWA(t), uA(0) ∈ HA,
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where LA = νPAL, and fA = PAf . The above formal derivation provides an approximate dynamical

model which is exactly solvable as long as it remains conditionally Gaussian6 [68, 38, 36]. In computations,

when finite-dimensional approximations of the dynamics are employed, this strategy allows for propagating

the second-order statistics in (25)-(26) based on analytical formulas which can be utilised in a number of

different approximate Gaussian filtering algorithms outlined below (see [37, 15, 16] for details).

Now, consider now such a computationally realistic situation when the forward model (cf. §3.2) resolves

(2N + 1)2 <∞ spectral modes in the basis {ψk}k∈Z2\{0} of H so that

(48) uN (x, t) =
∑

0<|k|6N
uk(t)ψk(x), u−k = −u∗k,

and recall that (cf. §3.3) if the observations resolve (2M+1)2 spectral modes of the truth, then there exist

(2M + 1)2 disjoint aliasing sets A(`), 0 < |`| 6 M defined in (36) into which all the modes {uk}k∈Z2\{0}
are partitioned. Consequently, for N < ∞ the number of modes uk resolved by the forward model in

each aliasing set A(`) is also finite. Then, the stochastic dynamics of the forward model (47) takes a

particularly simple form for ΓA,ΩA, BA,ΣA diagonal in the basis {ψk}k∈Z2\{0} so that the evolution of

modes {uk}k∈A(`) in each aliasing set A is given by the following system:

(49)

(a) duk(t)=
[
−
(
l̄k + γk(t)+iωk(t)

)
uk(t)+bk(t)+fk(t)

]
dt+σuk

dWuk
(t),

(b) dγk(t)=−dγkγk(t)dt+σγkdWγk(t),

(c) dωk(t)=−dωk
ωk(t)dt+σωk

dWωk
(t),

(d) dbk(t)=
[
(−dbk+iωbk)bk(t)

]
dt+σbkdWbk(t),

where γk, ωk, bk represent stochastic bias correction terms, and Wuk
,Wγk ,Wωk

,Wbk are the standard

independent Wiener processes. The dynamics of each mode uk is controlled by a number of tuneable

parameters: the stationary mean l̄k, the damping parameters dbk , dγk , dωk
> 0, the phase parameter ωbk ,

and noise amplitudes σuk
, σbk , σγk , σωk

> 0; fk is a deterministic forcing. Importantly, in contrast to (8)

or (31), the dynamics (47) is linear in the spectral coefficients and the structure of (49) implies that it is

path-wise and statistically exactly solvable (see [37, 16, 75]); this property leads to analytical expressions

for M∆,C∆ in (23) and it has a number of relevant practical consequences, as highlighted below.

Remark 4.1.

• The linearity of the reduced forward model (47) in the spectral coefficients uk in the basis {ψk}k∈Z2\{0}
implies that distinct modes evolve independently during the forecast step and they are coupled, but

only within aliasing set A(`), at the analysis step when observations are assimilated. Thus, the evolving

covariance has a block-diagonal structure when grouped into the aliasing sets. The statistics of (49) is

exactly solvable (see [37, 16, 75]) which allows for a computationally efficient propagation of the prior

mean and covariance in the analysis step (25)-(26) based on analytical formulas [37, 16, 75].

• Since the aliasing sets A(`) in (36) for each primary mode 0 < |`| 6 M 6 N resolved by the sparse

observation grid are disjoint (see [76], §3.3 and figure 1), the structure of the augmented dynamics

(49) associated with (47) allows to partition the (2N+1)2-dimensional filtering problem for the spectral

coefficients in (48) into (2M+1)2 independent filtering problems for the spectral coefficients which

can be run in parallel; moreover, the reality constraint in (48) reduces the task to ((2M+1)2−1)/2

independent problems for the sets of augmented coefficients U` = {uk, γk, ωk, bk : k ∈ A(`)} which

6 Here, conditional Gaussianity of uA means (roughly) that for given path-wise realisations Γt06t
A ,Ωt06t

A ,Bt06t
A , of

ΓA(t),ΩA(t),BA(t), t ∈ [t0, t0 + T ], the probability P
(
uA(t) ∈ ·

∣∣Γt06t
A ,Ωt06t

A ,Bt06t
A

)
has a Gaussian density.
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makes it computable in high-dimensions. Further systematic simplifications of the evolving covariance

within each block of aliased modes are described in the next section for the cSPEKF and GCF filters.

These properties were already used and validated to some extent in [42, 44, 57, 16].

• Filtering within each aliasing set A(`) involves estimation of the state vector uA in (43) and the associ-

ated non-physical processes (γk, ωk, bk), k ∈ A(`) which provide means for bias correction. Importantly,

the dynamics of these unobserved processes is dynamically adjusted by the assimilated data, allowing

the algorithm to ‘learn’ some aspects of model error on-the-fly from the incoming data [16].

4.2.2. SPEKF-type algorithms. The stochastically parameterised filtering algorithms with the forward

dynamics (49) fall into the category of approximate Gaussian filters outlined in §3. Therefore, in the

discrete-time setting, the analysis step in SPEKF-type algorithms is given by (25)-(26), similar to the

3DVAR filter outlined in §4.1. However, in this case the prior mean and covariance in the forecast

step (21) are updated using analytical formulas [37, 16, 75] which leads to substantial computational gains

(see Remark 4.1). In particular, the path-wise solvability of the forward model (49) yields an explicit

expression for the stochastic flow Φ∆(·, ω) which is employed to analytically update the prior mean and

covariance on each disjoint set of augmented coefficients U` = {uk, γk, ωk, bk : k ∈ A(`)} via

(50) U`n ∼ N
(
m`
n, C

`
n

)
−→





m̂`
n+1 = E

[
Φ∆(U`n, ω)

]
,

Ĉ `
n+1 = Cov

[
Φ∆(U`n, ω),Φ∆(U`n, ω)

]
.

Unlike other approximate Gaussian filters, the exact statistical solvability of (49) leads to analytical

formulas for m̂`
n+1, Ĉ

`
n+1 in (50). The dimensionality of m̂`

n+1 and Ĉ`n+1 depends on the spectral resolution

(2N+1)2 of the forward dynamics (49), and on the spectral resolution (2M+1)2 of the observations

(cf. §3.3). For N =M each aliasing set A(`) contains a single mode; hence, m̂`
n ∈ C×R×R×C ' C3 and

Ĉ`n ∈ C3×3 for each of the (2N)2 resolved modes; the reality constraint in (48) reduces this to dealing with

N2 independent problems for the coefficients {u`, γ`, ω`, b`}. In the superresolution mode, when N = PM ,

m̂`
n ∈ C3P and Ĉ`n ∈ C3P×3P in each of the (2M+1)2 aliasing sets; again, the reality constraint in (48)

implies than one has ((2M+1)2−1)/2 independent problems, each one for the set of spectral coefficients U`.

Given that {uk, γk, ωk, bk} and {uj , γj , ωj , bj}, k 6= j, evolve independently in the forward dynamics (49),

correlations between different augmented states decay during the forecast step (50) and can only be

introduced during the analysis step when N 6= M . This fact can be exploited in the SPEKF framework to

further reduce the computational cost of the forecast step and to simplify the covariance structure within

each aliasing aliasing block Ĉ`n. Details of various simplified algorithms were derived in [16, 15]; here, we

recapitulate the properties of two most efficient algorithms, namely:

• cSPEKF: This crude SPEKF algorithm utilises analytical updates to derive m̂`
n+1 and the diagonal

entries of Ĉ`n+1 in (50). The off-diagonal terms in Ĉ`n+1, corresponding to cross-correlations between

{uk, γk, ωk, bk} and {uj , γj , ωj , bj}, k 6= j, k, j ∈A(`) are neglected, assuming rapid mode decorrelation

relative to the assimilation time window. It was shown in [16] that, apart from reducing the computa-

tional cost, this approximation resulted in increased stability in a wide range of dynamical regimes.

• GCF : This Gaussian Closure Filter algorithm does not neglect cross-correlations in the prior covariance

Ĉ`n+1 in (50) but it approximates the statistics of the forward model (49) via the simple Gaussian

moment closure; this approach is used frequently in the statistical theory of turbulence and was utilised

for filtering turbulent signals in [15, 16]. For systems with quadratic nonlinearities, such as (49), this

closure correctly accounts for the turbulent backscatter in the mean but it neglects the third order

moments of fluctuations in the evolution of the covariance. In [15, 16] this algorithm emerged as the

most suitable trade-off between the skill and the computational complexity.



ACCURACY OF APPROXIMATE GAUSSIAN FILTERS FOR THE NAVIER-STOKES EQUATION 15

5. Numerical Results

In this section we compare the performance of the three approximate Gaussian filters described in §4 for

estimation of the spatially extended system given by the 2D Navier-Stokes dynamics (1)-(2). Moreover,

as a follow up to [57, 16], we use a special case of equally-spaced observations to analyse the potential of

these algorithms for a dynamic superresolution of observations. We assume throughout that the posterior

filtering distributions are well-defined, implying that the prior on the initial conditions, and the observation

likelihood are well-defined throughout the considered time interval. The comparisons outlined below

concern the ability of the filtering algorithms to reconstruct the mean of the true posterior on the state

of the truth dynamics. The question of sensitivity of the results to the choice of a prior is not addressed.

Instead, we focus on the effects of various approximations introduced in the considered approximate

Gaussian filtering algorithms. Key questions driving the choice of experiments concern the following:

(i) Does updating the prior covariance Ĉn+1 in (25) in the approximate Gaussian filtering algorithms

via reduced order stochastic dynamics with model error improve the estimation relative to setting

Ĉn+1 = const. as in 3DVAR?

(ii) Which class of the approximate Gaussian filters - 3DVAR or cSPEKF/GCF - is better suited for

superresolving sparse, aliased observations of a complex spatially extended dynamics?

The above issues are studied for the filters in question by means of numerical experiments which currently

provides the only validation method, given that analytical results for sparsely observed dynamics do not

currently exist. A systematic numerical study of these issues requires dynamics with varying degree of

complexity. As highlighted in §2.1, and as is well-known, smaller (ν, κ) and larger |f | in (8) lead to more

complex and turbulent solutions. This case also be observed by the diameter of the attractor given in

§2.1. In practice, the spectral resolution of the ‘truth’ dynamics is finite and given by the truncated

version (29) of the infinite-dimensional system (8). However, a similar dependence between the attractor

dimensionality and the complexity of long-time solutions is observed in the truncations (e.g., [73]). In

the examples discussed below the synthetic truth is computed from (29) with Λ = 115, and the forward

model resolution, and the resolution of the observations are arranged so that M 6 N � Λ. The numerical

simulation of the dynamics in (29) is carried out in a standard fashion which was outlined in §3.1. The

choice of the forcing scale Nf in (7) and its amplitude relative to the viscosity ν is relevant in order to set up

various dynamical regimes with non-negligible energy in the band N 6 |k| 6 Λ so that the model error in

the forward model is significant (and at a tuneable level controlled by changing the dissipation ν). We force

the dynamics at a single scale Nf = 8 and choose three values of the viscosity ν = 0.03, 0.003, 0.001 and

κ = 0.001 in order to obtain three distinct dynamical regimes characterised by different number of active

modes on the attractor; these regimes are referred to as laminar (ν = 0.03, |fk| = 8, Nf = 10), moderately

turbulent (ν = 0.003, |fk| = 8, Nf = 10) and turbulent (ν = 0.001, |fk| = 8, Nf = 10). Figure 3

shows the relevant spectra associated with these regimes (see figures 5-7 for representative snapshots

of the vorticity fields). In these three dynamical regimes we compare the performance of the filtering

algorithms introduced in §4 for varying spectral resolution of the forward models such that N � Λ (i.e.,

the model resolution is much worse than that of the (synthetic) truth dynamics in (29)). Filtering in the

idealised configuration with non-aliased observations (cf. §3.3.1) is considered first. Then, we consider

state estimation using the same filtering algorithms with aliased observations; this configuration allows to

superresolve the observations (see also [57, 16]) and study some effects of representation error (cf. §3.3.2).

We consider two types of space-time measures to assess the performance of the mean filter estimates.

Denote the (conditional) mean estimate obtained from an approximate Gaussian filter resolvingN2 distinct
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spectral modes by mN (x, t) and the (synthetic) truth by uΛ(x, t), N � Λ (cf. §3.1). Then, the respective

measures are defined as follows:

(i) The root-mean-square error (RMSE) is the `2 norm of the residual u−mN in the space HΛ×I

(51) rmseΛ(u,mN ) = ‖u−mN‖`2(HΛ×I) := Λ−1|I|−1/2

(∑

n∈I

Λ∑

i,j=−Λ

(
u(xij , tn)−mN (xij , tn)

)2
)1/2

,

where mN ∈ HN ⊆ HΛ ⊆ H, and u ≡ uΛ ∈ HΛ ⊆ H7. Similarly, the RMS error on HN ×I is defined as

(52) rmseN (u,mN ) =‖PNu−mN‖`2(HN×I) :=N−1|I|−1/2

(∑

n∈I

N∑

i,j=−N

(
(PNu)(xij , tn)−mN (xij , tn)

)2
)1/2
,

where PN is the orthogonal projection onto HN ⊆ H (i.e., (PNu)(x, t) =
∑

0<|k1,2|6N uk(t)ψk(x)).

(ii) Pattern correlation (XC), 0 6 xc 6 1, defined via the inner product in the spaces HΛ×I and HN ×I.

These measures are defined, respectively, as

(53) xcΛ(u,mN ) :=
〈u,mN 〉HΛ×I

‖u‖L2(HΛ×I)‖mN‖L2(HΛ×I)
∝
∑

n∈I

Λ∑

i,j=−Λ

u(xij , tn)mN (xij , tn),

and

(54) xcN (u,mN ) :=
〈PNu,mN 〉HN×I

‖PN u‖L2(HN×I)‖mN‖L2(HN×I)
∝
∑

n∈I

N∑

i,j=−N
PNu(xij , tn)mN (xij , tn).

Clearly, rmseΛ(u,mN ) and xcΛ(u,mN ) quantify the error in filter estimates relative to the truth (syn-

thetic) solution (28), while rmseN (u,mN ), xcN (u,mN ) quantify the filter error on the (2N)2 spectral

modes resolved by the forward model.

In order to assure a consistent comparison, all algorithms are tuned using the same data obtained

from long runs of the simulated truth dynamics (29). In the context of 3DVAR (cf. §4.1) the tuning

entails estimating a suitably inflated ‘background’ covariance in (38). It is important to stress the well-

known need for the so-called covariance inflation in 3DVAR (e.g., [84, 21, 65, 17]) which is necessary to

prevent filter divergence. Here, we use a method introduced and tested in [65, 17] which is outlined in

Appendix A. In our two-step approach, which is in line with [13, 64, 63] and more suitable for theoretical

considerations, we first estimate the structure of C0 from attractor dynamics and then choose the value

of β in (38) which minimises RMS error. Classically, in an operational setting, 3DVAR is tuned using

error statistics of its own output in a cycled iteration process (under an assumption of stationarity) until

consistency is obtained, either over historic seasons or individual months [84, 9, 56]. Specifically, C0 in

(38) is tuned with algorithm output self-consistently, rather than off-line with the output from the ‘truth’

dynamics. However, we note that the cycled approach by no means guarantees a minimum RMS error; if

RMS minimisation is required, the multiplicative factor β must be adjusted (e.g., [84, 87, 29, 56]) but this

is not typically referred to as ‘inflation’ by practitioners. On the other hand, the tuning of SPEKF filters

requires setting values of the free parameters in the forward model (49) which are roughly estimated from

the equilibrium statistics as in [15, 16]; the performance of the SPEKF filters turns out to be not very

sensitive to the choice of the tuning parameters, and only the parameters in the equations for the spectral

coefficients {uk}0<|k1,2|6N resolved by the forward model need to be estimated directly from the data (see

[37, 36, 15, 16]). As shown in Figure 8, a satisfactory accuracy is reached relatively quickly regardless of

the dynamical regime, although tuning 3DVAR converges faster.

7See §3.1, 3.2 for the definitions of the Hilbert spaces H, HΛ and HN .
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5.1. Filtering with non-aliased observations. In this idealised configuration we assume that noisy

observations of individual modes are available, as described in §3.3.1, which implies that the observation

operator H in (33) is diagonal in the basis {ψk}k∈Z2\{0}. The filtering algorithms 3DVAR (cf. §4.1), and

cSPEKF, GCF in §4.2 utilise forward models with spectral resolution (2N)2, and the spectral resolution

of the non-aliased observations is (2M)2 (with M 6 N � Λ). The data assimilation time interval ∆tobs is

chosen to be about 50% of the mean decorrelation time on all resolved modes for each dynamical regime

considered. We assume that the true dissipation parameters ν and κ, as well as the forcing are known; a

discussion of filter performance with uncertain parameters and/or forcing was deemed too involved for this

exposition although, from experiments, incorrect parameter values have a significant negative effect on

3DVAR (cSPEKF and GCF algorithms do not rely on the knowledge of ν and κ in the forward dynamics).

In the results below the coefficients {uk}|k|6N of the truth signal uΛ (28) are estimated from the filtering

algorithms 3DVAR (§4.1) and SPEKF (§4.2) in the three dynamical regimes of (29) illustrated in Figure 3,

given noisy information about the evolution of the first (2M+1)2 spectral modes; in the considerations

below we always choose M =N , and the signal yN reconstructed from the noisy observations is given

by (32) rather than yΛ which corresponds fo full observations of uΛ. As a reference, the quality of the

filtering estimates mN is compared against two different estimates obtained solely from the non-aliased

observations, namely:

(i) Estimates reconstructed from noisy observations of all (non-aliased) modes of the (synthetic) truth.

In this case the error between the truth and the observations is assessed in the space HΛ based on

rmseΛ

(
uΛ, y

Λ
)

and xcΛ

(
uΛ, y

Λ
)

defined in (51) and (53); these errors are marked by dashed black

lines in the subsequent figures or indicated in the captions, depending on the scale of the y-axis. The

corresponding errors in the filter estimates, rmseΛ

(
uΛ,m

N
)

and xcΛ

(
uΛ,m

N
)
, have to be smaller than

the respective observation errors rmseΛ

(
uΛ, y

Λ
)

and xcΛ

(
uΛ , y

Λ
)

for the filtering to be beneficial.

(ii) Estimates reconstructed from observations of N (non-aliased) modes resolved by the forward model.

In this case the error between the truth and its estimates from observations is assessed in the space

HN in terms of rmseΛ(uΛ, y
N ) and xcΛ(uΛ, y

N ) defined in (52) and (54). These observation-based

errors, marked by solid black-starred lines in the subsequent figures, disregard errors in the modes

which are not resolved by the observations and not actively filtered; thus these errors provide a

bottom-line benchmark for assessing filter estimates. The corresponding error in the filtering estimates,

rmseΛ

(
uΛ,m

N
)

and xcΛ

(
uΛ,m

N
)
, should be smaller than rmseΛ(uΛ, y

N ) and xcΛ(uΛ, y
N ) for the

filtering to be useful in this context (otherwise, estimates from the unfiltered observations are better).

Figure 4 shows the rmse and the correlation xc measures for filtering the attractor dynamics of (29)

with different resolutions, (2N+1)2, of the forward models in three distinct dynamical regimes illustrated

in Figure 3; in all cases the variance of the observation noise in the spatial domain is Γ0 = εI, ε = 0.15E

where E is the energy (i.e., `2 norm) of the solutions on the attractor, and M2 =N2 non-aliased modes are

observed. The results for 3DVAR are shown for the optimal value of the multiplicative covariance inflation

parameter β in Ĉ0,β (38) which minimises rmseN
(
uΛ,m

N
)

and is generally needed even to assure the

long-time stability of the algorithm (cf. references in §4.1). Additive covariance inflation obtained by

varying α in Ĉα,β (38) has a much less pronounced effect; hence, we set α = 0 in all examples shown. The

coloured lines indicate rmseΛ

(
uΛ,m

N
)

and xcΛ

(
uΛ,m

N
)

for different filters, and the dashed black line

shows xcΛ

(
uΛ , y

Λ
)

(rmseΛ

(
uΛ , y

Λ
)

= 0.15E and it is not shown); see (i) above. The black solid-starred

lines indicate rmseΛ(uΛ, y
N ) and xcΛ(uΛ, y

N ) in units of E; see (ii) above.

Figures 5, 6, 7 show snapshots of the true and estimated vorticity fields obtained from the filtering

algorithms 3DVAR (§4.1) and cSPEKF (§4.2) and the corresponding spatially resolved residuals between
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the mean estimates and fully resolved truth. The vorticity field ω = ∇⊥·u, where ∇⊥ = (∂2,−∂1)T and

u(t, x) =
∑
k∈Z2\{0} uk(t)ψk(x) solves (1)-(3). The spectral representation of the vorticity field in terms

of {uk(t)}k∈Z2\{0} is given by

(55) ω(t, x) =
∑

k

uk(t)
(
∇⊥·ψk(x)

)
=
∑

k

ω̂k(t)φk(x), ω̂−k = ω̂∗k,

where ω̂k(t) = (2πi/L)|k|uk(t) represent the coefficients of ω(t, x) in the Fourier basis
{
φk(x)

}
k∈Z2\{0},

with φk(x) = |k|−1
(
k⊥ · ψk(x)

)
. The estimated signal in the spatial domain is recovered from

(56) ωN (t, x) =
∑

0<|k|6N
uk(t)

(
∇⊥·ψk(x)

)
, u−k = −u∗k,

while the vorticity field corresponding to the synthetic truth solving (29) is given by (56) with N = Λ.

Results are shown for two spectral resolutions of the forward models in the algorithms with a fully observed

state, M =N , in cSPEKF, GCF, and 3DVAR. The colour scale is the same for all examples which enables

an easy visual comparison of the estimation errors for different cases.

Finally, figure 8 shows a comparison of performance of cSPEKF, GCF, and 3DVAR in different dy-

namical regimes of (29) (cf Figure 3) as a function of the length of the training data used to fix the free

parameters in cSPEKF/GCF algorithms (§4.2) and to estimate the background covariance in 3DVAR

(§4.1); see Appendix A for details. The performance of the filtering algorithms is assessed for the mean

estimates and expressed in terms of the RMS error (51) and pattern correlation, XC (53), for non-aliased

observations and the resolution (2N+1)2, N = 50, of the forward models (§3.2) in the filtering algorithms.

The observation error is set to ε = 0.15E where E is the energy per mode in steady state; we set N=M

as the modes resolved by the models are assumed to be observable directly in the spectral domain. Re-

sults for 3DVAR are shown for the optimal value of the multiplicative covariance inflation parameter β in

Ĉ0,β (38). SPEKF algorithms converge within intervals of roughly 20 mean decorrelation times; 3DVAR

converges significantly faster but with a larger asymptotic error.

We summarise the main results below:

• For non-aliased observations the state estimation with cSPEKF and GCF algorithms §4.2 provides

results which are comparable or slightly better than those obtained with optimally tuned 3DVAR (cf.

§4.1). This is important since, unlike 3DVAR, the cSPEKF and GCF filters do not rely on the knowledge

of the underlying dynamics (including the values of the viscosity and the nature of the forcing).

• Unsurprisingly, a sufficiently large number of modes needs to be observed and resolved by the forward

models in all filters in order to provide good estimates of the system state. For sufficiently low resolution

of the forward dynamics all models perform comparably poorly.

• All filters beat the estimates obtained from observations, i.e., rmseΛ

(
uΛ,m

N
)
< rmseΛ

(
uΛ, y

N
)

and

xcΛ

(
uΛ,m

N
)
> xcΛ

(
uΛ, y

N
)
; moreover, when filtering with resolution sufficiently beyond the forc-

ing scale rmseΛ

(
uΛ,m

N
)
< rmseΛ

(
uΛ, y

Λ
)

and xcΛ

(
uΛ,m

N
)
> xcΛ

(
uΛ, y

Λ
)
. Unsurprisingly, the

accuracy of the estimates improves with the number of filtered modes.

5.2. Filtering with aliased observations. In this configuration we consider estimation of uΛ(x, t) solv-

ing (29) with the filtering algorithms 3DVAR (§4.1) and cSPEKF, GCF (§4.2) given noisy observations

yA(m) (35) of uΛ on a (2M+1)×(2M+1) grid in the spatial domain; consequently, these observations alias

the modes of the truth with uk, |k|>M , into the modes resolved by the observations with uk, 0 < |k| 6M .

As discussed in §3.3.2, this implies that the observation operator HA{m} in (37) is not diagonal in the basis

{ψk}k∈Z2\{0} and the information about the modes resolved by the forward model in the filtering algo-

rithms is corrupted by both the observation noise and the aliased modes. Similar to the configuration
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with non-aliased observations in §5.1, the data assimilation time interval ∆tobs is chosen to be about 50%

of the mean decorrelation time on all resolved modes for each dynamical regime considered; moreover, we

consider filtering with correct dissipation parameters ν and κ, as well as the correct forcing. In all tests

we assume that the spectral resolution of the observations is fixed with M = 10. The filtering algorithms

3DVAR §4.1, and cSPEKF, GCF in §4.2 are considered at different spectral resolutions with N = PM ,

P ∈ N+. Here, it is also important to investigate if the superresolution (i.e., P > 1 in the forward models)

helps improve the estimates of the dynamics of the primary modes.

In addition to comparing the filtering results with the estimates based on solely on observations yΛ of

all non-aliased modes of the truth uΛ, as described in (i) in §5.1, the accuracy of the filtering estimates is

compared against

(iii) Estimates based on observations of all aliased modes of the truth yA{m} in (37). In this case the error

between the truth and the observations is assessed in the space HΛ based on rmseΛ

(
uΛ, y

A{m}) and

xcΛ

(
uΛ, y

A{m}) defined, respectively, in (51) and (53).

The observation error based on the measures in (iii) provides a benchmark for assessing the quality of

estimating the truth state from the superresolving algorithms (i.e., N > M); the corresponding error in

the filtering estimates, rmseΛ

(
uΛ,m

N
)

and xcΛ

(
uΛ,m

N
)
, has to be smaller than the observation error

in (iii) for the filtering to be beneficial in this configuration.

Figure 9 shows a comparison of the filtering algorithms of §4 in terms of the error in the mean estimates,

using rmseΛ

(
uΛ,m

N
)

in (51) and xcΛ

(
uΛ,m

N
)

in (53) for aliased observations with M = 10 with different

observation noise and the resolution of the forward models (§3.2) with N = 3M . The performance the

considered filtering algorithms can be inferred from the curves described in the legend, and it is shown

as a function of the observation error (per mode) obtained from non-aliased observations of all the truth

modes rmseΛ

(
uΛ, y

Λ
)
. The results for 3DVAR are shown for the optimal value of the multiplicative

covariance inflation parameter β in Ĉ0,β (38) which minimises rmseΛ

(
uΛ,m

N
)

and is generally needed

even to assure the long-time stability of the algorithm (cf. references in §4.1). The black solid-starred lines

indicate the error of estimates obtained directly from the aliased noisy observations of the truth (see (iii)

above), rmseΛ

(
uΛ, y

A{m}), xcΛ

(
uΛ, y

A{m}), provide target against which to compare the performance of

various filters.

Figures 10 and 11 show snapshots of the true, observed, and estimated vorticity fields (55) obtained

from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF algorithms (§4.2) and the corresponding

spatially resolved rmse errors between the mean estimates and the fully resolved truth. Results are shown

for the laminar and fully turbulent regimes (see Figure 3) for the spectral resolution (2N+1)× (2N+1),

N=30, of the forward models; the resolution of the aliased observations is (2M+1)×(2M+1) with M = 10.

Finally, figure 12 shows a comparison of accuracy of the filtering algorithms of §4 for estimating the

(2M+1)2 primary modes of the truth uΛ in (28) using superresolving algorithms (N >M) and non-

superresolving algorithms (N =M); note that the component of the truth signal associated with the

resolution of the aliased observations is PMuΛ, and the comparison is carried out in terms of the error in

the mean estimates rmseM
(
uΛ,m

N
)

in (52) and xcM
(
uΛ,m

N
)

in (54). Aliased observations of the truth

dynamics (29) in the fully turbulent regime are used with M = 10 at different levels of the observation

noise; the resolution of the forward models in the superresolving mode is (2N+1)×(2N+1) with N = 3M

and in the non-superresolving mode N =M . The results for 3DVAR are shown for the optimal value of

the multiplicative covariance inflation parameter β in Ĉ0,β (38) which minimises rmseΛ

(
uΛ,m

N
)
.

We summarise the main findings of this section below:
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• cSPEKF and GCF algorithms (cf. §4.2) outperform the 3DVAR algorithm (§4.1) when filtering aliased

observations and they mitigate well the associated representation error. This is most pronounced in the

fully turbulent regime (Figures 9, 11). Importantly, the SPEKF-type filters do not rely on the knowledge

of the underlying dynamics (including the values of the viscosity and the nature of the forcing).

• Superresolution of aliased observations improves estimates of the primary modes when filtering with

cSPEKF/GCF but it is detrimental for 3DVAR (Figure 12); this fact is in line with the findings in [16].

• For aliased observations the state estimation with SPEKF-type algorithms benefits from the stochastic

parameterisation of model error which mitigates model rigidity present in the 3DVAR with the forward

dynamics based on the truncation (31). In contrast to the filtering with non-aliased observations,

the aliased observations retain some information about the unobserved modes |k| > M which is then

accounted for in the estimates of the superresolved modes due to the fact that HA{m} in (37) is not

diagonal and, consequently, the gain (27) is non-zero on the unobserved spectral modes.

• Superresolution with cSPEKF and GCF algorithms provides similar results over a wide range of as-

similation times. This seems to be a consequence of the distribution of decorrelation times across the

modes in the dynamics. The small scale modes |k| � 1 decorrelate very fast compared to practically

concievable assimilation times, and the estimation error in these modes dominates the overall accuracy.

6. Conclusions

Data assimilation algorithms are important for improving predictive performance of simulations in

many geoscience and engineering applications. However, incorporating sparse noisy data into uncertain

computational models in a way which actually improves the overall performance poses major challenges,

especially as prediction is pushed to increasingly longer time horizons. In this paper we studied the per-

formance of three approximate Gaussian data assimilation algorithms: the prototypical 3DVAR, and two

stochastically parameterised algorithms cSPEKF and GCF. The emphasis was on the interplay between

different sources of error in a realistic but nevertheless ‘academic’ setting, rather than on tests including

all operational constraints. We provided the first evidence that the computationally cheap stochastically

parameterised filtering algorithms are capable of overcoming model error in the forward dynamics and

mitigate some representation errors to produce accurate mean estimates in realistic models of sparsely

observed turbulent dynamics. We summarise the main findings below:

(i) For noisy observations of individual spectral modes (i.e., idealised case with non-aliased observations)

the SPEKF-type filters and the optimally tuned 3DVAR perform comparably well in reproducing the

mean of the posterior filtering distribution in various regimes of the 2D Navier-Stokes dynamics.

(ii) For spatially sparse observations (leading to representation error in our setup via mode aliasing in

the spectral domain) the SPEKF-type algorithms outperform a tuned 3DVAR.

(iii) Most importantly, the stochastically parameterised filters can compete with 3DVAR while not relying

on the detailed knowledge of the underlying dynamics.

These conclusions are intrinsic to the considered algorithms, and result from the approximations made in

order to create tractable online implementations; the basic conclusions are not expected to change by use

of different dynamical models. Here, we focused on comparing the accuracy of predictions for the mean

state rather than the underlying posterior probability distribution. Higher moments were not considered

because their objective comparison would require a reliable computation of moments of the true filtering

posterior which requires Markov chain sampling or particle filtering of multimodal densities over high-

dimensional spectral domains and long time windows; this is associated with a very high computational

cost and we postpone such a study to another publication. We note that in practical DA applications
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of ensemble-based methods one often compares the RMS error to the ensemble spread; the popular rank

histogram approach can also be used to evaluate the spread of ensemble based methods [3]. Here, since

the considered algorithms are not ensemble-based, this would correspond to comparing the RMS error to

the `2 norm of the diagonal of the implied covariances of these algorithms. However, following the results

of [65], as well as [41, 79, 67, 102, 103], we decided not to speculate on such comparisons in the present

setting without having access to the objective ‘gold standard’ reference.

There are many possible directions for future research in this area which require attention. First, we

note that the ability of various data assimilation algorithms to predict uncertainty from a fully Bayesian

perspective was considered in [65] in the absence of model error and for non-aliased observations. In that

work MCMC sampling was used to compare the true posterior filtering distribution over the system state

with distributions obtained from sequential or variational data assimilation algorithms (including 3DVAR,

4DVAR, ExKF, and EnKF, but not SPEKF). Although, in principle, consistent statistical sampling al-

gorithms such as MCMC and SMC can recover any distribution, this becomes prohibitively expensive

for multimodal distributions. Consequently, the computations in [65] were carried out in regimes of the

2D Navier-Stokes dynamics which were chaotic but characterised by nearly Gaussian distributions with

a sufficiently small number of ‘energetic’ modes to allow state-of-the-art, fully resolved MCMC compu-

tation of the posterior distributions. An analogous study in the turbulent regimes considered here poses

a significant computational and algorithmic challenge which is yet to be performed for both 3DVAR and

SPEKF algorithms; it would be very interesting to see if the SPEKF algorithms provide better uncertainty

estimates than the older but well-established filters studied in [65]. It would also be preferable to look at

long time intervals in turbulent regimes, rather than short time intervals in chaotic regimes such as in [65].

We note that comparisons of other approximate Gaussian estimators have been carried out recently for

variants of 3DVAR, 4DVAR, ExKF and EnKF. In particular, [79, 102, 103] compare the EnKF forecast

with 3DVAR and 4DVAR in real-data experiments. The conclusions are that EnKF and 4DVAR perform

best with respect to the RMS error, while the EnKF forecast performs better for longer lead times. Two

fundamental classes of EnKFs were compared theoretically in the large ensemble limit in [67], where the

stochastic version in which observations are randomised is found to be more robust to perturbations in the

forecast distribution than the deterministic one. Another interesting comparison was carried out in [41]

in which several ensemble filters, alternative to EnKF in operational use, were compared with respect to

RMSE. A numerical comparison of of the performance of SPEKF algorithms with these filters deserves a

separate study and will be soon reported elsewhere. Theoretical results, analogous to those for 3DVAR

in [17, 13], explaining the properties of the SPEKF-type algorithms are needed. Such analysis poses a

number of technical challenges due to the fact that, in contrast to 3DVAR, the mean and covariance

evolution of the posterior distribution are coupled in a non-trivial fashion even in the absence of spatially

sparse observations. Consequently, bounds on error in both the mean and covariance updates need to be

considered simultaneously. This research is ongoing and we hope to report on this in the near future.

It would also be interesting to conduct a study, similar to the one undertaken here, for simple models

of atmospheric dynamics exhibiting behaviour analogous to atmospheric blocking events, or for more

realistic quasi-geostrophic models which admit baroclinic instabilities [77, 57]. Also, with recent progress

in consistent multilevel Monte Carlo (MLMC) sampling algorithms [48, 11, 52], it may soon be possible

to obtain reliable estimates of the full posterior filtering distribution over long-time windows for low-

dimensional yet suitably complex systems with turbulent dynamics, such as Lorenz-96 or perhaps even

Navier-Stokes. Then, a study may be performed along the lines of [65] to follow up this work.
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Appendix A. Tuning the forward models in the filtering algorithms

In order to assure a consistent comparison, the algorithms are tuned using the same data obtained from

long runs of the simulated truth dynamics (29). First, we note that our optimal two-step tuning of the

background covariance in 3DVAR (cf. §4.1), which was proposed and tested in [65], differs somewhat from

the standard operational ‘one-step’ methodology. Classically, the 3DVAR is tuned using error statistics

of its own output in a cycled iteration process (under an assumption of stationarity) until consistency is

obtained, either over historic seasons or individual months [84, 56, 9, 50, 21]. Specifically, the background

covariance (38) is tuned with algorithm output self-consistently, rather than off-line with output from the

truth dynamics. We note that, while the ‘cycled’ approach represents a practical necessity, it by no means

guarantees a minimum RMS error, unless additionally rescaled. At least for the dynamics considered

here (cf. §2.1), one standard operational methodology (NMC method, e.g., [84, 9, 87, 56, 82]) produces

uniformly suboptimal background covariance; this was illustrated in the context of cycling the innovation

statistics in Figure 11 of [65] and it was tested, with similar conclusions, for the cycled covariance of error

statistics formed by analysing ensembles of differences {Ψl∆(mn−l)−Ψ2l∆(mn−2l)}, l, n,∆∈N, between

short-range forecasts (cf. §3.1,3.2) verifying at the same time. Though other methods exist for deriving

estimates for the background error covariances [82], the NMC method was chosen for its computational

efficiency and a wide spread use in applications. The tuning of 3DVAR described below can be considered

as superior to the one used in an operational setting - though perhaps too idealised and more suitable for

theoretical considerations - since we have access to the runs from the truth dynamics which are then used

for tuning.

Here, the tuning of 3DVAR is in line with the setup of [65, 13, 63] and it involves two steps. The

first step entails estimating the ‘background’ covariance C0 in (38) which is taken to be diagonal in the

spectral basis {ψk}k∈Z2\{0} and estimated from attractor dynamics as described below. The second step

relies on empirical inflation in (38) through the multiplicative and additive parameters α and β to prevent

filter divergence and to minimise the RMS error; the importance of the covariance inflation was illustrated

in various numerical tests in this paper and is well-known in various strands of the data assimilation

literature (e.g., [84, 21, 65, 17, 13, 64, 63]). We stress that ‘covariance inflation’ in this paper simply refers

to an off-line choice of α, β in (38) which are time-independent and such that the filter is asymptotically

stable. In the classical data assimilation literature ‘inflation’ typically refers to online manipulation of a

time-evolving forecast covariance, e.g., in ensemble Kalman filters, such that stability is preserved.

On the other hand, the tuning of SPEKF/GCF filters requires setting values of the free parameters

in the forward model (49) which are roughly estimated from the equilibrium statistics as in [15, 16]; the

performance of the SPEKF filters turns out to be not very sensitive to the choice of the tuning parameters,

and only the parameters in the equations for the spectral modes {uk}0<|k1,2|6N resolved by the forward

model need to be estimated directly from the data (see [37, 36, 15, 16]).

Here, the first stage of the tuning procedure is similar for both 3DVAR and SPEKF and it utilises an

Ornstein-Uhlenbeck (OU) process as a model for the dynamics of the modes uk(t) in the solution of the

forward map

(57) uN (x, t) =
∑

0<|k|6N
uk(t)ψk(x), u−k = −u∗k,
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in such a way that the second-order statistics of the modes uk of the OU process on the attractor coincides

with that of the truth on the attractor. Due to the exact solvability of the OU process, this is done as

follows: The OU dynamics is given by

(58) dU = −MUdt+
√

2<e[M ]Ξ dWt,

where U represents a vector of all the resolved spectral coefficients, M,Ξ > 0 are diagonal and positive

definite, and Wt is the standard Wiener process in an appropriate dimension. The stationary solution

of (58) is a Gaussian process with mean zero and covariance Ξ which are tuned to the truth via

(59) Ξ = lim
T→∞

1

T

∫ T

0

[u(t)− ū]⊗ [u(t)− ū]∗dt, ū = lim
T→∞

1

T

∫ T

0

u(t)dt.

The diagonal entries Mm,m are set based on the attractor statistics of the truth using the formulas

(60) Corrk(τ) = lim
T→∞

Ξ−2
k,k

∫ T

0

Ck,k(t, τ)dt, C(t, τ) = [u(t− τ)− ū]⊗ [u(t)− ū]∗,

and

(61) Tk + iΘk =

∫ ∞

0

Corrk(τ)dτ, <e[Mk,k] =
Tk

T 2
k + Θ2

k

, =m[Mk,k] = − Θk

T 2
k + Θ2

k

.

In practice the integrals in (59), (60) are approximated by finite discrete sums; furthermore, we set the

off-diagonal entries of Ξ to zero to obtain a diagonal model. As shown in Figure 8, a satisfactory accuracy

is reached relatively quickly in terms of the length of the ‘training’ time interval; note, however, that

the results for 3DVAR are shown for the optimal choice of the multiplicative inflation parameter β in

(38) which requires more than just the estimates of statistics from the training data. The two parameters

estimated from data in the SPEKF forward model (49) are set as l̄k = Mk,k, σ
2
uk

= 2<e[Mk,k] Ξk,k, and the

remaining parameters are set as dγk = dbk = 0.1<e[l̄k], dωk
= ωbk = 0.1=m[l̄k], σγk=σωk

=σbk=0.6σuk
.

In order to systematically estimate the background covariance in 3DVAR we first note that the discrete-

time solution of the OU process in (58) is given by the linear stochastic map

(62) Un+1 = LUn +
√
Qξn,

where L = exp(−M∆) andQ =
(
I−exp(−2<e[M ]∆)

)
Ξ are both diagonal in the spectral basis {ψk}k∈Z2\{0}

and {ξn} is i.i.d. with ξn ∼ N (0, I). For the forward model in (62) the update map (mn, Cn) →
(mn+1, Cn+1) in (21) of §3 yields the Kalman filter with

(63) m̂n+1 = Lmn, Ĉn+1 = LCnL
∗ +Q.

In the spirit of 3DVAR, the above update can be improved by updating the covariance as in (63) and

updating the mean by the nonlinear flow map corresponding to (31), namely

m̂n+1 = ΦN∆(mn), Ĉn+1 = LCnL
∗ +Q,(64)

mn+1 = (I −Kn+1H)m̂n+1 +Kn+1yn+1, Cn+1 = (I −Kn+1H)Ĉn+1,(65)

Kn+1 = Ĉn+1H
∗(HĈn+1H

∗ + Γ)−1.(66)

We note that because L is diagonal with LL∗ < 1, the covariance Cn converges to a limit [63] that can

be computed numerically off-line and, asymptotically the algorithm behaves like 3DVAR; thus, in line

with [65] this asymptotic covariance is used as the systematic choice of background covariance Ĉ0 in (38).

Alternatively, one may set Ĉ0 = Ξ which corresponds to the update (64) with ∆ → 0 in L and Q; both

choices of Ĉ0 give very similar results in our tests due to the fact that that ∆ is small relative to the

correlation times for a large fraction of modes in the forward models.
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Figure 1. Schematics of aliasing in two dimensions (right) due to sparse nodal observations in the spatial domain (left);

here, the 5 × 5 sparse observation grid is a regular subset of the doubly periodic 20 × 20 model mesh so that every P = 4

node is observed. The aliasing set A(`) of wavenumber ` = (2, 1) is shown in the spectral domain (right). In this case, modes

with |k| > 2 are aliased into the primary modes |k| 6 2 which can be resolved by the observation grid.
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Figure 2. Desired test configuration for filtering NSE with Kolmogorov forcing and sparse aliased observations (in physical

space). In a dynamical regime with sufficiently large Reynolds number the primary (observed) modes are not always the

most energetic ones due to the (possibly intermittent) energy transfer to small scales.
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Figure 3. Examples of numerically simulated spectra of the truth dynamics for uΛ(x, t) in (29). Top row shows cross-

sections for (k1, k2 = 0) of the 2D spectra in the bottom row for three different regimes used in the numerical tests of the

filtering algorithms introduced in §4. The dynamics (29) with Λ = 115 is forced at |k1| = |k2| = 8 and amplitude |fk| = 8.

The remaining parameters in the three regimes are: (a) ν = 0.03, (b) ν = 0.003, (c) ν = 0.001 and κ = 0.001.
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Figure 4. Non-aliased observations of (29). Comparison of performance of the filtering algorithms described in §4
in different dynamical regimes of (29) (cf. Figure 3) in terms of the RMS error (51) and pattern correlation XC (53) in

the mean estimates for different resolutions (2N+1)×(2N+1) of the forward models (§3.2); N =M as the modes resolved

by the forward models are assumed to be observable in the spectral domain. Results for 3DVAR are shown for an optimal

multiplicative covariance inflation parameter in (38) which minimises the RMS error while providing long-time stability. The

observation error ε= 0.15E with E the energy per mode in steady state. The insets show the ’performance hierarchy’ when

difficult to discern in the original axes and their scales differ. (yΛ are the observations of the truth uΛ in (28), and yN are

the observations of PNuΛ; see §3.1 and §3.3.1.)



ACCURACY OF APPROXIMATE GAUSSIAN FILTERS FOR THE NAVIER-STOKES EQUATION 31

truth

truth-obs

cSPEKF

truth-cSPEKF

GCF 3DVAR

truth-GCF truth-3DVAR

dobs (full)

M = N = 8

truth

truth-obs

cSPEKF GCF 3DVAR

truth-cSPEKF truth-GCF truth-3DVAR

M = N = 50

Figure 5. Filtering with non-aliased observations; laminar regime of (8)/(29) (cf. Figure 3). Snapshots of the

observed, true and estimated vorticity fields (55) obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the fully resolved truth. Results are shown for two

spectral resolutions (2N+1)×(2N+1) of the forward models (§3.2) in the algorithms with fully observed state, i.e, M =N ,

in the forward models of cSPEKF, GCF, and 3DVAR. Observation error ε= 0.15E where E is the energy per mode in steady

state. Compare these results with those in Figure 4.
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Figure 6. Filtering with non-aliased observations; moderately turbulent regime of (8)/(29) (cf Figure 3).

Snapshots of the observed, true and estimated vorticity fields (55) obtained from the filtering algorithms 3DVAR (§4.1),

cSPEKF and GCF (§4.2) and the corresponding residuals between the mean estimates and the fully resolved truth. Results

are shown for two spectral resolutions (2N+1)×(2N+1) of the forward models (§3.2) in the algorithms with fully observed

state, M =N , in the forward models of cSPEKF, GCF, and 3DVAR. Observation error is ε= 0.15E where E is the energy

per mode in steady state. Compare these results with those in Figure 4, and with Figures 5, 7.
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Figure 7. Filtering with non-aliased observations; turbulent regime of (8)/(29) (cf Figure 3). Snapshots of the

observed, true and estimated vorticity fields (55) obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the fully resolved truth. Results are shown for two

spectral resolutions (2N+1)×(2N+1) of the forward models (§3.2) in the algorithms with fully observed state, i.e., M =N ,

in the forward models of cSPEKF, GCF, and 3DVAR. The observation error is ε= 0.15E where E is the energy per mode in

steady state. Compare with Figures 4, and Figures 5, 6.
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Figure 8. Filter accuracy as a function of size of training data; non-aliased observations. Comparison of

performance of the filtering algorithms of §4 in different dynamical regimes of (29), illustrated in Figure 3, as a function of

the length of the training data used to fix the tuneable parameters in the filtering algorithms; see Appendix A. Results for

estimating the truth uΛ (28) are shown for non-aliased observations (yM in (3.3.1) with M=N) and forward models (§3.2)

resolving (2N+1)×(2N+1) modes, N = 50, in the filtering algorithms which yield the estimates mN ; the observation error

is ε :=rmseΛ(uΛ, y
Λ) = 0.15E where E is the energy per mode in steady state. The total length of the training time interval

consists of 12000 simulation time steps which correspond to: (i) ∼ 220 mean decorrelation time units in the laminar regime,

(ii) ∼ 560 mean decorrelation time units in the moderately turbulent regime, and (iii) ∼ 750 mean decorrelation time units

in the turbulent regime. SPEKF algorithms converge within roughly 20 mean decorrelation times. Results for 3DVAR are

shown for the optimal value of the multiplicative covariance inflation parameter in (38).
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Figure 9. Filtering with aliased observations of (29). Comparison of performance of the filtering algorithms of §4
in different dynamical regimes of (29) (cf. Figure 3) in terms of the error in the mean estimates mN , using RMSE (51)

and XC (53) measures for different resolutions of the forward models (§3.2); here, N =PM , M = 10 and P = 3 (see §5.2,

and §3.3.2). The observation error rmseΛ(uΛ, y
Λ) is in units of E - the energy per mode in steady state, and the aliased

observations yA{m} are given by (35). Results for 3DVAR are shown for the optimal value of the multiplicative covariance

inflation parameter in (38).
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Figure 10. Filtering with aliased observations; laminar regime of (8)/(29) (cf. Figure 3). Snapshots of the

observed, true and estimated vorticity fields (55) obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the truth (full or primary modes). Results are shown

for filtering with superresolving algorithms (N >M) and in the absence of superresolution M =N in the forward dynamics

of cSPEKF, GCF, and 3DVAR (§3.2). Observation error is ε = 0.15E where E is the energy per mode in steady state.

Compare with Figure 9 and see §5.2 for more information.
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Figure 11. Filtering with aliased observations; turbulent regime of (8)/(29) (cf. Figure 3). Snapshots of the

observed, true and estimated vorticity fields (55) obtained from the filtering algorithms 3DVAR (§4.1), cSPEKF and GCF

(§4.2) and the corresponding residuals between the mean estimates and the truth (full or primary modes). Results are shown

for filtering with superresolving algorithms (N > M) and in the absence of superresolution M = N in the forward dynamics

of cSPEKF, GCF, and 3DVAR (§3.2). Observation error is ε = 0.15E where E is the energy per mode in steady state.

Compare with Figure 9 and see §5.2 for more information.
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Figure 12. Filtering the dynamics of (29) with superresolving vs not superresolving algorithms for aliased

observations. Comparison of the quality of the filtering algorithms of §4 for estimating the signal PMuΛ from (2M+1)2

primary modes using superresolving algorithms (N >M) and non-superresolving algorithms (N =M); the comparison is

carried out in terms of the error in the mean estimates mN using rmseM
(
uΛ,mN

)
in (52) and xcM

(
uΛ,mN

)
in (54).

Aliased observations yA{m}, M = 10, in (35) of the truth uΛ in (28) in the fully turbulent regime are used at different

levels of the observation noise ε; the forward models (§3.2) in the superresolving case resolve (2N+1)2 modes with N = 3M

and in the non-superresolving mode N =M . Results for 3DVAR are shown for the optimal value of the multiplicative

covariance inflation parameter in (38). (In the legend ‘dss-prim’ refers to errors in resolving the primary modes based on the

superresolving filters, and ‘prim’ denotes errors in resolving the primary modes from non-superresolving filters.)
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