

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genomic methods take the plunge: recent advances in highthroughput sequencing of marine mammals

Citation for published version:

Cammen, KM, Andrews, KR, Carroll, EL, Foote, AD, Humble, E, Khudyakov, JI, Louis, M, McGowen, MR, Olsen, MT & Van Cise, AM 2016, 'Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals' Journal of Heredity, vol. 107, no. 6, pp. 481-495. DOI: 10.1093/jhered/esw044

Digital Object Identifier (DOI):

10.1093/jhered/esw044

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Journal of Heredity

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Journal of Heredity

Genomic methods take the plunge: recent advances in highthroughput sequencing of marine mammals

Journal:	Journal of Heredity
Manuscript ID	JOH-2016-093.R2
Manuscript Type:	Invited Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Cammen, Kristina; University of Maine, School of Marine Sciences Andrews, Kim; University of Idaho, Department of Fish and Wildlife Sciences Carroll, Emma; University of St Andrews, Scottish Oceans Institute Foote, Andy; University of Bern, Institute of Ecology and Evolution Humble, Emily; University of Bielefeld, Department of Animal Behaviour; British Antarctic Survey Khudyakov, Jane; Sonoma State University, Department of Biology Louis, Marie; University of St Andrews, Scottish Oceans Institute McGowen, Michael; Queen Mary University of London, School of Biological and Chemical Sciences Olsen, Morten; University of Copenhagen, Natural History Museum of Denmark Van Cise, Amy; University of California San Diego, Scripps Institute of Oceanography
Subject Area:	Genomics and gene mapping
Keywords:	RADseq, target sequence capture, whole genome sequencing, RNAseq, SNP array, non-model organisms

SCHOLARONE[™] Manuscripts

1		
2		
3	1	Genomic methods take the plunge: recent advances in high-throughput sequencing of
4	2	marine mammals
5	2	
6	1	V DISTINA M CANAMENI ¹ * VINADEDI V D ANIDDEWS ² EMMA I CADDOLL ³ ANIDDEW D
/ 0	4	KRISTINA IM. CAMIMEN ', KIMBERLI K. ANDREWS, EMIMA L. CARROLL, ANDREW D. 560 Laber L KIMBNAROV ⁷ MADIE LOURS ³ MICHAEL D.
0	2	FOOTE', EMILY HUMBLE ^{3,0} , JANE I. KHUDYAKOV', MARIE LOUIS ³ , MICHAEL R.
9 10	6	MCGOWEN°, MORTEN TANGE OLSEN ² , AND AMY M. VAN CISE ¹⁰
10	7	
12	8	¹ School of Marine Sciences, University of Maine, Orono, Maine 04469, USA
13	9	² Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136.
14	10	Moscow Idaho 83844-1136 USA
15	11	³ Scottish Oceans Institute University of St Andrews East Sands St Andrews Eife KV16 81 B
16	11	Scouisi Occais institute, University of St Andrews, East Sands, St Andrews, File K 110 6LD,
17	12	$\frac{4}{3}$
18	13	Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution,
19	14	University of Bern, Bern CH-3012, Switzerland
20	15	^o Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501 Bielefeld,
21	16	Germany
22	17	⁶ British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
23	18	⁷ Department of Biology Sonoma State University Rohnert Park California 94928 USA
24	19	⁸ School of Biological and Chemical Sciences. Queen Mary University of London
25	20	Mile End Dead London E1 ANS LIV
20	20	$\frac{9}{2}$
21	21	Evolutionary Genomics Section, Natural History Museum of Denmark, University of
20	22	Copenhagen, DK-1353 Copenhagen K, Denmark
30	23	¹⁰ Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, California 92037, USA
31	24	
32	25	*Corresponding author: kristina.cammen@maine.edu
33	26	
34	27	Running title: Marine mammal genomics
35	_,	
36		
37		
38		
39		
40		
41		
4Z		
43 11		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		

28 Abstract

> The dramatic increase in the application of genomic techniques to non-model organisms over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of non-model organisms utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on non-model organisms. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of non-model organisms.

Keywords: RADseq, SNP array, target sequence capture, whole genome sequencing, RNAseq,
non-model organisms

48 Introduction

Recent advances in sequencing technologies, coincident with dramatic declines in cost, have increasingly enabled the application of genomic sequencing in non-model systems (Ekblom and Galindo 2011; Ellegren 2014). These advances in molecular technologies have in many ways begun to blur the distinction between model and non-model organisms (Armengaud et al. 2014). Non-model organisms (NMOs) have traditionally been defined as those for which whole-organism experimental manipulation is rarely, if ever, possible due to logistical and/or ethical constraints (Ankeny and Leonelli 2011). Further, NMOs have typically been characterized by limited genomic resources, but this is becoming increasingly less so as the number of NMO reference genomes grows rapidly, for example through efforts like the Genome 10K Project (Koepfli et al. 2015). In fact, in some taxonomic orders, we are approaching the point at which all species have at least one representative reference genome available for a closely related species (Fig 1).

Despite the limitations of working with NMOs, including potentially small sample sizes, low DNA quantity, and limited information on gene function, genetic and genomic investigations of NMOs have yielded numerous valuable contributions to understanding their evolutionary biology and ecology. For the past several decades, traditional genetic markers such as microsatellites and short fragments of mitochondrial DNA (e.g., the control region) have been extensively used in molecular ecology. These markers, which typically evolve under neutral expectations, have proven useful for identifying population structure and reconstructing population demographic history (Hedrick 2000). However, the power of such studies is limited by the number of markers that can feasibly be evaluated using traditional approaches. The advent of low-cost high-throughput sequencing has led to dramatic increases in the number of neutral markers that can be evaluated, in many cases improving our power to resolve fine-scale or cryptic population structure in species with high dispersal capability (e.g., Corander et al. 2013) and improving the accuracy of estimating some (though not all) demographic parameters (Li and Jakobsson 2012; Shafer et al. 2015). Importantly, high-throughput sequencing has also further enabled genomic studies of non-neutral processes in NMOs, for example, characterizing both deleterious and adaptive variation within and across species (Stinchcombe and Hoekstra 2008;

Künstner et al. 2010). It is increasingly evident that genomic analyses of NMOs can and have
 provided important insights that could not be identified with traditional genetic markers.

- Many molecular ecologists now face the challenge of deciding which of the broad range of genomic approaches to apply to their study systems. Here we review the primary options for generating genomic data and their relative suitability for different applications in the study of NMOs. We focus on marine mammals, which represent several mammalian clades with notably rapid growth in available genomic resources in recent years. This growth is clearly evident in both publication rate (Fig 2) and the rise in number and size of genomic sequences deposited in public resources (Fig 3). We comprehensively review the literature on marine mammal genomics, highlighting recent trends in methodology and applications, and then describe in detail the molecular approaches that are most commonly applied to studies of NMO genomics. Our hope is that this review will highlight the promise of genomics for NMOs and offer guidance to researchers considering the application of genomic techniques in their non-model study system of choice.

94 Why study marine mammal genomics?

Marine mammals represent key macroevolutionary transitions from terrestrial to marine environments (McGowen et al. 2014) and accordingly are an exemplary system for investigating the evolution of several morphological and physiological adaptations (Foote et al. 2015) associated with locomotion (Shen et al. 2012), sight (Meredith et al. 2013), echolocation (Parker et al. 2013; Zou and Zhang 2015), deep diving (Mirceta et al. 2013), osmoregulation (Ruan et al. 2015), and cognition (McGowen et al. 2012). Furthermore, studies of marine mammal evolution to date have characterized several unique aspects of their genome evolution that merit further investigation, including low genomic diversity and a relatively slow molecular clock, especially in cetaceans (Jackson et al. 2009; McGowen et al. 2012; Zhou et al. 2013). As many cetacean species are highly mobile with no obvious physical geographic barriers to dispersal, they provide a unique opportunity to study the role of behavior and culture in shaping population structure and genetic diversity (Riesch et al. 2012; Carroll et al. 2015; Alexander et al. 2016). Though highly mobile, many marine mammals exhibit evidence of local adaptation; for example, several species show parallel divergent morphological and behavioral adaptations to coastal and pelagic

environments (Moura et al. 2013; Louis et al. 2014; Viricel and Rosel 2014). These species may
be studied across ocean basins as emerging examples of ecological adaptation and speciation
(Morin et al. 2010a).

Beyond their value as systems of evolutionary study, many marine mammals are also of broader interest relating to their historical and present conservation status. Many marine mammal populations share histories of dramatic decline due to hunting and other human impacts. Genomics provides a promising tool with which to expand our insights into these historical population changes, which so far primarily have been derived from archival review and traditional genetic approaches (Ruegg et al. 2013; Sremba et al. 2015). More recently, since the implementation of national and international protections, many marine mammal populations have partially or fully recovered (Magera et al. 2013), yet the conservation status of certain marine mammal populations remains of concern. Such vulnerable populations could benefit greatly from an improved understanding of their genetic diversity and evolution, especially in ways that can inform predictions of adaptive capacity to anthropogenic pressures and expand the toolkit for conservation policy (Garner et al. 2016; Taylor and Gemmell 2016).

Recent trends in marine mammal genomics

We conducted a meta-analysis of the peer-reviewed marine mammal genomics literature to evaluate trends in publication rates across research methodologies and aims. A search of the Web of Science database using the term "genom*" and one of the following terms indicating study species - "marine mammal", "pinniped", "seal", "sea lion", "sea otter", "whale", "dolphin", "polar bear", "manatee" - identified 825 records on December 11, 2015. We excluded 77% of the search results that were not directly related to genomic studies in marine mammal systems. The remaining 101 articles that were relevant to marine mammal genomics were further categorized by primary research methodology and general research aim. A subset of these articles is described briefly in Supplemental Table 1.

51 136

 From the early 1990s through 2015, published literature in the field shifted from an early focus on mitogenome sequencing to more sequence-intensive approaches, such as transcriptome and whole genome sequencing (Figs 2 and 4). This trajectory closely follows trends in sequencing technologies, from Sanger sequencing of short- and long-range PCR products for mitogenome sequencing (Arnason et al. 1991) and SNP discovery (Olsen et al. 2011), to high-throughput sequencing of reduced-representation genomic libraries (RRLs) that consist of selected subsets of the genome (e.g., Viricel et al. 2014), to high-throughput sequencing of whole genomes with varying levels of depth, coverage, and contiguity. Today, high-throughput sequencing can be used both to generate high-quality reference genome assemblies (Yim et al. 2014; Foote et al. 2015; Humble et al. 2016) and to re-sequence whole genomes at a population scale (Liu et al. 2014a; Foote et al. 2016). Similarly, the scale of gene expression studies has increased from quantitative real-time PCR of candidate genes (Tabuchi et al. 2006) to microarrays containing hundreds to thousands of genes (Mancia et al. 2007) and high-throughput RNAseq that evaluates hundreds of thousands of contigs across the genome (Khudyakov et al. 2015b). As the cost of high-throughput sequencing continues to decline, we anticipate an increase in studies that sequence RRLs, whole genomes, and transcriptomes in NMOs at a population scale.

Marine mammal genomic studies thus far have primarily contributed to the fields of phylogenomics and comparative genomics (Fig 2, Table S1). Several of these comparative genomics studies have aimed to improve our understanding of the mammalian transition to an aquatic lifestyle and describe the evolutionary relationships within and among marine mammals and their terrestrial relatives (McGowen et al. 2014; Foote et al. 2015). Whereas such studies require only a single representative genome per species, an emerging class of studies applying genomic techniques at a population scale enables further investigations of fitness, demography, and population structure within species (Table S1). However, expanding the scale of genomic studies requires careful selection of an appropriate method for data generation and analysis from a growing number of approaches that are becoming available to non-model systems.

Data generation

Our review of marine mammal genomics highlights an increasing number of options for the generation and analysis of genomic data. Choosing which of these sequencing strategies to apply is a key step in any genomics study. Here we describe approaches that have been used successfully in order to help guide future studies of ecological, physiological, and evolutionary genomics in NMOs. Across data generation methods, we highlight approaches that can be used

Page 7 of 95

Manuscripts submitted to Journal of Heredity

 with limited or no prior genomic resources, overcoming one traditional challenge of genomic studies of NMOs (the need for a reference genome to which sequencing reads can be mapped). These methods produce a range in quantity and type of data output, from hundreds of SNPs to whole genome sequences, and from single individuals to population samples, reflecting the trade-off between number of samples and amount of data generated per sample.

Sample collection, storage and extraction

Prior to starting a genomic study, researchers must recognize that many recent methods for high-throughput sequencing require genetic material of much higher quality and quantity than techniques used to characterize traditional genetic markers. These more stringent sample requirements necessitate new standards for tissue sampling, storage, and DNA/RNA extraction. Ideally, samples should be collected from live or newly deceased individuals and stored at -80° C, or when this is not possible at -20°C in RNAlater, Trizol, ethanol, salt-saturated DMSO, or dry, depending on the intended application. Given the sensitivity of new sequencing methods, great care should be taken to minimize cross-contamination during sampling, as even minute amounts of genetic material from another individual can bias downstream analyses, for example variant genotyping and gene expression profiles. Choice of extraction method varies with sample type and study aim, but typically genomic methods require cleanup and treatment with RNase to yield pure extracts, whereas RNAseq methods require rigorous DNase treatment to remove genomic contamination that can bias expression results. Depending on the genomic methodology, target quantities for a final sample may range from as low as 50 ng of DNA for some RRL sequencing methods (Andrews et al. 2016) up to ~ 1 mg for sequencing the full set of libraries (of different insert sizes) necessary for high-quality genome assemblies (Ekblom and Wolf 2014). Most commercial RNAseq library preparation services require at least 500-1,000 ng of pure total RNA that shows minimal degradation as measured by capillary gel electrophoresis (RNA Integrity Number (RIN) > 8). Samples should ideally consist of high molecular weight genetic material (with little shearing), though continuing molecular advances enable genomic sequencing even of low quantity or poor quality starting material. Extreme examples of the latter include successfully sequenced whole genomes from ancient material (e.g., Rasmussen et al. 2010; Meyer et al. 2012; Allentoft et al. 2015), including a more than 500,000-year-old horse (Orlando et al. 2013).

- Reduced-representation genome sequencing *i. RADseq* Reduced-representation sequencing methods evaluate only a small portion of the genome, allowing researchers to sequence samples from a larger number of individuals within a given budget in comparison to sequencing whole genomes. Restriction site-associated DNA sequencing (RADseq) is currently the most widely used RRL sequencing method for NMOs (Davey et al. 2011; Narum et al. 2013; Andrews et al. 2016). RADseq generates sequence data from short regions adjacent to restriction cut sites and therefore targets markers that are distributed relatively randomly across the genome and occur primarily in non-coding regions. This method allows simultaneous discovery and genotyping of thousands of genetic markers for virtually any species, regardless of availability of prior genomic resources. Of greatest interest are variable markers, characterized either as single SNPs or phased alleles that can be resolved from the identification of several variants within a single locus. The large number of markers generated by RADseq dramatically increases genomic resolution and statistical power for addressing many ecological and evolutionary questions when compared to studies using traditional markers (Table S1). For example, heterozygosity fitness correlations in harbor seals (*Phoca vitulina*) were nearly fivefold higher when using 14,585 RADseq SNPs
 - than when using 27 microsatellite loci (Hoffman et al. 2014). A recent study on the Atlantic walrus (Odobenus rosmarus rosmarus) using 4,854 RADseq SNPs to model demographic changes in connectivity and effective population size associated with the Last Glacial Maximum (Shafer et al. 2015) both supported and extended inferences from previous studies using traditional markers (Shafer et al. 2010; Shafer et al. 2014).

Furthermore, RADseq can provide sufficient numbers of markers across the genome to identify genomic regions influenced by natural selection. These analyses require large numbers (thousands to tens of thousands) of markers to ensure that some markers will be in linkage disequilibrium with genomic regions under selection and to minimize false positives, particularly under non-equilibrium demographic scenarios (Narum and Hess 2011; De Mita et al. 2013; Lotterhos and Whitlock 2014). Extreme demographic shifts, as experienced by many marine

Page 9 of 95

mammal populations (e.g., killer whales, Foote et al. 2016), can drive shifts in allele frequencies that confound the distinction of drift and selection and make it difficult to detect genomic signatures of selection (Poh et al. 2014). Proof of concept of the application of RADseq for identifying genomic signatures of selection in wild populations was demonstrated in three-spined sticklebacks (Gasterosteus aculeatus), for which analyses of over 45,000 SNPs (Hohenlohe et al. 2010) identified genomic regions of known evolutionary importance associated with differences between marine and freshwater forms (Colosimo et al. 2005; Barrett et al. 2008). RADseq studies with similar aims in marine mammals have resulted in comparatively sparser sampling of SNPs (<10,000), likely due to both methodological differences and generally low genetic diversity particularly among cetaceans. Nonetheless, genomic regions associated with resistance to harmful algal blooms in common bottlenose dolphins (Tursiops truncatus) were identified across multiple pairwise comparisons using 7,431 RADseq SNPs (Cammen et al. 2015), and genomic regions associated with habitat use and resource specialization in killer whales (Orcinus orca) were identified using 3,281 RADseq SNPs (Moura et al. 2014a). Some of these RADseq SNPs associated with diet in killer whales were later also confirmed as occurring in genomic regions of high differentiation and reduced diversity consistent with a signature of selection identified in a study utilizing whole genome re-sequencing (Foote et al. 2016). It will remain important for further studies of genomic signatures of selection in NMOs to carefully consider which approach will generate a sufficiently large number of SNPs to accurately identify the range of putatively neutral F_{ST} values (and thus outliers) given the demographic history of the population (Lotterhos and Whitlock 2014).

Numerous laboratory methods have been developed for generating RADseq data (reviewed in Andrews et al. 2016), with the most popular library preparation methods currently being the original RAD (Miller et al. 2007; Baird et al. 2008), Genotyping by Sequencing (GBS, Elshire et al. 2011; Poland et al. 2012), and double digest RAD (ddRAD, Peterson et al. 2012). All RADseq methods share the common goal of sequencing regions adjacent to restriction cut sites across the genome, but differ in technical details, such as the number and type of restriction enzymes used, the mechanisms for reducing genomic DNA fragment sizes, and the strategies for attaching sequencing adapters to the target DNA fragments. For example, both the original RAD method and GBS use a single enzyme digest, but the original RAD method uses a rare-cutting

enzyme and mechanical shearing to reduce DNA fragment size (Baird et al. 2008), whereas GBS uses a more frequent-cutting enzyme and relies on preferential PCR amplification of shorter fragments for indirect size selection (Elshire et al. 2011). These modifications lead to differences across methods in the time and cost of library preparation, the number and lengths of loci produced, and the types of error and bias present in the resulting data. Different RADseq methods will be better suited to different research questions, study species, and research budgets, and therefore researchers embarking on a RADseq study should carefully consider the suitability of each method for their individual projects. Further details on the advantages and disadvantages of each method are described in Andrews et al. (2016).

274 ii. SNP arrays

An alternative high-throughput reduced-representation genotyping approach involves the use of custom arrays designed to capture and sequence targeted regions of the genome. Such array-based approaches may provide certain advantages over RADseq, including the ability to easily estimate genotyping error rates, scalability to thousands of samples, lower requirements for DNA quantity/quality and technical effort, greater comparability of markers across studies, and the ability to genotype SNPs within candidate genomic regions. However, unlike RADseq, array-based techniques require prior knowledge of the study system's genome or the genome of a closely related species, which remains unavailable for some NMOs. Furthermore, SNP arrays must take into account the potential for ascertainment bias (e.g., Malenfant et al. 2015), whereas RADseq avoids ascertainment bias by simultaneously discovering and genotyping markers.

To identify SNPs for NMO array development, researchers must rely on existing genomic resources or generate new reference sequences, in the form of whole or reduced-representation genomes or transcriptomes (Hoffman et al. 2012; Malenfant et al. 2015). When a whole genome reference assembly is available for the target species or a related species, multiplex shotgun sequencing can facilitate the rapid discovery of hundreds of thousands of SNPs for array development. This SNP discovery approach involves high-throughput sequencing of sheared genomic DNA that can be sequenced at a low depth of coverage (i.e., low mean read depth across the genome) if suitable genotype likelihood-based methods (O'Rawe et al. 2015) are used to identify polymorphic sites. Thus, this approach is less restrictive in terms of DNA quality. For

example, shotgun sequencing of 33 Northeast Atlantic common bottlenose dolphins, which included degraded DNA collected from stranded specimens, on one Illumina HiSeq2000 lane of 100 bp single-end sequencing identified 440,718 high-quality SNPs (M. Louis unpublished data). Such dense sampling of SNPs is essential for studies of population genomics that require a large number of markers, such as for inferences of demographic history (Gutenkunst et al. 2009; Excoffier et al. 2013; Liu and Fun 2015) and selective sweeps (Chen et al. 2010). Once a set of putative markers has been identified, hybridization probes can be designed from their flanking sequences and printed onto a SNP array. The two principal SNP genotyping platforms supporting thousands to millions of SNPs are the Illumina Infinium iSelect® and Affymetrix Axiom® arrays.

The use of SNP arrays in NMOs has thus far been somewhat limited, potentially due to low SNP validation rates (Chancerel et al. 2011; Helvar et al. 2011), issues of ascertainment bias (Albrechtsen et al. 2010; McTavish and Hillis 2015), and cost of SNP discovery. However, using both SNP data and whole genome sequence from the Antarctic fur seal (Arctocephalus gazella), Humble et al. (2016) recently demonstrated that careful filtering based on SNP genomic context prior to array development has the potential to substantially increase assay success rates. Further, ascertainment bias can be reduced by selecting samples for SNP discovery that span the geographic range of populations that will be target sequenced (Morin et al. 2004). By accounting for ascertainment bias, Malenfant et al. (2015) were able to demonstrate population structure in Canadian polar bears (Ursus maritimus) more clearly using a 9K SNP array than 24 microsatellite markers.

iii. Target sequence capture

Target sequence capture (TSC, also called target enrichment, direct selection, or Hyb-seq) has many of the same advantages and disadvantages as the array-based SNP approaches described above, but differs in library preparation, sequencing platform, and resulting sequence data. While SNP arrays genotype single variable positions, TSC can be used to sequence selected short fragments. With TSC, researchers can amplify and sequence up to a million target probes on solid-state arrays, and even more if in-solution arrays are used. This gives the user the ability to choose to sequence many samples in parallel (Cummings et al. 2010), as many as 100-150 per

Illumina HiSeq lane, or to sequence many regions per individual. Recent advances in target enrichment, such as genotyping in thousands (Campbell et al. 2015), anchored hybrid enrichment (Lemmon et al. 2012), and target capture of ultraconserved elements (UCEs, Faircloth et al. 2012; McCormack et al. 2012), have further increased the number of regions and individuals that can be sampled in a single lane. In addition, UCEs overcome the need for a reference genome, enabling their wide application across many NMOs (though designing custom probe sets from closely related species will remain preferable in many cases (Hancock-Hanser et al. 2013)). Although a number of methodological variants have been developed and optimized (Bashiardes et al. 2005; Noonan et al. 2006; Hodges et al. 2009; Cummings et al. 2010; Mamanova et al. 2010; Hancock-Hanser et al. 2013), TSC generally relies on hybridization and amplification of specially prepared libraries consisting of fragmented genomic DNA. Many companies offer kits for TSC, such as Agilent (SureSelect) and MYcroarray (MYbaits), with MYcroarray specifically marketing their kits for use with NMOs.

The most common use of TSC has been the capture of whole exomes in model organisms, including humans (Ng et al. 2009). However, as costs have plummeted, TSC is increasingly being used in investigations of NMOs. TSC is particularly useful in sequencing ancient DNA, where it can enrich the sample for endogenous DNA content relative to exogenous DNA (i.e., contamination) and thereby increase the relative DNA vield (Ávila-Arcos et al. 2011; Enk et al. 2014). For example, TSC has been used to generate mitogenome sequences from subfossil killer whale specimens originating from the mid-Holocene for comparison with modern lineages (Foote et al. 2013). TSC was also recently utilized to compare >30 kb of exonic sequence from museum specimens of the extinct Steller's sea cow (*Hvdrodamalis gigas*) and a modern dugong (Dugong dugon) specimen to investigate evolution within Sirenia (Springer et al. 2015). Springer et al. (2016) further used TSC to examine gene evolution related to dentition across edentulous mammals, including mysticetes. Finally, TSC of both exonic and intronic regions has been used to assess genetic divergence across cetacean species (Hancock-Hanser et al. 2013; Morin et al. 2015). These studies show the potential use of TSC across evolutionary timescales for population genomics, phylogenomics, and studies of selection and gene loss across divergent lineages (Table S1).

Page 13 of 95

357 <u>Whole genome sequencing</u>

Beyond advances enabled by the reduced-representation methods presented above, our power and resolution to elucidate evolutionary processes, including selection and demographic shifts, can be further increased by sequencing whole genomes.

i. Reference genome sequencing

At the time of publication, there are 12 publicly available¹ whole (or near-whole) marine mammal genomes of varying quality representing 10 families, including 7 cetaceans (Fig 1A), 3 pinnipeds (Fig 1B), the West Indian manatee (*Trichechus manatus*), and the polar bear. The first sequenced marine mammal genome was that of the common bottlenose dolphin, which was originally sequenced to $\sim 2.5x$ depth of coverage using Sanger sequencing (Lindblad-Toh et al. 2011). This genome was later improved upon by adding both 454 and Illumina HiSeq data (Foote et al. 2015). Other subsequent marine mammal genomes were produced solely using Illumina sequencing and mate-paired or paired-end libraries with varied insert sizes (Miller et al. 2012; Zhou et al. 2013; Yim et al. 2014; Foote et al. 2015; Keane et al. 2015; Kishida et al. 2015; Humble et al. 2016).

32 373

Whole genome sequencing has been used to address many issues in marine mammal genome evolution, usually by comparison with other existing mammalian genomes. Biological insights discussed in the genome papers listed above include the evolution of transposons and repeat elements, gene evolution and positive selection, predicted population structure through time, SNP validation, molecular clock rates, and convergent molecular evolution (Table S1). For example, analyses of the Yangtze river dolphin (Lipotes vexillifer) genome confirmed that a bottleneck occurred in this species during the last period of deglaciation (Zhou et al. 2013). In addition, following upon earlier smaller-scale studies (e.g., Deméré et al. 2008; McGowen et al. 2008; Havden et al. 2010), genomic analyses have confirmed the widespread decay of gene families involved in olfaction, gustation, enamelogenesis, and hair growth in some cetaceans (Yim et al. 2014; Kishida et al. 2015). Perhaps the most widespread use of whole genome studies

¹ These genomes are available on NCBI's online genome database or Dryad, but they have not all been published. As agreed upon in the Fort Lauderdale Convention, the community standard regarding such unpublished genomic resources is to respect the data generators' right to publish with these data first.

has been the use of models of selection to detect protein-coding genes that show evidence of natural selection in specific lineages. A recent study by Foote et al. (2015) extended this approach to investigate convergent positive selection among cetaceans, pinnipeds, and sirenians. This study exemplifies a trend in recent genomic studies that sequence multiple genomes to address a predetermined evolutionary question, in this case, the molecular signature of aquatic adaptation.

In addition to these evolutionary insights that typically stem from a comparative genomics approach, the development of high-quality reference genome assemblies provide an important resource that facilitates mapping of reduced-representation genomic data (see previous section) as well as short-read sequencing data with relatively low depth of coverage (see following section). These data types can be generated at relatively low cost on larger sample sizes enabling population-scale genomic studies. In many cases, genome assemblies from closely related species are sufficient for use as a reference. Particularly among marine mammals, given their generally slow rate of nucleotide divergence, it is therefore likely unnecessary to sequence a high-quality reference genome assembly for every species. Instead, resources could be allocated toward population-scale studies, including genome re-sequencing efforts.

ii. Population-level genome re-sequencing

In contrast to reference genome sequencing that today often exceeds 100x mean read depth and typically combines long- and short-insert libraries to generate high-quality assemblies for one to a few individuals, genome re-sequencing studies aim to achieve only $\geq 2x$ mean read depth on tens to hundreds of individuals from short-insert libraries whose reads are anchored to existing reference assemblies. Despite the inherent trade-offs between cost, read depth, coverage, and sample size, genome re-sequencing of large numbers of individuals for population-level inference can be conducted at a relatively low cost. In the past five years, several influential studies have used genome re-sequencing to advance our understanding of the genomic underpinnings of different biological questions in model systems. For example, population genomics of *Heliconius* butterflies highlighted the exchange of genes between species that exhibit convergent wing patterns (The Heliconius Genome Consortium 2012); whole genome re-sequencing of three-spined sticklebacks highlighted the re-use of alleles in replicated

Page 15 of 95

Manuscripts submitted to Journal of Heredity

1	
3	416
4 5	/17
6	410
7 8	418
9	419
10 11	420
12	421
13 14	422
15 16	423
17 18	424
19	425
20 21	426
22 23	427
24 25	428
26 27	429
28	430
29 30	431
31	432
32 33	122
34 35	455
36	434
37 38	435
39	436
40 41	437
42	438
43 44	439
45 46	440
40 47	441
48 49	441
50	442
51 52	443
53	444
54 55	445
56	446
57 58	1-TU
59	

416 divergences associated with ecological speciation and local adaptation (Jones et al. 2012); and 417 combined population genomics and phylogenomics have identified regions of the genome 418 associated with variation in beak shape and size in Darwin's finches (Lamichhaney et al. 2015). 419

420 To date only two marine mammal population genomics studies using whole genome re-421 sequencing have been published. These studies involved re-sequencing the genomes of 79 422 individuals from three populations of polar bears (Liu et al. 2014a) and 48 individuals from five 423 evolutionarily divergent ecotypes of killer whale (Foote et al. 2016). The findings of Foote et al. 424 (2016) confirmed results of population differentiation that had previously been established using 425 traditional genetic markers (Morin et al. 2010a). However, the study also provided new insights 426 into the demographic history, patterns of selection associated with ecological niche, and evidence 427 of episodic ancestral admixture that could not have been obtained using traditional markers.

429 Several new resources have made such population genomic studies economically possible for a 430 greater number of NMOs, including the availability of reference genome assemblies (see section 431 above), relatively low-cost high-throughput sequencing (further increases in throughput expected 432 with the new Illumina HiSeq X Ten (van Dijk et al. 2014)), and crucially, the development of 433 likelihood-based methods that allow estimation of population genetic metrics from re-sequencing 434 data (Fumagalli et al. 2013; O'Rawe et al. 2015). One last consideration is the ease of laboratory 435 methods necessary to generate whole genome re-sequencing data when compared to other 436 methods such as RADseq or TSC. DNA simply needs to be extracted from the samples and, 437 using proprietary kits, built into individually index-amplified libraries that are equimolarly 438 pooled and submitted for sequencing.

60

440 Many population genomic analyses are based on the coalescent model that gains most 441 information from the number of independent genetic markers, not the number of individuals 442 sampled. Sample sizes of ~ 10 individuals are usually considered sufficient (Robinson et al. 443 2014) and have been standard in many genome-wide studies in the eco-evolutionary sciences 444 (Ellegren et al. 2012; Jones et al. 2012). Thus, sampling fewer individuals by whole genome re-445 sequencing is a salient approach that allows us to consider many more gene trees, whilst 446 continuing to provide robust estimates of per-site genetic metrics (e.g., F_{ST}). The robustness of

inference from data with low mean read depth across the genome was recently confirmed using a comparison of per-site F_{ST} estimates for the same sites from high-depth ($\geq 20x$) RADseq data and low-depth ($\approx 2x$) whole genome re-sequencing data in pairwise comparisons between the same two killer whale ecotypes (Foote et al. 2016).

Beyond the increased power afforded by sequencing more polymorphic sites, whole genome re-sequencing also allows inference of demographic history from the genome of even just a single individual by identifying Identical By Descent (IBD) segments and runs of homozygosity (Li and Durbin 2011; Harris and Nielsen 2013). For example, Liu et al. (2014a) found evidence for ongoing gene flow from polar bears into brown bears after the two species initially diverged. Genome re-sequencing of sufficient numbers of individuals also facilitates haplotype phasing, which has many applications, including the detection of ongoing selective sweeps (Ferrer-Admetlla et al. 2014) and the inference of demographic history of multiple populations based on coalescence of pairs of haplotypes in different individuals (Schiffels and Durbin 2014). However, haplotype phasing typically requires genomic data with higher mean read depth ($\sim 20x$) from tens of individuals (though recent advances in genotype imputation suggest success with data of lower mean read depth (VanRaden et al. 2015)). Thus far, phasing has been restricted to relatively few NMO studies, and no marine mammal studies to the best of our knowledge.

Transcriptome sequencing

In comparison with the DNA-based genomic approaches described above, RNA-based genomic approaches are a relatively new and emerging application in NMOs such as marine mammals. Transcriptomics by RNA sequencing (RNAseq) can rapidly generate vast amounts of information regarding genes and gene expression without any prior genomic resources. This approach can resolve differences in global gene expression patterns between populations, individuals, tissues, cells, and physiological or environmental conditions, and can yield insights into the molecular basis of environmental adaptation and speciation in wild animals (Wolf 2013; Alvarez et al. 2015). Furthermore, RNAseq is a valuable tool for resource development, for example as a precursor to designing SNP and TSC arrays (e.g., Hoffman et al. 2012). However, applying RNAseq to NMOs requires several unique considerations in comparison to the DNA-based methods described above. Most importantly, the labile nature of gene transcription and

478 high detection sensitivity of RNAseq have the potential to amplify transcriptional "noise" and479 are thus extremely sensitive to experimental design.

If the experimental goal is to capture a comprehensive transcriptome profile for a study organism, multiple tissues from individuals of varied life history stages should be sampled. However, if the aim is to characterize transcriptional responses to physiological or environmental stimuli, efforts should focus on minimizing variability in individuals and sampling conditions (Wolf 2013). For differential expression analyses, pairwise comparisons should be made within the same individual if at all possible (e.g., before and after treatment, between two developmental stages). As RNAseq only captures a 'snapshot' of gene expression in time, repeated sampling or time-course studies are necessary to obtain a more complete picture of cellular responses to the condition(s) in question (Spies and Ciaudo 2015). Sampling and sequencing depth requirements will depend on the study design. Simulation studies have shown that a minimum of 5-6 biological replicates sequenced at a depth of 10-20 million reads per sample is necessary for differential expression analysis (Liu et al. 2014b; Schurch et al. 2015). RNAseq can also be used for biomarker development to expand molecular toolkits for NMOs without sequenced genomes (Hoffman et al. 2013). In this case, higher sequencing depths of 30-60 million reads per sample are recommended for SNP discovery and genotyping (De Wit et al. 2015).

Following sequence generation, transcript annotation remains a challenge for NMOs without reference transcriptomes or genomes. *De novo* transcriptomes can be annotated through detection of assembled orthologs of highly conserved proteins, but these analyses remain limited by the quality of reference databases. As a result, NMO transcriptomes are biased in favor of highly conserved terrestrial mammal genes and therefore provide an incomplete understanding of animal adaptations to natural environments (Evans 2015). For example, while 70.0% of northern elephant seal (*Mirounga angustirostris*) skeletal muscle transcripts had BLASTx hits to mouse genes, only 54.1% of blubber transcripts could be annotated due to poor representation of this tissue in terrestrial mammal reference proteomes (Khudyakov et al. 2015b).

 To date, RNAseq has been used for gene discovery and phylogenomics analyses in Antarctic fur seal (Hoffman 2011; Hoffman et al. 2013), polar bear (Miller et al. 2012), Indo-Pacific humpback dolphin (Sousa chinensis (Gui et al. 2013)), spotted seal (Phoca largha (Gao et al. 2013)), bowhead whale (Balaena mysticetus (Seim et al. 2014)), narrow-ridged finless porpoise (Neophocaena asiaeorientalis (Ruan et al. 2015)), and humpback whale (Megaptera novaeangliae (Tsagkogeorga et al. 2015)) (Table S1). Due to the challenges of repeated sampling of wild marine mammals, few studies have examined cetacean or pinniped transcriptome responses to environmental or experimental stimuli. The majority of such functional gene expression studies have used microarrays (Mancia et al. 2008; Mancia et al. 2012; Mancia et al. 2015); however, RNAseq has been employed to profile sperm whale (*Physeter macrocephalus*) skin cell response to hexavalent chromium (Pabuwal et al. 2013) and free-ranging northern elephant seal skeletal muscle response to an acute stress challenge (Khudyakov et al. 2015a; Khudyakov et al. 2015b). With decreasing sequencing costs and improvements in bioinformatics tools, RNAseq has the potential to accelerate molecular discoveries in marine mammal study systems and supplement existing functional genomics approaches.

Emerging techniques

In addition to the relatively proven NMO genomic data generation techniques described above, a suite of emerging techniques is entering the field, with exciting promise for exploration of existing and new research areas. For example, high-throughput shotgun sequencing is increasingly being used to identify genetic material from multiple species in a single sample (metagenomics and metatranscriptomics), rather than focus on characterizing variation in a single target individual. These multi-species approaches can be used, for example, to characterize diet from fecal samples (Deagle et al. 2009) and to investigate microbiomes (Nelson et al. 2015), objectives with implications for improving our understanding of both basic ecology and health in natural populations of NMOs. Furthermore, high-throughput sequencing of environmental DNA dramatically increases the throughput of NMO detection in environmental (e.g., seawater) samples (Thomsen et al. 2012), using degenerate primers for multi-species detection rather than requiring the design and implementation of numerous single-species protocols (Foote et al. 2012).

http://mc.manuscriptcentral.com/joh

3 4	539
5 6	540

A second broad area of emerging interest moves beyond the study of variation at the DNA and RNA levels to examine epigenetic effects of histone modification on gene regulation and evolution. Epigenomic studies often examine changes in DNA methylation in association with processes such as cancer and ageing. Such approaches, from targeted gene to genome-wide, have only very recently and not yet frequently been applied in NMOs. Polanowski et al. (2014) used a targeted gene approach to examine changes in DNA methylation in age-associated genes, previously identified in humans and mice, in humpback whales of known age. The most informative markers were able to estimate humpback whale ages with standard deviations of approximately 3-5 years, demonstrating the potential transferability of these approaches from model to non-model organism. Villar et al. (2015) utilized a genome-wide approach – chromatin immunoprecipitation followed by high-throughput sequencing (ChIPseq) - to examine gene regulatory element evolution across mammals, including four species of cetaceans. This study identified highly conserved gene regulatory elements based on their histone modifications (H3K27ac and H3K4me3), showed that recently evolved enhancers were associated with genes under positive selection in marine mammals, and identified unique *Delphinus*-specific enhancers. Finally, reduced-representation epigenomic approaches have also been developed (Gu et al. 2011), and although they have not yet been used in marine mammals to our knowledge, these techniques could facilitate future studies of how changes in DNA methylation patterns affect other biological processes, such as stress levels or pregnancy.

Data analysis

Following the generation of genomic data, researchers must select the most appropriate genomic analysis (i.e., bioinformatics) pipelines, which often differ significantly from those used in traditional genetic studies of NMOs. The choice of analysis pipeline will depend on multiple factors including the availability of a reference genome, the level of diversity within the dataset (e.g., single- or multi-species), the type of data generated (e.g., single- or paired-end), and the computing resources available. The computational needs, both in terms of hardware and competency in computer science, for analysis of genomic data typically far exceed those necessary for traditional genetic markers. On the smaller end of the spectrum, one lane of 50 bp single-end sequencing on an Illumina HiSeq 2500 can produce tens of gigabytes of data, while

data files associated with a single high-quality vertebrate genome may reach hundreds of gigabytes in size (Ekblom and Wolf 2014). Computing resources necessary for the analysis of these genomic datasets can range from ~10 gigabytes for a pilot study using a reduced-representation sequencing approach to over a terabyte for whole genome sequence assembly (Ekblom and Wolf 2014). Fortunately, university computing clusters, cloud-based (Stein 2010) and high-performance computing clusters (e.g., XSEDE; Towns et al. 2014), and open web-based platforms for genomic research (e.g., Galaxy; Goecks et al. 2010) are becoming increasingly accessible. Furthermore, new pipelines are continuously being developed and improved, and there are a growing number of resources aimed at training molecular ecologists and evolutionary biologists in computational large-scale data analysis (Andrews and Luikart 2014; Belcaid and Toonen 2015; Benestan et al. 2016). We provide an indicative list of the current, most commonly used analysis pipelines that are specific to each data generation method in Table 1. Here we briefly summarize current genomic data analysis pipelines and discuss considerations that are likely to be similar across multiple data generation methods. Genomic data analysis often involves multiple steps, and the choice of analysis tool for each step

can greatly affect the outcome, with different tools producing different (though usually overlapping) sets of results (e.g., Schurch et al. 2015). All analyses begin by evaluating data quality, trimming sequences if necessary to remove erroneous nucleotides (MacManes 2014), and implementing appropriate data quality filters (e.g., phred scores, read length, and/or read depth). Raw reads also need to be demultiplexed based on unique barcodes if pools of individuals were sequenced in a single lane. Analyses then usually proceed in a *de novo* or genome-enabled manner, depending on available resources. Briefly, sequences can be compared (e.g., to identify variants) by mapping all reads to a reference genome or *de novo* assembling stacks of sequences putatively derived from the same locus based on sequence similarity. De *novo* methods are sensitive to sequencing error, as well as true genetic variation, and therefore can erroneously assemble polymorphic sequences as separate loci or transcripts, requiring further filtering to remove redundancy. The opposite problem can also occur in both de novo and reference mapping approaches, where two distinct loci (e.g., paralogous loci) may assemble as a single locus or map to the same reference location. Researchers should therefore recognize the

Page 21 of 95

600	inherent trade-offs when carefully selecting their thresholds for acceptable levels of variation
601	within and among loci.

Considerations relevant to the selection of subsequent downstream analyses are specific to the type of data generated and the research objective. For example, RADseq analysis pipelines differ in the algorithms used to genotype variants (Table 1). Similarly, there are several gene expression analysis pipelines for RNAseq data that compare transcript abundance between samples (Table 1). Analysis of TSC data usually uses standard de novo assemblers (e.g., Trinity, Velvet); these assemblers can be run using packages such as PHYLUCE (Faircloth 2015), which is designed specifically for use with ultraconserved elements. Unfortunately, for most analyses, there are no unifying recommendations currently available and researchers must evaluate several approaches, each with their own advantages and disadvantages, in order to select the most appropriate tool for their particular experiment and system. Furthermore, we can expect that the recommendations for analysis tools will continue to evolve as new programs become available in the future.

30 615

32 616 <u>Guidelines for data quality control and sharing</u>

With rapid growth in sequencing platforms and bioinformatics analysis pipelines comes the need to extend existing principles (e.g., Bonin et al. 2004) on quality control, analysis, and transparency. General recommendations for sample and data handling, library preparation, and sequencing have been discussed elsewhere (Paszkiewicz et al. 2014). We therefore focus on the need to produce guidelines on data quality evaluation and reporting for genomic data (e.g., Morin et al. 2010b). A primary challenge in this area is that quality metrics vary widely across sequencing technologies. Yet, regardless of sequencing platform, the quality of sequencing reads must be evaluated (e.g., using FastQC; Andrews 2010) and reported.

 Best practices guidelines for reference genome sequencing and RNAseq data generation, analysis, and reporting are available from the human-centric ENCODE consortium (www.encodeproject.org). These include minimum depth of sequencing and number and reproducibility of biological replicates. For RNAseq experiments, evaluation of *de novo*

630 assembly quality remains a challenge. Suggested quality metrics include percentage of raw reads

mapping back to the assembly and number of assembled transcripts with homology to known
proteins (MacManes 2016). Emerging tools such as Transrate (Smith-Unna et al. 2015) attempt
to integrate these and other metrics into a comprehensive assembly quality score.

In contrast, there is not yet any standard way to estimate or report error rates with RADseq or genome re-sequencing methods (but see Mastretta-Yanes et al. 2015; Fountain et al. 2016). Recommendations to improve confidence in genotyping include using methods that account for population-level allele frequencies when calling individual genotypes, mapping reads to reference genomes rather than *de novo* assembly (Nadeau et al. 2014; Fountain et al. 2016), filtering out PCR duplicates (Andrews et al. 2014), identifying and removing markers in possible repeat regions, and filtering data to include only those with high read depth (>10-20x per locus per individual) (Nielsen et al. 2011). Other analysis methods, such as robust Bayesian methods and likelihood-based approaches that account for read quality in calculations of posterior probabilities of genotypes and per-site allele frequencies utilizing the sample mean site frequency spectrum as a prior (Fumagalli et al. 2013), can account for uncertainty and/or error in the data, and are therefore suitable for use with low to moderate read depths (2-20x per locus; e.g., Han et al. 2015; O'Rawe et al. 2015).

Due to the large number of analysis tools that are available, data quality and reproducibility ultimately depend on methods and data transparency. All raw sequencing reads should be publicly archived, for example deposited in the NCBI Sequence Read Archive. Many journals, including the *Journal of Heredity* (Baker 2013), now also require that primary data supporting the published results and conclusions (e.g., SNP genotypes, assemblies) be publicly archived in online data repositories (e.g., Dryad). We further recommend making public the analysis pipelines, scripts (e.g., using GitHub), and additional outputs, as appropriate, in order for analyses to be fully reproducible and transparent, which is the cornerstone of the scientific method (Nosek et al. 2015).

51 658

Future directions

As demonstrated here for one group of mammalian taxa, the rapid growth of the field of nonmodel genomics has been both impressive and empowering. As we approach a point of relative

saturation in reference genomes, we anticipate an increase in population-scale genomic studies that produce lower depth or coverage datasets per individual but across larger sample sizes. In addition (or alternatively), we hope to see increasing efforts to sequence reference transcriptomes and improve NMO genome annotation in ways beyond the inherently limited approach of comparison to gene lists from a few model organisms. Population-scale genomic studies will facilitate greater ecological understanding of natural populations, while efforts to improve annotation will address persistent limitations in our understanding of gene function for NMOs. Ultimately, improving our understanding of local adaptation, adaptive potential, and demographic history through the use of genomic toolkits such as those described here is likely to have important implications for the future conservation of these populations.

Advances in sequencing technologies and analytical tools will no doubt continue, in some cases drawing on established techniques in model organisms, posing both new opportunities and new challenges for researchers in NMO genomics. Likely the most persistent challenge will remain selecting the data generation and experimental design that is most appropriate for the respective research objective. Our review identified few cases that exhibit relative dominance of a single methodology and analytical pipeline (e.g., RADseq and STACKS, RNAseq and Trinity); rather, more often we found a diversity of approaches even within each category of data generation. In fact, such diversity of approaches has its benefits, with each approach promoting its own advantages (and limitations). Overall, our reflections on lessons learned from the past decade of NMO genomics in one well-studied group of mammalian taxa clearly demonstrate the value, increased ease, and future promise of applying genomic techniques across a wide range of non-model species to gain previously unavailable insights into evolution, population biology, and physiology on a genome-wide scale.

687 Acknowledgements

This review paper is the outcome of two international workshops held in 2013 and 2015 on marine mammal genomics. The workshops were organized by KMC, AF, and C. Scott Baker and hosted by the Society for Marine Mammalogy, with support from a Special Event Award from the American Genetic Association. We sincerely thank all the workshop participants for their contributions to inspiring discussions on marine mammal genomics. We would also like to thank

2		
3 4 5 6 7	693	two anonymous reviewers and C. Scott Baker for their helpful feedback on an earlier version of
	694	this manuscript. Illustrations are by C. Buell with permission for use granted by J. Gatesy.
	695	
8 9	696	Funding
10	697	The authors involved in this work were supported by a National Science Foundation Postdoctoral
12	698	Research Fellowship in Biology (Grant No. 1523568) to KMC; an Office of Naval Research
13 14	699	Award (No. N00014-15-1-2773) to JIK; a Marie Slodowska Curie Fellowship to ELC
15 16 17 18 19	700	(Behaviour-Connect) funded by the EU Horizon2020 program: Royal Society Newton
	701	International Fellowships to FLC and MRM: a Deutsche Forschungsgemeinschaft studentship to
	702	EU: a Evision Foundation postdoataral fallowship to ML: postdoataral funding from the
20	702	EH, a Fyssen Foundation postdoctoral fenowsing to ML, postdoctoral funding from the
21 22	703	University of Idaho College of Natural Resources to KRA; a short visit grant from the European
23	704	Science Foundation-Research Networking Programme ConGenOmics to ADF; and a Swiss
24 25	705	National Science Foundation grant (31003A-143393) to L. Excoffier that further supported ADF.
26 27	706	The first marine mammal genomics workshop we held to begin discussions towards this review
28 20	707	was supported by a Special Event Award from the American Genetic Association.
30	708	
31 32	709	References
33 34	710	Albrechtsen A, Nielsen FC, Nielsen R. 2010. Ascertainment biases in SNP chips affect measures
35	711	of population divergence. Mol Biol Evol. 27:2534-2547.
36	712	Alexander A, Steel D, Hoekzema K, Mesnick S, Engelhaupt D, Kerr I, Payne R, Baker CS.
37 38	713	2016. What influences the worldwide genetic structure of sperm whales (<i>Physeter</i>
39	714	macrocephalus)? Mol Ecol.
40	/15	Allentott ME, Sikora M, Sjogren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB,
41	/10	Schrödeder H, Anistrom I, Vinner L, et al. 2015. Population genomics of Bronze Age
42	/1/	Eurasia. Nature. 522:10/-1/2.
43 44	/10	Alvalez M, Schley AW, Richards CL. 2015. Tell years of transcriptomics in white populations.
45	719	Anders S. Huber W. 2010. Differential expression analysis for sequence count data. Comme
46	720	Riders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome
47	721	Diol. 11.K100. Androws V. Good IM. Miller MD. Luikert G. Hehenlehe DA. 2016. Hernessing the newer of
48	722	Andrews K, Good JM, Miller MK, Luikart G, Hollemolie FA. 2010. Harlessing the power of RADsog for acalegical and evolutionary genemics. Nat Ray Canat, 17:81–02
49 50	723	Androws KP Hohonloho PA Millor MP Hand PK Sooh IE Luikart G 2014 Trada offs and
51	724	utility of alternative PADsee methods: Penly to Puritz at al. 2014. Mol Feel 22:5042
52	725	5046
53	720	J740. Androws KP Luikart G 2014 Pagant noval approaches for population gapomias data analysis
54	728	Mol Ecol. 23:1661 1667
วว 56	720	Andrews S 2010 EastOC: a quality control tool for high throughout sequence data. Available
57	727 730	online at: http://www.bioinformatics.babraham.ac.uk/projects/factor
58	750	onine at <u>http://www.bioinformatics.babranam.ac.uk/projects/lastyc</u>
59		
60		

1		
2	721	Ankony PA Loonalli S 2011 What's so special about model organisms? Studies in History and
4	731	Philosophy of Science 12:313-323
5	733	Armengaud I Trann I Pible O Geffard O Chaumot A Hartmann FM 2014 Non-model
6 7	734	organisms a species endangered by proteogenomics <i>I Proteomics</i> 105:5-18
8	735	Arnason II Adegoke IA Bodin K Born FW Esa VB Gullberg A Nilsson M Short RV Xu X
9	736	Ianke A 2002 Mammalian mitogenomic relationships and the root of the authorian tree
10	730	Proc Natl Acad Sci USA 00.8151 8156
11	738	Arnason II Guillberg A Widegran B 1001. The complete nucleotide sequence of the
12	730	mitochondrial DNA of the fin whale <i>Balagnonterg</i> nhysalus <i>I Mol Evol</i> 33:556 568
13	739	Ávila Arcos M. Cappellini E. Romero Navarro IA. Wales N. Moreno Mayar IV. Rasmussen M.
15	740	Fordyce SL Montial P. Vialla Calzada L P. Willerslav E. at al. 2011 Application and
16	741	roluyce SL, Wolltier K, Vielle-Calzada J-F, Willelslev L, et al. 2011. Application and
17	742 742	DNA Sei Pen 1:74
18	743	DINA. Sci Rep. 1.74. Daird NA Etter DD Atwood TS Currey MC Shiver AL Lewis ZA Selker ELL Creske WA
19	744	Johnson EA. 2008. Danid SND discovery and genetic manning using sequenced BAD
20 21	745	markers <i>PLoS One</i> 2:2276
22	740	Paleor CS 2012 Lowrood of Honodity adopts Joint Data Archiving Policy I Honod 104:1
23	/4/ 7/9	Baker CS. 2013. Journal of Hereally adopts Joint Data Archiving Policy. J Herea. 104.1.
24	740	through a stickloback. Science 222:255 257
25	749	Deshiardes S. Voile D. Helms C. Mardis ED. Deveesely A.M. Lewett M. 2005. Direct conomic
26	750	basinardes S, Vene K, Hennis C, Mardis EK, Bowcock AM, Lovett M. 2005. Direct genomic
21	751	Selection. Nat Methods. 2:03-09. Delasid M. Taanan DL 2015. Demystifting computer science for melacular coelection. Mel
29	152	Each 24.2610, 2640
30	133	ECOL 24:2019-2040. Demoster LM Eershoud A. L. Hahamlaha DA Carman DA Naulan CID Davies ID Sahujarta MK
31	754	Benestan LM, Ferchaud A-L, Honenione PA, Garner BA, Naylor GJP, Baums IB, Schwartz MK,
32	155	Kelley JL, Luikart G. 2016. Conservation genomics of natural and managed populations:
33 34	/30	building a conceptual and practical framework. <i>Mol Ecol</i> .
35	151	Bolger AM, Lonse M, Usadel B. 2014. Infimmomatic: a flexible trimmer for filumina Sequence
36	/38	Data. Bioinformatics. 50:2114-2120. Danin A. Ballamain F. Branken Fidagen B. Bannanger F. Brackmann C. Takarlat B. 2004. Haw
37	159	Bonin A, Bellemain E, Bronken Eldesen P, Pompanon F, Brochmann C, Taberlet P. 2004. How
38	700	to track and assess genotyping errors in population genetics studies. <i>Mot Ecol</i> . 15:5261-
39	/01	52/5. Descent CT, Hanne A, Zhanne A, Descent TH, 2012, A sufference free showith a far
40 41	762	Brown C1, Howe A, Zhang Q, Pyrkosz AB, Brom 1H. 2012. A reference-free algorithm for
42	/03	computational normalization of shotgun sequencing data. <i>arXive</i> . 1203:4802.
43	/64	Cammen KM, Schultz IF, Rosel PE, wells RS, Read AJ. 2015. Genomewide investigation of
44	/05	adaptation to narmini algal blooms in common bottlenose dolphins (<i>Turstops truncatus</i>).
45	/00	$Mol \ Ecol. \ 24:409/-4/10.$
46 47	/6/	Campbell NR, Harmon SA, Narum SR. 2015. Genotyping-in-Thousands by sequencing (G1-
48	/68	seq): a cost effective SNP genotyping method based on custom amplicon sequencing.
49	/69	Mol Ecol Resour. 15:855-867.
50	//0	Carroll EL, Baker CS, Watson M, Alderman R, Bannister J, Gaggiotti OE, Grocke DR,
51	//1	Patenaude N, Harcourt R. 2015. Cultural traditions across a migratory network shape the
52	772	genetic structure of southern right whales around Australia and New Zealand. Sci Rep.
53 54	773	5:16182.
55	//4	Catchen JM, Amores A, Hohenlohe PA, Cresko WA, Postlethwait JH. 2011. Stacks: building
56	115	and genotyping loci <i>de novo</i> from short-read sequences. G3. 1:1/1-182.
57		
58		
59 60		
00		

1		
2		
3	776	Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool
5	777	set for population genomics. <i>Mol Ecol.</i> 22:3124-2140.
6	778	Chancerel E, Lepoittevin C, Le Provost G, Lin Y-C, Jaramillo-Correa JP, Eckert AJ, Wegrzyn
7	779	JL, Zelenika D, Boland A, Frigerio J-M, et al. 2011. Development and implementation of
8	780	a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative
9 10	781	mapping with loblolly pine. BMC Genomics. 12:368.
10	782	Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps.
12	783	Genome Res. 20:393-402.
13	784	Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Grimwood J, Schmutz J, Myers RM,
14	785	Schluter D, Kingsley DM. 2005. Widespread parallel evolution in sticklebacks by
15	786	repeated fixation of ectodysplasin alleles. Science. 307:1928-1933.
16	787	Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal
17	788	tool for annotation, visualization and analysis in functional genomics research.
19	789	Bioinformatics. 21:3674-3676.
20	790	Corander J, Majander KK, Cheng L, Merilä J. 2013. High degree of cryptic population
21	791	differentiation in the Baltic Sea herring <i>Clupea harengus</i> . Mol Ecol. 22:2931-2940.
22	792	Cummings N, King R, Rickers A, Kaspi A, Lunke S, Haviv I, Jowett JBM. 2010. Combining
23	793	target enrichment with barcode multiplexing for high throughput SNP discovery. BMC
24 25	794	Genomics. 11:641.
26	795	Davey JW, Hohenlohe PA, Etter PD, Boone JO, Catchen JM, Blaxter ML, 2011, Genome-wide
27	796	genetic marker discovery and genotyping using next-generation sequencing <i>Nat Rev</i>
28	797	Genet 12:499-510
29	798	De Mita S Thuillet A-C Gay L Ahmadi N Manel S Ronfort J Vigouroux Y 2013 Detecting
30	799	selection along environmental gradients: analysis of eight methods and their effectiveness
31	800	for outbreeding and selfing populations. <i>Mol Ecol</i> 22:1383-1399
১८ २२	801	De Wit P. Pesperi MH. Palumbi SR 2015 SNP genotyping and population genomics from
34	802	expressed sequences - current advances and future possibilities Mol Ecol 24:2310-2323
35	802	Deagle BE Kirkwood R Jarman SN 2009 Analysis of Australian fur seal diet by
36	804	pyrosequencing prev DNA in faces Mol Ecol 18:2022-2038
37	805	Deméré TA McGowen MR Berta A Gatesy I 2008 Morphological and molecular evidence for
38	805	a stanwise evolutionary transition from teeth to baleen in mysticate whales. Sust Riol
39 40	800	57.15.37
41	807	DePristo MA Danks E Donlin D. Carimalla KV. Maguira ID. Hartl C. Dhilinnakis AA. dal
42	808	Angel G. Dives MA. Henne M. et al. 2011. A fremowork for variation discovery and
43	809 910	Aliger O, Rivas MA, Hallia M, et al. 2011. A Hallework for variation discovery and
44	010 011	Debin A Davis CA Schlosinger E Drenkow I Zalaski C Iba S Datyt D Chaisson M Cingaras
45	011 012	TD 2012 STAD: subtrafact universal DNA and aligners. Disinform refer 20:15-21
40 ⊿7	δ12 012	TR. 2015. STAR. ultratast universal RIVA-seq aligner. <i>Bioinformatics</i> . 29:15-21.
48	813 014	Eaton DAK. 2014. PyKAD: assembly of <i>de novo</i> KADseq loci for phylogenetic analysis.
49	814 015	Bioinformatics. 30:1844-1849.
50	815	Ekblom R, Galindo J. 2011. Applications of next generation sequencing in molecular ecology of
51	816	non-model organisms. <i>Heredity</i> . 10/:1-15.
52	817	EKDIOM K, WOIT JBW. 2014. A field guide to whole-genome sequencing, assembly and
53 54	818	annotation. Evolutionary Applications. /:1026-1042.
55	819	Ellegren H. 2014. Genome sequencing and population genomics in non-model organisms.
56	820	Irends Ecol Evol. 29:51-63.
57		
58		
59 60		
00		

1		
2	071	Ellegnen II. Smeda I. Dumi D. Olegen DI. Deskaträm N. Kennlegni T. Känstner A. Mälvinen II.
4	821	Ellegren H, Smeds L, Burn K, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska Brzyska K. Overnström A. <i>et al.</i> 2012. The genomic landscape of species
5	822 823	divergence in <i>Figedula</i> flyesteborg. <i>Nature</i> 401:756-760
6 7	823	Elabira PI Glaubitz IC Sun O Boland IA Kawamata K Buaklar ES Mitaball SE 2011 A
8	024 825	robust simple constrained by sequencing (GPS) approach for high diversity species
9	023 026	<i>BLoS One</i> 6:010270
10	820 827	FLOS ONE. 0.019579. Enk I. Deveult A. Kuch M. Murche V. Devillerd I.M. Deiner H. 2014. Ancient whole generate
11	821	enk J, Devault A, Kuch M, Mulgha Y, Koumard J-M, Poinar H. 2014. Ancient whole genome
12	020 820	Example TC, 2015, Considerations for the use of transprintenies in identifying the 'genes that
13	029 920	Evans 10. 2015. Considerations for the use of transcriptonnes in identifying the genes that
15	030 021	Exaction L. Duponloun I. Huerto Sónchez E. Souce VC. Foll M. 2012. Robust demographie
16	031 022	inference from genomic and SND data <i>DL</i> of <i>Constitute</i> 0:01002005
17	052 822	Entroleth BC 2015 DHVLUCE is a software package for the analysis of conserved genemic
18	033 024	Parciouri BC. 2015. FH I LOCE is a software package for the analysis of conserved genomic
19	034 025	Fairolath PC McCormaels IE Crawford NG Harvey MC Prumfield PT Clann TC 2012
20 21	833 826	Fairciouri BC, McCollinack JE, Clawfold NG, Halvey MG, Bluinneid KT, Gleini TC. 2012.
22	830	outraconserved elements anchor thousands of genetic markers spanning multiple
23	83/	Evolutionary timescales. Syst Blot. 61./1/-/20.
24	030 020	hand selective guesnes using her lating structure. Mel Biol Evel. 21,1275, 1201
25	839	Flight D. Dimon E. 2000. Some from a property and the methods for all and the defension of the second term of the Methods.
26	840	Flicek P, Birney E. 2009. Sense from sequence reads: methods for alignment and assembly. <i>Nat</i>
21	841	Methods. 0:50-512.
29	842	Foote AD, Liu Y, Inomas GWC, Vinar IS, Alfoldi J, Deng J, Dugan S, Van Elk CE, Hunter ME,
30	843	Joshi V, et al. 2015. Convergent evolution of the genomes of marine mammals. Nat
31	844	Genet. 4/:2/2-2/5.
32	845	Foote AD, Newton J, Aviia-Arcos MC, Kampmann M-L, Samaniego JA, Post K, Rosing-Asvid
33	846	A, Sinding M-HS, Gilbert MTP. 2013. Tracking niche variation over millennial
35	84/	timescales in sympatric killer whale lineages. <i>Proc R Soc Lond B Biol Sci.</i> 280:20131481.
36	848	Foote AD, Thomsen PF, Sveegaard S, Wanlberg M, Kleigast J, Kynn LA, Salling AB, Galatius
37	849	A, Orlando L, Gilbert MTP. 2012. Investigating the potential use of environmental DNA
38	850	(eDNA) for genetic monitoring of marine mammals. <i>PLoS One</i> . /:e41/81.
39	851	Foote AD, Vijay N, Avila-Arcos M, Baird RW, Durban JW, Fumagalli M, Gibbs RA, Hanson
40 ⊿1	852	MB, Korneliussen IS, Martin MD, <i>et al.</i> 2016. Genome-culture coevolution promotes
42	853	rapid divergence of killer whale ecotypes. Nat Commun. 7:11693.
43	854	Fountain ED, Pauli JN, Reid BN, Paisboil PJ, Peery MZ. 2016. Finding the right coverage: the
44	833	impact of coverage and sequence quality on single nucleotide polymorphism genotyping
45	856	error rates. <i>Mol Ecol Resour</i> .
46 47	857	Fumagalli M, Vieira FG, Korneliussen TS, Linderoth I, Huerta-Sanchez E, Albrechtsen A,
47	858	Nielsen R. 2013. Quantifying population genetic differentiation from next-generation
49	859	sequencing data. Genetics. 195:9/9-992.
50	860	Fumagalli M, Vieira FG, Linderoth T, Nielsen R. 2014. ngsTools: methods for population
51	861	genetics analyses from Next-Generation Sequencing data. <i>Bioinformatics</i> . 30:1486-1487.
52	862	Gao X, Han J, Lu Z, Li Y, He C. 2013. <i>De novo</i> assembly and characterization of spotted seal
53 54	863	Phoca largha transcriptome using Illumina paired-end sequencing. Comp Biochem
55	864	Physiol D Genom Proteom. 8:103-110.
56		
57		
58		
59		
60		

1 2		
3	965	Comon DA Hand DK Amich SI Domestohan I. Foster IT Miller KM Merin DA Nemus SD
4	803	OlDring SL Deffer C. et al. 2016. Compariso in comparation, and heideing
5	800	O'Brien SJ, Romer G, <i>et al.</i> 2016. Genomics in conservation: case studies and bridging
6	86/	the gap between data and application. <i>Trends Ecol Evol.</i> 31:81-83.
7	868	Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. 2014. TASSEL-
8	869	GBS: a high capacity genotyping by sequencing analysis pipeline. <i>PLoS One</i> . 9:e90346.
9 10	870	Gnerre S, MacCallum I, Przbylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea
11	871	TP, Sykes S, et al. 2011. High-quality draft assemblies of mammalian genomes from
12	872	massively parallel sequence data. Proc Natl Acad Sci USA. 108:1513-1518.
13	873	Goecks J, Nekrutenko A, Taylor J, The Galaxy Team. 2010. Galaxy: a comprehensive approach
14	874	for supporting accessible, reproducible, and transparent computational research in the life
15	875	sciences. Genome Biol. 11:R86.
16	876	Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. 2011. Preparation of reduced
17	877	representation bisulfite sequencing libraries for genome-scale DNA methylation
19	878	profiling. Nat Protoc. 6:468-481.
20	879	Gui D, Jia K, Xia J, Yang L, Chen J, Wu Y, Yi M. 2013. <i>De novo</i> assembly of the Indo-Pacific
21	880	humpback dolphin leucocyte transcriptome to identify putative genes involved in the
22	881	aquatic adaptation and immune response <i>PLoS One</i> 8 e72417
23	882	Gutenkunst RN Hernandez RD Williamson SH Bustamante CD 2009 Inferring the joint
24	883	demographic history of multiple populations from multidimensional SNP frequency data
20 26	884	PLoS Genetics 5:e1000695
20	885	Haas BL Pananicolaou A Vassour M Grabberr M Blood PD Bowden I Couger MB Eccles D
28	886	Li B Lieber M at al 2013 Da novo transcript sequence reconstruction from RNA seq
29	887	using the Trinity platform for reference generation and analysis Nat Protoc 8:1404
30	007	1512
31	000	Hon E. Singhaimar IS. Novembra I. 2015. East and accurate site frequency spectrum estimation
32	009	from low sevence as assumed data. <i>Disinformatica</i> 21,720,727
33 34	890	Irom low coverage sequence data. <i>Bioinformatics</i> . 51:720-727.
35	891	Hancock-Hanser BL, Frey A, Leslie MS, Dutton PH, Archer FI, Morin PA. 2013. Targeted
36	892	multiplex next-generation sequencing: advances in techniques of mitochondrial and
37	893	nuclear DNA sequencing for population genomics. <i>Mol Ecol Resour</i> . 13:254-268.
38	894	Harris K, Nielsen R. 2013. Inferring demographic history from a spectrum of shared haplotype
39	895	lengths. PLoS Genetics. 9:e1003521.
40	896	Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. 2010. Ecological
41 42	897	adaptation determines functional mammalian olfactory subgenomes. Genome Res. 20:1-
43	898	9.
44	899	Hedrick PW. 2000 Genetics of Populations. Jones and Bartlett Publishers, Sudbury, MA.
45	900	Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A,
46	901	Maes GE, Diopere E, Carvalho GR, et al. 2011. Application of SNPs for population
47	902	genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour.
48	903	11:123-136.
49 50	904	Higdon JW, Bininda-Emonds ORP, Beck RMD, Ferguson SH. 2007. Phylogeny and divergence
51	905	of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC Evol
52	906	<i>Biol.</i> 7:216.
53	907	Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Gordon DB, Brizuela L, McCombie WR,
54	908	Hannon GJ. 2009. Hybrid selection of discrete genomic intervals on custom-designed
55	909	microarrays for massively parallel sequencing. <i>Nat Protoc</i> . 4:960-974.
50 57		
58		
59		
60		

2		
3	910	Hoffman JI. 2011. Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin
4	911	transcriptome Mol Ecol Resour 11:703-710
с 6	912	Hoffman JI, Nicholas HJ, 2011, A novel approach for mining polymorphic microsatellite
7	913	markers in silico PLoS One 6:e23283
8	914	Hoffman II Simpson F David P Rijks IM Kujken T Thorne MAS Lacy RC Dasmahapatra
9	915	KK 2014 High-throughput sequencing reveals inbreeding depression in a natural
10	916	nonulation Proc Natl Acad Sci USA 111:3775-3780
11	917	Hoffman II Thorne MAS Trathan PN Forceda I 2013 Transcriptome of the dead:
12	018	characterisation of immune genes and marker development from necronsy samples in a
17	010	free renging marine memmal <i>BMC Conomies</i> 14:52
15	020	Hoffman II. Tuakar P. Bridgatt SI. Clark MS. Foreada I. Slata I. 2012. Patos of assay success
16	920	noninian JI, Tucker K, Bhugett SJ, Clark MS, Folcada J, Slate J. 2012. Kates of assay success
17	921	and genotyping error when single nucleotide polymorphism genotyping in non-model
18	922	organisms: a case study in the Antarctic fur seal. <i>Mol Ecol Resour</i> . 12:801-872.
19	923	Honenione PA, Bassnam S, Etter PD, Stiffler N, Jonnson EA, Cresko WA. 2010. Population
20	924	genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
21	925	PLoS Genet. 6:e1000862.
23	926	Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management
24	927	tool for second-generation genome projects. BMC Bioinformatics. 12:491.
25	928	Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW,
26	929	Hoffman JI. 2016. A draft fur seal genome provides insights into factors affecting SNP
27	930	validation and how to mitigate them. <i>Mol Ecol Resour</i> .
28	931	Jackson JA, Baker CS, Vant M, Steel DJ, Medrano-González L, Palumbi SR. 2009. Big and
29 30	932	slow: phylogenetic estimates of molecular evolution in baleen whales (suborder
31	933	Mysticeti). Mol Biol Evol. 26:2427-2440.
32	934	Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody
33	935	MC, White S, et al. 2012. The genomic basis of adaptive evolution in threespine
34	936	sticklebacks. <i>Nature</i> . 484:55-61.
35	937	Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M,
30	938	Nagayasu E, Maruyama H, et al. 2014. Efficient de novo assembly of highly
38	939	heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24:1384-
39	940	1395.
40	941	Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand
41	942	D, Marques PI, et al. 2015. Insights into the evolution of longevity from the bowhead
42	943	whale genome. Cell Reports. 10:112-122.
43 44	944	Khudyakov JI, Champagne CD, Preeyanon L, Ortiz RM, Crocker DE. 2015a. Muscle
45	945	transcriptome response to ACTH administration in a free-ranging marine mammal.
46	946	Physiol Genomics. 47:318-330.
47	947	Khudyakov JI, Preeyanon L, Champagne CD, Ortiz RM, Crocker DE. 2015b. Transcriptome
48	948	analysis of northern elephant seal (<i>Mirounga angustirostris</i>) muscle tissue provides a
49	949	novel molecular resource and physiological insights. BMC Genomics. 16:64.
50 51	950	Kishida T Thewissen JGM Havakawa T Imai H Agata K 2015 Aquatic adaptation and the
52	951	evolution of smell and taste in whales <i>Zoolog Lett</i> 1.9
53	952	Koenfli K-P Paten B Genome 10K Community of Scientists O'Brien SI 2015 The Genome
54	953	10K Project: a way forward Annu Rev Anim Biosci 3:57-111
55	954	Korneliussen TS Albrechtsen A Nielsen R 2014 ANGSD: Analysis of Next Generation
56	955	Sequencing Data <i>BMC Bioinformatics</i> 15:356
5/ 50	200	Sequeneing Dam. Dire Distigormanes. 15.550.
50 59		
60		

2		
3	956	Künstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes
4	957	DE, Schlinger BA, Wilson RK, et al. 2010. Comparative genomics based on massive
с С	958	parallel transcriptome sequencing reveals patterns of substitution and selection across 10
7	959	hird species Mol Ecol 19:266-276
8	960	Lamichhaney S Berglund I Almén MS Maghool K Grabherr M Martinez-Barrio A
9	961	Promerová M Rubin C-I Wang C Zamani N <i>et al.</i> 2015 Evolution of Darwin's finches
10	062	and their backs revealed by genome sequencing. Nature 518:271, 275
11	902	Langmond P. Trannoll C. Don M. Salzborg SL 2000 Ultrafast and memory officient alignment.
12	905	Langineau B, Haphen C, Fop M, Saizberg SL. 2009. Ontatast and memory-enformment
13	904	of short DNA sequences to the human genome. <i>Genome Diol</i> . 10.K25.
14	905	Lemmon AR, Emme SA, Lemmon EM. 2012. Anchored hybrid enrichment for massively nigh-
16	966	throughput phylogenomics. Syst Biol. 61:727-744.
17	967	Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or
18	968	without a reference genome. BMC Bioinformatics. 12:323.
19	969	Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
20	970	Bioinformatics. 25:1754-1760.
21	971	Li H, Durbin R. 2011. Inference of human population history from individual whole-genome
22	972	sequences. Nature. 475:493-496.
23 24	973	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
25	974	1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map
26	975	form and SAMtools. Bioinformatics. 25:2078-2079.
27	976	Li S, Jakobsson M. 2012. Estimating demographic paramaters from large-scale population
28	977	genomic data using Approximate Bayesian Computation. BMC Genet. 13:22.
29	978	Li Y. Hu Y. Bolund L. Wang J. 2010. State of the art <i>de novo</i> assembly of human genomes from
30	979	massively parallel sequencing data. <i>Human Genomics</i> 4:271-277.
১। 32	980	Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J.
33	981	Jordan G Mauceli E <i>et al</i> 2011 A high-resolution map of human evolutionary
34	982	constraint using 29 mammals <i>Nature</i> 478.476-482
35	983	Lindavist C Schuster SC San Y Talbot SL Oi L Ratan A Tomsho LP Kasson L Zevl E Aars
36	984	Lindqvist C, Sendster SC, Sun T, Taibot SE, QTS, Rutan A, Tomsho EF, Russon E, Zeyr E, This L et al. 2010. Complete mitochondrial genome of a Pleistocene jawhown unveils the
37	085	origin of polar bear. Proc Natl Acad Sci USA 107:5053-5057
38	086	Liu S. Lorenzen ED. Fumagalli M. Li B. Harris K. Xiong Z. Zhou I. Korneliussen TS. Somel M.
39 40	007	Dabbitt C at al. 2014a. Depulation genemics reveal recent encointion and repid
40	907	audutionary adaptation in polar bases. Coll 157:785-704
42	900	Liv V. Ever V. V. 2015. Eventaring a population size shanged using SND frequency anastro. Net
43	989	Liu X, Fun Y-X. 2015. Exploring population size changes using SNP frequency spectra. <i>Nat</i>
44	990	Genet. 47:555-559.
45	991	Liu Y, Zhou J, White KP. 2014b. RNA-seq differential expression studies: more sequence or
46	992	more replication? Bioinformatics. 30:301-304.
47 78	993	Lotterhos KE, Whitlock MC. 2014. Evaluation of demographic history and neutral
49	994	parameterization on the performance of F_{ST} outlier tests. <i>Mol Ecol.</i> 23:2178-2192.
50	995	Louis M, Viricel A, Lucas T, Peltier H, Alfonsi E, Berrow S, Brownlow A, Covelo P, Dabin W,
51	996	Deaville R, et al. 2014. Habitat-driven population structure of bottlenose dolphins,
52	997	Tursiops truncatus, in the North-east Atlantic. Mol Ecol. 23:857-874.
53	998	Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
54	999	RNA-seq data with DESeq2. Genome Biol. 15:550.
55 56	1000	MacManes MD. 2014. On the optimal trimming of high-throughput mRNA sequence data. Front
57	1001	Genet. 5:13.
58		
59		
60		

2		
3	1002	MacManes MD. 2016. Establishing evidence-based best practice for the <i>de novo</i> assembly and
4	1003	evaluation of transcriptomes from non-model organisms. <i>bioRxiv</i> . doi:
5 6	1004	http://dx.doi.org/10.1101/035642.
7	1005	Magera AM, Mills Flemming JE, Kaschner K, Christensen LB, Lotze HK. 2013. Recovery
8	1006	trends in marine mammal populations. <i>PLoS One</i> , 8:e77908.
9	1007	Malenfant RM, Coltman DW, Davis CS, 2015, Design of a 9K Illumina BeadChip for polar
10	1008	bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour.
11	1009	15:587-600
12	1010	Mamanova L. Coffey AJ. Scott CE. Kozarewa I. Turner EH. Kumar A. Howard E. Shendure J.
14	1011	Turner DI 2010 Target-enrichment strategies for next-generation sequencing Nat
15	1012	Methods 7.111-118
16	1012	Mancia A Abelli I. Kucklick IR Rowles TK Wells RS Balmer BC Hohn AA Baatz IE Ryan
17	1013	IC 2015 Microarray applications to understand the impact of exposure to environmental
18	1014	contaminants in wild dolphins (Tursions truncatus) Mar Ganomics 10:47-57
19	1015	Manaja A Lundavist ML Pomano TA Dadan Adams MM Eair DA Kindy MS Ellis DC
20	1010	Gattoni Celli S. McKillen DI. Trent HE. at al. 2007. A dolphin peripheral blood
22	1017	laukoasta aDNA microarray for studios of immuna function and stross reactions. Day
23	1010	Comp Immunol 21:520, 520
24	1019	Comp Immunol. 51.520-529. Manaia A. Byan JC. Chamman DW, Way O. Warr CW, Culland EMD, Van Dalah EM, 2012
25	1020	Mancia A, Ryan JC, Chapman RW, Wu Q, Warr GW, Gulland FMD, Van Dolan FM. 2012.
26	1021	Health status, infection and disease in California sea lions (Zalophus californianus)
21	1022	studied using a canine microarray platform and machine-learning approaches. Dev Comp
29	1023	Immunol. 36:629-637.
30	1024	Mancia A, Warr GW, Chapman RW. 2008. A transcriptomic analysis of the stress induced by
31	1025	capture-release health assessment studies in wild dolphins (<i>Tursiops truncatus</i>). Mol
32	1026	<i>Ecol.</i> 17:2581-2589.
33	1027	Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC. 2015.
34 25	1028	Restriction site-associated DNA sequencing, genotyping error estimation and <i>de novo</i>
36	1029	assembly optimization for population genetic inference. <i>Mol Ecol Resour</i> . 15:28-41.
37	1030	McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. 2012.
38	1031	Ultraconserved elements are novel phylogenomic markers that resolve placental mammal
39	1032	phylogeny when combined with species-tree analysis. Genome Res. 22:746-754.
40	1033	McGowen MR. 2011. Toward the resolution of an explosive radiation - a multilocus phylogeny
41	1034	of oceanic dolphins (Delphinidae). Mol Phylogenet Evol. 60:345-357.
4Z 13	1035	McGowen MR, Clark C, Gatesy J. 2008. The vestigial olfactory receptor subgenome of
44	1036	odontocete whales: phylogenetic congruence between gene-tree reconciliation and
45	1037	supermatrix methods. Syst Biol. 57:574-590.
46	1038	McGowen MR, Gatesy J, Wildman DE. 2014. Molecular evolution tracks macroevolutionary
47	1039	transitions in Cetacea. Trends Ecol Evol. 29:336-346.
48	1040	McGowen MR, Grossman LI, Wildman DE. 2012. Dolphin genome provides evidence for
49 50	1041	adaptive evolution of nervous system genes and a molecular rate slowdown. Proc R Soc
50	1042	Lond B Biol Sci. 279:3643-3651.
52	1043	McGowen MR, Spaulding M, Gatesy J. 2009. Divergence date estimation and a comprehensive
53	1044	molecular tree of extant cetaceans. <i>Mol Phylogenet Evol.</i> 53:891-906.
54	1045	McKenna A. Hanna M. Banks E. Siyachenko A. Cibulskis K. Kernytsky A. Garimella K.
55	1046	Altshuler D. Gabriel S. Daly M. et al. 2010. The Genome Analysis Toolkit. A
56		
ว/ 58		
59		
60		

1		
2	1045	
4	1047	MapReduce framework for analyzing next-generation DNA sequencing data. <i>Genome</i>
5	1048	<i>Res.</i> 20:1297-1303.
6	1049	McTavish EJ, Hillis DM. 2015. How do SNP ascertainment schemes and population
7	1050	demographics affect inferences about population history? BMC Genomics. 16:266.
8	1051	Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. 2013. Rod monochromacy and
9 10	1052	the coevolution of cetacean retinal opsins. <i>PLoS Genetics</i> . 9:e1003432.
11	1053	Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K,
12	1054	de Filippo C, et al. 2012. A high-coverage genome sequence from an archaic Denisovan
13	1055	individual. Science. 338:222-226.
14	1056	Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. 2007. Rapid and cost-effective
15	1057	polymorphism identification and genotyping using restriction site associated DNA
16 17	1058	(RAD) markers. Genome Res. 17:240-248.
18	1059	Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, Kim HL, Burhans RC,
19	1060	Drautz DI, Wittekindt NE, et al. 2012. Polar and brown bear genomes reveal ancient
20	1061	admixture and demographic footprints of past climate change. Proc Natl Acad Sci USA.
21	1062	109:E2382-E2390.
22	1063	Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M. 2013. Evolution
23	1064	of mammalian diving capacity traced by myoglobin net surface charge. Science.
24 25	1065	340:1234192.
26	1066	Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban JW, Parsons K, Pitman
27	1067	R. Li L. <i>et al.</i> 2010a. Complete mitochondrial genome phylogeographic analysis of killer
28	1068	whales (Orcinus orca) indicates multiple species. Genome Res. 20:908-916.
29	1069	Morin PA, Luikart G, Wayne RK, SNP workshop group, 2004, SNPs in ecology, evolution and
30	1070	conservation <i>Trends Ecol Evol</i> 19:208-216
31	1071	Morin PA Martien KK Archer FL Cipriano F Steel D Jackson L Taylor BL 2010b Applied
32 33	1072	conservation genetics and the need for quality control and reporting of genetic data used
34	1072	in fisheries and wildlife management <i>I Hered</i> 101:1-10
35	1074	Morin PA Parsons KM Archer FL Ávila-Arcos M Barrett-Lennard LG Dalla Rosa L. Duchêne
36	1075	S Durban IW Filis GM Ferguson SH <i>et al</i> 2015 Geographic and temporal dynamics
37	1075	of a global radiation and diversification in the killer whale Mol Ecol 24:3964-3979
38	1070	Moura AF Kenny IG Chaudhuri R Hughes MA Welch AI Reisinger RR de Bruyn PIN
39 40	1077	Dahlheim ME, Hall N, Hoelzel AR, 2014a, Population genomics of the killer whale
41	1070	indicates ecotype evolution in sympatry involving both selection and drift <i>Mol Ecol</i>
42	1075	23.5170_5102
43	1080	Moura AF Nielsen SCA Vilstrun IT Moreno-Mayar IV Gilbert MTP Grav HWI Natoli A
44	1081	Möller I. Hoalzal AP. 2013. Recent diversification of a marine genus (<i>Tursions</i> spn.)
45 46	1082	tracks habitat proference and environmental change. Sust Riel 62:865-877
40 47	1005	Mouro AE von Donghurg CL Dilot M. Tohrani A. Dost DD. Thornton M. Diön S. do Druyn DIN
48	1004	Worlay KC, Gibbs DA, at al. 2014b. Killer whole pueleer genome and mtDNA reveal
49	1083	wolley KC, Globs KA, <i>et al.</i> 2014b. Killer whate nuclear genome and mitDNA reveal
50	1080	widespread population bottleneck during the last glacial maximum. <i>Mol Biol Evol</i> .
51	108/	31:1121-1131.
52	1088	Nadeau NJ, KUIZ M, Salazar P, Counterman B, Alejandro Medina J, Ortiz-Zuazaga H, Morrison
ეკ 5⊿	1089	A, MICMIIIan WO, Jiggins CD, Papa K. 2014. Population genomics of parallel hybrid
55	1090	zones in the mimetic butterflies, <i>H. melpomene</i> and <i>H. erato. Genome Res.</i> 24:1316-
56	1091	1555.
57		
58		
59 60		
υU		

2		
3	1092	Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. 2013. Genotyping-by-
4	1093	sequencing in ecological and conservation genomics. <i>Mol Ecol</i> , 22:2841-2847.
с 6	1094	Narum SR, Hess JE. 2011. Comparison of F_{ST} outlier tests for SNP loci under selection. <i>Mol</i>
7	1095	<i>Ecol Resour.</i> 11:184-194.
8	1096	Nelson TM Apprill A Mann J Rogers TL Brown MV 2015 The marine mammal microbiome
9	1097	current knowledge and future directions <i>Microbiology Australia</i> 36.8-13
10	1098	Ng SB Turner EH Robertson PD Flygare SD Bigham AW Lee C Shaffer T Wong M
11	1099	Bhattachariee A Eichler EE <i>et al.</i> 2009 Targeted capture and massively parallel
12	1100	sequencing of twelve human exomes <i>Nature</i> 461.272-276
14	1101	Nielsen R Paul IS Anders A Song VS 2011 Genotype and SNP calling from next-generation
15	1102	sequencing data Nat Rev Genet 12:433-451
16	1102	Noonan IP Coon G Kudaravalli S Smith D Krause I Alessi I Chen F Platt D Pääbo S
17	1103	Pritchard IK <i>et al</i> 2006 Sequencing and analysis of Neanderthal genomic DNA
18	1104	Science 31/:1113-1118
19	1105	Nosek BA Alter G Banks GC Borshoom D Bowman SD Breckler SI Buck S Chambers CD
20 21	1100	Chin G. Christenson G. et al. 2015. Promoting an open research culture: Author
22	1107	guidelines for journals could halp to promote transperence, anonness, and reproducibility
23	1100	Solution 249:1422 1425
24	1109	O'Dawa IA Earson S. Lyon GL 2015. A coounting for uncertainty in DNA sequencing data
25	1110	Tranda Canat 21:61.66
20 27	1111	Olean MT, Volny VII, Démihé M, Dietz D, Lyderson C, Koyaca KM, Dadd DS, Dolehall DI
28	1112	Olsen MT, Volny VH, Berude M, Dielz K, Lydelsen C, Kovacs KM, Dodd KS, Palsoon PJ.
29	1115	2011. A simple four to single-indiceoude polymorphisms in a nonmodel species.
30	1114	hismide) Mol Each Descury 11:0-10
31	1113	nispiau). Moi Ecoi Resour. 11:9-19.
32	1110	Dilando L, Ginoinac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E,
33 34	111/	Petersen B, Moltke I, <i>et al.</i> 2013. Recalibrating <i>Equus</i> evolution using the genome
35	1118	sequence of an early Middle Pleistocene norse. <i>Nature</i> . 499:74-78.
36	1119	Paduwai V, Bosweii M, Pasquaii A, Wise SS, Kumar S, Snen Y, Garcia I, Lacerte C, Wise JP,
37	1120	Jr., wise JP, Sr., et al. 2013. Transcriptomic analysis of cultured whale skin cells exposed
38	1121	to nexavalent chromium [Cr($v1$)]. Aquat Toxicol. 134-135:74-81.
39	1122	Parker J, Isagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ. 2013. Genome-
40 ⊿1	1123	wide signatures of convergent evolution in echolocating mammals. <i>Nature</i> . 502:228-231.
42	1124	Paszkiewicz KH, Farbox A, O'Neill P, Moore K. 2014. Quality control on the frontier. Front
43	1125	Genet. 5:157.
44	1126	Patro R, Duggal G, Kingsford C. 2015. Accurate, fast, and model-aware transcript expression
45	1127	quantification with Salmon. <i>bioRxiv</i> . doi: <u>http://dx.doi.org/10.1101/021592</u> .
46	1128	Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: an
47 78	1129	inexpensive method for <i>de novo</i> SNP discovery and genotyping in model and non-model
49	1130	species. PLoS One. 7:e37135.
50	1131	Poh Y-P, Domingues VS, Hoekstra HE, Jensen JD. 2014. On the prospect of identifying adaptive
51	1132	loci in recently bottlenecked populations. <i>PLoS One</i> . 9:e110579.
52	1133	Poland JA, Brown PJ, Sorrells ME, Jannink J-L. 2012. Development of high-density genetic
53	1134	maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing
04 55	1135	approach. PLoS One. 7:e32253.
56	1136	Polanowski AM, Robbins J, Chandler D, Jarman SN. 2014. Epigenetic estimation of age in
57	1137	humpback whales. Mol Ecol Resour. 14:976-987.
58		
59		

2		
3	1138	Puritz IB Hollenbeck CM Gold IR 2014 <i>dDocent</i> : a RADseq variant-calling nipeline
4	1130	designed for nonulation genomics of non-model organisms. <i>Poer I</i> 2:e431
5	1140	Rasmussen M Li V Lindgreen S Pedersen IS Albrechtsen A Moltke I Metsnalu M Metsnalu
0 7	11/1	E Kivisild T Gunta R at al 2010 Ancient human genome sequence of an extinct
8	1141	Dalago Eskimo, Natura 462:757 762
9	1142	Piezoh D. Dorrett Lannord I.C. Ellis CM. Ford IKD. Deceles VD. 2012. Cultural traditions and
10	1145	the sure letting of neuro deting instal in a station in the sure letting in the sure letting of neuro deting instal in the sure letting in the sur
11	1144	See Level 2012-1 17
12	1145	Soc Lona. $2012:1-1/.$
13	1146	Robinson JD, Coliman AJ, Hickerson MJ, Gutenkunst RN. 2014. Sampling strategies for
14	114/	trequency spectrum-based population genomic inference. BMC Evol Biol. 14:254.
16	1148	Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential
17	1149	expression analysis of digital gene expression data. <i>Bioinformatics</i> . 26:139-140.
18	1150	Ruan R, Guo A-H, Hao Y-J, Zheng J-S, Wang D. 2015. <i>De novo</i> assembly and characterization
19	1151	of narrow-ridged finless porpoise renal transcriptome and identification of candidate
20	1152	genes involved in osmoregulation. Int J Mol Sci. 16:2220-2238.
21	1153	Ruegg K, Rosenbaum HC, Anderson EC, Engel M, Rothschild A, Baker CS, Palumbi SR. 2013.
22	1154	Long-term population size of the North Atlantic humpback whale within the context of
23 24	1155	worldwide population structure. Cons Gen. 14:103-114.
25	1156	Schiffels S, Durbin R. 2014. Inferring human population size and separation history from
26	1157	multiple genome sequences. Nat Genet. 46:919-925.
27	1158	Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming,
28	1159	identification, and read merging. BMC Res Notes. 9:88.
29	1160	Schurch NJ, Schofield P, Gierlinski M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K,
30	1161	Simpson GG. Owen-Hughes T. et al. 2015. Evaluation of tools for differential gene
31 32	1162	expression analysis by RNA-seq on a 48 biological replicate experiment. arXive.
33	1163	1505.02017
34	1164	Seim I Ma S. Zhou X. Gerashchenko MV. Lee SG. Suydam R. George JC. Bickham JW
35	1165	Gladyshev VN 2014 The transcriptome of the bowhead whale <i>Balaena mysticetus</i>
36	1166	reveals adaptations of the longest-lived mammal Aging 6.879-899
37	1167	Shafer ABA Cullingham CL Côté SD Coltman DW 2010 Of glaciers and refugia: a decade of
30	1168	study sheds new light on the phylogeographic patterns of porthwestern North America
40	1160	Mol Fcol 19:4589-4621
41	1170	Shafer ABA Davis CS Coltman DW Stewart REA 2014 Microsatellite assessment of walrus
42	1170	(Odobanus rosmarus rosmarus) stocks in Canada NAMMCO Scientific Publications 9
43	1171	Shafar ABA Cattonailla I M Stawart DEA Wolf IBW 2015 Demographic informace using
44	11/2 1172	shart road genomia data in an approximate Devesion computation from overly in gilian
45	1173	short-read genomic data in an approximate Dayesian computation namework. In suico
40 47	11/4	evaluation of power, blases and proof of concept in Adamic wallus. <i>Mot Ecol.</i> 24.528-
48	1175	545. Chen V.V. Zhou W.D. Zhou T.C. Zong V.N. Li C.M. Imvin D.M. Zhong V.D. 2012. Company
49	11/0	Shen Y-Y, Zhou W-P, Zhou I-C, Zeng Y-N, Li G-M, Irwin DM, Zhang Y-P. 2012. Genome-
50	11//	wide scan for bats and dolphin to detect their genetic basis for new locomotive styles.
51	11/8	PLos One. /:e46455.
52	11/9	Smith-Unna RD, Boursnell C, Patro R, Hibberd JM, Kelly S. 2015. TransRate: reference free
53 54	1180	quality assessment of <i>de-novo</i> transcriptome assemblies. <i>bioRxiv</i> .
55	1181	Spies D, Claudo C. 2015. Dynamics in transcriptomics: advancements in RNA-seq time course
56	1182	and downstream analysis. Comput Struct Biotechnol J. 13:469-477.
57		
58		
59		
60		
2		
-----------	------	--
3	1183	Springer MS, Signore AV, Paijmans JLA, Vélez-Juarbe J, Domning DP, Bauer CE, He K, Crerar
4	1184	L, Campos PF, Murphy WJ, et al. 2015. Interordinal gene capture, the phylogenetic
с 6	1185	position of Steller's sea cow based on molecular and morphological data and the
7	1186	macroevolutionary history of Sirenia Mol Phylogenet Evol 91:178-193
8	1187	Springer MS Starrett I Morin PA Lanzetti A Hayashi C Gatesy I 2016 Inactivation of
9	1107	<i>Clour Charger in teachlogg plagental mammals Mol Dhulagenet Eval</i> 05:24 45
10	1100	C40rj20 in tootiness pracental manimals. <i>Mol Phylogenet Evol</i> . 95.54-45.
11	1189	Sremba AL, Martin AR, Baker CS. 2015. Species identification and likely catch time preiod of
12	1190	whale bones from South Georgia. Mar Mamm Sci. 31:122-132.
13	1191	Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: <i>ab initio</i>
14	1192	prediction of alternative transcripts. <i>Nucleic Acids Res</i> . 34:W435-W439.
15	1193	Stein LD. 2010. The case for cloud computing in genome informatics. <i>Genome Biol</i> . 11:207.
10	1194	Stinchcombe JR, Hoekstra HE. 2008. Combining population genomics and quantitative genetics:
18	1195	finding genes underlying ecologically important traits. <i>Heredity</i> . 100:158-170.
19	1196	Tabuchi M, Veldhoen N, Dangerfield N, Jeffries S, Helbing CC, Ross PS. 2006. PCB-related
20	1197	alteration of thyroid hormones and thyroid hormone receptor gene expression in free-
21	1198	ranging harbor seals (Phoca vituling) Environ Health Perspect 114.1024-1031
22	1199	Taylor BL Gemmell NI 2016 Emerging technologies to conserve biodiversity: further
23	1200	opportunities via genomics. Response to Pimm at al. Trands Ecol Evol 31:171-172
24	1200	The Helicovius Consortium 2012 Putterfly genome reveals promiseyous exchange of
25	1201	minimismus denotations among analysis. Nature 497:04.09
26	1202	minicip adaptations among species. <i>Nature</i> . $487.94-98$.
21	1203	Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E. 2012. Detection of
20 29	1204	a diverse marine fish fauna using environmental DNA from seawater samples. <i>PLoS One</i> .
30	1205	7:e41732.
31	1206	Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S,
32	1207	Lifka D, Peterson GD, et al. 2014. XSEDE: accelerating scientific discovery. Computing
33	1208	in Science and Engineering. 16:62-74.
34	1209	Tsagkogeorga G, McGowen MR, Davies KT, Jarman S, Polanowski A, Bertelsen MF, Rossiter
35	1210	SJ. 2015. A phylogenomic analysis of the role and timing of molecular adaptation in the
36	1211	aquatic transition of cetartiodactyl mammals. R Soc Open Sci. 2:150156.
37 20	1212	van Dijk EL, Auger H, Jaszczyzyn Y, Thermes C, 2014, Ten years of next-generation
30 30	1213	sequencing technology Trends Genet 30.418-426
40	1213	VanRaden PM Sun C. O'Connell IR 2015 Fast imputation using medium or low-coverage
41	1214	sequence data RMC Ganat 16:82
42	1213	Viller D. Darthalat C. Aldridga S. Daymar TE. Luld M. Dignotalli M. Dark TI. Daavilla D.
43	1210	Final D, Beruleiol C, Alundge S, Rayner TF, Lukk IVI, Fighateni IVI, Faik TJ, Deavine K,
44	1217	Erichsen J1, Jasinska AJ, <i>et al.</i> 2015. Enhancer evolution across 20 mammanan species.
45	1218	<i>Cell</i> . 160:554-566.
46	1219	Viricel A, Pante E, Dabin W, Simon-Bouhet B. 2014. Applicability of RAD-tag genotyping for
47	1220	interfamilial comparisons: empirical data from two cetaceans. <i>Mol Ecol Resour</i> . 14:597-
40 ∕\Q	1221	605.
50	1222	Viricel A, Rosel PE. 2014. Hierarchical population structure and habitat differences in a highly
51	1223	mobile marine species: the Atlantic spotted dolphin. <i>Mol Ecol.</i> 23:5018-5035.
52	1224	Wolf JB. 2013. Principles of transcriptome analysis and gene expression quantification: an RNA-
53	1225	seq tutorial. Mol Ecol Resour. 13:559-572.
54	1226	Xiong Y, Brandley MC, Xu S, Zhou K, Yang G. 2009. Seven new dolphin mitochondrial
55	1227	genomes and a time-calibrated phylogeny of whales. BMC Evol Biol. 9:20.
56		\mathcal{C}
57 20		
50 50		
60		

- ³ 1228 Yandell M, Ence D. 2012. A beginner's guide to eukaryotic genome annotation. *Nat Rev Genet*.
 13:329-342.
- Yeh R-F, Lim LP, Burge CB. 2001. Computational inference of homologous gene structures in
 the human genome. *Genome Res.* 11:803-816.
- 8 1232 Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M, Lee J-H, Yang EC, Kwon KK, *et al.* 2014. Minke whale genome and aquatic adaptation in cetaceans. *Nat Genet.* 46:88-92.
- 1235 Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. 2011. Optimizing *de novo* transcriptome
 13 1236 assembly from short-read RNA-Seq data: a comparative study. *BMC Bioinformatics*.
 14 1237 12:S2.
 15 1238 Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, Chen Y, Shi C, Yang Y, Huang Z, et al. 2013. Baii
 - 1238 Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, Chen Y, Shi C, Yang Y, Huang Z, *et al.* 2013. Baiji
 1239 genomes reveal low genetic variability and new insights into secondary aquatic
 1240 adaptations. *Nat Commun.* 4:2708.
- 18 1240 adaptations. *Nat Commun.* 4.2708.
 19 1241 Zou Z, Zhang J. 2015. No genome-wide protein sequence convergence for echolocation. *Mol Biol Evol.* 32:1237-1241.

 Table 1. Current and commonly used tools for analysis of genomic data generated in non-model organisms. Please note that this list is
 not exhaustive and new computational tools are continuously being developed.

Computational Tool	Purpose	Strengths/Weaknesses	Reference
<u>KADseq*</u> STACKS	quality filtering, <i>de novo</i> assembly or reference-aligned read mapping, variant genotyping	scalable (new data can be compared against existing locus catalog); flexible filtering and export options; recently implemented a gapped alignment algorithm to process insertion-deletion (indel) mutations; secondary algorithm adjusts SNP calls using population-level allele frequencies; compatible with input data from multiple RADseq methods	Catchen et al. (2011; 2013), http://catchenlab.life.illinois.edu stacks/
PyRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	efficiently processes indel mutations, thus optimal for analysis of highly divergent species; high speed and quality of paired-end library assemblies; compatible with input data from multiple RADseq methods	Eaton (2014)
TASSEL-GBS	quality filtering, reference-aligned read mapping, variant genotyping	optimized for single-end data from large sample sizes (tens of thousands of individuals) with a reference genome; performs genome-wide association studies	Glaubitz et al. (2014)
dDocent	quality trimming, <i>de novo</i> assembly, read mapping, variant genotyping	beneficial in analysis of paired-end data; identifies both SNP and indel variants; most appropriate for ezRAD and ddRAD data	Puritz et al. (2014)
AftrRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	identifies both SNP and indel variants; computationally faster than STACKS and PyRAD	Sovic et al. (2015)
Array-based high-through	put sequencing		
Affymetrix Axiom [™] Analysis Suite, Illumina [®] GenomeStudio	genotype scoring	visualization of genotype clusters; quality scores assigned to genotype calls allow user-specific filtering; manual editing possible	
Whole genome sequencing			
AdapterRemoval v2, Trimmomatic	trim raw sequences	remove adapter sequences and low-quality bases prior to assembly	Bolger et al. (2014), Schubert et al. (2016)
ALLPATHS-LG, PLATANUS, SOAPdenovo	de novo genome assembly	designed for short-read sequences of large heterozygous genomes	Li et al. (2010), Gnerre et al. (2011), Kajitani et al. (2014)
AUGUSTUS,	gene annotation	highly accurate evidence-driven or BLASTX-guided gene prediction (Yandell and Ence 2012)	Yeh et al. (2001), Stanke et al. (2006) Holt and Yandell (2011)

Bowtie, bwa	read mapping	rapid short-read alignment with compressed reference genome index, but limited number of acceptable mismatches per alignment (Flicek and Birney 2009)	Langmead et al. (2009), Li and Durbin (2009)
SAMtools	data processing, variant calling	multi-purpose tool that conducts file conversion, alignment sorting, PCR duplicate removal, and variant (SNP and indel) calling for SAM/BAM/CRAM files	Li et al. (2009)
GATK	data processing and quality control, variant calling	suitable for data with low to high mean read depth across the genome; initially optimized for large human datasets, then modified for use with non-model organisms	McKenna et al. (2010), DePristo et al. (2011)
ANGSD/NGStools	data processing, variant calling, estimation of diversity metrics, population genomic analyses	suitable for data with low mean read depth, including palaeogenomic data; allow downstream analyses such as D-statistics and SFS estimation	Fumagalli et al. (2014), Korneliussen et al. (2014)
RNAseq			
Fastx Toolkit, Trimmomatic	trim raw sequences	remove erroneous nucleotides from reads prior to assembly	MacManes (2014)
khmer diginorm, Trinity normalization	in silico read normalization	reduce memory requirements for assembly, but can result in fragmented assemblies and collapse heterozygosity	Brown et al. (2012); Haas et al. (2013)
Trinity	<i>de novo</i> and genome-guided transcriptome assembly	accurate assembly across conditions, but requires long runtime if normalization is not used (Zhao et al. 2011)	Haas et al. (2013)
bowtie, bowtie2, STAR	read alignment to genome or transcriptome assembly	required for many downstream analyses, but bowtie is computationally intensive and all produce very large output BAM files	Langmead et al. (2009), Dobin e al. (2013)
eXpress, kallisto, RSEM, Sailfish, Salmon	estimation of transcript abundance	RSEM requires computationally intensive read mapping back to the assembly; the others are faster streaming alignment, quasi-alignment, or alignment- free algorithms	Li and Dewey (2011), Patro et al. (2015)
DESeq, DESeq2, edgeR	differential expression analysis	exhibit highest true positive and lowest false positive rates in experiments with smaller sample sizes (Schurch et al. 2015)	Anders and Huber (2010), Robinson et al. (2010), Love et al. (2014)
blast2GO, Trinotate	functional annotation of assembled transcripts	complete annotation pipelines including gene ontology and pathway enrichment analyses	Conesa et al. (2005), Haas et al. (2013)

Figure 1. Phylogenetic tree showing current genomic resources available for (A) cetaceans and (B) pinnipeds; relationships and branch lengths are based on molecular dating estimates from McGowen et al. (2009), McGowen (2011), and Higdon et al. (2007). Scale is in millions of years ago (MYA). Red circles indicate species with high-quality reference genomes; green stars indicate whole genome re-sequencing data; blue triangles indicate transcriptomes (generated by microarray or RNAseq); and black squares indicate RADseq data.

Figure 2. Number of marine mammal genomics publications from 1990 to 2015, categorized by primary methodology and research aim. Genomic methodologies include high-throughput single nucleotide polymorphism (SNP) genotyping and sequencing of mitogenomes, whole genomes (WGS), transcriptomes (generated by microarray or RNAseq), and reduced-representation genomic libraries (RRL). The "Other" category includes studies of microbiomes, BAC libraries, and large (~100) gene sets.

Figure 3. Number of BioProjects (gray bars) related to marine mammal genomics submitted from 2006 to 2015 to an online public database maintained by NCBI. Early BioProjects were largely microarray datasets. The number of projects created each year, as well as the yearly average (black dots \pm SE) and maximum (×) size of data submitted in each BioProject, increased dramatically after 2011, reflecting advances in high-throughput sequencing technologies that facilitated their use in non-model systems.

Figure 4

Figure 4. Timelines depicting the independent progression of genomic studies for four representative marine mammal species. Trajectories show the common progression for non-model species from mitogenome sequencing to whole genome sequencing, as well as from sequencing reference specimens to population-scale genomic sequencing. In addition, the timelines reveal the utility of genomic and transcriptomic sequencing for subsequent genetic marker development.

	2002 2009	2010	2011	2012	2013	2014	2015	2016
Common	Sequence mitogeno	me ¹	uscripts sub	mitted to J	Populatio	n mics ³	RADseq⁴	Shotgun sequencing for SNP discovery ⁶
(Tursiops truncatus)			Sequence genome (2.8	$(\mathbf{x})^2$			Improve genome (3.5x 454, 30x III	umina) ⁵
4 5 Killer whale		Population mitogenor	nics ⁷			RADseq ⁸		Population genome
6(Orcinus orca) 7 8			69			Sequence genome (20x) ⁹	Sequence genome (200x) ⁵	$2x, N = 48)^{10}$
9 Antarctic fur seal 1(Arctocephalus			Sequence tra Microsat.	anscriptome SNP				Sequence genome (200x) to validate SNPs ¹⁴
12 ^{gazena})			discovery ¹²	discovery	3			
14 15 Polar bear	Sequence mitogenome ¹⁵	Ancient DI mitogenor	NA ne ¹⁶			Population gene (avg 3.5x, N=61	ome re-sequencin) ¹⁸	g
(Lo rsus maritimus) 17				Sequence & transcrip	genome (* otome ¹⁷	100x)	RADseq & transo for SNP discover	priptome sequencing
18 19 20 21 22	1) Xiong et al. 2009 Louis et al. unpubl. Hoffman 2011; 12) H 16) Lindqvist et al. 2	; 2) Lindbla data; 7) Mo loffman and 2010; 17) M	d-Toh et al. 2 httpet/ah 2014 d Nicholas 20 iller et al. 201	011; 3) Mou 0,8\$Miputae 011; 13) Hof 12; 18) Liu e	ira et al. 20 e etial.201 4 fman et al. et al. 2014;	013; 4) Cammen Maolo) Moura et a . 2012; 14) Humb 19) Malenfant e	et al. 2015; 5) Fo l. 2014b; 10) Fool ble et al. 2016; 15 t al. 2015	ote et al. 2015; 6) te et al. 2016; 11)) Arnason et al. 2002;

Table 1. Current and commonly used tools for analysis of genomic data generated in non-model organisms. Please note that this list is not exhaustive and new computational tools are continuously being developed.

Computational Tool	Purpose	Strengths/Weaknesses	Reference
RADseq*			
STACKS	quality filtering, <i>de novo</i> assembly or reference-aligned read mapping, variant genotyping	scalable (new data can be compared against existing locus catalog); flexible filtering and export options; recently implemented a gapped alignment algorithm to process insertion-deletion (indel) mutations; secondary algorithm adjusts SNP calls using population-level allele frequencies; compatible with input data from multiple RADseq methods	Catchen et al. (2011; 2013), http://catchenlab.life.illinois.edu/ stacks/
PyRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	efficiently processes indel mutations, thus optimal for analysis of highly divergent species; high speed and quality of paired-end library assemblies; compatible with input data from multiple RADseq methods	Eaton (2014)
TASSEL-GBS	quality filtering, reference-aligned read mapping, variant genotyping	optimized for single-end data from large sample sizes (tens of thousands of individuals) with a reference genome; performs genome-wide association studies	Glaubitz et al. (2014)
dDocent	quality trimming, <i>de novo</i> assembly, read mapping, variant genotyping	beneficial in analysis of paired-end data; identifies both SNP and indel variants; most appropriate for ezRAD and ddRAD data	Puritz et al. (2014)
AftrRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	identifies both SNP and indel variants; computationally faster than STACKS and PyRAD	Sovic et al. (2015)
Array-based high-throughp	out sequencing		
Affymetrix Axiom [™] Analysis Suite, Illumina [®] GenomeStudio	genotype scoring	visualization of genotype clusters; quality scores assigned to genotype calls allow user-specific filtering; manual editing possible	
Whole genome sequencing			
AdapterRemoval v2, Trimmomatic	trim raw sequences	remove adapter sequences and low-quality bases prior to assembly	Bolger et al. (2014), Schubert et al. (2016)
ALLPATHS-LG, PLATANUS, SOAPdenovo	de novo genome assembly	designed for short-read sequences of large heterozygous genomes	Li et al. (2010), Gnerre et al. (2011), Kajitani et al. (2014)
AUGUSTUS,	gene annotation	highly accurate evidence-driven or BLASTX-guided	Yeh et al. (2001), Stanke et al. (2006) Holt and Yandell (2011)

Bowtie, bwa	tie, bwa read mapping rapid short-read alignment with compressed reference genome index, but limited number of acceptable mismatches per alignment (Flicek and Birney 2009)		Langmead et al. (2009), Li and Durbin (2009)
SAMtools	SAMtools data processing, variant calling multi-purpose tool that conducts file conversion, alignment sorting, PCR duplicate removal, and variant (SNP and indel) calling for SAM/BAM/CRAM files		Li et al. (2009)
GATK	data processing and quality control, variant calling	suitable for data with low to high mean read depth across the genome; initially optimized for large human datasets, then modified for use with non-model organisms	McKenna et al. (2010), DePristo et al. (2011)
ANGSD/NGStools	data processing, variant calling, estimation of diversity metrics, population genomic analyses	suitable for data with low mean read depth, including palaeogenomic data; allow downstream analyses such as D-statistics and SFS estimation	Fumagalli et al. (2014), Korneliussen et al. (2014)
RNAseq			
Fastx Toolkit, Trimmomatic	trim raw sequences	remove erroneous nucleotides from reads prior to assembly	MacManes (2014)
khmer diginorm, Trinity normalization	mer diginorm, Trinity <i>in silico</i> read normalization reduce memory requirements for assembly, but can result in fragmented assemblies and collapse heterozygosity		Brown et al. (2012); Haas et al. (2013)
Trinity	<i>de novo</i> and genome-guided transcriptome assembly	accurate assembly across conditions, but requires long runtime if normalization is not used (Zhao et al. 2011)	Haas et al. (2013)
bowtie, bowtie2, STAR read alignment to genome or transcriptome assembly required for many downstream analyses, but bow computationally intensive and all produce very la output BAM files		required for many downstream analyses, but bowtie is computationally intensive and all produce very large output BAM files	Langmead et al. (2009), Dobin et al. (2013)
2Xpress, kallisto, RSEM, estimation of transcript abundance Sailfish, Salmon RSEM requires computationally intensive read mapping back to the assembly; the others are faster streaming alignment, quasi-alignment, or alignment- free algorithms		Li and Dewey (2011), Patro et al. (2015)	
DESeq, DESeq2, edgeR	differential expression analysis	exhibit highest true positive and lowest false positive rates in experiments with smaller sample sizes (Schurch et al. 2015)	Anders and Huber (2010), Robinson et al. (2010), Love et al. (2014)
blast2GO, Trinotate	functional annotation of assembled transcripts	complete annotation pipelines including gene ontology and pathway enrichment analyses	Conesa et al. (2005), Haas et al. (2013)

* This is a non-exhaustive list of software that focuses on *de novo* loci assembly and genotype calling for RADseq data, as many practitioners working on NMOs will not have access to a reference genome. Other programs (e.g., GATK and ANGSD) that undertake genotype calling using reference-aligned loci are described in the whole genome sequencing section.

Manuscripts submitted to Journal of Heredity

Cammen_SupMat_TableS1 - Marine mammal genomics - JHered

Table S1. Broad applications of genomic tools in studies of non-model organisms are provided with concrete examples of research areas drawn from the field of marine mammal genomics. The number of loci used in each study provides an estimate of the scope of the respective genomic tools and study, but represents the outcome of several filtering steps from raw sequence data that vary across studies. Further details of each method can be found in the listed references. Please note that this is not an exhaustive list. GBS: Genotyping by Sequencing; RADseq: restriction site-associated DNA sequencing; SNP: single nucleotide polymorphism; TSC: target sequence capture; WGS: whole genome sequencing.

	# loci	Research area	Reference
Evolutionary genomics: des	cribe evolutionary history and	adaptation	
Mitogenome sequencing	Mitogenome	Cetacean phylogenomics	McGowen et al. (2009)
TSC	Mitogenome	Comparison of sub-fossil and modern killer whales	Foote et al. (2013)
TSC	>30kb coding sequence	Evolution of Sirenia	Springer et al. (2015)
WGS	Whole genome	Yangtze river dolphin genome analysis	Zhou et al. (2013)
WGS	Whole genome	Minke whale genome analysis	Yim et al. (2014)
WGS	Whole genome	Bowhead whale genome analysis	Keane et al. (2015)
WGS	Whole genome	Analysis of convergent evolution in marine mammal lineages	Foote et al. (2015)
WGS	10,025 coding sequences	Positive selection in common bottlenose dolphin genome	McGowen et al. (2012)
WGS	Sensory genes	Analysis of gene loss in olfaction and taste in Antarctic minke whale	Kishida et al. (2015)
Genome re-seq	Whole genome	Speciation and adaptation in brown and polar bears	Liu et al. (2014)
Transcriptomics	9,395 genes	Evolution of longevity in bowhead whales	Seim et al. (2014)
Transcriptomics	103,077 unigenes	Osmoregulatory divergence in narrow-ridged finless porpoise	Ruan et al. (2015)
Population genomics: chara	acterize population structure an	nd investigate demography	
RADseq	3,281 SNPs	Killer whale ecotype divergence	Moura et al. (2014)
RADseq (GBS)	24,996 loci; 4,854 SNPs	Historical demography in Atlantic walrus	Shafer et al. (2015)
TSC	Mitogenome and 43-118 nuclear loci	Phylogeography and population genomics of cetaceans	Hancock-Hanser et al. (2013); Morin et al. (2015)
Genome re-seq	Whole genome	Demographic history, population differentiation, and ecotype	Foote et al. (2016)

Cammen_SupMat	TableS1	- Marine mammal	genomics - JHered
---------------	---------	-----------------	-------------------

Adaptation genomics: describ	e relationships between geno	mic variation and fitness	
RADseq	83,148 loci; 14,585 SNPs	Effect of inbreeding depression on parasite infection in harbor seals	Hoffman et al. (2014)
RADseq	129,494 loci; 7,431 SNPs	Common bottlenose dolphin adaptation to harmful algal blooms	Cammen et al. (2015)
Transcriptomics	11,286 contigs	Sperm whale skin cell response to hexavalent chromium	Pabuwal et al. (2013)
Transcriptomics	164,966 contigs	Physiological stress response in northern elephant seals	Khudyakov et al. (2015a; 2015b)
Develop molecular resources			
RADseq	3,595 loci	Comparison of short-beaked common dolphin and harbor porpoise	Viricel et al. (2014)
Shotgun sequencing	440,718 SNPs	SNP discovery in Northeast Atlantic common bottlenose dolphins	M. Louis (unpubl. data)
WGS	144 SNPs	SNP validation in Antarctic fur seal	Humble et al. (2016)
Transcriptomics	23,096 contigs; 144 SNPs	Gene and SNP discovery in Antarctic fur seal	Hoffman et al. (2011; 2012; 2013)
Transcriptomics & RADseq	9,000 SNPs	Development of SNP array for polar bear and demonstration of utility in population genomics	Malenfant et al. (2015)

 Cammen_SupMat_TableS1 - Marine mammal genomics - JHered

- Cammen KM, Schultz TF, Rosel PE, Wells RS, Read AJ. 2015. Genomewide investigation of adaptation to harmful algal blooms in common bottlenose dolphins (*Tursiops truncatus*). *Mol Ecol.* 24:4697-4710.
- Foote AD, Liu Y, Thomas GWC, Vinař Ts, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, *et al.* 2015. Convergent evolution of the genomes of marine mammals. *Nat Genet*. 47:272-275.
- Foote AD, Newton J, Ávila-Arcos MC, Kampmann M-L, Samaniego JA, Post K, Rosing-Asvid A, Sinding M-HS, Gilbert MTP. 2013. Tracking niche variation over millennial timescales in sympatric killer whale lineages. *Proc R Soc Lond B Biol Sci.* 280:20131481.
- Foote AD, Vijay N, Ávila-Arcos M, Baird RW, Durban JW, Fumagalli M, Gibbs RA, Hanson MB, Korneliussen TS, Martin MD, *et al.* 2016. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. *Nat Commun.* 7:11693.
- Hancock-Hanser BL, Frey A, Leslie MS, Dutton PH, Archer FI, Morin PA. 2013. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. *Mol Ecol Resour*. 13:254-268.
- Hoffman JI. 2011. Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin transcriptome. Mol Ecol Resour. 11:703-710.
- Hoffman JI, Simpson F, David P, Rijks JM, Kuiken T, Thorne MAS, Lacy RC, Dasmahapatra KK. 2014. High-throughput sequencing reveals inbreeding depression in a natural population. *Proc Natl Acad Sci USA*. 111:3775-3780.
- Hoffman JI, Thorne MAS, Trathan PN, Forcada J. 2013. Transcriptome of the dead: characterisation of immune genes and marker development from necropsy samples in a free-ranging marine mammal. *BMC Genomics*. 14:52.
- Hoffman JI, Tucker R, Bridgett SJ, Clark MS, Forcada J, Slate J. 2012. Rates of assay success and genotyping error when single nucleotide polymorphism genotyping in non-model organisms: a case study in the Antarctic fur seal. *Mol Ecol Resour*. 12:861-872.
- Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW, Hoffman JI. 2016. A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. *Mol Ecol Resour*.
- Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand D, Marques PI, *et al.* 2015. Insights into the evolution of longevity from the bowhead whale genome. *Cell Reports*. 10:112-122.
- Khudyakov JI, Champagne CD, Preeyanon L, Ortiz RM, Crocker DE. 2015a. Muscle transcriptome response to ACTH administration in a free-ranging marine mammal. *Physiol Genomics*. 47:318-330.
- Khudyakov JI, Preeyanon L, Champagne CD, Ortiz RM, Crocker DE. 2015b. Transcriptome analysis of northern elephant seal (*Mirounga angustirostris*) muscle tissue provides a novel molecular resource and physiological insights. *BMC Genomics*. 16:64.
- Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K. 2015. Aquatic adaptation and the evolution of smell and taste in whales. *Zoolog Lett.* 1:9.
- Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, *et al.* 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. *Cell*. 157:785-794.

Cammen_SupMat_TableS1 - Marine mammal genomics - JHered

- Malenfant RM, Coltman DW, Davis CS. 2015. Design of a 9K Illumina BeadChip for polar bears (*Ursus maritimus*) from RAD and transcriptome sequencing. *Mol Ecol Resour*. 15:587-600.
- McGowen MR, Grossman LI, Wildman DE. 2012. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. *Proc R Soc Lond B Biol Sci*. 279:3643-3651.
- McGowen MR, Spaulding M, Gatesy J. 2009. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. *Mol Phylogenet Evol.* 53:891-906.
- Morin PA, Parsons KM, Archer FI, Ávila-Arcos M, Barrett-Lennard LG, Dalla Rosa L, Duchêne S, Durban JW, Ellis GM, Ferguson SH, *et al.* 2015. Geographic and temporal dynamics of a global radiation and diversification in the killer whale. *Mol Ecol.* 24:3964-3979.
- Moura AE, Kenny JG, Chaudhuri R, Hughes MA, Welch AJ, Reisinger RR, de Bruyn PJN, Dahlheim ME, Hall N, Hoelzel AR. 2014. Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift. *Mol Ecol*. 23:5179-5192.
- Pabuwal V, Boswell M, Pasquali A, Wise SS, Kumar S, Shen Y, Garcia T, Lacerte C, Wise JP, Jr., Wise JP, Sr., *et al.* 2013. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)]. *Aquat Toxicol.* 134-135:74-81.
- Ruan R, Guo A-H, Hao Y-J, Zheng J-S, Wang D. 2015. *De novo* assembly and characterization of narrow-ridged finless porpoise renal transcriptome and identification of candidate genes involved in osmoregulation. *Int J Mol Sci.* 16:2220-2238.
- Seim I, Ma S, Zhou X, Gerashchenko MV, Lee S-G, Suydam R, George JC, Bickham JW, Gladyshev VN. 2014. The transcriptome of the bowhead whale *Balaena mysticetus* reveals adaptations of the longest-lived mammal. *Aging*. 6:879-899.
- Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW. 2015. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: *in silico* evaluation of power, biases and proof of concept in Atlantic walrus. *Mol Ecol.* 24:328-345.
- Springer MS, Signore AV, Paijmans JLA, Vélez-Juarbe J, Domning DP, Bauer CE, He K, Crerar L, Campos PF, Murphy WJ, *et al.* 2015. Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. *Mol Phylogenet Evol.* 91:178-193.
- Viricel A, Pante E, Dabin W, Simon-Bouhet B. 2014. Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans. *Mol Ecol Resour*. 14:597-605.
- Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M, Lee J-H, Yang EC, Kwon KK, *et al.* 2014. Minke whale genome and aquatic adaptation in cetaceans. *Nat Genet.* 46:88-92.
- Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, Chen Y, Shi C, Yang Y, Huang Z, *et al.* 2013. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. *Nat Commun.* 4:2708.

2		
3	1	Genomic methods take the plunge: recent advances in high-throughput sequencing of
4	2	marine mammals
5	2	marine manimary
6	5	$V_{\text{DECTDIAN}} = M (CANO (CM)^{4} + M (DEDIAN D AND DEW)^{2} = V (CAD DOLL^{3} AND DEW D$
/	4	KRISTINA M. CAMMEN ^{**} , KIMBERLY K. ANDREWS ⁻ , EMMA L. CARROLL [*] , ANDREW D.
8	5	FOOTE ⁴ , EMILY HUMBLE ^{3,0} , JANE I. KHUDYAKOV', MARIE LOUIS ³ , MICHAEL R.
9	6	MCGOWEN ⁸ , MORTEN TANGE OLSEN ⁹ , AND AMY M. VAN CISE ¹⁰
10	7	
12	8	¹ School of Marine Sciences, University of Maine, Orono, Maine 04469, USA
12	9	² Department of Fish and Wildlife Sciences University of Idaho 875 Perimeter Drive MS 1136
14	10	Moscow Idaho 83844 1136 USA
15	10	³ Seattish Occare Institute University of St Andrews Feat Sends St Andrews Fife WV16 91 D
16	11	Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, File K Y 16 8LB,
17	12	UK
18	13	⁴ Computational and Molecular Population Genetics CMPG-Llab, Institute of Ecology and
19	14	Evolution, University of Bern, Bern CH-3012, Switzerland
20	15	⁵ Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501 Bielefeld,
21	16	Germany
22	17	⁶ British Antarctic Survey High Cross Madingley Road Cambridge CB3 OFT LIK
23	10	⁷ Department of Dialogy, Sonome State University, Dohnert Dark, California 04029, USA
24	10	⁸ S 1 1 CD: 1 : 1 1 Cl : 1 Cl
25	19	School of Biological and Chemical Sciences, Queen Mary University of London,
26	20	Mile End Road, London EI 4NS, UK
27	21	² Evolutionary Genomics Section, Natural History Museum of Denmark, University of
28	22	Copenhagen, DK-1353 Copenhagen K, Denmark
29	23	¹⁰ Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, California 92037, USA
30	24	
31	25	*Corresponding author: kristing cammen@maine edu
১∠ ৫৫	25	Corresponding dution. Kristind.cummentomanie.cud
34	20	
35	27	Running title: Marine mammal genomics
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50 51		
52		
52 53		
54		
55		
56		
57		
58		
59		

28 Abstract

The dramatic increase in the application of genomic techniques to non-model organisms over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of non-model organisms utilize an expanding range of approaches, including low- and high-coverage whole genome sequencing, restriction site-associated DNA sequencing, array-based high-throughput sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitations of research on non-model organisms. Within marine mammals, such studies have thus far vielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure in natural populations. Here, we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of non-model organisms.

47 Keywords: RADseq, SNP array, target sequence capture, whole genome sequencing, RNAseq,
48 non-model organisms

49 Introduction

Recent advances in sequencing technologies, coincident with dramatic declines in cost, have increasingly enabled the application of genomic sequencing in non-model systems (Ekblom and Galindo 2011; Ellegren 2014). These advances in molecular technologies have in many ways begun to blur the distinction between model and non-model organisms (Armengaud et al. 2014). Non-model organisms (NMOs) have traditionally been defined as those for which whole-organism experimental manipulation is rarely, if ever, possible due to logistical and/or ethical constraints (Ankeny and Leonelli 2011). Further, NMOs have typically been characterized by limited genomic resources, but this is becoming increasingly less so as the number of NMO reference genomes grows rapidly, for example through efforts like the Genome 10K Project (Koepfli et al. 2015). In fact, in some taxonomic orders, we are approaching the point at which all species have at least one representative reference genome available for a closely related species (Fig 1).

Despite the limitations of working with NMOs, including potentially small sample sizes, low DNA quantity, and limited information on gene function, genetic and genomic investigations of NMOs have yielded numerous valuable contributions to understanding their evolutionary biology and ecology. For the past several decades, traditional genetic markers such as microsatellites and short fragments of mitochondrial DNA (e.g., the control region) have been extensively used in molecular ecology. These markers, which typically evolve under neutral expectations, have proven useful for identifying population structure and reconstructing population demographic history (Hedrick 2000). However, the power of such studies is limited by the number of markers that can feasibly be evaluated using traditional approaches. The advent of low-cost high-throughput sequencing has led to dramatic increases in the number of neutral markers that can be evaluated, in many cases improving our power to resolve fine-scale or cryptic population structure in species with high dispersal capability (e.g., Corander et al. 2013) and improving the accuracy of estimating some (though not all) demographic parameters (Li and Jakobsson 2012; Shafer et al. 2015). Importantly, high-throughput sequencing has also further enabled genomic studies of non-neutral processes in NMOs, for example, characterizing both deleterious and adaptive variation within and across species (Stinchcombe and Hoekstra 2008;

Künstner et al. 2010). It is increasingly evident that genomic analyses of NMOs can and haveprovided important insights that could not be identified with traditional genetic markers.

Many molecular ecologists now face the challenge of deciding which of the broad range of genomic approaches to apply to their study systems. Here we review the primary options for generating genomic data and their relative suitability for different applications in the study of NMOs. We focus on marine mammals, which represent several mammalian clades with notably rapid growth in available genomic resources in recent years. This growth is clearly evident in both publication rate (Fig 2) and the rise in number and size of genomic sequences deposited in public resources (Fig 3). We comprehensively review the literature on marine mammal genomics, highlighting recent trends in methodology and applications, and then describe in detail the molecular approaches that are most commonly applied to studies of non-modelNMO genomics. Our hope is that this review will highlight the promise of genomics for NMOs and offer guidance to researchers considering the application of genomic techniques in their non-model study system of choice.

(

95 Why study marine mammal genomics?

Marine mammals represent key macroevolutionary transitions from terrestrial to marine environments (McGowen et al. 2014) and accordingly are an exemplary system for investigating the evolution of several morphological and physiological adaptations (Foote et al. 2015) associated with locomotion (Shen et al. 2012), sight (Meredith et al. 2013), echolocation (Parker et al. 2013; Zou and Zhang 2015), deep diving (Mirceta et al. 2013), osmoregulation (Ruan et al. 2015), and cognition (McGowen et al. 2012). Furthermore, studies of marine mammal evolution to date have characterized several unique aspects of their genome evolution that merit further investigation, including low genomic diversity and a relatively slow molecular clock, especially in cetaceans (Jackson et al. 2009; McGowen et al. 2012; Zhou et al. 2013). As many cetacean species are highly mobile with no obvious physical geographic barriers to dispersal, they provide a unique opportunity to study the role of behavior and culture in shaping population structure and genetic diversity (Riesch et al. 2012; Carroll et al. 2015; Alexander et al. 2016). Finally, Tthough highly mobile, many marine mammals exhibit evidence of local adaptation; for example, several species show parallel divergent morphological and behavioral adaptations to coastal and pelagic

environments (Moura et al. 2013; Louis et al. 2014; Viricel and Rosel 2014). These species may
be studied across ocean basins as emerging examples of ecological adaptation and speciation
(Morin et al. 2010a).

Beyond their value as systems of evolutionary study, many marine mammals are also of broader interest relating to their historical and present conservation status. Many marine mammal populations share histories of dramatic decline due to hunting and other human impacts. Genomics provides a promising tool with which to expand our insights into these historical population changes, which so far primarily have been derived from archival review and traditional genetic approaches (Ruegg et al. 2013; Sremba et al. 2015). More recently, since the implementation of national and international protections, many marine mammal populations have partially or fully recovered (Magera et al. 2013), yet the conservation status of certain marine mammal populations remains of concern. Such vulnerable populations could benefit greatly from an improved understanding of their genetic diversity and evolution, especially in ways that can inform predictions of adaptive capacity to anthropogenic pressures and expand the toolkit for conservation policy (Garner et al. 2016; Taylor and Gemmell 2016).

127 Recent trends in marine mammal genomics

We conducted a meta-analysis of the peer-reviewed marine mammal genomics literature to evaluate trends in publication rates across research methodologies and aims. A search of the Web of Science database using the term "genom*" and one of the following terms indicating study species - "marine mammal", "pinniped", "seal", "sea lion", "sea otter", "whale", "dolphin", "polar bear", "manatee" - identified 825 records on December 11, 2015. We excluded 77% of the search results that were not directly related to genomic studies in marine mammal systems. The remaining 101 articles that were relevant to marine mammal genomics were further categorized by primary research methodology and general research aim. A subset of these articles is described briefly in Supplemental Table 1.

1 137

 From the early 1990s through 2015, published literature in the field has-shifted from an early focus on mitogenome sequencing to more sequence-intensive approaches, such as transcriptome and whole genome sequencing (Figs 2 and 4). This trajectory closely follows trends in sequencing technologies, from Sanger sequencing of short- and long-range PCR products for mitogenome sequencing (Arnason et al. 1991) and SNP discovery (Olsen et al. 2011), to high-throughput sequencing of reduced-representation genomic libraries (RRLs) that consist of selected subsets of the genome (e.g., Viricel et al. 2014), to high-throughput sequencing of whole genomes with varying levels of depth, <u>of</u>-coverage, and contiguity. Today, high-throughput sequencing can be used both to generate high-quality reference genome assemblies (Yim et al. 2014; Foote et al. 2015; Humble et al. 2016) and to re-sequence whole genomes at a population scale (Liu et al. 2014a; Foote et al. 2016). Similarly, the scale of gene expression studies has increased from quantitative real-time PCR of candidate genes (Tabuchi et al. 2006) to microarrays containing hundreds to thousands of genes (Mancia et al. 2007) and high-throughput RNAseq that evaluates hundreds of thousands of contigs across the genome (Khudyakov et al. 2015b). As the cost of high-throughput sequencing continues to decline, we anticipate an increase in studies that sequence RRLs, whole genomes, and transcriptomes in NMOs at a population scale.

Marine mammal genomic studies thus far have primarily contributed to the fields of phylogenomics and comparative genomics (Fig 2, Table S1). Several of these comparative genomics studies have aimed to improve our understanding of the mammalian transition to an aquatic lifestyle and describe the evolutionary relationships within and among marine mammals and their terrestrial relatives (McGowen et al. 2014; Foote et al. 2015). Whereas such studies require only a single representative genome per species, an emerging class of studies applying genomic techniques at a population scale enables further investigations of fitness, demography, and population structure within a species (Table S1). However, expanding the scale of genomic studies requires careful selection of an appropriate method for data generation and analysis, from a growing number of approaches that are becoming available to non-model systems.

Data generation

Our review of marine mammal genomics highlights an increasing number of options for the generation and analysis of genomic data. Choosing which of these sequencing strategies to apply is a key step in any genomics study. Here, we describe approaches that have been used successfully in order to help guide future studies of ecological, physiological, and evolutionary

Page 59 of 95

178

1 2 3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

172 genomics in NMOs. Across data generation methods, we highlight approaches that can be used 173 with limited or no prior genomic resources, overcoming one traditional challenge of genomic 174 studies of NMOs (the need for a reference genome to which sequencing reads can be mapped). 175 These methods produce a range in quantity and type of data output, from hundreds of SNPs to 176 whole genome sequences, and from single individuals to population samples, reflecting the 177 trade-off between number of samples and amount of data generated per sample.

179 Sample collection, storage and extraction

180 Prior to starting a genomic study, researchers must recognize that many recent methods for high-181 throughput sequencing require genetic material of much higher quality and quantity than 182 techniques used to characterize traditional genetic markers. These more stringent sample 183 requirements necessitate new standards for tissue sampling, storage, and DNA/RNA extraction. 184 Ideally, samples should be collected from live or newly deceased individuals and stored at -80°C, 185 or when this is not possible at -20°C in RNAlater, Trizol, ethanol, salt-saturated DMSO, or dry, 186 depending on the intended application. Given the sensitivity of new sequencing methods, great 187 care should be taken to minimize cross-contamination during sampling, as even minute amounts 188 of genetic material from another individual can bias downstream analyses, for example variant 189 genotyping and gene expression profiles. Choice of extraction method varies with sample type 190 and study aim, but typically genomic methods require cleanup and treatment with RNase to yield 191 pure extracts, whereas RNAseq methods require rigorous DNase treatment to remove genomic 192 contamination that can bias expression results. Depending on the genomic methodology, target 193 quantities for a final sample may range from as low as 50 ng of DNA for some RRL sequencing 194 methods (Andrews et al. 2016) up to ~ 1 mg for sequencing the full set of libraries (of different 195 insert sizes) necessary for high-quality genome assemblies (Ekblom and Wolf 2014). Most 196 commercial RNAseq library preparation services require at least 500-1,000 ng of pure total RNA 197 that shows minimal degradation as measured by capillary gel electrophoresis (RNA Integrity 198 Number (RIN) \geq 8). Samples should ideally consist of high molecular weight genetic material 199 (with little shearing), though continuing molecular advances enable genomic sequencing even of 200 low quantity or poor quality starting material. Extreme examples of the latter include 201 successfully sequenced whole genomes from ancient material (e.g., Rasmussen et al. 2010;

202 Meyer et al. 2012; Allentoft et al. 2015), including a more than 500,000-year-old horse (Orlando203 et al. 2013).

205 <u>Reduced-representation genome sequencing</u>

11 206 *i. RADseq*

> Reduced-representation sequencing methods evaluate only a small portion of the genome, allowing researchers to sequence samples from a larger number of individuals within a given budget in comparison to sequencing whole genomes. Restriction site-associated DNA sequencing (RADseq) is currently the most widely -used RRL sequencing method for NMOs (Davey et al. 2011; Narum et al. 2013; Andrews et al. 2016). RADseq generates sequence data from short regions adjacent to restriction cut sites and therefore targets markers that are distributed relatively randomly across the genome and occur primarily in non-coding regions. This method allows simultaneous discovery and genotyping of thousands of genetic markers for virtually any species, regardless of availability of prior genomic resources. Of greatest interest are variable markers, characterized either as single SNPs or phased alleles that can be resolved from the identification of several SNPs variants within a single locus.

The large number of markers generated by RADseq dramatically increases genomic resolution and statistical power for addressing many ecological and evolutionary questions when compared to studies using traditional markers (Table S1). For example, heterozygosity -fitness associations correlations in harbor seals (Phoca vitulina) were nearly fivefold higher when using 14,585 RADseq SNPs than when using 27 microsatellite loci (Hoffman et al. 2014). A recent study on the Atlantic walrus (Odobenus rosmarus rosmarus) using 4,854 RADseq SNPs to model demographic changes in connectivity and effective population size associated with the Last Glacial Maximum (Shafer et al. 2015) both supported and extended inferences from previous studies using traditional markers (Shafer et al. 2010; Shafer et al. 2014).

Furthermore, RADseq can provide sufficient numbers of markers across the genome to identify genomic regions influenced by natural selection in some cases. These analyses require large numbers (thousands to tens of thousands) of markers to ensure that some markers will be in linkage disequilibrium with genomic regions under selection and to minimize false positives,

particularly under non-equilibrium demographic scenarios (Narum and Hess 2011; De Mita et al. 2013; Lotterhos and Whitlock 2014). Extreme demographic shifts, as experienced by many marine mammal populations (e.g., killer whales, Foote et al. 2016), can drive shifts in allele frequencies that confound the distinction of drift and selection and make it difficult to detect genomic signatures of selection (Poh et al. 2014). Proof of concept of the application of RADseq for identifying genomic signatures of selection in wild populations was demonstrated in three-spined sticklebacks (Gasterosteus aculeatus), for which analyses of over 45,000 SNPs (Hohenlohe et al. 2010) identified genomic regions of known evolutionary importance associated with differences between marine and freshwater forms (Colosimo et al. 2005; Barrett et al. 2008). RADseq studies with similar aims in marine mammals have resulted in comparatively sparser sampling of SNPs (<10,000), likely due to both methodological differences and generally low genetic diversity particularly among cetaceans. Nonetheless, genomic regions associated with resistance to harmful algal blooms in common bottlenose dolphins (*Tursiops truncatus*) were identified across multiple pairwise comparisons using 7,431 RADseq SNPs (Cammen et al. 2015), and genomic regions associated with habitat use and resource specialization in killer whales (Orcinus orca) were identified using 3,281 RADseq SNPs (Moura et al. 2014a). Some of these RADseq SNPs associated with diet in killer whales were later also confirmed as occurring in genomic regions of high differentiation and reduced diversity consistent with a signature of selection identified in a study utilizing low-coverage whole genome re-sequencing (Foote et al. 2016). It will remain important for further studies of genomic signatures of selection in NMOs to carefully consider which approaches will generate a sufficiently large number of SNPs to accurately identify the range of putatively neutral $F_{\rm ST}$ values (and thus outliers) given the demographic history of the population (Lotterhos and Whitlock 2014).

Numerous laboratory methods have been developed for generating RADseq data (reviewed in Andrews et al. 2016), with the most popular library preparation methods currently being the original RAD (Miller et al. 2007; Baird et al. 2008), Genotyping by Sequencing (GBS, Elshire et al. 2011; Poland et al. 2012), and double digest RAD (ddRAD, Peterson et al. 2012). All RADseq methods share the common goal of sequencing regions adjacent to restriction cut sites across the genome, but differ in technical details, such as the number and type of restriction enzymes used, the mechanisms for reducing genomic DNA fragment sizes, and the strategies for attaching sequencing adapters to the target DNA fragments. For example, both the original RAD method and GBS use a single enzyme digest, but the original RAD protocol-method uses a rare-cutting enzyme and mechanical shearing to reduce DNA fragment size (Baird et al. 2008), whereas GBS uses a more frequent-cutting enzyme and relies on preferential PCR amplification of shorter fragments for indirect size selection (Elshire et al. 2011). These types of variation modifications lead to differences across methods in the time and cost of library preparation, the number and lengths of loci produced, and the types of error and bias present in the resulting data. Different RADseq methods will be better suited to different research questions, study species, and research budgets, and therefore researchers embarking on a RADseq study should carefully consider the suitability of each method for their individual projects. Further details on the advantages and disadvantages of each method are described in Andrews et al. (2016).

ii. SNP arrays

 An alternative high-throughput reduced-representation genotyping approach involves the use of custom arrays designed to capture and sequence targeted regions of the genome. Such array-based approaches may provide certain advantages over RADseq, including the ability to easily estimate genotyping error rates, scalability to thousands of samples, lower requirements for DNA quantity/quality and technical effort, greater comparability of markers across studies, and the ability to genotype SNPs within candidate genomic regions. However, unlike RADseq, array-based techniques require prior knowledge of the study system's genome or the genome of a closely related species, which remains unavailable for some NMOs. Furthermore, SNP arrays must take into account the potential for ascertainment bias (e.g., Malenfant et al. 2015), whereas RADseq avoids ascertainment bias by simultaneously discovering and genotyping markers.

To identify SNPs for NMO array development, researchers must rely on existing genomic resources or generate new reference sequences, in the form of whole or reduced-representation genomes or transcriptomes (Hoffman et al. 2012; Malenfant et al. 2015). When a whole genome reference assembly is available for the target species or a related species, multiplex shotgun sequencing can facilitate the rapid discovery of hundreds of thousands of SNPs for array development. This SNP discovery approach involves high-throughput sequencing of sheared

genomic DNA, which that can be sequenced at a low depth of coverage (i.e., low mean read depth across the genome) if suitable genotype likelihood-based methods (O'Rawe et al. 2015) are used to identify polymorphic sites. Thus, this approach is less restrictive in terms of DNA quality. For example, shotgun sequencing of 33 Northeast Atlantic common bottlenose dolphins, which included degraded DNA collected from stranded specimens, on one Illumina HiSeq2000 lane of 100 -bp single-end sequencing identified 440,718 high-quality SNPs (M. Louis unpublished data). Such dense sampling of SNPs is essential for studies of population genomics that require a large number of markers, such as for inferences of demographic history (Gutenkunst et al. 2009; Excoffier et al. 2013; Liu and Fun 2015) and selective sweeps (Chen et al. 2010). Once a set of putative markers has been identified, hybridization probes can be designed from their flanking sequences and printed onto a SNP array. The two principal SNP genotyping platforms supporting thousands to millions of SNPs are the Illumina Infinium iSelect[®] and Affymetrix Axiom[®] arrays.

The use of SNP arrays in NMOs has thus far been somewhat limited, potentially due to low SNP validation rates (Chancerel et al. 2011; Helvar et al. 2011), issues of ascertainment bias (Albrechtsen et al. 2010; McTavish and Hillis 2015), and cost of SNP discovery. However, using both SNP data and whole genome sequence from the Antarctic fur seal (Arctocephalus gazella), Humble et al. (2016) recently demonstrated that careful filtering based on SNP genomic context prior to array development has the potential to substantially increase assay success rates. Further, ascertainment bias can be reduced by selecting samples for SNP discovery that span the geographic range of populations that will be target_-sequenced (Morin et al. 2004). By accounting for ascertainment bias, Malenfant et al. (2015) were able to demonstrate population structure in Canadian polar bears (Ursus maritimus) more clearly using a 9K SNP array than 24 microsatellite markers.

 iii. Target sequence capture

Target sequence capture (TSC, also called target enrichment, direct selection, or Hyb-seq) has many of the same advantages and disadvantages as the array-based SNP approaches described above, but differs in library preparation, sequencing platform, and resulting sequence data. While SNP arrays genotype single variable positions, TSC can be used to sequence selected short

fragments. With TSC, researchers can amplify and sequence up to a million target probes on solid-state arrays, and even more if in-solution arrays are used. This gives the user the ability to choose to sequence many samples in parallel (Cummings et al. 2010), as many as 100-150 per Illumina HiSeq lane, or to sequence many regions per individual. Recent advances in target enrichment, such as genotyping in thousands (Campbell et al. 2015), anchored hybrid enrichment (Lemmon et al. 2012), and target capture of ultra-conserved elements (UCEs, Faircloth et al. 2012; McCormack et al. 2012), have further increased the number of regions and individuals that can be sampled in a single lane. In addition, UCEs overcome the need for a reference genome, enabling their wide application across many NMOs (though designing custom probe sets from closely related species will remain preferable in many cases (Hancock-Hanser et al. 2013)). Although a number of methodological variants have been developed and optimized (Bashiardes et al. 2005; Noonan et al. 2006; Hodges et al. 2009; Cummings et al. 2010; Mamanova et al. 2010; Hancock-Hanser et al. 2013), TSC generally relies on hybridization and amplification of specially prepared libraries consisting of fragmented genomic DNA. Many companies offer kits for TSC, such as Agilent (SureSelect) and MY croarray (MY baits), with MY croarray specifically marketing their kits for use with NMOs.

The most common use of TSC has been the capture of whole exomes in model organisms, including humans (Ng et al. 2009). However, as costs have plummeted, TSC is increasingly being used in investigations of NMOs. TSC is particularly useful in sequencing ancient DNA, where it can enrich the sample for endogenous DNA content relative to exogenous DNA (i.e., contamination) and thereby increase the relative DNA yield (Ávila-Arcos et al. 2011; Enk et al. 2014). For example, TSC has been used to generate mitogenome sequences from subfossil killer whale specimens originating from the mid-Holocene; for comparison with modern lineages (Foote et al. 2013). TSC was also recently utilized to compare >30 kb of exonic sequence from museum specimens of the extinct Steller's sea cow (Hydrodamalis gigas) and a modern dugong (Dugong dugon) specimen to investigate evolution within Sirenia (Springer et al. 2015). Springer et al. (2016) further used TSC to examine gene evolution related to dentition across edentulous mammals, including mysticetes. Finally, TSC of both exonic and intronic regions has been used to assess genetic divergence across cetacean species (Hancock-Hanser et al. 2013; Morin et al. 2015). These studies show the potential use of TSC across evolutionary time-scales for

1

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
20
30
31
32
33
34
35
26
30
37
38
39
40
/1
10 10
42
43
44
45
46
47
10
4ð
49
50
51
52
53
55
54
55
56
57
58
50
29

population genomics, phylogenomics, and studies of selection and gene loss across divergentlineages (Table S1).

360 <u>Whole genome sequencing</u>

Beyond advances enabled by the reduced-representation methods presented above, our power
and resolution to elucidate evolutionary processes, including selection and demographic shifts,
can be further increased by sequencing whole genomes.

364

365 *i. <u>High-coverage R</u>reference genome sequencing*

At the time of publication, there exist are 12 publicly available¹ whole (or near-whole) marine 366 367 mammal genomes of varying quality representing 10 families, including 7 cetaceans (Fig 1A), 3 368 pinnipeds (Fig 1B), the West Indian manatee (*Trichechus manatus*), and the polar bear. The first 369 sequenced marine mammal genome was that of the common bottlenose dolphin, which was 370 originally sequenced to $\sim 2.5x$ depth of coverage using Sanger sequencing (Lindblad-Toh et al. 371 2011). This genome was later improved upon by adding both 454 and Illumina HiSeq data (Foote et al. 2015). Other subsequent marine mammal genomes were produced solely using 372 373 Illumina sequencing and mate-paired or paired-end libraries with varied insert sizes (Miller et al. 374 2012; Zhou et al. 2013; Yim et al. 2014; Foote et al. 2015; Keane et al. 2015; Kishida et al. 2015; 375 Humble et al. 2016).

7 376

60

377 Whole genome sequencing has been used to address many issues in marine mammal genome 378 evolution, usually by comparison with other existing mammalian genomes. Biological insights 379 discussed in the genome papers listed above include the evolution of transposons and repeat 380 elements, gene evolution and positive selection, predicted population structure through time, 381 SNP validation, molecular clock rates, and convergent molecular evolution (Table S1). For 382 example, analyses of the Yangtze river dolphin (Lipotes vexillifer) genome confirmed that a 383 bottleneck occurred in this species during the last period of deglaciation (Zhou et al. 2013). In 384 addition, following upon earlier smaller-scale studies (e.g., Deméré et al. 2008; McGowen et al.

¹ These genomes are available on NCBI's online genome database or Dryad, but they have not all been published. As agreed upon in the Fort Lauderdale Convention, the community standard regarding such unpublished genomic resources is to respect the data generators' right to publish with these data first.

2008; Havden et al. 2010), genomic analyses have confirmed the widespread decay of gene families involved in olfaction, gustation, enamelogenesis, and hair growth in some cetaceans (Yim et al. 2014; Kishida et al. 2015). Perhaps the most widespread use of whole genome studies has been the use of models of selection to detect protein-coding genes that show evidence of natural selection in specific lineages. A recent study by Foote et al. (2015) has extended this approach to investigate convergent positive selection among cetaceans, pinnipeds, and sirenians. This study exemplifies a trend in recent genomic studies, which that sequence multiple genomes to address a predetermined evolutionary question, in this case, the molecular signature of aquatic adaptation.

In addition to these evolutionary insights that typically stem from a comparative genomics approach, the development of high-quality reference genome assemblies provide an important resource that facilitates mapping of reduced-representation genomic data (see previous section) as well as relatively low-coverage, short-read sequencing data with relatively low depth of coverage (see following section). These data types can be generated at relatively low cost on larger sample sizes enabling population-scale genomic studies. In many cases, genome assemblies from closely related species are sufficient for use as a reference. Particularly among marine mammals, given their generally slow rate of nucleotide divergence, it is therefore likely unnecessary to sequence a high-quality reference genome assembly for every species. Instead, resources could be allocated toward population--scale studies, including-low coverage genome re-sequencing efforts.

ii. Population-level low-coverage genome re-sequencing

In contrast to high-coverage reference genome sequencing that today often exceeds 100x mean read coverage depth and typically combines long- and short-insert libraries to generate high-quality assemblies for one to a few individuals, low-coverage genome re-sequencing studies capitalize on existing reference assemblies and aim to achieve only $\geq 2x$ coverage mean read depth on tens to hundreds of individuals from short-insert libraries which that are then whose reads are anchored to the existing reference assembliesy. Given Despite the inherent trade-offs between cost, read depth, coverage, and sample size, low-coverage genome re-sequencing of large numbers of individuals for population-level inference can be conducted at a relatively low

cost. In the past five years, several influential studies have used genome re-sequencing to advance our understanding of the genomic underpinnings of different biological questions in model systems. For example, population genomics of *Heliconius* butterflies highlighted the exchange of genes between species that exhibit convergent wing patterns (The Heliconius Genome Consortium 2012); whole genome re-sequencing of three-spined sticklebacks highlighted the re-use of alleles in replicated divergences associated with ecological speciation and local adaptation (Jones et al. 2012); and combined population genomics and phylogenomics have identified regions of the genome associated with variation in beak shape and size in Darwin's finches (Lamichhaney et al. 2015).

To date only two marine mammal population genomics studies using whole genome re-sequencing have been published. These studies involved re-sequencing the genomes of 79 individuals from three populations of polar bears (Liu et al. 2014a) and 48 individuals from five evolutionarily divergent ecotypes of killer whale (Foote et al. 2016). The findings of Foote et al. (2016) confirmed results of population differentiation that had previously been established using traditional genetic markers (Morin et al. 2010a). However, the study also provided new insights into the demographic history, patterns of selection associated with ecological niche, and evidence of episodic ancestral admixture that could not have been obtained using traditional markers.

Several new resources have made such population genomic studies economically possible for a greater number of NMOs, including the availability of a reference genome assemblies (see section above), relatively low-cost high-throughput sequencing (further increases in throughput expected with the new Illumina HiSeq X Ten (van Dijk et al. 2014)), and crucially, the development of likelihood-based methods that allow estimation of population genetic metrics from low-coverage-re-sequencing data (Fumagalli et al. 2013; O'Rawe et al. 2015). One last consideration is the ease of laboratory methods necessary to generate whole genome re-sequencing data when compared to other methods such as RADseq or TSC. DNA simply needs to be extracted from the samples and, using proprietary kits, built into individually index-amplified libraries using proprietary kits, which that are then equimolarly pooled and submitted for sequencing.

Many population genomic analyses are based on the coalescent model that gains most information from the number of independent genetic markers, not the number of individuals sampled. Sample sizes of ~10 individuals are usually considered sufficient (Robinson et al. 2014) and have been standard in many genome-wide studies in the eco-evolutionary sciences (Ellegren et al. 2012; Jones et al. 2012). Thus, sampling fewer individuals at lower coverage but for orders of magnitude more databy whole genome re-sequencing is a salient approach, which that allows us to consider many more gene trees, whilst continuing to provide robust estimates of per-site genetic metrics (e.g., F_{ST}). The robustness of inference from low-coverage data with low <u>mean read depth across the genome</u> was recently confirmed using a comparison of per-site F_{ST} estimates for the same sites from high-coveragedepth ($\geq 20x$) RADseq data and low-coveragedepth (\approx 2x) whole genome re-sequencing data in pairwise comparisons between the same two killer whale ecotypes (Foote et al. 2016). Beyond the increased power afforded by sequencing more polymorphic sites, whole genome re-sequencing also allows inference of demographic history from the genome of even just a single individual by identifying Identical By Descent (IBD) segments and runs of homozygosity (Li and Durbin 2011; Harris and Nielsen 2013). For example, Liu et al. (2014a) found evidence for ongoing gene flow from polar bears into brown bears after the two species initially diverged. Genome re-sequencing of sufficient numbers of individuals also facilitates haplotype phasing. which has many applications, including the detection of ongoing selective sweeps (Ferrer-Admetlla et al. 2014) and the inference of demographic history of multiple populations based on coalescence of pairs of haplotypes in different individuals (Schiffels and Durbin 2014). However, haplotype phasing has typically requires d genomic higher coverage data with higher mean read depth (~20x) from tens of individuals (though recent advances in genotype imputation suggest success with lower coverage data of lower mean read depth (VanRaden et al. 2015)). Thus far, phasing has been restricted to relatively few NMO studies, and no marine mammal studies to the best of our knowledge.

475 <u>Transcriptome sequencing</u>

476 In comparison with the DNA-based genomic approaches described above, RNA-based genomic477 approaches are a relatively new and emerging application in NMOs such as marine mammals.

Page 69 of 95

Transcriptomics by RNA sequencing (RNAseq) can rapidly generate vast amounts of information regarding genes and gene expression without any prior genomic resources. This approach can resolve differences in global gene expression patterns between populations, individuals, tissues, cells, and physiological or environmental conditions, and can yield insights into the molecular basis of environmental adaptation and speciation in wild animals (Wolf 2013; Alvarez et al. 2015). Furthermore, RNAseq is a valuable tool for resource development, for example as a precursor to designing SNP and TSC arrays (e.g., Hoffman et al. 2012). However, applying RNAseq to NMOs requires several unique considerations in comparison to the DNA-based methods described above. Most importantly, the labile nature of gene transcription and high detection sensitivity of RNAseq have the potential to amplify transcriptional "noise" and are thus extremely sensitive to experimental design.

If the experimental goal is to capture a comprehensive transcriptome profile for a study organism, multiple tissues from individuals of varied life history stages should be sampled. However, if the aim is to characterize transcriptional responses to physiological or environmental stimuli, efforts should focus on minimizing variability in individuals and sampling conditions (Wolf 2013). For differential expression analyses, pairwise comparisons should be made within the same individual if at all possible (e.g., before and after treatment, between two developmental stages). As RNAseq only captures a 'snapshot' of gene expression in time, repeated sampling or time-course studies are necessary to obtain a more complete picture of cellular responses to the condition(s) in question (Spies and Ciaudo 2015). Sampling and sequencing depth requirements will depend on the study design. Simulation studies have shown that a minimum of 5-6 biological replicates sequenced at a depth of 10-20 million reads per sample is necessary for differential expression analysis (Liu et al. 2014b; Schurch et al. 2015). RNAseq can also be used for biomarker development to expand molecular toolkits for NMOs without sequenced genomes (Hoffman et al. 2013). In this case, higher sequencing depths of 30-60 million reads per sample are recommended for SNP discovery and genotyping (De Wit et al. 2015).

507 Following sequence generation, transcript annotation remains a challenge for NMOs without 508 reference transcriptomes or genomes. *De novo* transcriptomes can be annotated through detection of assembled orthologs of highly conserved proteins, but these analyses remain limited by the quality of reference databases. As a result, NMO transcriptomes are biased in favor of highly conserved terrestrial mammal genes and therefore provide an incomplete understanding of animal adaptations to natural environments (Evans 2015). For example, while 70.0% of northern elephant seal (*Mirounga angustirostris*) skeletal muscle transcripts had BLASTx hits to mouse genes, only 54.1% of blubber transcripts could be annotated due to poor representation of this tissue in terrestrial mammal reference proteomes (Khudyakov et al. 2015b).

To date, RNAseq has been used for gene discovery and phylogenomics analyses in Antarctic fur seal (Hoffman 2011; Hoffman et al. 2013), polar bear (Miller et al. 2012), Indo-Pacific humpback dolphin (Sousa chinensis (Gui et al. 2013)), spotted seal (Phoca largha (Gao et al. 2013)), bowhead whale (Balaena mysticetus (Seim et al. 2014)), narrow-ridged finless porpoise (Neophocaena asiaeorientalis (Ruan et al. 2015)), and humpback whale (Megaptera novaeangliae (Tsagkogeorga et al. 2015)) (Table S1). Due to the challenges of repeated sampling of wild marine mammals, few studies have examined cetacean or pinniped transcriptome responses to environmental or experimental stimuli. The majority of such functional gene expression studies have used microarrays (Mancia et al. 2008; Mancia et al. 2012; Mancia et al. 2015); however, RNAseq has been employed to profile sperm whale (*Physeter macrocephalus*) skin cell response to hexavalent chromium (Pabuwal et al. 2013) and free-ranging northern elephant seal skeletal muscle response to an acute stress challenge (Khudyakov et al. 2015a; Khudyakov et al. 2015b). With decreasing sequencing costs and improvements in bioinformatics tools, RNAseq has the potential to accelerate molecular discoveries in marine mammal study systems and supplement existing functional genomics approaches.

46 533

48 534 <u>Emerging techniques</u>

In addition to the relatively proven NMO genomic data generation techniques described above, a suite of emerging techniques is entering the field, with exciting promise for exploration of existing and new research areas. For example, high-throughput shotgun sequencing is increasingly being used to identify genetic material from multiple species in a single sample (metagenomics and metatranscriptomics), rather than focus on characterizing variation in a
Page 71 of 95

Manuscripts submitted to Journal of Heredity

single target individual. These multi-species approaches can be used, for example, to characterize diet from fecal samples (Deagle et al. 2009) and to investigate microbiomes (Nelson et al. 2015), objectives with implications for improving our understanding of both basic ecology and health in natural populations of NMOs. Furthermore, high-throughput sequencing of environmental DNA dramatically increases the throughput of NMO detection in environmental (e.g., seawater) samples (Thomsen et al. 2012), using degenerate primers for multi-species detection rather than requiring the design and implementation of numerous single-species protocols (Foote et al. 2012).

A second broad area of emerging interest moves beyond the study of variation at the DNA and RNA levels to examine epigenetic effects of histone modification on gene regulation and evolution. Epigenomic studies often examine changes in DNA methylation in association with processes such as cancer and ageing. Such approaches, from targeted gene to genome-wide, have only very recently and not yet frequently been applied in NMOs. Polanowski et al. (2014) used a targeted gene approach to examine changes in DNA methylation in age-associated genes, previously identified in humans and mice, in humpback whales of known age. The most informative markers were able to estimate humpback whale ages with standard deviations of approximately 3-5 years, demonstrating the potential transferability of these approaches from model to non-model organism. Villar et al. (2015) utilized a genome-wide approach – chromatin immunoprecipitation followed by high-throughput sequencing (ChIPseq) – to examine gene – regulatory element evolution across mammals, including four species of cetaceans. This study identified highly conserved gene -regulatory elements based on their histone modifications (H3K27ac and H3K4me3), showed that recently evolved enhancers were associated with genes under positive selection in marine mammals, and identified unique *Delphinus*-specific enhancers. Finally, reduced-representation epigenomic approaches have also been developed (Gu et al. 2011), and although they have not yet been used in marine mammals to our knowledge, these techniques could facilitate future studies of how changes in DNA methylation patterns affect other biological processes, such as stress levels or pregnancy.

569 Data analysis

 Following the generation of genomic data, researchers must select the most appropriate genomic analysis (i.e., bioinformatics) pipelines, which often differ significantly from those used in traditional genetic studies of NMOs. The choice of analysis pipeline will depend on multiple factors including the availability of a reference genome, the level of diversity within the dataset (e.g., single- or multi-ple species), the type of data generated (e.g., single- end vs.- or paired-end), and the computing resources available. The computational needs, both in terms of hardware and competency in computer science, for analysis of genomic data typically far exceed those necessary for traditional genetic markers. On the smaller end of the spectrum, one lane of 50 bp single-end sequencing on an Illumina HiSeq 2500 can produce tens of gigabytes of data, while data files associated with a single high-coverage quality vertebrate genome may reach hundreds of gigabytes in size (Ekblom and Wolf 2014). Computing resources necessary for the analysis of these genomic datasets can range from ~ 10 gigabytes for a pilot study using a reduced-representation sequencing approach to over a terabyte for whole -genome sequence assembly (Ekblom and Wolf 2014). Fortunately, university computing clusters, cloud-based (Stein 2010) and high-performance computing clusters (e.g., XSEDE; Towns et al. 2014), and open web-based platforms for genomic research (e.g., Galaxy; Goecks et al. 2010) are becoming increasingly accessible. Furthermore, new pipelines are continuously being developed and improved, and there are a growing number of resources aimed at training molecular ecologists and evolutionary biologists in computational large-scale data analysis (Andrews and Luikart 2014; Belcaid and Toonen 2015; Benestan et al. 2016). We provide a limited an indicative list of the current, most commonly used analysis pipelines that are specific to each data generation method in Supplemental Table 12. Here, we briefly summarize current genomic data analysis pipelines and discuss considerations that are likely to be similar across multiple data generation methods.

Genomic data analysis often involves multiple steps, and the choice of analysis tool for each step can greatly affect the outcome, with different tools producing different (though usually overlapping) sets of results (e.g., Schurch et al. 2015). All analyses begin by evaluating data quality, trimming sequences if necessary to remove erroneous nucleotides (MacManes 2014), and implementing appropriate data quality filters (e.g., phred scores, read length, and/or read depth). Raw reads also need to be demultiplexed based on unique barcodes if pools of

individuals were sequenced in a single lane. Analyses then usually proceed in a *de novo* or genome-enabled manner, depending on available resources. Briefly, sequences can be compared (e.g., to identify variants) by mapping all reads to a reference genome or *de novo* assembling stacks of sequences putatively derived from the same locus; based on sequence similarity. Denovo methods are sensitive to sequencing error, as well as true genetic variation, and therefore can erroneously assemble polymorphic sequences as separate loci or transcripts, requiring further filtering to remove redundancy. The opposite problem can also occur in both *de novo* and reference mapping approaches, where two distinct loci (e.g., paralogous loci) may assemble as a single locus or map to the same reference location. Researchers should therefore recognize the inherent trade-offs when carefully selecting their thresholds for acceptable levels of variation within and among loci.

Considerations relevant to the selection of subsequent downstream analyses are specific to the type of data generated and the research objective. For example, RADseq analysis pipelines differ in the algorithms used to genotype variants (Table 182). Similarly, there are several gene expression analysis pipelines for RNAseq data that compare transcript abundance between samples (Table 182). Analysis of TSC data usually uses standard *de novo* assemblers (e.g., Trinity, Velvet); these assemblers can be run using packages such as PHYLUCE (Faircloth 2015), which is designed specifically for use with ultraconserved elements. Unfortunately, for most analyses, there are no unifying recommendations currently available and researchers must evaluate several approaches, each with their own advantages and disadvantages, in order to select the most appropriate tool for their particular experiment and system. Furthermore, we can expect that the recommendations for analysis tools will continue to evolve as new programs become available in the future.

Guidelines for data quality control and sharing

With rapid growth in sequencing platforms and bioinformatics analysis pipelines comes the need to extend existing principles (e.g., Bonin et al. 2004) on quality control, analysis, and transparency. General recommendations for sample and data handling, library preparation, and sequencing have been discussed elsewhere (Paszkiewicz et al. 2014). We therefore focus on the need to produce guidelines on data quality evaluation and reporting for genomic data (e.g.,

Page 74 of 95

Morin et al. 2010b). A primary challenge in this area is that quality metrics vary widely across
sequencing technologies. Yet, regardless of sequencing platform, the quality of sequencing reads
must be evaluated (e.g., using FastQC; Andrews 2010) and reported.

Best practices guidelines for high-coverage whole reference genome sequencing and RNAseq data generation, analysis, and reporting are available from the human-centric ENCODE consortium (www.encodeproject.org). These include minimum depth of sequencing and number and reproducibility of biological replicates. For RNAseq experiments, evaluation of de novo assembly quality remains a challenge. Suggested quality metrics include percentage of raw reads mapping back to the assembly and number of assembled transcripts with homology to known proteins (MacManes 2016). Emerging tools such as Transrate (Smith-Unna et al. 2015) attempt to integrate these and other metrics into a comprehensive assembly quality score.

In contrast, there is not yet any standard way to estimate or report error rates with RADseq or low-coverage genome re-sequencing methods (but see Mastretta-Yanes et al. 2015; Fountain et al. 2016). Recommendations to improve confidence in genotyping include using methods that account for population--level allele frequencies when calling individual genotypes, mapping reads to reference genomes rather than *de novo* assembly (Nadeau et al. 2014; Fountain et al. 2016), filtering out PCR duplicates (Andrews et al. 2014), identifying and removing markers in possible repeat regions, and filtering data to include only those with high read depth (>10-20x per locus per individual) (Nielsen et al. 2011). Other analysis methods, such as robust Bayesian methods and likelihood-based approaches that account for read quality in calculations of posterior probabilities of genotypes and per-site allele frequencies utilizing the sample mean site frequency spectrum as a prior (Fumagalli et al. 2013), can account for uncertainty and/or error in the data, and are therefore suitable for use with low to moderate read depths (2-20x per locus; e.g., Han et al. 2015; O'Rawe et al. 2015).

Due to the large number of analysis tools that are available, data quality and reproducibility
ultimately depend on methods and data transparency. All raw sequencing reads should be
<u>publicly archived, for example</u> deposited in the NCBI Sequence Read Archive. Many journals,
including the *Journal of Heredity* (Baker 2013), now also require that primary data supporting

Page 75 of 95

the published results and conclusions (e.g., SNP genotypes, assemblies) be publicly archived in
online data repositories (e.g., Dryad). We further recommend making public the analysis
pipelines, scripts (e.g., using GitHub), and additional outputs, as appropriate, in order for
analyses to be fully reproducible and transparent, which is the cornerstone of the scientific
method (Nosek et al. 2015).

Future directions

As demonstrated here for one group of mammalian taxa, the rapid growth of the field of non-model genomics has been both impressive and empowering. As we approach a point of relative saturation in reference genomes, we anticipate an increase in population-scale genomic studies that produce lower depth or coverage datasets per individual but across larger sample sizes relative to high-coverage sequencing of a few individuals of each species. In addition (or alternatively), we hope to see increasing efforts to sequence reference transcriptomes and improve NMO genome annotation in ways beyond the inherently limited approach of comparison to gene lists from a few model organisms. Population-scale genomic studies will facilitate greater ecological understanding of natural populations, while efforts to improve annotation will address persistent limitations in our understanding of gene function for NMOs. Ultimately, improving our understanding of local adaptation, adaptive potential, and demographic history through the use of genomic toolkits such as those described here is likely to have important implications for the future conservation of these populations.

Advances in sequencing technologies and analytical tools will no doubt continue, in some cases drawing on established techniques in model organisms, posing both new opportunities and new challenges for researchers in NMO genomics. Likely the most persistent challenge will remain selecting the data generation and experimental design that is most appropriate for the respective research objective. Our review identified few cases that exhibit relative dominance of a single methodology and analytical pipeline (e.g., RADseq and STACKS, RNAseq and Trinity); rather, more often we found a diversity of approaches even within each category of data generation. In fact, such diversity of approaches has its benefits, with each approach promoting its own advantages (and limitations). Overall, our reflections on lessons learned from the past decade of NMO genomics in one well-studied group of mammalian taxa clearly demonstrate the value.

694 increased ease, and future promise of applying genomic techniques across a wide range of non695 model species to gain previously unavailable insights into evolution, population biology, and
696 physiology on a genome-wide scale.

698 Acknowledgements

This review paper is the outcome of two international workshops held in 2013 and 2015 on marine mammal genomics. The workshops were organized by KMC, AF, and C. Scott Baker and hosted by the Society for Marine Mammalogy, with support from a Special Event Award from the American Genetic Association. We sincerely thank all the workshop participants for their contributions to inspiring discussions on marine mammal genomics. We would also like to thank two anonymous reviewers and C. Scott Baker for their helpful feedback on an earlier version of this manuscript. Illustrations are by C. Buell with permission for use granted by J. Gatesy.

707 Funding

The authors involved in this work were supported by a National Science Foundation Postdoctoral Research Fellowship in Biology (Grant No. 1523568) to KMC; an Office of Naval Research Award (No. N00014-15-1-2773) to JIK; a Marie Slodowska Curie Fellowship to ELC (Behaviour-Connect) funded by the EU Horizon2020 program; Royal Society Newton International Fellowships to ELC and MRM; a Deutsche Forschungsgemeinschaft studentship to EH; a Fyssen Foundation postdoctoral fellowship to ML; postdoctoral funding from the University of Idaho College of Natural Resources to KRA; a short visit grant from the European Science Foundation-Research Networking Programme ConGenOmics to ADF; and a Swiss National Science Foundation grant (31003A-143393) to L. Excoffier that further supported ADF. The first marine mammal genomics workshop we held to begin discussions towards this review was supported by a Special Event Award from the American Genetic Association. References Albrechtsen A, Nielsen FC, Nielsen R. 2010. Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol. 27:2534-2547.

Alexander A, Steel D, Hoekzema K, Mesnick S, Engelhaupt D, Kerr I, Payne R, Baker CS.
2016. What influences the worldwide genetic structure of sperm whales (*Physeter macrocephalus*)? *Mol Ecol.*

1		
2		
3 4	726	Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB,
5	727	Schroeder H, Ahlstrom T, Vinner L, et al. 2015. Population genomics of Bronze Age
6	728	Eurasia. <i>Nature</i> . 522:167-172.
7	729	Alvarez M, Schrey AW, Richards CL. 2015. Ten years of transcriptomics in wild populations:
8	730	what have we learned about their ecology and evolution? <i>Mol Ecol.</i> 24:710-725.
9	731	Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome
10	732	<i>Biol.</i> 11:R106.
11 12	733	Andrews K, Good JM, Miller MR, Luikart G, Hohenlohe PA, 2016, Harnessing the power of
12	734	RADseq for ecological and evolutionary genomics <i>Nat Rev Genet</i> 17.81-92
14	735	Andrews KR Hohenlohe PA Miller MR Hand BK Seeb IE Luikart G 2014 Trade-offs and
15	736	utility of alternative RADsea methods: Renly to Puritz et al. 2014 Mol Ecol. 23:5943-
16	737	5946
17	738	Andrews KR Luikart G 2014 Recent novel approaches for nonulation genomics data analysis
18	730	Mol Eaol 22:1661 1667
19	739	Mol Ecol. 23.1001-1007. Androws S. 2010 EastOC: a quality control tool for high throughput sequence data. Available
20 21	740	Andrews S. 2010. FastQC, a quanty control tool for high throughput sequence data. Available
21	/41	online at: <u>http://www.bloinformatics.babranam.ac.uk/projects/fastqc</u>
23	742	Ankeny RA, Leonelli S. 2011. What's so special about model organisms? Studies in History and
24	743	Philosophy of Science. 42:313-323.
25	744	Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. 2014. Non-model
26	745	organisms, a species endangered by proteogenomics. <i>J Proteomics</i> . 105:5-18.
27	746	Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X,
28	747	Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree.
29 30	748	Proc Natl Acad Sci USA. 99:8151-8156.
31	749	Arnason U, Gullberg A, Widegren B. 1991. The complete nucleotide sequence of the
32	750	mitochondrial DNA of the fin whale, <i>Balaenoptera physalus</i> . J Mol Evol. 33:556-568.
33	751	Ávila-Arcos M, Cappellini E, Romero-Navarro JA, Wales N, Moreno-Mayar JV, Rasmussen M,
34	752	Fordyce SL, Montiel R, Vielle-Calzada J-P, Willerslev E, et al. 2011. Application and
35	753	comparison of large-scale solution-based DNA capture-enrichment methods on ancient
36	754	DNA. Sci Rep. 1:74.
37	755	Baird NA Etter PD Atwood TS Currey MC Shiver AL Lewis ZA Selker EU Cresko WA
30 30	756	Johnson EA 2008 Rapid SNP discovery and genetic mapping using sequenced RAD
40	757	markers PLoS One 3:e3376
41	758	Baker CS 2013 Journal of Heredity adopts Joint Data Archiving Policy I Hered 104.1
42	750	Barrett RDH Rogers SM Schluter D 2008 Natural selection on a major armor gene in
43	760	threespine stickleback. Science, 322:255-257
44	760	Pashiardas S. Vaila P. Halms C. Mardis EP. Powaaak AM. Lowatt M. 2005. Direct genomia
45 46	701	asharian Nat Mathada 2:62.60
40 ∕17	702	Sciection. Nai Methous. 2.03-09.
48	/03	Beicald M, Toonen KJ. 2015. Demystifying computer science for molecular ecologists. <i>Mol</i>
49	/64	<i>Ecol.</i> 24:2619-2640.
50	765	Benestan LM, Ferchaud A-L, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, Schwartz MK,
51	/66	Kelley JL, Luikart G. 2016. Conservation genomics of natural and managed populations:
52	767	building a conceptual and practical framework. <i>Mol Ecol</i> .
53	768	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina Sequence
54 55	769	Data. Bioinformatics. 30:2114-2120.
00 56		
57		
58		
59		
60		

1 2		
3	770	Denie A. Dellemeie F. Deenlem Fileren D. Demensen F. Derehmenn G. Tehenlet D. 2004. Here
4	//0	Bonin A, Beilemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P. 2004. How
5	//1	to track and assess genotyping errors in population genetics studies. <i>Mol Ecol.</i> 13:3261-
6	112	32/3.
7	773	Brown C1, Howe A, Zhang Q, Pyrkosz AB, Brom 1H. 2012. A reference-free algorithm for
8 0	774	computational normalization of shotgun sequencing data. <i>arXive</i> . 1203:4802.
10	775	Cammen KM, Schultz TF, Rosel PE, Wells RS, Read AJ. 2015. Genomewide investigation of
11	776	adaptation to harmful algal blooms in common bottlenose dolphins (<i>Tursiops truncatus</i>).
12	777	<i>Mol Ecol.</i> 24:469/-4/10.
13	778	Campbell NR, Harmon SA, Narum SR. 2015. Genotyping-in-Thousands by sequencing (GT-
14	779	seq): a cost effective SNP genotyping method based on custom amplicon sequencing.
15	780	Mol Ecol Resour. 15:855-867.
17	781	Carroll EL, Baker CS, Watson M, Alderman R, Bannister J, Gaggiotti OE, Gröcke DR,
18	782	Patenaude N, Harcourt R. 2015. Cultural traditions across a migratory network shape the
19	783	genetic structure of southern right whales around Australia and New Zealand. Sci Rep.
20	784	5:16182.
21	785	Catchen JM, Amores A, Hohenlohe PA, Cresko WA, Postlethwait JH. 2011. Stacks: building
22 23	786	and genotyping loci <i>de novo</i> from short-read sequences. <i>G3</i> . 1:171-182.
24	787	Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool
25	788	set for population genomics. <i>Mol Ecol</i> . 22:3124-2140.
26	789	Chancerel E, Lepoittevin C, Le Provost G, Lin Y-C, Jaramillo-Correa JP, Eckert AJ, Wegrzyn
27	790	JL, Zelenika D, Boland A, Frigerio J-M, et al. 2011. Development and implementation of
28	791	a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative
29 30	792	mapping with loblolly pine. BMC Genomics. 12:368.
31	793	Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps.
32	794	Genome Res. 20:393-402.
33	795	Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Grimwood J, Schmutz J, Myers RM,
34	796	Schluter D, Kingsley DM. 2005. Widespread parallel evolution in sticklebacks by
35	797	repeated fixation of ectodysplasin alleles. Science. 307:1928-1933.
37	798	Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal
38	799	tool for annotation, visualization and analysis in functional genomics research.
39	800	Bioinformatics. 21:3674-3676.
40	801	Corander J, Majander KK, Cheng L, Merilä J. 2013. High degree of cryptic population
41	802	differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol. 22:2931-2940.
42 43	803	Cummings N, King R, Rickers A, Kaspi A, Lunke S, Haviv I, Jowett JBM. 2010. Combining
43	804	target enrichment with barcode multiplexing for high throughput SNP discovery. BMC
45	805	Genomics. 11:641.
46	806	Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide
47	807	genetic marker discovery and genotyping using next-generation sequencing. Nat Rev
48	808	Genet. 12:499-510.
49 50	809	De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y. 2013. Detecting
50	810	selection along environmental gradients: analysis of eight methods and their effectiveness
52	811	for outbreeding and selfing populations. <i>Mol Ecol.</i> 22:1383-1399.
53	812	De Wit P, Pespeni MH, Palumbi SR. 2015. SNP genotyping and population genomics from
54	813	expressed sequences - current advances and future possibilities. <i>Mol Ecol.</i> 24:2310-2323.
55	814	Deagle BE, Kirkwood R, Jarman SN. 2009. Analysis of Australian fur seal diet by
50 57	815	pyrosequencing prey DNA in faeces. <i>Mol Ecol.</i> 18:2022-2038.
58	-	
59		
60		

2		
3	816	Deméré TA, McGowen MR, Berta A, Gatesy J. 2008. Morphological and molecular evidence for
4	817	a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol.
с 6	818	57:15-37.
7	819	DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del
8	820	Angel G. Rivas MA, Hanna M. <i>et al.</i> 2011. A framework for variation discovery and
9	821	genotyping using next-generation DNA sequencing data <i>Nat Genet</i> 43:491-498
10	822	Dohin A Davis CA Schlesinger F Drenkow I Zaleski C Iha S Batut P Chaisson M Gingeras
11	823	TR 2013 STAR: ultrafast universal RNA-seq aligner <i>Rightformatics</i> 29:15-21
12	824	Eaton DAR 2014 PyRAD: assembly of <i>de novo</i> RADseq loci for phylogenetic analysis
13 14	824	Riginformatics 20:18/1/18/0
15	025 026	Elchlom P. Calinda I. 2011. Applications of next generation sequencing in molecular acalegy of
16	820 827	Ekolom R, Galindo J. 2011. Applications of next generation sequencing in molecular ecology of
17	827	non-model organisms. <i>Hereally</i> . 107.1-15.
18	828	Ekolom R, wolf JBW. 2014. A field guide to whole-genome sequencing, assembly and
19	829	annotation. Evolutionary Applications. /:1026-1042.
20	830	Ellegren H. 2014. Genome sequencing and population genomics in non-model organisms.
21	831	Trends Ecol Evol. 29:51-63.
22	832	Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, Künstner A, Mäkinen H,
24	833	Nadachowska-Brzyska K, Qvarnström A, <i>et al.</i> 2012. The genomic landscape of species
25	834	divergence in <i>Ficedula</i> flycatchers. <i>Nature</i> . 491:756-760.
26	835	Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A
27	836	robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.
28	837	<i>PLoS One</i> . 6:e19379.
29 30	838	Enk J, Devault A, Kuch M, Murgha Y, Rouillard J-M, Poinar H. 2014. Ancient whole genome
31	839	enrichment using baits built from modern DNA. Mol Biol Evol. 31:1292-1294.
32	840	Evans TG. 2015. Considerations for the use of transcriptomics in identifying the 'genes that
33	841	matter' for environmental adaptation. J Exp Biol. 218:1925-1935.
34	842	Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013. Robust demographic
35	843	inference from genomic and SNP data. <i>PLoS Genetics</i> . 9:e1003905.
36	844	Faircloth BC. 2015. PHYLUCE is a software package for the analysis of conserved genomic
31	845	loci, Bioinformatics, 32:786-788.
39	846	Faircloth BC McCormack JE Crawford NG Harvey MG Brumfield RT Glenn TC 2012
40	847	Ultraconserved elements anchor thousands of genetic markers spanning multiple
41	848	evolutionary timescales. Syst Biol. 61:717-726
42	849	Ferrer-Admetila A Liang M Korneliussen T Nielsen R 2014 On detecting incomplete soft or
43	850	hard selective sweens using hanlotyne structure Mol Riol Evol 31:1275-1291
44 45	851	Flicek P. Birney F. 2009. Sense from sequence reads: methods for alignment and assembly. Nat
45 76	852	Mathods 6:86-812
47	852	Foote AD Liu V Thomas GWC Vinař Ts. Alföldi I Dang I Dugan S van Elk CE Hunter ME
48	855	Ioshi V at al. 2015 Convergent evolution of the genomes of marine memorals. Nat
49	054	Const. 47:272-275
50	033 056	Gener. 47.272-275. Easte AD Newton I Ávila Areas MC Kommonn M I. Samaniago IA. Dost K. Dosing Aguid
51	830 857	Foole AD, Newton J, Avna-Alcos MC, Kampinann M-L, Samaniego JA, Post K, Rosing-Asvid
52	83/	A, Sinding M-HS, Gilbert MTP. 2013. Tracking niche variation över millenniai
53 54	838	timescales in sympatric killer whate lineages. Proc R Soc Lond B Biol Sci. 280:20151481.
55	839	roote AD, Thomsen PF, Sveegaard S, wantberg M, Kielgast J, Kynn LA, Salling AB, Galatius
56	860	A, Orlando L, Gilbert MTP. 2012. Investigating the potential use of environmental DNA
57	861	(eDINA) for genetic monitoring of marine mammals. PLoS One. 7:e41/81.
58		
59		
υu		

2		
3	862	Foote AD Vijay N Ávila-Arcos M Baird RW Durban JW Fumagalli M Gibbs RA Hanson
4	863	MB Korneliussen TS Martin MD <i>et al</i> 2016 Genome-culture coevolution promotes
5	864	rapid divergence of killer whale ecotypes <i>Nat Commun</i> 7.11693
0 7	865	Fountain FD Pauli IN Reid BN Palshall PL Peery MZ 2016 Finding the right coverage: the
8	866	impact of coverage and sequence quality on single nucleotide polymorphism genotyping
9	867	orror rates. Mol East Passour
10	00/	European TS Lindereth T Huerte Sénchez E Albrechteen A
11	808 860	Fullagalli M, Viella FO, Kolnellussen TS, Lindeloui T, Huelta-Sanchez E, Albiechisen A, Nielsen D. 2012. Quantificing negativitien genetic differentiation from neut concretion
12	809	Nielsen K. 2013. Quantifying population genetic differentiation from next-generation
13	8/0	sequencing data. Genetics. 195:979-992.
14 15	8/1	Fumagalli M, Vieira FG, Linderoth I, Nielsen R. 2014. <i>ngsTools</i> : methods for population
10	872	genetics analyses from Next-Generation Sequencing data. <i>Bioinformatics</i> . 30:1486-1487.
17	873	Gao X, Han J, Lu Z, Li Y, He C. 2013. <i>De novo</i> assembly and characterization of spotted seal
18	874	Phoca largha transcriptome using Illumina paired-end sequencing. Comp Biochem
19	875	Physiol D Genom Proteom. 8:103-110.
20	876	Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, Morin PA, Narum SR,
21	877	O'Brien SJ, Roffler G, et al. 2016. Genomics in conservation: case studies and bridging
22	878	the gap between data and application. <i>Trends Ecol Evol.</i> 31:81-83.
23	879	Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. 2014. TASSEL-
24 25	880	GBS: a high capacity genotyping by sequencing analysis pipeline. <i>PLoS One</i> . 9:e90346.
26	881	Gnerre S, MacCallum I, Przbylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea
27	882	TP. Sykes S. et al. 2011, High-quality draft assemblies of mammalian genomes from
28	883	massively parallel sequence data <i>Proc Natl Acad Sci USA</i> 108:1513-1518
29	884	Goecks I Nekrutenko A Taylor I The Galaxy Team 2010 Galaxy: a comprehensive approach
30	885	for supporting accessible reproducible and transparent computational research in the life
31	886	sciences Genome Riol 11:R86
32	887	Gu H Smith ZD Bock C Boyle P. Gnirke A. Meissner A. 2011 Preparation of reduced
34	888	representation bigulfite sequencing libraries for geneme scale DNA methylation
35	000	profiling Nat Duotoo 6:469,491
36	007 000	Cui D. Lie V. Vie I. Veng I. Chen I. Wu V. Vi M. 2012. De neue eccomply of the Indo Decifie
37	890 801	Gui D, Jia K, Ala J, Yang L, Chen J, Wu Y, YI W. 2013. <i>De novo</i> assembly of the indo-Pacific
38	891	numpback dolphin leucocyte transcriptome to identify putative genes involved in the
39	892	aquatic adaptation and immune response. PLoS One. 8:e/2417.
40 41	893	Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint
41	894	demographic history of multiple populations from multidimensional SNP frequency data.
43	895	PLoS Genetics. 5:e1000695.
44	896	Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,
45	897	Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq
46	898	using the Trinity platform for reference generation and analysis. Nat Protoc. 8:1494-
47	899	1512.
48	900	Han E, Sinsheimer JS, Novembre J. 2015. Fast and accurate site frequency spectrum estimation
49 50	901	from low coverage sequence data. <i>Bioinformatics</i> . 31:720-727.
51	902	Hancock-Hanser BL, Frey A, Leslie MS, Dutton PH, Archer FI, Morin PA. 2013. Targeted
52	903	multiplex next-generation sequencing: advances in techniques of mitochondrial and
53	904	nuclear DNA sequencing for population genomics. <i>Mol Ecol Resour</i> . 13:254-268.
54	905	Harris K, Nielsen R. 2013. Inferring demographic history from a spectrum of shared haplotype
55	906	lengths. <i>PLoS Genetics</i> . 9:e1003521.
56 57		
57 58		
59		
60		

2		
3	907	Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. 2010. Ecological
4 5	908	adaptation determines functional mammalian olfactory subgenomes. Genome Res. 20:1-
6	909	9.
7	910	Hedrick PW. 2000 Genetics of Populations. Jones and Bartlett Publishers, Sudbury, MA.
8	911	Helvar SJ, Hemmer-Hansen J, Bekkevold D, Tavlor MI, Ogden R, Limborg MT, Cariani A.
9	912	Maes GE, Diopere E, Carvalho GR. et al. 2011. Application of SNPs for population
10	913	genetics of nonmodel organisms: new opportunities and challenges <i>Mol Ecol Resour</i>
11	914	11·123-136
12 13	915	Higdon JW Bininda-Emonds ORP Beck RMD Ferguson SH 2007 Phylogeny and divergence
14	916	of the pinning (Carnivora: Mammalia) assessed using a multigene dataset <i>BMC Evol</i>
15	917	Biol 7.216
16	918	Hodges F. Rooks M. Xuan Z. Bhattachariee A. Gordon DB. Brizuela L. McCombie WR
17	919	Hannon GL 2009 Hybrid selection of discrete genomic intervals on custom-designed
18	920	microarrays for massively parallel sequencing Nat Protoc 4.960-974
20	920 921	Hoffman II 2011 Gene discovery in the Antarctic fur seal (Arctocanhalus gazella) skin
20	021	transcriptome Mol Ecol Pasour 11:703 710
22	922	Hoffman II. Nicholas HI. 2011. A novel approach for mining polymorphic microsatellite
23	923	markers in silico PLoS One 6:e23283
24	924	Hoffman II Simpson F. David P. Rijks IM. Kuiken T. Thorne MAS. Lacy P.C. Dasmahanatra
25	925	KK 2014 High throughput sequencing reveals inbreeding depression in a natural
20 27	920	nonvertion. Proc. Natl. Acad. Sci. USA, 111:2775, 2780
28	927	Hoffman II. Thorna MAS. Trothan DN. Forcada I. 2012. Transprinteme of the doad:
29	920	abaractorization of immuno genes and marker development from nearonsy semples in a
30	929	free renging marine mammel <i>PMC Conomies</i> 14:52
31	930	Het-ranging marine maninal. DMC Genomics, 14.52.
32	931	Hollman JI, Tucker R, Bridgett SJ, Clark MS, Forcada J, Slate J. 2012. Rates of assay success
33 34	932	and genotyping error when single nucleotide polymorphism genotyping in non-model
35	933	Organisms: a case study in the Antarctic fur seal. <i>Mol Ecol Resour</i> . 12:861-872.
36	934	Honenione PA, Bassnam S, Etter PD, Stiller N, Jonnson EA, Cresko WA. 2010. Population
37	933	genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
38	930	PLOS Genel. 0.01000802.
39	937	Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management
40 ⊿1	938	tool for second-generation genome projects. BMC Bioinformatics. 12:491.
42	939	Humble E, Martinez-Barrio A, Forcada J, Irathan PN, Thorne MAS, Hoffmann M, Wolf JBW,
43	940	Hoffman JI. 2016. A draft fur seal genome provides insights into factors affecting SNP
44	941	validation and how to mitigate them. <i>Mol Ecol Resour</i> .
45	942	Jackson JA, Baker CS, Vant M, Steel DJ, Medrano-González L, Palumbi SR. 2009. Big and
46	943	slow: phylogenetic estimates of molecular evolution in baleen whales (suborder
47 78	944	Mysticeti). Mol Biol Evol. 26:2427-2440.
49	945	Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody
50	946	MC, White S, et al. 2012. The genomic basis of adaptive evolution in threespine
51	947	sticklebacks. <i>Nature</i> . 484:55-61.
52	948	Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M,
53	949	Nagayasu E, Maruyama H, et al. 2014. Efficient de novo assembly of highly
54 55	950	heterozygous genomes from whole-genome shotgun short reads. <i>Genome Res</i> . 24:1384-
56	951	1395.
57		
58		
59		
60		

1		
2		
3 ∕	952	Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand
5	953	D, Marques PI, et al. 2015. Insights into the evolution of longevity from the bowhead
6	954	whale genome. Cell Reports. 10:112-122.
7	955	Khudyakov JI, Champagne CD, Preeyanon L, Ortiz RM, Crocker DE. 2015a. Muscle
8	956	transcriptome response to ACTH administration in a free-ranging marine mammal.
9	957	Physiol Genomics. 47:318-330.
10	958	Khudyakov JI, Preeyanon L, Champagne CD, Ortiz RM, Crocker DE. 2015b. Transcriptome
12	959	analysis of northern elephant seal (Mirounga angustirostris) muscle tissue provides a
13	960	novel molecular resource and physiological insights. BMC Genomics. 16:64.
14	961	Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K. 2015. Aquatic adaptation and the
15	962	evolution of smell and taste in whales. Zoolog Lett. 1:9.
16	963	Koepfli K-P, Paten B, Genome 10K Community of Scientists, O'Brien SJ. 2015. The Genome
17 10	964	10K Project: a way forward. Annu Rev Anim Biosci. 3:57-111.
19	965	Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: Analysis of Next Generation
20	966	Sequencing Data. BMC Bioinformatics. 15:356.
21	967	Künstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes
22	968	DE, Schlinger BA, Wilson RK, et al. 2010. Comparative genomics based on massive
23	969	parallel transcriptome sequencing reveals patterns of substitution and selection across 10
24 25	970	bird species. <i>Mol Ecol</i> . 19:266-276.
26	971	Lamichhanev S, Berglund J, Almén MS, Magbool K, Grabherr M, Martinez-Barrio A,
27	972	Promerová M. Rubin C-J. Wang C. Zamani N. <i>et al.</i> 2015. Evolution of Darwin's finches
28	973	and their beaks revealed by genome sequencing. <i>Nature</i> , 518:371-375.
29	974	Langmead B. Trappell C. Pop M. Salzberg SL, 2009. Ultrafast and memory-efficient alignment
30	975	of short DNA sequences to the human genome <i>Genome Biol</i> 10.R25
31	976	Lemmon AR Emme SA Lemmon EM 2012 Anchored hybrid enrichment for massively high-
33	977	throughput phylogenomics Syst Biol 61.727-744
34	978	Li B Dewey CN 2011 RSEM: accurate transcript quantification from RNA-Seq data with or
35	979	without a reference genome <i>BMC Bioinformatics</i> 12:323
36	980	Li H Durbin R 2009 Fast and accurate short read alignment with Burrows-Wheeler transform
37	981	Bioinformatics 25:1754-1760
30 30	982	Li H. Durbin R. 2011. Inference of human population history from individual whole-genome
40	983	sequences Nature 475.493-496
41	984	Li H Handsaker B Wysoker A Fennell T Ruan I Homer N Marth G Abecasis G Durbin R
42	985	1000 Genome Project Data Processing Subgroup 2009 The Sequence Alignment/Man
43	986	form and SAMtools <i>Bioinformatics</i> 25:2078-2079
44 15	987	Li S. Jakobsson M. 2012. Estimating demographic paramaters from large-scale population
40	988	genomic data using Approximate Bayesian Computation <i>BMC Genet</i> 13:22
47	989	Li Y Hu Y Bolund L Wang I 2010 State of the art <i>de novo</i> assembly of human genomes from
48	990	massively narallel sequencing data Human Genomics 4:271-277
49	991	Lindblad-Toh K Garber M Zuk O Lin MF Parker BI Washietl S Kheradnour P Frnst I
50	992	Iordan G. Mauceli F. <i>et al.</i> 2011. A high-resolution map of human evolutionary
51 52	993	constraint using 29 mammals <i>Nature</i> 478:476-482
53	994	Lindavist C Schuster SC San V Talbot SL Oi L Ratan & Tomsho I P Kasson L Zevi F Aars
54	005	L at al 2010 Complete mitochondrial genome of a Pleistocene jawhown unveils the
55	996	origin of polar bear. Proc Natl Acad Sci USA 107.5053-5057
56	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orgin or polar deal. I for than Acau Bel OBA. 107.5055-5057.
57 59		
50 59		
60		

2		
3	997	Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M,
4 5	998	Babbitt C, et al. 2014a. Population genomics reveal recent speciation and rapid
6	999	evolutionary adaptation in polar bears. <i>Cell</i> . 157:785-794.
7	1000	Liu X, Fun Y-X. 2015. Exploring population size changes using SNP frequency spectra. <i>Nat</i>
8	1001	Genet. 47:555-559.
9	1002	Liu Y. Zhou J. White KP. 2014b. RNA-seq differential expression studies: more sequence or
10	1003	more replication? <i>Bioinformatics</i> 30:301-304
11	1004	Lotterhos KE Whitlock MC 2014 Evaluation of demographic history and neutral
12 13	1005	parameterization on the performance of F_{ST} outlier tests <i>Mol Ecol</i> 23.2178-2192
14	1006	Louis M Viricel A Lucas T Peltier H Alfonsi E Berrow S Brownlow A Covelo P Dabin W
15	1007	Deaville R. <i>et al.</i> 2014 Habitat-driven population structure of bottlenose dolphins
16	1008	Tursions truncatus in the North-east Atlantic Mol Ecol 23:857-874
17	1009	Love MI Huber W Anders S 2014 Moderated estimation of fold change and dispersion for
18	1010	RNA-seq data with DESeq2 Genome Riol 15:550
20	1010	MacManes MD 2014 On the ontimal trimming of high-throughput mRNA sequence data <i>Front</i>
21	1012	Genet 5:13
22	1012	MacManes MD 2016 Establishing evidence-based best practice for the <i>de novo</i> assembly and
23	1013	evaluation of transcriptomes from non-model organisms <i>bioRriv</i> doi:
24	1014	http://dx.doi.org/10.1101/035642
25	1015	Magera AM Mills Elemming IF Kaschner K Christensen I B Lotze HK 2013 Recovery
20 27	1010	trends in marine mammal nonulations. PLoS One 8:e77908
28	1017	Malenfant RM, Coltman DW, Davis CS, 2015, Design of a 9K Illumina BeadChin for polar
29	1010	hears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Pasour
30	1019	15.587 600
31	1020	Mamanova I. Coffey AI. Scott CE. Kozarewa I. Turner EH. Kumar A. Howard E. Shendure I.
32 33	1021	Turner DL 2010 Target-enrichment strategies for next-generation sequencing Nat
34	1022	Mathods 7:111 118
35	1023	Mancia A Aballi I Kucklick IP Rowles TK Walls PS Balmer BC Hohn AA Baatz IF Ryan
36	1024	IC 2015 Microarray applications to understand the impact of exposure to environmental
37	1025	sontaminants in wild dolphing (Turgiong transatus) Mar Conomics, 10:47, 57
38	1020	Manaia A. Lundavist MI. Domano TA. Dodon Adams MM. Eair DA. Kindy MS. Ellis DC.
39 40	1027	Gattoni Colli S. McKillon DI. Tront HE at al. 2007. A dolphin paripharal blood
41	1020	laukoasta aDNA microarray for studios of immuna function and stross reactions. Dev
42	1029	Comp Immunol 21:520 520
43	1020	Comp Immunol. 51.520-529. Manaia A. Byan IC. Chanman BW, Wy O. Warr CW, Cylland EMD, Van Dalah EM, 2012
44	1021	Malicia A, Ryall JC, Chapillan RW, Wu Q, Wall GW, Guiland FMD, Vall Dolan FM. 2012.
45 46	1032	atudied using a sening microarrey platform and maching learning enpression. Day Comp
40 ⊿7	1033	studied using a canne incroarray platform and machine-learning approaches. Dev Comp
48	1034	Immunol. 50.029-057. Manzie A. Warr CW. Channess DW 2008. A transmistancia analysis of the stress in decod has
49	1035	Mancia A, warr Gw, Chapman Rw. 2008. A transcriptomic analysis of the stress induced by
50	1030	<i>Expluse release health assessment studies in wild dolphins (Turstops truncatus). Mol</i>
51	1037	Ecol. 1/(2081-2089).
52 52	1038	Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Pinero D, Emerson BC. 2015.
53 54	1039	Restriction site-associated DNA sequencing, genotyping error estimation and <i>de novo</i>
55	1040	assembly optimization for population genetic inference. <i>Mol Ecol Resour.</i> 15:28-41.
56		
57		
58		
59 60		
00		

1 2		
3	1041	MaCormool, IE Equalsth DC Crowford NC Cowety DA Drumfield DT Clann TC 2012
4	1041	MicCormack JE, Faircioin BC, Crawford NG, Gowaly PA, Brumfield RT, Glenn TC. 2012.
5	1042	Ultraconserved elements are novel phylogenomic markers that resolve placental mammal
6	1043	phylogeny when combined with species-tree analysis. Genome Res. 22: /46-/54.
7	1044	McGowen MR. 2011. Toward the resolution of an explosive radiation - a multilocus phylogeny
8	1045	of oceanic dolphins (Delphinidae). <i>Mol Phylogenet Evol</i> . 60:345-357.
9 10	1046	McGowen MR, Clark C, Gatesy J. 2008. The vestigial olfactory receptor subgenome of
11	1047	odontocete whales: phylogenetic congruence between gene-tree reconciliation and
12	1048	supermatrix methods. Syst Biol. 57:574-590.
13	1049	McGowen MR, Gatesy J, Wildman DE. 2014. Molecular evolution tracks macroevolutionary
14	1050	transitions in Cetacea. Trends Ecol Evol. 29:336-346.
15	1051	McGowen MR, Grossman LI, Wildman DE. 2012. Dolphin genome provides evidence for
16	1052	adaptive evolution of nervous system genes and a molecular rate slowdown. Proc R Soc
17 10	1053	Lond B Biol Sci. 279:3643-3651.
10	1054	McGowen MR. Spaulding M. Gatesy J. 2009. Divergence date estimation and a comprehensive
20	1055	molecular tree of extant cetaceans. <i>Mol Phylogenet Evol</i> , 53:891-906.
21	1056	McKenna A Hanna M Banks E Siyachenko A Cibulskis K Kernytsky A Garimella K
22	1057	Altshuler D Gabriel S Daly M <i>et al</i> 2010 The Genome Analysis Toolkit: A
23	1058	ManReduce framework for analyzing next-generation DNA sequencing data <i>Genome</i>
24	1050	$R_{\rho s} = 20.1297_{-}1303$
25	1057	McTavish EL Hillis DM 2015 How do SNP accertainment schemes and population
20 27	1061	demographics affect informace about population history? <i>BMC Canomics</i> , 16:266
28	1067	Maradith DW Catagy I Emerling CA. Vark VM Springer MS 2012 Bad manachromacy and
29	1062	the accuration of actagent rating DL of Caratier 0:1002422
30	1005	Merry M. Kinshan M. Conserver M. T. Li H. Desing F. Mellich S. Schwitzen IC. Les F. Dröfen K.
31	1064	Meyer M, Kircher M, Gansauge M-1, Li H, Racimo F, Mallick S, Schraber JG, Jay F, Prufer K,
32	1065	de Filippo C, <i>et al.</i> 2012. A high-coverage genome sequence from an archaic Denisovan
33	1066	individual. Science. 338:222-226.
34 35	1067	Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. 2007. Rapid and cost-effective
36	1068	polymorphism identification and genotyping using restriction site associated DNA
37	1069	(RAD) markers. Genome Res. 17:240-248.
38	1070	Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, Kim HL, Burhans RC,
39	1071	Drautz DI, Wittekindt NE, et al. 2012. Polar and brown bear genomes reveal ancient
40	1072	admixture and demographic footprints of past climate change. Proc Natl Acad Sci USA.
41	1073	109:E2382-E2390.
4Z 13	1074	Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M. 2013. Evolution
44	1075	of mammalian diving capacity traced by myoglobin net surface charge. Science.
45	1076	340:1234192.
46	1077	Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban JW, Parsons K, Pitman
47	1078	R, Li L, et al. 2010a. Complete mitochondrial genome phylogeographic analysis of killer
48	1079	whales (Orcinus orca) indicates multiple species. Genome Res. 20:908-916.
49	1080	Morin PA, Luikart G, Wavne RK, SNP workshop group, 2004, SNPs in ecology, evolution and
50 51	1081	conservation Trends Ecol Evol 19.208-216
52	1082	Morin PA Martien KK Archer FL Cipriano F Steel D Jackson J Taylor BL 2010b Applied
53	1083	conservation genetics and the need for quality control and reporting of genetic data used
54	1084	in fisheries and wildlife management <i>LHered</i> 101:1-10
55	1004	In fighteries and whatte management. o freeca. 101.1-10.
56		
57		
50 50		
60		

1 2		
3	1085	Morin PA, Parsons KM, Archer FI, Ávila-Arcos M, Barrett-Lennard LG, Dalla Rosa L, Duchêne
4	1086	S, Durban JW, Ellis GM, Ferguson SH, et al. 2015. Geographic and temporal dynamics
5 6	1087	of a global radiation and diversification in the killer whale. <i>Mol Ecol.</i> 24:3964-3979.
7	1088	Moura AE, Kenny JG, Chaudhuri R, Hughes MA, Welch AJ, Reisinger RR, de Bruyn PJN,
8	1089	Dahlheim ME, Hall N, Hoelzel AR. 2014a. Population genomics of the killer whale
9	1090	indicates ecotype evolution in sympatry involving both selection and drift. <i>Mol Ecol</i> .
10	1091	23:5179-5192.
11	1092	Moura AE, Nielsen SCA, Vilstrup JT, Moreno-Mayar JV, Gilbert MTP, Gray HWI, Natoli A,
13	1093	Möller L, Hoelzel AR. 2013. Recent diversification of a marine genus (<i>Tursiops</i> spp.)
14	1094	tracks habitat preference and environmental change. Syst Biol. 62:865-877.
15	1095	Moura AE, van Rensburg CJ, Pilot M, Tehrani A, Best PB, Thornton M, Plön S, de Bruvn PJN,
16	1096	Worley KC, Gibbs RA, et al. 2014b, Killer whale nuclear genome and mtDNA reveal
1/	1097	widespread population bottleneck during the last glacial maximum. <i>Mol Biol Evol</i> .
10	1098	31:1121-1131.
20	1099	Nadeau NJ, Ruiz M, Salazar P, Counterman B, Alejandro Medina J, Ortiz-Zuazaga H, Morrison
21	1100	A. McMillan WO, Jiggins CD, Papa R, 2014, Population genomics of parallel hybrid
22	1101	zones in the mimetic butterflies <i>H. melnomene</i> and <i>H. erato Genome Res</i> 24.1316-
23	1102	1333.
24	1103	Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA, 2013, Genotyping-by-
25 26	1104	sequencing in ecological and conservation genomics. <i>Mol Ecol</i> , 22:2841-2847.
27	1105	Narum SR. Hess JE. 2011. Comparison of F_{ST} outlier tests for SNP loci under selection. <i>Mol</i>
28	1106	$E_{col} Resour 11.184-194$
29	1107	Nelson TM, Apprill A, Mann J, Rogers TL, Brown MV, 2015. The marine mammal microbiome:
30	1108	current knowledge and future directions. <i>Microbiology Australia</i> , 36:8-13.
31	1109	Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M.
33	1110	Bhattachariee A Eichler EE. <i>et al.</i> 2009 Targeted capture and massively parallel
34	1111	sequencing of twelve human exomes <i>Nature</i> 461.272-276
35	1112	Nielsen R Paul JS Anders A Song YS 2011 Genotype and SNP calling from next-generation
36	1113	sequencing data Nat Rev Genet 12:433-451
37	1114	Noonan JP Coop G Kudaravalli S Smith D Krause J Alessi J Chen F Platt D Pääbo S
30 39	1115	Pritchard JK, et al. 2006 Sequencing and analysis of Neanderthal genomic DNA
40	1116	Science, 314:1113-1118
41	1117	Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, Buck S, Chambers CD,
42	1118	Chin G. Christensen G. <i>et al.</i> 2015. Promoting an open research culture: Author
43	1119	guidelines for journals could help to promote transparency, openness, and reproducibility.
44 45	1120	Science, 348:1422-1425.
46	1121	O'Rawe JA, Ferson S, Lyon GJ, 2015, Accounting for uncertainty in DNA sequencing data.
47	1122	Trends Genet. 31:61-66.
48	1123	Olsen MT Volny VH Bérubé M Dietz R Lydersen C Koyacs KM Dodd RS Palsbøll PJ
49	1124	2011 A simple route to single-nucleotide polymorphisms in a nonmodel species:
50 51	1125	identification and characterization of SNPs in the Arctic ringed seal (<i>Pusa hisnida</i>
52	1126	hispida) Mol Ecol Resour 11.9-19
53	1120	Orlando L. Ginolhac A. Zhang G. Froese D. Albrechtsen A. Stiller M. Schubert M. Cappellini E.
54	1128	Petersen B Moltke L <i>et al</i> 2013 Recalibrating <i>Equus</i> evolution using the genome
55	1129	sequence of an early Middle Pleistocene horse <i>Nature</i> 499.74-78
56		
57 58		
59		
60		

2		
3	1130	Pabuwal V, Boswell M, Pasquali A, Wise SS, Kumar S, Shen Y, Garcia T, Lacerte C, Wise JP,
4	1131	Jr., Wise JP. Sr., <i>et al.</i> 2013. Transcriptomic analysis of cultured whale skin cells exposed
5 6	1132	to hexavalent chromium [Cr(VI)] <i>Aquat Toxicol</i> 134-135.74-81
7	1133	Parker I Tsagkogeorga G Cotton IA Liu Y Provero P Stunka E Rossiter SI 2013 Genome-
8	1134	wide signatures of convergent evolution in echolocating mammals <i>Nature</i> 502:228-231
9	1134	Paszkiewicz KH Earbox A O'Neill P Moore K 2014 Quality control on the frontier <i>Eront</i>
10	1126	Const. 5:157
11	1120	Detre P. Duggel C. Kingeford C. 2015. Accurate fact and model every transprint every
12	1137	rauo K, Duggai O, Kingstolu C. 2015. Accurate, last, and model-aware transcript expression
13	1138	quantification with Salmon. <i>bioRxiv</i> . doi: <u>http://dx.doi.org/10.1101/021592</u> .
14	1139	Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: an
16	1140	inexpensive method for <i>de novo</i> SNP discovery and genotyping in model and non-model
17	1141	species. PLoS One. 7:e37135.
18	1142	Poh Y-P, Domingues VS, Hoekstra HE, Jensen JD. 2014. On the prospect of identifying adaptive
19	1143	loci in recently bottlenecked populations. PLoS One. 9:e110579.
20	1144	Poland JA, Brown PJ, Sorrells ME, Jannink J-L. 2012. Development of high-density genetic
21	1145	maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing
22	1146	approach. PLoS One. 7:e32253.
23	1147	Polanowski AM, Robbins J, Chandler D, Jarman SN. 2014. Epigenetic estimation of age in
24 25	1148	humpback whales. <i>Mol Ecol Resour</i> . 14:976-987.
26	1149	Puritz JB, Hollenbeck CM, Gold JR, 2014, <i>dDocent</i> ; a RADseq, variant-calling pipeline
27	1150	designed for population genomics of non-model organisms, <i>Peer.J.</i> 2:e431.
28	1151	Rasmussen M Li Y Lindgreen S Pedersen IS Albrechtsen A Moltke I Metspalu M Metspalu
29	1152	E Kivisild T Gunta R <i>et al</i> 2010 Ancient human genome sequence of an extinct
30	1152	Palaeo-Fskimo Nature 463:757-762
31	1157	Riesch R. Barrett-Lennard I.G. Ellis GM. Ford IKB. Deecke VB. 2012. Cultural traditions and
32 33	1154	the evolution of reprodutive isolation: ecological speciation in killer whales? <i>Biol I Linn</i>
34	1155	Soc Lond 2012:1 17
35	1150	Debinson ID Coffmon AI Higkorson MI Cutonlangt DN 2014 Sampling strategies for
36	1157	frequency an extreme based nonviolation concerning information <i>DMC Eval Dial</i> 14:254
37	1150	Debineer MD, McCarther DJ, Creath CK, 2010, eds. Disconsideration residence for differential
38	1159	Robinson MD, McCartny DJ, Smyth GK. 2010. edgek: a Bioconductor package for differential
39	1160	expression analysis of digital gene expression data. <i>Bioinformatics</i> . 26:139-140.
40 11	1161	Ruan R, Guo A-H, Hao Y-J, Zheng J-S, Wang D. 2015. <i>De novo</i> assembly and characterization
41	1162	of narrow-ridged finless porpoise renal transcriptome and identification of candidate
43	1163	genes involved in osmoregulation. Int J Mol Sci. 16:2220-2238.
44	1164	Ruegg K, Rosenbaum HC, Anderson EC, Engel M, Rothschild A, Baker CS, Palumbi SR. 2013.
45	1165	Long-term population size of the North Atlantic humpback whale within the context of
46	1166	worldwide population structure. Cons Gen. 14:103-114.
47	1167	Schiffels S, Durbin R. 2014. Inferring human population size and separation history from
48	1168	multiple genome sequences. Nat Genet. 46:919-925.
49 50	1169	Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming,
51	1170	identification, and read merging. BMC Res Notes. 9:88.
52	1171	Schurch NJ, Schofield P, Gierlinski M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K,
53	1172	Simpson GG, Owen-Hughes T, et al. 2015. Evaluation of tools for differential gene
54	1173	expression analysis by RNA-seq on a 48 biological replicate experiment. arXive.
55	1174	1505:02017.
56		
ว/ 52		
59		
60		

2		
3	1175	Seim I. Ma S. Zhou X. Gerashchenko MV. Lee SG. Suvdam R. George JC. Bickham JW.
4	1176	Gladyshev VN 2014 The transcriptome of the bowhead whale <i>Balaena mysticetus</i>
5	1177	reveals adaptations of the longest-lived mammal Aging 6.879-899
7	1178	Shafer ABA Cullingham CI Côté SD Coltman DW 2010 Of glaciers and refugia: a decade of
8	1179	study sheds new light on the phylogeographic patterns of northwestern North America
9	1180	Mol Ecol 19:4589-4621
10	1100	Shafar ABA Davis CS Coltman DW Stewart REA 2014 Microsatellite assessment of walrus
11	1101	(Odehorning normanics) stocks in Canada, NAMMCO Scientific Publications, 0
12	1102	(Ouobenus rosmarus rosmarus) stocks in Canada. NAMMICO Scientific Tubications. 9.
13	1103	Shaler ABA, Gauepanie LM, Siewart REA, wolf JBW. 2015. Demographic interences using
14 15	1184	short-read genomic data in an approximate Bayesian computation framework. In silico
16	1185	evaluation of power, biases and proof of concept in Atlantic walrus. <i>Mol Ecol.</i> 24:328-
17	1186	
18	1187	Shen Y-Y, Zhou W-P, Zhou T-C, Zeng Y-N, Li G-M, Irwin DM, Zhang Y-P. 2012. Genome-
19	1188	wide scan for bats and dolphin to detect their genetic basis for new locomotive styles.
20	1189	<i>PLoS One</i> . 7:e46455.
21	1190	Smith-Unna RD, Boursnell C, Patro R, Hibberd JM, Kelly S. 2015. TransRate: reference free
22	1191	quality assessment of <i>de-novo</i> transcriptome assemblies. <i>bioRxiv</i> .
23 24	1192	Spies D, Ciaudo C. 2015. Dynamics in transcriptomics: advancements in RNA-seq time course
25	1193	and downstream analysis. Comput Struct Biotechnol J. 13:469-477.
26	1194	Springer MS, Signore AV, Paijmans JLA, Vélez-Juarbe J, Domning DP, Bauer CE, He K, Crerar
27	1195	L, Campos PF, Murphy WJ, et al. 2015. Interordinal gene capture, the phylogenetic
28	1196	position of Steller's sea cow based on molecular and morphological data, and the
29	1197	macroevolutionary history of Sirenia. <i>Mol Phylogenet Evol.</i> 91:178-193.
30	1198	Springer MS, Starrett J, Morin PA, Lanzetti A, Hayashi C, Gatesy J. 2016. Inactivation of
32	1199	<i>C4orf26</i> in toothless placental mammals. <i>Mol Phylogenet Evol</i> , 95:34-45.
33	1200	Sremba AL Martin AR Baker CS 2015 Species identification and likely catch time preiod of
34	1201	whale bones from South Georgia Mar Mamm Sci 31.122-132
35	1202	Stanke M Keller O Gunduz I Haves A Waack S Morgenstern B 2006 AUGUSTUS <i>ah initio</i>
36	1203	prediction of alternative transcripts <i>Nucleic Acids Res</i> 34:W435-W439
37	1203	Stein LD 2010 The case for cloud computing in genome informatics <i>Genome Riol</i> 11:207
30 30	1201	Stinchcombe IR Hoekstra HE 2008 Combining population genomics and quantitative genetics:
39 40	1205	finding genes underlying ecologically important traits. <i>Haradity</i> 100:158-170
41	1200	Tabuchi M. Valdhoan N. Dangerfield N. Jaffries S. Halbing CC. Ross DS, 2006, DCB related
42	1207	alteration of thuraid hormonos and thuraid hormono recentor some expression in free
43	1200	ranging harbor goals (<i>Phagg withling</i>). Environ Health Devenget, 114:1024, 1021
44	1209	Tailing liabor seals (<i>Floca vitalina</i>). Environ fleatin Ferspect. 114.1024-1051.
45	1210	Taylor BL, Gemmen NJ. 2010. Emerging technologies to conserve blourversity. Infine
40 47	1211	opportunities via genomics. Response to Pimm <i>et al. Trenas Ecol Evol.</i> 31:1/1-1/2.
48	1212	The <i>Heliconius</i> Genome Consortium. 2012. Butterily genome reveals promiscuous exchange of
49	1213	mimicry adaptations among species. <i>Nature</i> . 48/:94-98.
50	1214	Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E. 2012. Detection of
51	1215	a diverse marine fish fauna using environmental DNA from seawater samples. <i>PLoS One</i> .
52	1216	7:e41732.
53	1217	Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S,
54 55	1218	Lifka D, Peterson GD, et al. 2014. XSEDE: accelerating scientific discovery. Computing
56	1219	in Science and Engineering. 16:62-74.
57		
58		
59		
60		

2		
3	1220	Tsagkogeorga G. McGowen MR. Davies KT. Jarman S. Polanowski A. Bertelsen MF. Rossiter
4	1221	SI 2015 A phylogenomic analysis of the role and timing of molecular adaptation in the
5	1221	aduatic transition of cetartiodactyl mammals R Soc Open Sci 2:150156
6 7	1222	van Diik EL Auger H. Jagzerwawn V. Thermos C. 2014. Ten years of next generation
/ 8	1223	van Dijk EL, Augel II, Jaszczyzyn T, Thermes C. 2014. Ten years of next-generation
9	1224	sequencing technology. Trenas Genet. 50:418-426.
10	1225	VanRaden PM, Sun C, O'Connell JR. 2015. Fast imputation using medium or low-coverage
11	1226	sequence data. BMC Genet. 16:82.
12	1227	Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, Park TJ, Deaville R,
13	1228	Erichsen JT, Jasinska AJ, et al. 2015. Enhancer evolution across 20 mammalian species.
14	1229	<i>Cell</i> . 160:554-566.
15	1230	Viricel A, Pante E, Dabin W, Simon-Bouhet B. 2014. Applicability of RAD-tag genotyping for
16	1231	interfamilial comparisons: empirical data from two cetaceans. <i>Mol Ecol Resour.</i> 14:597-
1/	1232	605
10	1233	Viricel A Rosel PE 2014 Hierarchical population structure and habitat differences in a highly
20	1234	mobile marine species: the Atlantic spotted dolphin Mol Ecol 23:5018-5035
20	1234	Wolf IB 2013 Principles of transcriptome analysis and gane expression quantification: an RNA
22	1233	and tyterial Mol Ecol Person 12:550, 572
23	1230	Seq tutorial. Mol Ecol Resour. 15.559-572.
24	1237	Along T, Brandley MC, Au S, Zhou K, Tang G. 2009. Seven new doiphin initochondria
25	1238	genomes and a time-calibrated phylogeny of whales. BMC Evol Biol. 9:20.
26	1239	Yandell M, Ence D. 2012. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet.
27	1240	13:329-342.
28 20	1241	Yeh R-F, Lim LP, Burge CB. 2001. Computational inference of homologous gene structures in
29 30	1242	the human genome. <i>Genome Res.</i> 11:803-816.
31	1243	Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M, Lee J-H, Yang EC, Kwon
32	1244	KK, et al. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet.
33	1245	46:88-92.
34	1246	Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. 2011. Optimizing <i>de novo</i> transcriptome
35	1247	assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics.
36	1248	12:S2.
37	1249	Zhou X Sun F Xu S Fan G Zhu K Liu X Chen Y Shi C Yang Y Huang Z <i>et al</i> 2013 Baiji
30 30	1250	genomes reveal low genetic variability and new insights into secondary aquatic
39 40	1250	adaptations. Nat Commun. 4:2708
41	1251	Zou Z. Zhang I. 2015. No genema wide protain sequence convergence for achelocation. Mol
42	1252	<i>Dial Eval.</i> 22:1227-1241
43	1233	<i>DIOI EVOI</i> . 52.1257-1241.
44	1254	
45	I	
46		
47		
40 /0		
4 3 50		
51		
52		
53		
54		
55		
56		
57 58		
59		
60		

 Table 1. Current and commonly used tools for analysis of genomic data generated in non-model organisms. Please note that this list is
 not exhaustive and new computational tools are continuously being developed.

	<u>Computational</u> Tool	Purpose	Strengths/Weaknesses	Reference		
	RADseq*					
	STACKS	quality filtering, <i>de novo</i> assembly or reference-aligned read mapping, variant genotyping	scalable (new data can be compared against existing locus catalog); flexible filtering and export options; recently implemented a gapped alignment algorithm to process insertion-deletion (indel) mutations; secondary algorithm adjusts SNP calls using population-level allele frequencies; compatible with input data from multiple RADseq methods	Catchen et al. (2011; 2013), http://catchenlab.life.illinois.edu/ stacks/		
l	PyRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	efficiently processes indel mutations, <u>thus</u> optimal for analysis of highly divergent species; high speed and quality of paired-end library assemblies; compatible with input data from multiple RADseq methods	Eaton (2014)		
	TASSEL-GBS	quality filtering, reference-aligned read mapping, variant genotyping	optimized for single-end data from large sample_sizes (tens of thousands of individuals) with a reference genome; performs genome-wide association studies	Glaubitz et al. (2014)		
	dDocent	quality trimming, <i>de novo</i> assembly, read mapping, variant genotyping	beneficial in analysis of paired-end data; identifies both SNP and indel variants; most appropriate for ezRAD and ddRAD data	Puritz et al. (2014)		
	AftrRAD	quality filtering, <i>de novo</i> assembly, read mapping, variant genotyping	identifies both SNP and indel variants; computationally faster than STACKS and PyRAD	Sovic et al. (2015)		
	Array-based high-through	put sequencing				
I	Affymetrix Axiom [™] Analysis Suite, Illumina [®] GenomeStudio	genotype scoring	visualization of genotype clusters; quality scores assigned to genotype calls allow userspecific filtering; manual editing possible			
	Whole genome sequencing					
	AdapterRemoval v2, Trimmomatic	trim raw sequences	remove adapter sequences and low quality bases prior to assembly	Bolger et al. (2014), Schubert et al. (2016)		
	ALLPATHS-LG, PLATANUS, SOAPdenovo	de novo genome assembly	designed for short-read sequences of large heterozygous genomes	Li et al. (2010), Gnerre et al. (2011), Kajitani et al. (2014)		
	AUGUSTUS, GenomeScan, MAKER2	gene annotation	highly accurate evidence-driven or BLASTX-guided gene prediction (Yandell and Ence 2012)	Yeh et al. (2001), Stanke et al. (2006), Holt and Yandell (2011)		

	Bowtie, bwa	read mapping	rapid short-read alignment with compressed reference genome index, but limited number of acceptable mismatches per alignment (Flicek and Birney 2009)	Langmead et al. (2009), Li and Durbin (2009)
	SAMtools	data processing, variant calling (SNP and indel discovery)	multi-purpose tool that conducts file conversion, alignment sorting, PCR duplicate removal, and variant (SNP and indel) calling for SAM/BAM/CRAM files	Li et al. (2009)
	GATK	data processing and quality control, variant calling	suitable for processing and analyses of data with low to high mean read depth across the genome coverage data; initially optimized for large human datasets, then modified for use with non-model organisms	McKenna et al. (2010), DePristo et al. (2011)
	ANGSD/NGStools	data processing, variant calling, estimation of diversity metrics, population genomic analyses	suitable for processing and analyses of data with low mean read depth, including coverage and palaeogenomic data; allow downstream analyses such as D-statistics and SFS estimation	Fumagalli et al. (2014), Korneliussen et al. (2014)
	RNAseq			
	Fastx Toolkit, Trimmomatic	trim raw sequences	remove erroneous nucleotides from reads prior to assembly	MacManes (2014)
	khmer diginorm, Trinity normalization	in silico read normalization	reduces memory requirements for assembly, but can result in fragmented assemblies and collapse heterozygosity	Brown et al. (2012) <u>; Haas et al.</u> (2013)
	Trinity	<i>de novo</i> and genome-guided transcriptome assembly	accurate assembly across conditions, but requires long runtime if normalization is not used (Zhao et al. 2011)	Haas et al. (2013)
	bowtie, bowtie2, STAR	read alignment to genome or transcriptome assembly	required for many downstream analyses, but bowtie is computationally intensive and all produce very large output BAM files	Langmead et al. (2009), Dobin et al. (2013)
	eXpress, kallisto, RSEM, Sailfish, Salmon	estimation of transcript abundance	RSEM requires computationally intensive read mapping back to the assembly; the others are faster streaming alignment, quasi-alignment, or alignment- free algorithms	Li and Dewey (2011), Patro et al. (2015)
	DESeq, DESeq2, edgeR	differential expression analysis	exhibit highest true positive and lowest false positive rates in experiments with smaller sample sizes (Schurch et al. 2015)	Anders and Huber (2010), Robinson et al. (2010), Love et al. (2014)
_	blast2GO, Trinotate	functional annotation of assembled transcripts	complete annotation pipelines including gene ontology and pathway enrichment analyses	Conesa et al. (2005), Haas et al. (2013)

 1258 * This is a non-exhaustive list of software that include focuses on *de novo* loci assembly and genotype calling for RADseq data, as many practitioners working on
 1259 NMOs will not have access to a reference genome. Other programs (e.g., GATK and ANGSD) that undertake genotype calling using reference-aligned loci only
 1260 are described in the whole genome sequencing section.

Figure 1. Phylogenetic tree showing current genomic resources available for (A) cetaceans and (B) pinnipeds; relationships and branch lengths are based on molecular dating estimates from McGowen et al. (2009), McGowen (2011), and Higdon et al. (2007). Scale is in millions of years ago (MYA). Red circles indicate species with high-coverage-quality whole-reference genomes; green stars indicate low-coverage whole genome re-sequencing data; blue triangles indicate transcriptomes (generated by microarray or RNAseq); and black squares indicate RADseq data.

Page 93 of 95

Figure 2

Figure 2. Number of marine mammal genomics publications from 1990 to 2015, categorized by primary methodology and research aim. Genomic methodologies include high-throughput single nucleotide polymorphism (SNP) genotyping and sequencing of mitogenomes, whole genomes (WGS), transcriptomes (generated by microarray or RNAseq), and reduced-representation genomic libraries (RRL). The "Other" category includes studies of microbiomes, BAC libraries, and large (~100) gene sets.

Figure 3. Number of BioProjects (shaded-gray bars) related to marine mammal genomics submitted from 2006 to 2015 to an online public database maintained by NCBI. Early BioProjects were largely microarray datasets. The number of projects created each year, as well as the yearly average (black dots \pm SE) and maximum (×) size of data submitted in each BioProject, increased dramatically after 2011, reflecting advances in high-throughput sequencing technologies that facilitated their use in non-model systems.

Figure 4

Figure 4. Timelines depicting the independent progression of genomic studies for four representative marine mammal species. Trajectories show the common progression for non-model species from mitogenome sequencing to whole genome sequencing, as well as from sequencing reference specimens to population-scale genomic sequencing. In addition, the timelines reveal the utility of genomic and transcriptomic sequencing for subsequent genetic marker development.

