
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weakly-supervised Neural Semantic Parsing with a Generative
Ranker

Citation for published version:
Cheng, J & Lapata, M 2018, Weakly-supervised Neural Semantic Parsing with a Generative Ranker. in
SIGNLL Conference on Computational Natural Language Learning (CoNLL 2018). Association for
Computational Linguistics, Brussels, Belgium, pp. 356-367, SIGNLL Conference on Computational Natural
Language Learning, Brussels, Belgium, 31/10/18.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIGNLL Conference on Computational Natural Language Learning (CoNLL 2018)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://www.research.ed.ac.uk/portal/en/publications/weaklysupervised-neural-semantic-parsing-with-a-generative-ranker(8a5dff2c-636e-4f28-9c10-6463449b89c6).html


Weakly-supervised Neural Semantic Parsing with a Generative Ranker

Jianpeng Cheng and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

jianpeng.cheng@ed.ac.uk mlap@inf.ed.ac.uk

Abstract

Weakly-supervised semantic parsers are
trained on utterance-denotation pairs, treating
logical forms as latent. The task is challenging
due to the large search space and spuriousness
of logical forms. In this paper we introduce a
neural parser-ranker system which addresses
both challenges based on three innovations:
(a) candidate (tree-structured) logical forms in
our model are ranked based on two criteria,
i.e., whether they are likely to execute to
the correct denotation and the degree to
which they preserve the meaning of the
utterance; (b) a scheduled training procedure
effectively balances the contribution of the
two objectives; (c) a neurally encoded lexicon
is used to inject prior domain knowledge to
the model. Experiments on three Freebase
datasets demonstrate the effectiveness of our
semantic parser, achieving state-of-the-art
results.

1 Introduction

Semantic parsing is the task of converting natural
language utterances into machine-understandable
meaning representations such as logical forms.
The task has attracted much attention in the lit-
erature due to its potential for applications rang-
ing from question answering (Kwiatkowski et al.,
2011; Liang et al., 2011) to relation extraction (Kr-
ishnamurthy and Mitchell, 2012), goal-oriented
dialog (Wen et al., 2015), and instruction un-
derstanding (Chen and Mooney, 2011; Matuszek
et al., 2012; Artzi and Zettlemoyer, 2013).

In a typical semantic parsing scenario, a logi-
cal form (e.g., representing a query) is executed
against a knowledge base to produce an outcome
(e.g., an answer) known as denotation. Con-
ventional semantic parsers are trained on collec-
tions of utterances paired with annotated logi-
cal forms (Zelle and Mooney, 1996; Zettlemoyer

Figure 1: Overview of the weakly-supervised neu-
ral semantic parsing system.

and Collins, 2005; Wong and Mooney, 2006;
Kwiatkowksi et al., 2010). However, the label-
ing of logical forms is labor-intensive and chal-
lenging to elicit at a large scale for complex do-
mains. As a result, alternative forms of super-
vision have been proposed to alleviate the anno-
tation bottleneck faced by semantic parsing sys-
tems. A promising direction has been to train
a semantic parser in a weakly-supervised setting
based on utterance-denotation pairs (Clarke et al.,
2010; Kwiatkowski et al., 2013; Krishnamurthy
and Mitchell, 2012; Cai and Yates, 2013), since
such data are relatively easy to obtain via crowd-
sourcing (Berant et al., 2013a).

However, the unavailability of logical forms
in the weakly-supervised setting, renders model
training more difficult. A fundamental challenge
in learning semantic parsers from denotations is
finding consistent logical forms, i.e., those which
execute to the correct denotation. This search
space can be very large, growing exponentially as
compositionality increases. Moreover, consistent
logical forms unavoidably introduce a certain de-
gree of spuriousness — some of them will acci-
dentally execute to the correct denotation without
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reflecting the meaning of the utterance. Unfortu-
nately, spurious logical forms are misleading su-
pervision signals for the semantic parser.

In this work we introduce a weakly-supervised
neural semantic parsing system which aims to
handle both challenges. Our system, shown in
Figure 1, mainly consists of a sequence-to-tree
parser which generates candidate logical forms for
a given utterance. These logical forms are subse-
quently ranked by two components: a log-linear
model scores the likelihood of each logical form
executing to the correct denotation, and an inverse
neural parser measures the degree to which the
logical form represents the meaning of the utter-
ance. We present a scheduled training scheme
which balances the contribution of the two com-
ponents and objectives. To further boost perfor-
mance, we propose to neurally encode a lexicon,
as a means of injecting prior domain knowledge
to the neural parameters.

We evaluate our system on three Freebase
datasets which consist of utterance denotation
pairs: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016), and SPADES

(Bisk et al., 2016). Experimental results across
datasets show that our weakly-supervised seman-
tic parser achieves state-of-the-art performance.

2 The Neural Parser-Ranker

Conventional weakly-supervised semantic parsers
consist of two major algorithmic components
(Liang, 2016). A parser, which is chart-based and
non-parameterized, recursively builds derivations
for each utterance span using dynamic program-
ming. A learner, which is a log-linear model, de-
fines features useful for scoring and ranking the
set of candidate derivations, based on the correct-
ness of execution results. As mentioned in Liang
(2016), the chart-based parser brings a disadvan-
tage since it does not support incremental contex-
tual interpretation. The dynamic programming al-
gorithm requires that features of a span are defined
over sub-derivations in that span.

In contrast to a chart-based parser, a parameter-
ized neural semantic parser decodes logical forms
with global utterance features. It should also be
noted that a neural decoder is conditionally gener-
ative: decoding is performed greedily conditioned
on the generation history and the utterance, but
makes no use of global logical form features. Nev-
ertheless, training a neural parser in a weakly-

supervised fashion is challenging since there is no
access to gold standard logical forms for back-
propagation. In this section, we introduce a parser-
ranker framework which combines the best of con-
ventional and neural approaches in the context of
weakly-supervised semantic parsing.

2.1 Parser
Our work follows Cheng et al. (2017b) in us-
ing LISP-style functional queries as the logical
formulation. Advantageously, functional queries
are recursive, tree-structured and can naturally en-
code logical form derivations (i.e., functions and
their application order). For example, the utter-
ance “who is obama’s eldest daughter” is sim-
ply represented with the function-argument struc-
ture argmax(daughterOf(Obama), ageOf). Table
1 displays the functions we use in this work; for a
more detailed specification, we refer the interested
reader to the supplementary material.

To generate logical forms, our system adopts a
variant of the neural sequence-to-tree model pro-
posed in Cheng et al. (2017b). During generation,
the prediction space is restricted by the grammar
of the logical language (e.g., the type and the num-
ber of arguments required by a function) in order
to ensure that output logical forms are well-formed
and executable. The parser consists of a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder and a stack-LSTM (Dyer et al., 2015) de-
coder, introduced as follows.

Bidirectional-LSTM Encoder The bidirec-
tional LSTM encodes a variable-length utterance
x = (x1, · · · , xn) into a list of token representa-
tions [h1, · · · , hn], where each representation is
the concatenation of the corresponding forward
and backward LSTM states.

Stack-LSTM Decoder After the utterance is en-
coded, the logical form is generated with a stack-
LSTM decoder. The output of the decoder consists
of functions which generate the logical form as a
derivation tree in depth-first order. There are three
classes of functions:

Class-1 functions generate non-terminal tree
nodes. In our formulation, non-terminal nodes in-
clude language-dependent functions such as count
and argmax, as described in the first four rows of
Table 1. A special non-terminal node is the rela-
tion placeholder relation.

Class-2 functions generate terminal tree nodes.
In our formulation, terminal nodes include the re-



Function Utility Example
findAll returns the entity set of a given type find all mountains

findAll(mountain)
filter=

filter<

filter>

filters an entity set with constraints
all mountains in Europe
filter=(findAll(mountain),
mountain location, Europe)

count computes the cardinality of an entity set how many mountains are there
count(findAll(mountain))

argmax
argmin

finds the subset of an entity set whose certain property
is maximum (or minimum)

the highest mountain
argmax(findAll(mountain),
mountain altitude)

relation denotes a KB relation; in generation, relation acts as
placeholder for all relations

height of mountain
mountain altitude

entity denotes a KB entity; in generation, entity acts as
placeholder for all entities

Himalaya
Himalaya

Table 1: List of functions supported by our functional query language, their utility, and examples.

argmax

relation(ageOf)relation(daughterOf)

entity

Functions for generation (parser): argmax,
relation, entity, reduce, relation,
reduce

Functions for encoding (inverse parser): entity,
relation, reduce, relation, argmax,
reduce

Figure 2: Derivation tree for the utterance “who is
obama’s eldest daughter” (top), and corresponding
functions for generation and encoding (bottom).

lation placeholder relation and the entity place-
holder entity.

Class-3 function reduce completes a subtree.
Since generation is performed in depth-first order,
the parser needs to identify when the generation of
a subtree terminates, i.e., when a function has seen
all its required arguments.

The functions used to generate the example
logical form argmax(daughterOf(Obama), ageOf)

are shown in Figure 2. The stack-LSTM makes
two types of updates based on the functions it pre-
dicts:

Update-1: when a Class-1 or Class-2 function
is called, a non-terminal or terminal token lt will
be generated, At this point, the stack-LSTM state,
denoted by gt, is updated from its older state gt−1
as in an ordinary LSTM:

gt = LSTM(lt, gt−1) (1)

The new state is additionally pushed onto the stack
marking whether it corresponds to a non-terminal

or terminal.
Update-2: when the reduce function is called

(Class-3), the states of the stack-LSTM are recur-
sively popped from the stack until a non-terminal
is encountered. This non-terminal state is popped
as well, after which the stack-LSTM reaches an
intermediate state denoted by gt−1:t. At this point,
we compute the representation of the completed
subtree zt as:

zt = Wz · [pz : cz] (2)

where pz denotes the parent (non-terminal) em-
bedding of the subtree, and cz denotes the average
embedding of the children (terminals or already-
completed subtrees). Wz is the weight matrix. Fi-
nally, zt serves as input for updating gt−1:t to gt:

gt = LSTM(zt, gt−1:t) (3)

Prediction At each time step of the decoding,
the parser first predicts a subsequent function ft+1

conditioned on the decoder state gt and the en-
coder states h1 · · ·hn. We apply standard soft at-
tention (Bahdanau et al., 2015) between gt and the
encoder states h1 · · ·hn to compute a feature rep-
resentation h̄t:

uit = V tanh(Whhi +Wggt) (4)

ait = softmax(uit) (5)

h̄t =
n∑
i=1

aithi (6)

where V , Wh, and Wg are all weight parameters.
The prediction of the function ft+1 is computed



with a softmax classifier, which takes the concate-
nated features h̄t and gt as input:

ft+1 ∼ softmax(Wy tanh(Wf [h̄t, gt])) (7)

where Wy and Wf are weight parameters.
When ft+1 is a language-dependent function (first
four rows in Table 1, e.g., argmax), it is directly
used as a non-terminal token lt+1 to construct the
logical form. However, when ft+1 is a relation or
entity placeholder, we further predict the specific
relation or entity lt+1 with another set of neural
parameters:

lt+1 ∼ softmax(Wy′ tanh(Wl[h̄t, gt])) (8)

where Wy′ and Wl′ are weight matrices.
Note that in the weakly supervised setting, the

parser decodes a list of candidate logical forms Y
with beam search, instead of outputting the most
likely logical form y. During training, candidate
logical forms are executed against a knowledge
base to find those which are consistent (denoted
by Yc(x)) and lead to the correct denotation. Then,
the parser is trained to maximize the total log like-
lihood of these consistent logical forms:∑

y∈Yc(x)

log p(y|x) =

∑
y∈Yc(x)

log p(f1, · · · , fk, l1, · · · , lo|x)
(9)

where k denotes the number of functions used to
generate the logical form, and o (smaller than k)
denotes the number of tree nodes in the logical
form.

2.2 Ranker

It is impractical to rely solely on a neural decoder
to find the most likely logical form at run time in
the weakly-supervised setting. One reason is that
although the decoder utilizes global utterance fea-
tures for generation, it cannot leverage global fea-
tures based on the logical form since the latter is
conditionally generated following a specific tree-
traversal order. To this end, we follow previous
work (Berant et al., 2013b) and introduce a ranker
to the system. The role of the ranker is to score the
candidate logical forms generated by the parser;
at test time, the logical form receiving the high-
est score will be used for execution. The ranker
is a discriminative log-linear model over logical

form y given utterance x:

logθ p(y|x) =
exp(φ(x, y)T θ)∑

y′∈Y (x) exp(φ(x, y′)T θ)
(10)

where Y (x) is the set of candidate logical forms;
φ is the feature function that maps an utterance-
logical form pair onto a feature vector; and θ de-
notes the weight parameters of the model.

Since the training data consists only of
utterance-denotation pairs, the ranker is trained
to maximize the log-likelihood of the correct an-
swer z by treating logical forms as a latent vari-
able:

log p(z|x) = log
∑

y∈Yc(x)

p(y|x)p(z|x, y) (11)

where Yc(x) denotes the subset of candidate logi-
cal forms which execute to the correct answer; and
p(z|x, y) equates to 1 in this case.

Training of the neural parser-ranker system in-
volves the following steps. Given an input ut-
terance, the parser first generates a list of candi-
date logical forms via beam search. The logical
forms are then executed and those which yield the
correct denotation are marked as consistent. The
parser is trained to optimize the total likelihood of
consistent logical forms (Equation (9)), while the
ranker is trained to optimize the marginal likeli-
hood of denotations (Equation (11)). The search
space can be further reduced by performing entity
linking which restricts the number of logical forms
to those containing only a small set of entities.

3 Removing Spurious Logical Forms

The neural parser-ranker system relies on beam
search to find consistent logical forms that exe-
cute to the correct answer. These logical forms are
then used as surrogate annotations and provide su-
pervision to update the parser’s parameters. How-
ever, some of these logical forms will be mislead-
ing training signals for the neural semantic parser
on account of being spurious: they coincidentally
execute to the correct answer without matching the
utterance semantics.

In this section we propose a method of remov-
ing spurious logical forms by validating how well
they match the utterance meaning. The intuition
is that a meaning-preserving logical form should
be able to reconstruct the original utterance with
high likelihood. However, since spurious logical



forms are not annotated either, a direct maximum
likelihood solution does not exist. To this end, we
propose a generative model for measuring the re-
construction likelihood.

The model assumes utterance x is generated
from the corresponding logical form y, and only
the utterance is observable. The objective is there-
fore to maximize the log marginal likelihood of x:

log p(x) = log
∑
y

p(x, y) (12)

We adopt neural variational inference (Mnih and
Gregor, 2014) to solve the above objective, which
is equivalent to maximizing an evidence lower
bound:

(13)log p(x) = log
q(y|x)p(x|y)p(y)

q(y|x)

≥ Eq(y|x) log p(x|y) + Eq(y|x) log
p(y)

q(y|x)

Since our semantic parser outputs well-formed
logical forms, we assume a uniform prior and the
probability p(y) to be a constant. The above ob-
jective can be thus reduced to:

Eq(y|x) log p(x|y)−Eq(y|x) log q(y|x) = L(x) (14)

where the first term computes the reconstruction
likelihood p(x|y); and the second term is the en-
tropy of the approximated posterior q(y|x) for
regularization. Specifically, we use the seman-
tic parser to compute the approximated posterior
q(y|x).1 The reconstruction likelihood p(x|y) is
computed with an inverse parser which recovers
utterance x from its logical form y. We use p(x|y)
to measure how well the logical form reflects the
utterance meaning; details of the inverse parser are
described as follows.

Stack-LSTM Encoder To reconstruct utter-
ance x, logical form y is first encoded with a
stack-LSTM encoder. To do that, we deter-
ministically convert the logical form into a se-
quence of Class-1 to Class-3 functions, which
correspond to the creation of tree nodes and
subtrees. Different from the top-down gen-
eration process, the functions here are ob-
tained in a bottom-up order to facilitate encod-
ing. Functions used to encode the example log-
ical form argmax(daughterOf(Obama),
ageOf) are shown in Figure 2.

1In the the non-generative scenario (Section 2.1), we
denoted the output distribution of the semantic parser
with p(y|x).

The stack-LSTM sequentially processes the
functions and updates its states based on the class
of each function, following the same principle
(Update-1 and Update-2) described in Section 2.1.
We save a list of terminal, non-terminal and sub-
tree representations [g1, · · · , gs], where each rep-
resentation is the stack-LSTM state at the cor-
responding time step of encoding. The list es-
sentially contains the representation of every tree
node and the representation of every subtree (the
total number of representations is denoted by s).

LSTM Decoder Utterance x is reconstructed
with a standard LSTM decoder attending to tree
nodes and subtree representations. At each time
step, the decoder attends to decoder state rt and
tree fragment representations [g1, · · · , gs]:

vit = V ′ tanh(Wg′gi +Wrrt) (15)

bit = softmax(vit) (16)

ḡt =
s∑
i=1

bitgi (17)

and predicts the probability of the next word as:

x′t+1 ∼ softmax(Wx′ tanh(Wf ′ [ḡt, rt])) (18)

where W s and V ′ are all weight parameters.

Gradients The training objective of the genera-
tive model is given in Equation (14). The param-
eters of the neural network include those of the
original semantic parser (denoted by θ) and the in-
verse parser (denoted by φ). The gradient of Equa-
tion (14) with respect to φ is:

∂L(x)

∂φ
= Eq(y|x)

∂ log p(x|y)

∂φ
(19)

and the gradient with respect to θ is:

(20)

∂L(x)

∂θ
= Eq(y|x)[(log p(x|y)− log q(y|x))

× ∂ log q(y|x)

∂θ
]

Both gradients involve expectations which we
estimate with Monte Carlo method, by sampling
logical forms from the distribution q(y|x). Recall
that in the parser-ranker framework these samples
are obtained via beam search.



4 Scheduled Training

Together with the inverse parser for removing spu-
rious logical forms, the proposed system consists
of three components: a parser which generates
logical forms from an utterance, a ranker which
measures the likelihood of a logical form execut-
ing to the correct denotation, and an inverse parser
which measures the degree to which logical forms
are meaning-preserving using reconstruction like-
lihood. Our semantic parser is trained following
a scheduled training procedure, balancing the two
objectives.

Phase 1: at the beginning of training when all
model parameters are far from optimal, we train
only the parser and the ranker as described in Sec-
tion 2; the parser generates a list of candidate log-
ical forms, we find those which are consistent and
update both the parser and the ranker.

Phase 2: we next turn to the inverse parser and
update all three components in one epoch. How-
ever, the reconstruction loss is only used to update
the inverse parser and we prevent it from back-
propagating to the semantic parser. This is be-
cause at this stage of training the parameters of the
inverse parser are sub-optimal and we cannot ob-
tain an accurate approximation of the reconstruc-
tion loss.

Phase 3: finally, we allow the reconstruction
loss to back-propagate to the parser, and all three
components are updated as normal. Both training
objectives are enabled, the system maximizes the
likelihood of consistent logical forms and the re-
construction likelihood.

5 Neural Lexicon Encoding

In this section we further discuss how the semantic
parser presented so far can be optionally enhanced
with a lexicon to further improve model perfor-
mance. A lexicon is essentially a coarse mapping
between natural language phrases and knowledge
base relations and entities, and has been widely
used in conventional chart-based parsers (Berant
et al., 2013a; Reddy et al., 2014). Here, we show
how a lexicon can be used to benefit a neural se-
mantic parser.

You should say how you obtain this lexicon,
how do you know that is influenced by maps
to influence.influence node.influenced by, do
you not need to do some alignment before-
hand? The central idea is that relations or

entities can be viewed as a single-node tree-
structured logical form. For example, based on
the lexicon, the natural language phrase “is in-
fluenced by” can be parsed to the logical form
influence.influence node.influenced by. We
can therefore pretrain the semantic parser (and the
inverse parser) with these basic utterance-logical
form pairs which act as important prior knowl-
edge for initializing the distributions q(y|x) and
p(x|y). With pre-trained word embeddings cap-
turing linguistic regularities on the natural lan-
guage side, we also expect the approach to help
the neural model generalize to unseen natural lan-
guage phrases quickly. For example, by encod-
ing the mapping between the natural language
phrase “locate in” and the Freebase predicate
fb:location.location.containedby, the parser
can potentially link the new phrase “located at”
to the same predicate. We experimentally assess
whether the neural lexicon enhances the perfor-
mance of our semantic parser.

6 Experiments

In this section we evaluate the performance our se-
mantic parser. We introduce the various datasets
used in our experiments, training settings, model
variants used for comparison, and finally present
and analyze our results.

6.1 Datasets

We evaluated our model on three Freebase
datasets: WEBQUESTIONS (Berant et al., 2013a),
GRAPHQUESTIONS (Su et al., 2016) and SPADES

(Bisk et al., 2016). WEBQUESTIONS con-
tains 5,810 real questions asked by people on
the web paired by answers. GRAPHQUESTIONS

contains 5,166 question-answer pairs which were
created by showing 500 Freebase graph queries
to Amazon Mechanical Turk workers and asking
them to paraphrase them into natural language.
SPADES contains 93,319 question-answer pairs
which were created by randomly replacing entities
in declarative sentences with a blank symbol.

6.2 Training

Across training regimes, the dimensions of word
vector, logical form token vector, and LSTM hid-
den states (for the semantic parser and the inverse
parser) are 50, 50, and 150, respectively. Word
embeddings were initialized with Glove embed-
dings (Pennington et al., 2014). All other em-



beddings were randomly initialized. We used one
LSTM layer in the forward and backward direc-
tions. Dropout was used before the softmax acti-
vation (Equations (7), (8), and (18)). The dropout
rate was set to 0.5. Momentum SGD (Sutskever
et al., 2013) was used as the optimization method
to update the parameters of the model.

As mentioned earlier, we use entity linking to
reduce the beam search space. Entity mentions
in SPADES are automatically annotated with Free-
base entities (Gabrilovich et al., 2013). For WE-
BQUESTIONS and GRAPHQUESTIONS we per-
form entity linking following the procedure de-
scribed in Reddy et al. (2016). We identify po-
tential entity spans using seven handcrafted part-
of-speech patterns and associate them with Free-
base entities obtained from the Freebase/KG API.2

We use a structured perceptron trained on the enti-
ties found in WEBQUESTIONS and GRAPHQUES-
TIONS to select the top 10 non-overlapping entity
disambiguation possibilities. We treat each possi-
bility as a candidate entity and construct candidate
utterances with a beam search of size 300.

Key features of the log-linear ranker introduced
in Section 2 include the entity score returned by
the entity linking system, the likelihood score of
the relation in the logical form predicted by the
parser, the likelihood score of the the logical form
predicted by the parser, the embedding similarity
between the relation in the logical form and the
utterance, the similarity between the relation and
the question words in the utterance, and the an-
swer type as indicated by the last word in the Free-
base relation (Xu et al., 2016). All features are
normalized across candidate logical forms. For all
datasets we use average F1 (Berant et al., 2013a)
as our evaluation metric.

6.3 Model Variants

We experiment with three variants of our model.
We primarily consider the neural parser-ranker
system (denoted by NPR) described in Section 2
which is trained to maximize the likelihood of con-
sistent logical forms. We then compare it to a sys-
tem augmented with a generative ranker (denoted
by GRANKER), introducing the second objective
of maximizing the reconstruction likelihood. Fi-
nally, we examine the impact of neural lexicon en-
coding when it is used for the generative ranker,

2http://developers.google.com/
freebase/

Models F1
Berant et al. (2013a) 35.7
Berant and Liang (2014) 39.9
Berant and Liang (2015) 49.7
Reddy et al. (2016) 50.3
Yao and Van Durme (2014) 33.0
Bast and Haussmann (2015) 49.4
Bordes et al. (2014) 39.2
Dong et al. (2015) 40.8
Yih et al. (2015) 52.5
Xu et al. (2016) 53.3
Cheng et al. (2017b) 49.4
NPR 50.1

+ GRANKER 50.2
+ lexicon encoding on GRANKER 51.7
+ lexicon encoding on parser and GRANKER 52.5

Table 2: WEBQUESTIONS results.

and also when it is used for the entire system.

6.4 Results

Experimental results on WEBQUESTIONS are
shown in Table 2. We compare the performance of
NPR with previous work, including conventional
chart-based semantic parsing models (e.g., Berant
et al. (2013a); first block in Table 2), informa-
tion extraction models (e.g., Yao and Van Durme
(2014); second block in Table 2), and more recent
neural question-answering models (e.g., Dong
et al. (2015); third block in Table 2). Most neural
models do not generate logical forms but instead
build a differentiable network to solve a specific
task such as question-answering. An exception is
the neural sequence-to-tree model of Cheng et al.
(2017b), which we extend to build the vanilla NPR

model. A key difference of NPR is that it employs
soft attention instead of hard attention, which is
Cheng et al. (2017b) use to rationalize predictions.

As shown in Table 2, the basic NPR system
outperforms most previous chart-based semantic
parsers. Our results suggest that neural networks
are powerful tools for generating candidate logi-
cal forms in a weakly-supervised setting, due to
their ability encoding and utilizing sentential con-
text and generation history. Compared to Cheng
et al. (2017b), our system also performs better. We
believe the reason is that it employs soft attention
instead of hard attention. Soft attention makes the
parser fully differentiable and optimization easier.

http://developers.google.com/freebase/
http://developers.google.com/freebase/


Models F1
SEMPRE (Berant et al., 2013a) 10.80
PARASEMPRE (Berant and Liang, 2014) 12.79
JACANA (Yao and Van Durme, 2014) 5.08
SCANNER (Cheng et al., 2017b) 17.02
UDEPLAMBDA (Reddy et al., 2017) 17.70
NPR 17.30

+ GRANKER 17.33
+ lexicon encoding on GRANKER 17.67
+ lexicon encoding on parser and GRANKER 18.22

Table 3: GRAPHQUESTIONS results.

Models F1
Unsupervised CCG (Bisk et al., 2016) 24.8
Semi-supervised CCG (Bisk et al., 2016) 28.4
Supervised CCG (Bisk et al., 2016) 30.9
Rule-based system (Bisk et al., 2016) 31.4
Sequence-to-tree (Cheng et al., 2017b) 31.5
Memory networks (Das et al., 2017) 39.9
NPR 32.4

+ GRANKER 33.1
+ lexicon encoding on GRANKER 35.5
+ lexicon encoding on parser and GRANKER 37.6

Table 4: SPADES results.

The addition of the inverse parser (+GRANKER) to
the basic NPR model yields marginal gains while
the addition of the neural lexicon encoding to the
inverse parser brings performance improvements
over NPR and GRANKER. We hypothesize that this
is because the inverse parser adopts an unsuper-
vised training objective, which benefits substan-
tially from prior domain-specific knowledge used
to initialize its parameters. When neural lexicon
encoding is incorporated in the semantic parser
as well, system performance can be further im-
proved. In fact, our final system (last row in Ta-
ble 2) outperforms all previous models save that of
Xu et al. (2016), which uses external Wikipedia re-
sources to prune out erroneous candidate answers.

Tables 3 and 4 present our results on
GRAPHQUESTIONS and SPADES, respectively.
Comparison systems for GRAPHQUESTIONS in-
clude two chart-based semantic parsers (Berant
et al., 2013a; Berant and Liang, 2014), an informa-
tion extraction model (Yao and Van Durme, 2014),
a neural sequence-to-tree model with hard atten-
tion (Cheng et al., 2017b) and a model based on
universal dependency to logical form conversion

(Reddy et al., 2017). On SPADES we compare
with the method of Bisk et al. (2016) which parses
an utterance into a syntactic representation which
is subsequently grounded to Freebase; and also
with Das et al. (2017) who employ memory net-
works and external text resources. Results on both
datasets follow similar trends as in WEBQUES-
TIONS. The best performing NPR variant achieves
state-of-the-art results on GRAPHQUESTIONS and
it comes close to the best model on SPADES with-
out using any external resources.

One of the claims put forward in this paper
is that the extended NPR model reduces the im-
pact of spurious logical forms during training.
Table 5 highlights examples of spurious logical
forms which are not semantically correct but are
nevertheless assigned higher scores in the vanilla
NPR (red colour). These logical forms become
less likely in the extended NPR, while the scores
of more semantically faithful representations (blue
colour) are boosted.

6.5 Discussion

The vanilla NPR model is optimized with con-
sistent logical forms which lead to correct de-
notations. Although it achieves competitive re-
sults compared to chart-based parsers, the train-
ing of this model can be misled by spurious logi-
cal forms. The introduction of the inverse parser
aims to alleviate the problem by scoring how a
logical form reflects the utterance semantics. Al-
though the inverse parser is not directly used to
rank logical forms at test time, the training ob-
jective it adopts encourages the parser to gener-
ate meaning-preserving logical forms with higher
likelihood. These probabilities are used as features
in the log-linear ranker, and therefore the inverse
parser affects the ranking results, albeit implicitly.

However, we should point out that the unsu-
pervised training objective is relatively difficult to
optimize, since there are no constraints to reg-
ularize the latent logical forms. This motivates
us to develop a scheduled training procedure; as
our results show, when trained properly the in-
verse parser and the unsupervised objective bring
performance gains. Moreover, the neural lexicon
encoding method we applied essentially produces
synthetic data to further regularize the latent space.



which baseball teams were coached by dave eiland
baseball.batting statistics.player:baseball.batting statistics.team(ent.m.0c0x6v)

baseball.historical coaching tenure.baseball coach:baseball.historical coaching tenure.

baseball team(ent.m.0c0x6v)

who are coca-cola’s endorsers
food.nutrition fact.food:food.nutrition fact.nutrient(ent.m.01yvs)

business.product endorsement.product:business..product endorsement.endorser(ent.m.01yvs)

what are the aircraft models that are comparable to airbus 380
aviation.aviation incident aircraft relationship.flight destination:aviation.aviation

incident aircraft relationship.aircraft model(ent.m.0qn2v)

aviation.comparable aircraft relationship(ent.m.018rl2)

Table 5: Comparison between logical forms preferred by NPR before and after the addition of the inverse
parser. Spurious logical forms (red color) receive higher scores than semantically-correct ones (blue
color). The scores of these spurious logical decrease when spurious logical forms are explicitly handled.

7 Related Work

Various types of supervision have been explored
to train semantic parsers. Early semantic parsers
have used annotated training data consisting of
sentences and their corresponding logical forms
(Kate and Mooney, 2006; Kate et al., 2005; Lu
et al., 2008; Kwiatkowksi et al., 2010). In or-
der to scale semantic parsing to open-domain
problems, weakly-supervised semantic parsers are
trained on utterance-denotation pairs (Liang et al.,
2011; Krishnamurthy and Mitchell, 2012; Berant
et al., 2013b; Choi et al., 2015; Krishnamurthy and
Mitchell, 2015; Pasupat and Liang, 2016; Gard-
ner and Krishnamurthy, 2017; Reddy et al., 2017).
Most previous work employs a chart-based parser
to produce logical forms from a grammar which
combines domain-general aspects with lexicons.

Recently, neural semantic parsing has attracted
a great deal of attention. Previous work has mostly
adopted fully-supervised, sequence-to-sequence
models to generate logical form strings from nat-
ural language utterances (Dong and Lapata, 2016;
Jia and Liang, 2016; Kočiský et al., 2016). Other
work explores the use of reinforcement learning
to train neural semantic parsers from question-
answer pairs (Liang et al., 2016) or from user
feedback (Iyer et al., 2017). More closely related
to our work, Goldman et al. (2018) adopt a neu-
ral semantic parser and a discriminative ranker
to solve a visual reasoning challenge. They at-
tempt to alleviate the search space and spurious-
ness challenges with abstractive examples. Yin
et al. (2018) adopt a tree-based variational au-
toencoder for semi-supervised semantic parsing.

Neural variational inference has also been used in
other NLP tasks including relation discovery and
sentence compression (Marcheggiani and Titov,
2016; Miao and Blunsom, 2016; Cheng et al.,
2017a).

8 Conclusions

In this work we proposed a weakly-supervised
neural semantic parsing system trained om
utterance-denotation pairs. The system employs
a neural sequence-to-tree parser to generate log-
ical forms for a natural language utterance. The
logical forms are subsequently ranked with two
components and objectives: a log-linear model
which scores the likelihood of correct execution,
and a generative neural inverse parser which mea-
sures whether logical forms are meaning preserv-
ing. We proposed a scheduled training procedure
to balance the two objectives, and a neural lexi-
con encoding method to initialize model parame-
ters with prior knowledge. Experiments on three
semantic parsing datasets demonstrate the effec-
tiveness of our system. In the future, we would
like to train our parser with even weaker forms of
supervision such as feedback from users (He et al.,
2016; Iyer et al., 2017) or semi-supervised learn-
ing (Yin et al., 2018).
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