

Edinburgh Research Explorer

Farewell My Shared LLC! A Case for Private Die-Stacked DRAM
Caches for Servers

Citation for published version:
Shahab, A, Zhu, M, Margaritov, A & Grot, B 2018, Farewell My Shared LLC! A Case for Private Die-Stacked
DRAM Caches for Servers. in Proceedings of the 51st International Symposium on Microarchitecture
(MICRO’18). IEEE, Fukuoka City, Japan, pp. 559-572, 51st Annual IEEE/ACM International Symposium on
Microarchitecture, Fukuoka City, Japan, 20/10/18. DOI: 10.1109/MICRO.2018.00052

Digital Object Identifier (DOI):
10.1109/MICRO.2018.00052

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 51st International Symposium on Microarchitecture (MICRO’18)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1109/MICRO.2018.00052
https://www.research.ed.ac.uk/portal/en/publications/farewell-my-shared-llc-a-case-for-private-diestacked-dram-caches-for-servers(c2d7b774-65d7-4fda-a8f1-bba0fa0ddb1c).html

In Proceedings of the 51st International Symposium on Microarchitecture (MICRO’18)

Farewell My Shared LLC!
A Case for Private Die-Stacked DRAM Caches for Servers

Amna Shahab Mingcan Zhu Artemiy Margaritov Boris Grot

Institute for Computing Systems Architecture (ICSA), School of Informatics
University of Edinburgh

Abstract—The slowdown in technology scaling mandates re-
thinking of conventional CPU architectures in a quest for higher
performance and new capabilities. This work takes a step in
this direction by questioning the value of on-chip shared last-
level caches (LLCs) in server processors and argues for a better
alternative. Shared LLCs have a number of limitations, including
on-chip area constraints that limit storage capacity, long planar
interconnect spans that increase access latency, and contention
for the shared cache capacity that hurts performance under
workload colocation.

To overcome these limitations, we propose a Die-Stacked
Private LLC Organization (SILO), which combines conventional
on-chip private L1 (and optionally, L2) caches with a per-core
private LLC in die-stacked DRAM. By stacking LLC slices
directly above each core, SILO avoids long planar wire spans.
The use of private caches inherently avoids inter-core cache
contention. Last but not the least, engineering the DRAM for
latency affords low access delays while still providing over 100MB
of capacity per core in today’s technology. Evaluation results
show that SILO outperforms state-of-the-art conventional cache
architectures on a range of scale-out and traditional workloads
while delivering strong performance isolation under colocation.

Index Terms—last-level cache, private cache, DRAM, die-
stacking, server workloads

I. INTRODUCTION

Datacenters underpin today’s digital society by providing
real-time storage, retrieval and processing capabilities for
increasingly complex information-centric tasks. The servers
inside today’s datacenters use many-core high-performance
server processors to maximize overall throughput and control
tail latency in latency-critical services [1]. As the volume
of data consumed and created by both human and machine
actors continues to grow, it is essential to increase per-server
performance to keep up with increasing demand.

Problematically, the looming end of traditional technology
scaling presents a challenge for extracting further processor
performance. Power constraints have largely flattened the im-
provement in single-thread performance over the past decade.
Meanwhile, the slowdown in Moore’s Law combined with
skyrocketing manufacturing costs for leading-edge technology
nodes [2] spell an approaching end to growth in core count.
These trends motivate the need to look beyond traditional
chip-multiprocessor (CMP) architectures to mine further per-
formance and efficiency.

This work takes a step in this direction by rethinking
the design of cache hierarchies for servers. Today’s server
processors tend to employ large on-die LLC capacities that
attempt to capture the massive data and instruction working

sets of server workloads. For instance, recent 18-core Intel [3]
and 12-core IBM [4] processors feature 45MB and 96MB
LLCs, respectively, which consume 30-35% of the die area
(estimated using die micrograph measurements). The massive
area footprint proportionately reduces the die area and power
available for the cores. In an attempt to shift the balance,
recent work has argued for smaller LLC capacities in server
processors [5]; however, small-LLC designs are incompatible
with workload and VM consolidation, which are a staple fea-
ture of today’s datacenters. For instance, in 2013, Google was
already running multiple workloads per machine, sometimes
with dozens of tasks consolidated on a single server [6].

We observe that while large cache capacities are, indeed,
useful for servers, existing configurations are not ideal. First,
area and power constraints limit the LLC capacities that can be
afforded within a yield-effective die size. Secondly, the larger
the capacity (and hence, the larger the die size), the more
time it takes to access an LLC slice due to slow wires and
multi-hop on-chip network topologies. Last but not least, the
shared LLC designs in use today create a significant challenge
in isolating the co-running workloads, as evidenced by a
large body of recent work exploring the issues around LLC
contention in multi-core chips [7]–[9]. And while a shared
LLC is effective in facilitating low-latency inter-thread data
sharing, this capability is not useful for server workloads that
are engineered for high scalability and thus have minimal inter-
thread data sharing [10].

In this paper, we argue for private LLCs in die-stacked
DRAM as a preferred alternative to traditional on-chip shared
LLC architectures. Die stacking naturally overcomes the area
limitations of planar silicon by offering multiple layers of
densely-integrated memory cells [11], [12]. Unfortunately,
existing die-stacked caches are designed around commodity
DRAM technology that favors capacity over latency. As such,
existing DRAM cache architectures have high access latencies
that are on par with main memory [13], [14], which renders
them unsuitable for replacing on-chip caches.

We observe that access latencies to existing DRAM caches
are high for two reasons: (1) significant interconnect delays
incurred both on the CPU die (when routing to and from
the DRAM cache interface) and on the DRAM die when
accessing the target bank; (2) use of capacity-oriented DRAM
architectures, which favor area efficiency over access latency;
Our insight is that neither of these problems is fundamental
and can be readily addressed at the architecture level.

We address the wire delay problem through per-core private
DRAM caches. In our design, the DRAM cache is partitioned
into vertical slices, or vaults. Similar to the existing Hybrid
Memory Cube (HMC) [15], each vault has its own memory
controller and is completely independent of other vaults in
data storage and access. Unlike the HMC, which is a discrete
memory chip, the vaults in our proposed design are stacked
over the CPU die such that each vault sits directly above a
core. This organization naturally avoids long on-chip wire
delays inherent in shared LLC architectures and provides a
low-latency path from the core to its private DRAM cache
slice. We address the DRAM latency problem by engineering
the vaults for low-latency access, at the expense of capacity,
by provisioning a large number of banks, divided into many
subarrays and tiles.

The resulting Die-Stacked Private LLC Organization (SILO)
combines conventional on-chip per-core private L1’s (and
optionally L2’s), with private LLC slices in die-stacked
DRAM. The DRAM is optimized for latency, at the expense
of capacity, to further reduce the access time to the LLC
vaults. The caches are kept coherent through a conventional
directory-based protocol with in-DRAM metadata. The high
hit-rate of large, private DRAM caches and the use of low-
latency DRAM for storing metadata makes directory accesses
not detrimental to performance. Meanwhile, usage of private
caches naturally eliminates inter-core LLC contention, facili-
tating workload isolation in a many-core setting.

Using full-system cycle-accurate simulation, we make the
following contributions:

• We corroborate prior work showing that while scale-out
server workloads benefit from large LLC capacities, they
are highly sensitive to LLC access latency. We also show
that inter-core data sharing is minimal in these scale-out
workloads.

• We introduce Die-Stacked Private LLC Organiza-
tion (SILO), a chip architecture with all-private caches.
SILO avoids high interconnect latencies and overcomes
on-chip area constraints by using a die-stacked DRAM
LLC, with a private slice directly above each core. The
private caches are kept coherent through a conventional
coherence protocol with directory metadata embedded in
the die-stacked LLC.

• We demonstrate a latency-optimized DRAM cache archi-
tecture that lowers the latency by 45% over a capacity-
optimized design in 22nm technology node. When used
in SILO, the proposed design affords an 11.5ns access
latency to a core’s private in-DRAM LLC slice with
256MB of capacity.

• We show that on CloudSuite workloads, a 16-core SILO
deployment improves performance by 5-54% over a state-
of-the-art server baseline that combines a shared LLC
with a conventional DRAM cache. We also show that
SILO provides strong performance isolation by preserv-
ing applications’ performance under colocation.

LLC Capacity

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

8MB 16MB 32MB 64MB 128MB 256MB 512MB 1024MB
1.0

1.1

1.2

1.3
Web Search
Data Serving

Web Frontend
MapReduce

SAT Solver

Fig. 1. Sensitivity to LLC capacity at fixed latency.

II. MOTIVATION

We examine representative scale-out server workloads (de-
tails in Sec. VI-D to investigate their requirements from an
LLC perspective. The goal is to characterize the performance
sensitivity of these workloads to LLC capacity, access latency
and inter-thread data sharing.

A. Sensitivity to Capacity

To understand the sensitivity of scale-out workloads to
higher LLC capacities, we sweep the capacity range at a
fixed access latency. We present the results for a 16-core
setup, the details of which are available in Sec. VI. The
baseline, with 8MB of LLC, is configuring per Scale-out
Processors [5], a state-of-the-art specialized server processor
architecture targeting scale-out workloads. For larger LLC
capacities, the access latency is unchanged from the baseline
design.

Fig. 1 plots workload performance with increasing LLC
capacity. All data points are normalized to 8MB. We observe
that for most workloads, there is marginal performance gain
from 8MB to 64MB. This can be attributed to the fact that
although the increased capacity can hold some part of the
secondary working set, it is not large enough to capture it fully,
thus limiting the performance benefit. This finding supports
the Scale-out Processors design [5], which advocates a small
LLC to minimize access latency and area footprint. Beyond
64MB, however, we observe greater performance benefits as
the secondary working set starts fitting into the LLC. For Data
Serving, Web Frontend and SAT Solver, the performance gain
over the 8MB baseline is 10-20% at 256MB but only 2-6%
at 64MB. Web Search differs somewhat, showing little benefit
from increased capacity up to 512MB, but then gaining 20%
in performance at 1024MB (1GB) as the secondary working
set starts to fit.

B. Sensitivity to Latency

We analyze the performance sensitivity of scale-out work-
loads to the LLC access latency for a range of LLC sizes.
Fig. 2 plots the results. To minimize clutter, we show only
LLC capacities in the range of 64MB and beyond, as that was
the region identified in the previous section as delivering the
greatest benefit. For each capacity, we sweep the access latency
from the baseline (an 8MB LLC) to twice the baseline latency.

2

Increase in Access Latency

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

0% 20% 40% 60% 80% 100%0.9

1.0

1.1

1.2 64MB
128MB
256MB
512MB
1024MB

Fig. 2. Performance sensitivity to LLC latency at different capacities
normalized to an 8MB baseline. The isocurves show geomean of scale-out
workloads.

Each line in the figure represents a geomean performance of
the scale-out workloads normalized to the baseline for a given
LLC capacity.

We observe that larger LLCs translate to higher performance
only at lower latencies. The gains from higher capacity rapidly
diminish with increased latency. For example, a 1024MB
(1GB) LLC with latency 40% higher than the baseline per-
forms only as well as a 64MB LLC at baseline latency
and only 10% better than the 8MB LLC. In fact, as the
latency approaches twice the baseline (i.e., the 100% point
in the figure), most configurations approach or fall below the
performance of the 8MB LLC. This result further corroborates
Scale-out Processors [5], which showed larger and slower
LLCs to be sub-optimal. Server workloads are highly sensitive
to LLC access latency because of their low memory-level-
parallelism [5], [10], which exposes the latency of an L1 miss
to the issuing core. These results show that higher LLC access
latencies are detrimental to scale-out workloads even if they
are accompanied by a larger LLC capacity.

C. Sensitivity to Read/Write Sharing

Existing server processors deploy shared LLCs that natu-
rally accommodate inter-thread read-write data sharing arising
from producer-consumer data exchange or synchronization.
Shared LLCs facilitate such sharing patterns by capturing dirty
evictions from a writer’s private cache and serving subsequent
read requests from other cores without any indirection.

We study the access patterns of scale-out server workloads
to characterize the extent of read-write sharing (RW-sharing)
and the benefit delivered by a shared LLC in accommodating
it. For this study, we use an 8MB shared LLC; full system
parameters are described in Sec. VI. Results are shown in
Fig. 3, which breaks down LLC accesses into three categories:
(1) Reads; (2) Writes that see no reads by non-writing cores
(Writes-NoSharing), and (3) Writes that see read(s) by at least
one core that is not the writer (Writes-RWSharing).

Generally, we observe limited RW-sharing across the scale-
out workloads, which matches the findings of Ferdman et al.
[10]. MapReduce and SAT Solver have negligible RW-sharing.
Web Search and Data Serving exhibit little RW-sharing (4%
and 3%, respectively) due to the use of a parallel garbage
collector that potentially runs a collector thread on a remote

0

20

40

60

80

100

Web Search Data Serving Web Frontend MapReduce SAT Solver

LL
C

 A
cc

es
se

s
(%

)

Writes−RWSharing Writes−NoSharing Reads

0

20

40

60

80

100

Fig. 3. Breakdown of accessed LLC blocks.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

Web Search Data Serving Web Frontend MapReduce SAT Solver

1x 2x 3x 4x

Fig. 4. Performance impact of increased latency to RW-shared blocks. The
latency is increased as a multiple of the baseline.

core [10]. This can appear as inter-thread communication
between application threads.

We further evaluate the impact of RW-shared data on
system performance. In order to quantify the performance
impact, we artificially increase the access latency of RW-
shared blocks compared to other blocks by up to a factor of
4x. Fig. 4 presents the results of this experiment. We observe
that increasing the access latency of the RW-shared blocks
carries a small performance degradation. Doubling the latency
of RW-shared blocks results in a performance drop of 0-8%.
Even at 4x, the biggest drop observed is for Data Serving and
Web Frontend, which lose 10% of performance.

Our conclusion is that the low incidence of true RW-sharing
in scale-out workloads makes them largely insensitive to the
LLC access latency for RW-shared data. This implies that the
value delivered by a shared LLC in accommodating accesses
to such data is low for the scale-out workload domain.

D. Summary

Overall, scale-out workloads benefit from large LLC ca-
pacities that help capture their vast working sets. However,
the performance benefits diminish if larger capacities are
accompanied by an increase in access latency. By design,
scale-out workloads also have low degrees of inter-core data
sharing making them insensitive to the latency of shared data.

Shared LLCs found in today's server processors fail to
accommodate these workload characteristics. On-chip area
constraints limit the LLC capacity that can be afforded on a
die, while planar interconnect delays incur high access laten-
cies to remote cache banks. The shared LLC organization does
facilitate low-latency inter-thread data exchange; however, the
impact of such sharing is low in scale-out workloads.

3

Core

L1-I L1-D

Core

L1-I L1-D

LLC

Core

L1-I L1-D

Core

L1-I L1-D

(a) Conventional LLC

 Core

 Core

 Core

 Core

L1 I$ L1 D$ L1 I$ L1D

L1I L1D L1I L1D

L2 $

L2$

L2 $L2 $

L2 $

L2$

L2 $

L2$

L2 $L2 $

L2 $

L2$

L2 $L2 $

DRAM
Layers

CPU Layer

Core’s
Private
Vault

LLC LLC

LLCLLC

..
.

Vault
Controller

(b) Die-Stacked Private LLC

Fig. 5. Conventional (a) and proposed (b) cache architectures. A 4-core CPU
is shown for simplicity.

III. SILO OVERVIEW

SILO directly accommodates the needs and characteristics
of server workloads through three optimizations that directly
address the deficiencies of today’s shared LLC designs.

First, SILO completely dispenses with a shared LLC in
favor of an all-private cache hierarchy. Per-core private caches
overcome the latency bottleneck of shared caches by limiting
the length of interconnect that needs to be traversed on an
access. Whereas a conventional shared LLC employing a non-
uniform cache access (NUCA) organization may require a
request to be routed over a large silicon plane to a remote
cache bank, a private cache located near a core naturally
minimizes the interconnect delay. Another advantage of private
caches is that they are naturally immune to cache contention,
which is a significant concern for shared LLCs in deployment
scenarios involving multiple workloads.

Unfortunately, simply converting a conventional shared LLC
into a private design would effectively constrain each core to a
capacity of just a few MBs. For instance, the current generation
of Intel’s mainstream server processors (14nm Broadwell fam-
ily) features a shared LLC with 2.5MB of capacity per core. In
a shared configuration, the aggregate LLC capacity provided
by a multi-core Broadwell CPU is sufficient to capture a
meaningful portion of a server workload’s instruction and data
working set; however, in a private configuration, this capacity
would be woefully inadequate.

To overcome the area limitations of planar silicon, SILO
deploys the second optimization: die-stacked DRAM. To avoid
long interconnect delays and maintain the latency benefits of
a private cache, SILO organizes the DRAM into vaults, each
of which sits above a processor core. A vault, introduced in
the Hybrid Memory Cube [15], is a multi-die stack of DRAM
banks with a dedicated vault controller in the logic layer at
the base of the stack. As shown in Fig. 5, in the SILO design,
the DRAM controller for a vault is located on the CPU die,
next to the core directly beneath the vault.

The third optimization is aimed at reducing the access la-
tency to a vault by engineering the DRAM stack for low access
latency. As explained in the next section, this involves using
many banks, shorter pages and shorter bitlines/wordlines.
While these optimizations reduce the storage capacity per
vault compared to traditional capacity-optimized DRAM, they
afford ultra-low access latency while still providing over a

I/O

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Chip Bank

P
er
ip
he
ra
ls
 (
D
ec
o
d
er
s,

W
or
d
lin
e
dr
iv
er
s,
 e
tc
.) Subarray

Subarray

Subarray

Peripherals (Sense
amplifier)

Subarray

…

Subarray

 Tile …

Wordline

B
it
lin
e

 Tile

Wordline

B
it
lin
e

Global Wordline

Peripherals

Fig. 6. DRAM internal design.

hundred MBs of capacity per core in today’s process technol-
ogy.

To summarize, SILO overcomes the area and delay con-
straints of shared LLCs through private die-stacked DRAM
caches. An additional benefit of private caches is their immu-
nity to cache contention, which plagues shared LLC designs.
Finally, SILO reduces the access latency to the DRAM cache
by engineering the DRAM for low latency at the expense
of capacity. In the following two sections, we first describe
our latency-optimized DRAM cache, followed by a detailed
discussion of other aspects of the SILO architecture, including
cache coherence.

IV. ARCHITECTING A FAST DRAM CACHE

A. DRAM Technology Basics

Today’s DRAM chips are comprised of DRAM cells and
peripheral circuitry organized in a hierarchical structure as
shown in Fig. 6. At the top-most level, a DRAM chip is
divided into banks where cells share peripherals, including
row and column decoders. The column width of a bank is
referred to as a page. A bank is further divided into subarrays
in which cells are connected through a common bitline and
share sense amplifiers. In turn, a subarray consists of a number
of tiles which have common global wordlines. Each tile has
local wordlines and drivers. The thick grey segments in Fig. 6
represent the peripherals; vertical segments include wordline
drivers and horizontal segments are sense amplifiers.

Tile dimensions determine the lengths of bitlines and local
wordlines (subarrays and tiles have the same bitline length but
different local wordline length as shown in Fig. 6). The electri-
cal load observed on the lines is proportional to their lengths,
resulting in higher transmission delays for longer lines. At the
same time, longer bitlines and wordlines require less peripheral
circuitry such as sense amplifiers and wordline drivers. Thus,
while longer lines are good for area efficiency (defined as
DRAM cell area divided by total chip area), they are bad for
latency. Conversely, shorter lines reduce the electrical load but
require more peripheral circuitry. The choice of line lengths
is governed by design optimization targets.

B. Commodity DRAM Designs

Commodity DRAM products are designed to minimize cost-
per-bit. This design target affects each level of the DRAM
hierarchy. Firstly, DRAM manufacturers choose to limit I/O

4

1024 x 1024 512 x 512 256 x 256 128 x 128 64 x 64
0.0

0.5

1.0

1

2

3

N
or

m
al

ize
d

Ar
ea

N
or

m
al

ize
d

La
te

nc
y

Tile Dimensions

Latency
Area

Fig. 7. Effect of DRAM tile dimensions on access latency and area.

and peripheral circuitry by sharing I/O between banks, thus
allowing more chip area for DRAM cells. Secondly, in order
to minimize the area of row and column decoders, a small
number of banks is employed (e.g., 8 banks per chip in
DDR3). Next, a bank is divided into only a small number
of subarrays to minimize the area occupied by subarray-level
sense amplifiers. Reducing the footprint of sense amplifiers is
important for a density-optimized design because a sense am-
plifier can be 100 times larger than a DRAM cell [16]. Lastly, a
subarray comprises of only a few tiles to reduce the number,
and hence the area footprint, of the local wordline drivers.
Fewer subarrays and tiles improve DRAM area efficiency but
lead to longer bitlines and wordlines, which naturally increases
latency as discussed above. In effect, tile dimensions determine
the access latency of a DRAM core.

C. Effect of Tile Dimensions on DRAM Latency and Area

To quantify the effect of tile dimensions on DRAM area
and latency we model a 1Gb DRAM die (details can be
found in Sec. VI-B). In order to reduce the line lengths, we
change tile dimensions by using a combination of DRAM
parameters, namely: number of banks, page size, number of
divisions per bitline (Ndbl) and number of divisions per word-
line (Ndwl). Smaller tile dimensions correspond to shorter
bitlines/wordlines.

Fig. 7 plots area and access latency as a function of
tile dimensions. The values are normalized to a baseline
design based on Micron DDR3 [17] having tile dimensions
1024x1024 DRAM cells. We observe that reducing the tile
dimensions from the baseline 1024x1024 down to 256x256
decreases the access latency by 64% at a cost of a 49%
increase in die area. Beyond that point, a mere 6% drop in
access latency achieved with a tile size of 128x128 comes at
a hefty 150% increase in area. Thus, we conclude that up to
a certain point, reducing tile dimensions (and thus, increasing
the number of tiles/subarrays for a fixed area) is effective in
trading off capacity for latency, which makes for a valuable
optimization space. However, beyond that, small latency gains
come at exorbitant area cost and are not justified.

D. Optimizing Die-Stacked DRAM Cache Latency for SILO

As described in Sec. III, SILO uses the vault arrangement
inspired by the HMC [18]. By treating each vault as a per-core
private cache, SILO avoids long planar interconnect traversals

0

5

10

15

20

Vault Capacity

Ac
ce

ss
 L

at
en

cy
 (n

s)

Latency−optimized
point

Capacity−optimized
point

8MB 16MB 32MB 64MB 128MB 256MB 512MB

Fig. 8. A scatter plot of vault capacity vs access latency as a function of
DRAM parameters.

that are detrimental to access latency. To further reduce latency
within a vault, SILO sacrifices area efficiency by using a
latency-optimized custom DRAM core. Following the discus-
sion from Sec. IV-C, SILO introduces additional peripheral
circuitry to effectively reduce line lengths in order to lower
delays. This is achieved through the following optimizations:

• Large number of banks per vault to increase parallelism
and minimize queuing at the memory interface.

• Shorter pages to reduce DRAM row size and hence global
wordline length.

• Large number of subarrays per bank to reduce bitline
length within a subarray.

• Many tiles per subarray to reduce wordline length.

Die Stacking and Thermal Feasibility. To maximize DRAM
cache capacity, SILO employs die-stacking. In general, the
height of a die-stacked cache, including SILO, is limited by
thermal constraints. Up to 8 additional layers of DRAM have
been shown to increase the temperature of the chip by only 6.5
degrees Celsius [19] and have a negligible effect on thermal
distribution of the die [20]. Industrial specifications indicate
feasibility of DRAM stacks with 8 layers and a logic die
underneath [18], while 4-layered stacks are widely available
in products [13].

Mapping the Design Space. To model the area and timing
for a stacked DRAM vault in SILO, we perform technology
analysis in CACTI (methodology details in Sec. VI-B). We
conservatively model a 4-die DRAM stack and assume a
5mm2 area per vault to match the core area beneath it. Using
these constraints, we perform a DRAM parameter sweep to
find all possible vault designs that fit in the area budget. The
resulting designs are plotted as capacity-latency pairs in Fig. 8.

From the figure, we observe that lower capacity designs fit
easily in the area budget while maintaining low access latency.
Moving from 8MB to 128MB, the capacity increases by 16x
while the latency increases by less than 10%. Going from
128MB to 256MB, the capacity doubles at the cost of a 15%
latency increase. From there, another doubling in capacity to
512MB results in an 80% increase in access latency. Thus,
for the set of parameters considered in this study, we find the

5

Latency-optimized Capacity-optimized
Area efficiency 1x 1.74x
Number of tiles 1x 0.25x
Access latency 1x 1.8x

TABLE I
COMPARISON OF LATENCY- VS CAPACITY-OPTIMIZED VAULT DESIGN
POINTS. VALUES NORMALIZED TO THE LATENCY-OPTIMIZED POINT.

per-vault capacity of 256MB at a 5.5ns access latency to be
the sweet spot for a latency-optimized design.

We further note that for a traditional DRAM cache, the
higher-capacity (and higher latency) 512MB per-vault design
point would be well justified, since the interconnect delays on
the CPU side and in the chip-to-chip interface would add tens
of nanoseconds to the DRAM access latency. Given that, an
additional 4.5ns of latency, which is the difference between
the lowest-latency 256MB and 512MB design points, would
amount to a modest fraction of the overall delay, pointing to
512MB as a sweet spot for off-chip DRAM. Table I highlights
the key differences in the two designs.

Technology Scaling. As both SRAM and DRAM memory
technology are experiencing a gradual slowdown in their
feature scalability, exploiting vertical stacking to overcome
constraints of traditional cache hierarchies is an attractive
option explored in this work. But how well is DRAM stacking
projected to scale?

The number of layers, which ultimately determines the
capacity of a die-stacked cache, is limited by two primary fac-
tors: thermals, which dictate the maximum height of the stack,
and manufacturing technology (including testing and integra-
tion). Future improvements in waver-thinning and integration
technology will allow more dies to be integrated in a fixed-
height stack, thus providing a viable path to higher capacities.
Indeed, ITRS 2.0 roadmap [21] projects die thickness to shrink
to 5-15µm in the next 15 years, from the current 50-100µm,
allowing tens of stacked layers.

V. SILO DESIGN DETAILS

This section details aspects of the SILO, including the or-
ganization of the DRAM cache (i.e., tag and data placement),
cache coherence support and performance optimizations.

A. DRAM Cache Organization

In SILO, the die-stacked DRAM cache stores data, associ-
ated tags, and the directory metadata. Fig. 6 shows the layout
of data and metadata in the cache. In this section, we focus on
data and tag placement, while the next the section discusses
cache coherence and directory organization.

To maximize available capacity, SILO uses a block-based
cache organization. Based on the observations that separating
the tag store and data store will lead to a significant latency
increase due to the serialized accesses to both on a hit [22],
SILO leverages a previously-proposed technique to integrate
each data block with the corresponding tag into a single
unified fetch unit called (TAD) [23]. Each access to the DRAM

TAD TAD TAD...

...

Dir
Set

Dir
Set

Dir
Set

Dir
Set

..
.

..
.

Data
TAD

Tag

... Dir
Entry

...

Tag
State
(3 bits)Logical View of a Vault

Cache

Directory

N Ways

DRAM Row

Fig. 9. DRAM organization.

cache provides a single TAD, thus avoiding the delay of tag
serialization.

SILO is inclusive of the on-chip private caches and is
organized as a direct-mapped structure. The direct-mapped
organization avoids the latency and energy overheads of a
set-associative design, and is compensated for by the high
capacity of the DRAM cache. Meanwhile, inclusion simplifies
coherence and is easily afforded given the high capacity of the
DRAM cache.

B. Directory-Based Cache Coherence

SILO uses a conventional directory-based MOESI protocol
to maintain full coherence among its private caches. Misses
in a core’s private cache hierarchy (which consists of one or
two levels of on-chip cache backed by a die-stacked DRAM
vault) trigger a directory access. Logically, the directory sits
below the DRAM LLC (i.e., logically closer to main memory).
Physically, the directory is distributed in an address-interleaved
fashion, with directory metadata stored in the DRAM caches
as explained below.

Directory Organization: The fact that the LLC is private,
inclusive and direct-mapped has two implications. First, be-
cause the LLC is private and inclusive, the size of the tag store
is directly proportional to the total LLC capacity. Assuming
every vault stores a unique set of blocks with respect to every
other vault, the tag store must be able to accommodate the
full set of tags across all vaults. Secondly, associativity at the
directory is dictated by the core count, not by the higher-
level caches. This is because the LLC is direct-mapped and is
inclusive of higher-level caches.

Based on these observations, we use a duplicate-tag di-
rectory organization without a sharing vector. Fig. 9 shows
the design. Logically, a directory is organized as an N-way
associative tag store, where N is equal to the core count. Each
directory entry stores a tag and the coherence state of the
block. The way position of a given directory entry indicates
the core caching the associated block. For instance, a tag in
the directory way position 1 indicates that Core 1 is caching
the block. Finding sharers requires reading the tags for all N
logical ways in the directory. Most coherence state updates
require modifying only one directory entry (tag and/or state
bits); however, in the worst case, all N directory entries in a
given set may need to be updated (e.g., when a block shared
by all cores transitions to an exclusive state).

6

Coherence Protocol: In a processor with a conventional on-
chip shared LLC, the LLC serves as the point of coherence. In
such a system, a writeback from a core’s L1 involves simply
updating the LLC. However, in a system with only private
caches, the point of coherence is main memory, so a writeback
incurs the high latency, energy and bandwidth overhead of a
main memory access. To avoid the need for such an expensive
writeback on a dirty eviction from a core’s L1, SILO uses
the MOESI protocol for maintaining coherence. The O state
indicates that the block is valid, dirty and Owned; that is, the
cache that has the block in this state must respond to coherence
requests for the block. Compared to the MESI protocol, the
primary advantage of MOESI is that a modified block can be
directly supplied to other cores that want to read it without
first writing it back to memory.

C. Performance Optimizations

In SILO, a miss in the local DRAM cache vault requires
an access to the directory node for the block. Because the
directory metadata resides in the DRAM cache, fetching it
requires a DRAM cache access. And if the requested block
is found at another node, yet another DRAM cache access is
incurred to get the block. In total, up to three DRAM cache
lookups may be needed to access a block on chip.

In light of the high miss penalties on misses in the private
DRAM cache, we consider two performance optimizations in
the SILO architecture:

Local Vault Miss Predictor: The TAD organization in
the DRAM cache means that a miss is not discovered until
the DRAM access completes. A miss predictor, such as a
MissMap [24], can avoid DRAM accesses if they are known
to be misses, thus avoiding the associated latency cost.

Directory Cache: A miss in a core’s private cache hierarchy
triggers a DRAM access at the requested block’s directory
node to fetch the directory metadata. A directory cache [25]
can eliminate the DRAM access for directory metadata by
serving it from a fast on-chip SRAM.

These two optimizations can be applied separately or in
concert. We consider all three options and show results in
Sec. VII-B.

D. Discussion

SILO requires non-commodity DRAM to achieve low la-
tency and maximize performance gains. Traditionally, the
DRAM industry has resisted such designs; however, the
booming datacenter market and the presence of a few hyper-
scale players (e.g., Google, Amazon, Facebook) may tilt the
dynamic toward DRAM customization to accommodate spe-
cific needs of datacenter customers. The trend of customizing
processors [26] and deploying custom accelerators [27] for
datacenters is already underway. This work shows the large
gains that can be reaped by specializing the DRAM.

To help offset the cost of non-commodity DRAM, we note
that on-chip shared LLCs occupy around a third of chip
area in today’s server processors [3], [4]. The associated die
real-estate is expensive because server CPUs are generally

built with leading-edge process technology. Because SILO
completely avoids the need for an on-chip LLC, it vacates
the associated die real-estate. In turn, this can afford either a
reduction in die size, thus improving cost and yield, or addition
of more cores within the same die area as a baseline processor
with a shared LLC.

Another benefit of eliminating the on-chip LLC is that it
reduces demands on the on-chip interconnect. High hit rates in
the private die-stacked DRAM help reduce on-chip instruction
and data traffic, while a smaller die (afforded by eliminating
the on-chip LLC) helps reduce wire delays. Together, these
features may lead to a less costly (area-wise) and/or faster
NOCs. Our evaluation is conservative and does not take
advantage of any such NOC optimizations afforded by SILO.

VI. METHODOLOGY

A. Evaluated Systems

We model a 16-core CMP with ARM-like 3-way OoO cores
running at 2.0 GHz. Table II details the system parameters.
We extract LLC and DRAM cache latencies from CACTI
(details in Sec. VI-B). For DRAM (both cache and main
memory), we assume a closed page policy, which has been
shown to outperform open-page on server workloads [28]. We
assume a fairly aggressive memory access latency of 50ns;
the combination of modest core frequency and low memory
access latency is disadvantageous for SILO since LLC misses
are relatively “cheap”. A faster core and/or slower memory
would amplify the penalty of a miss in the LLC, providing a
larger benefit to SILO, which has a lower LLC miss rate than
conventional LLC organizations.

Our main evaluation focuses on 2-level cache hierarchies,
which have been shown to be superior to 3-level designs for
scale-out workloads [5]. Sec. VII-F evaluates cache hierarchies
with three levels.

Baseline: The baseline processor is based on Scale-out Proces-
sors [5], which uses a fast but modestly sized shared LLC in a
two-level cache hierarchy. We use an 8MB LLC split into 16
banks, with a 5-cycle bank access latency. The average round
trip time for an LLC hit, including the NOC, is 23 cycles.

Baseline+DRAM$: Baseline augmented with an 8GB conven-
tional DRAM cache. The DRAM cache is hardware managed
and uses a page-based arrangement considered state-of-the-art
for servers [29], [30]. Conventional DRAM caches use the
same DRAM technology as main memory and as such have
similar access latency. Indeed, the on-package DRAM cache in
Intel’s Xeon Phi Knight’s Landing is slightly slower than main
memory [13]. We optimistically assume that the access latency
of the conventional DRAM cache is 20% faster than that of
main memory. We further assume perfect miss prediction and
infinite bandwidth.

SILO: A fully private two-level cache hierarchy with die-
stacked DRAM vaults as the LLC. We use a custom, latency
optimized vault design with 256MB of capacity per vault as
discussed in Sec. IV-D. The vault access latency is 11 cycles.
We use a 64-bit wide interface adding 8 serialization cycles

7

Processor 16-core, 2GHz, 3-way OoO, 128 ROB,
ISA: UltraSPARC v9

L1-I/D 64KB, 8-way, 64B line, 3 cycles, private,
stride data prefetcher

Interconnect 4x4 2D mesh, 3 cycles/hop
Baseline on-chip
LLC

8MB shared NUCA, 5 cycles, 16-way,
64B line, non-inclusive MESI, LRU

SILO die-stacked
DRAM LLC

Private, direct-mapped, 64B line, 512B
page, inclusive MOESI
SILO: 256MB vault/core, 23 cycles
SILO-CO: 512MB vault/core, 32 cycles

Trad. DRAM cache 8GB, page-based, direct-mapped, 40ns
Main memory Access latency 50ns

TABLE II
MICROARCHITECTURAL PARAMETERS OF THE SIMULATED SYSTEMS.

Baseline on-chip
SRAM LLC

30mW per bank static power, 0.25nJ/access
dynamic energy

SILO die-stacked
DRAM LLC

120mW per vault static power, 0.4nJ/access
dynamic energy

Main memory 4W static power, 20nJ/access dynamic energy

TABLE III
MEMORY SUBSYSTEM ENERGY/POWER PARAMETERS.

for a TAD block. We add 4 cycles of vault controller delay
bringing the total cache access latency to 23 cycles.

SILO-CO: SILO with capacity-optimized vaults of 512MB at
an access latency of 20 cycles. The total cache access latency,
including vault controller and serialization delay, is 32 cycles.

Vaults-Sh: Die-stacked shared LLC organization with latency-
optimized vaults. This design point evaluates the effect of
DRAM latency optimization without the private organization.
The latency-optimized vaults are stacked directly on top of
cores (just like in SILO) but the aggregate vault capacity of
4GB is shared by all cores in a NUCA address-interleaved
manner. The average round trip time for a hit, including a
vault access and NOC traversal, is 41 cycles.

B. DRAM and SRAM Technology Modeling

We use CACTI-3DD to model DRAM and SRAM access
latencies. We model DRAM and SRAM technologies at 22nm.
For the SRAM LLC, we account for advanced latency reduc-
tion techniques [31] and use the low-standby-power cell type.
Area and/or capacity constraints imposed by individual studies
are highlighted in the text where appropriate.

To measure the energy and power consumed in the memory
subsystem, including (as appropriate) the SRAM LLC, DRAM
cache and main memory, we use a hybrid energy modelling
framework that makes use of technology-specific parameters
and cycle-accurate simulation statistics. We use CACTI-3DD
to extract energy and power parameters for SRAM and stacked
DRAM technology [31], [32]. We estimate main memory
DRAM parameters using commercial DDR3 device specifica-
tions [33]. Table III summarizes the energy and power values
obtained from these tools and used in the evaluation.

Scale-out

Web Search Apache Nutch 1.2 / Lucene 3.0.1,
92 clients, 1.4 GB index, 15 GB data segment

Data Serving Apache Cassandra 0.7.3,
150 clients, 8000 operations per second

Web Frontend Apache HTTP Server v2.0, 16K connections
fastCGI, worker threading model

MapReduce Hadoop MapReduce, Apache Mahout 0.6,
Bayesian classification algorithm

SAT Solver Cloud9 parallel symbolic execution engine,
Klee SAT Solver

Enterprise

TPCC IBM DB2 v8 ESE Database Server, , 64 clients
100 warehouses (10GB), 2GB buffer pool

Oracle Oracle 10g Enterprise Database Server,
100 warehouses (10GB), 1.4GB SGA

Zeus Zeus Web Server, 16K connections, fastCGI
TABLE IV

SERVER WORKLOADS USED FOR EVALUATION.

C. Simulation Infrastructure

We use Flexus [34], a full system multiprocessor simu-
lator, based on Simics. Flexus models the SPARC v9 ISA
and extends Simics with out-of-order (OoO) cores, memory
hierarchy, and on-chip interconnect (NOC). To reduce simula-
tion time, Flexus integrates the SMARTS [35] methodology
for sampled execution. For each sample, we first warm-
up architectural and microarchitectural state, then run cycle-
accurate simulation and measure performance. In order to
evaluate performance, we measure the number of application
instructions executed per cycle (including time spent executing
operating system code); this metric has been shown to reflect
system throughput [34].

D. Workloads

We evaluate the various cache architectures using a range
of workloads. Our scale-out workloads include Web Search,
Data Serving, MapReduce and SAT Solver workloads, which
are taken from CloudSuite [36], and a Web Frontend workload
from SPECweb2009. The latter replaces the Cloudstone Web
Frontend workload from CloudSuite, which exhibits poor
scalability at high core counts [5]. For the same reason, we
do not use the Media Streaming workload from CloudSuite,
as it does not scale beyond 2-4 threads [37]. We further
investigate the utility of SILO for traditional enterprise appli-
cations. Details of these workloads are listed in Table IV. We
further investigate the utility of SILO for traditional enterprise
applications, listed in Table IV

For simulation, samples are drawn over 80 billion in-
structions (5 billion per core) for each workload. For each
sample, we run cycle-accurate simulations from checkpoints
that include full architectural and partial microarchitectural
state, which includes caches and branch prediction structures.
We run for 100K cycles to achieve steady state and measure
over the following 200K cycles per sample.

We also consider multi-programmed batch workload de-
ployments, representative of public cloud use cases. We

8

Name Description
mix1 sjeng-calculix-mcf-omnetpp
mix2 lbm-gamess-namd-gromacs
mix3 mcf-zeusmp-calculix-lbm
mix4 tonto-gamess-bzip2-namd
mix5 mcf-povray-gcc-cactusADM
mix6 gobmk-perlbench-milc-astar
mix7 xalancbmk-sjeng-cactusADM-bwaves
mix8 calculix-leslie3d-astar-gcc
mix9 gromacs-gobmk-gamess-astar
mix10 omnetpp-zeusmp-soplex-povray

TABLE V
SPEC’06 MIXES USED FOR EVALUATION.

generate 10 randomly-drawn mixes, each consisting of four
workloads from SPEC’06 [38]. For each mix, workloads are
drawn without replacement. The mixes are listed in Table V.
We draw samples over 20 billion instructions (5 billion per
core) for the 4-core setup. Cycle-accurate simulation is run
for 300K cycles with measurement over the last 200K cycles.

VII. EVALUATION AND DISCUSSION

We first evaluate SILO against traditional cache architec-
tures, on scale-out workloads, which are the primary target
of this work. Next, we assess the designs on enterprise and
batch applications. Following that, we examine performance
isolation and three-level cache hierarchies.

A. Performance on Scale-out Workloads

Fig. 10 plots the performance of the evaluated systems on
scale-out workloads, with results normalized to the baseline
system (see Sec. VI for a description of evaluated systems).
We observe that both SILO designs consistently provide better
performance than the baseline designs. This is an expected
result as SILO provides a higher LLC capacity with the same
hit latency as the baseline. SILO improves performance by
5-54%, with a geomean performance improvement of 28%,
across the scale-out workloads. The highest performance gains
are observed for MapReduce and SAT Solver at 54% and
37%, respectively. On Web Search, SILO achieves a speedup
of 29%. Sec. II-A identified that aggregate LLC capacities
greater than 512MB are beneficial for the performance of Web
Search. Thus SILO, which has an aggregate LLC capacity of
4GB (256MB per vault), delivers higher performance on this
workload than the baseline.

The capacity-optimized SILO design (SILO-CO) delivers
a geomean performance improvement of 25%, slightly below
the 28% speedup provided by the latency-optimized SILO.
Despite twice the per-vault capacity, the SILO-CO design
has higher vault access latency, as shown in Sec. IV-D.
Consistent with our sensitivity studies in Sec. II, higher
capacity is only beneficial if not accompanied by a higher
access latency. Similarly, the shared vaults design (Vaults-Sh),
delivers a geomean performance improvement of only 6%,
despite employing latency-optimized vaults. NOC traversal
adds to the overall access latency of Vaults-Sh, diminishing
the performance benefits of the high capacity vaults.

0.8

1.0

1.2

1.4

1.6

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

Baseline Baseline+DRAM$ SILO SILO−CO Vaults−Sh

Web Search Data Serving Web Frontend MapReduce SAT Solver Geomean

Fig. 10. Performance on scale-out workloads.

0.0

0.2

0.4

0.6

0.8

1.0

LL
C

 A
cc

es
se

s
Br

ea
kd

ow
n

Baseline SILO Baseline SILO Baseline SILO Baseline SILO Baseline SILO

Web Search Data Serving Web Frontend MapReduce SAT Solver

Local Hits Remote Hits Off−chip Misses

Fig. 11. Normalized LLC hits and misses for SILO vs baseline. Note that
all hits in the baseline shared NUCA LLC are shown as 'local'.

Finally, we observe that baseline and baseline+DRAM$ de-
signs provide similar performance. We identify the high access
latency to the conventional DRAM cache as the main reason
for the limited benefit offered by the baseline+DRAM$ design.
As noted in Sec. II-B, benefits of large cache capacities dis-
appear at high access latencies. Conventional DRAM caches
are beneficial in alleviating the bandwidth bottleneck [29];
however, today’s server CPUs are not bandwidth limited
on scale-out workloads as shown in recent work [10] and
corroborated by Google [39] and our own results. As such,
conventional DRAM caches do not benefit these designs.

B. Analysis

In this section, we characterize LLC effectiveness in SILO
as compared to the baseline, and explore the usefulness of
SILO design optimizations.

1) LLC Hit Rate: Fig. 11 plots normalized LLC hits and
misses for the baseline and SILO designs. In general, SILO
consistently reduces off-chip misses compared to the baseline
across all workloads. Miss rate reductions range from 8%
to 67%, with the largest reductions on SAT Solver (67%)
and MapReduce (49%). Not surprisingly, these two workloads
observed the greatest performance improvement as noted in
Sec. VII-A. Web Search, Data Serving and Web Frontend
observe comparatively lower miss reductions consistent with
their performance improvements.

As the figure shows, the majority of hits in SILO come
from the local vault (63-91% of all hits). This is important
for performance, because local hits are faster than remote hits,
which incur a directory lookup and a multi-hop NOC traversal.

9

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

0.8

0.9

1.0

1.1

Web Search Data Serving Web Frontend MapReduce SAT Solver

NoOpt LocalMP DirCache LocalMP+DirCache

Fig. 12. Effect of SILO design optimizations on CloudSuite. Study assumes
ideal vault miss predictor and ideal directory cache.

Nonetheless, remote hits in SILO are also beneficial as they
are faster than main memory accesses.

2) SILO Performance Optimizations: Sec. V identified two
possible optimizations to reduce the latency incurred by
DRAM accesses to (i) the local vault, and (ii) the in-DRAM
directory in the case of a local vault miss. We now evaluate
the usefulness of these optimizations in the limit. We consider
the following configurations:
• NoOpt: SILO with no optimizations.
• LocalMP: SILO with a Miss Predictor for local vault

accesses. The predictor is perfect, requiring 0 time and
having 100% accuracy.

• DirCache: SILO with a directory cache. The directory
cache is perfect, requiring 0 time and having 100%
accuracy.

• LocalMP+DirCache: SILO with both local vault Miss
Predictor and an ideal directory cache.

Fig. 12 plots the performance of the four designs. We
observe marginal performance improvements in the optimized
designs. Data Serving observes the largest benefit at 6%
speedup with both local vault miss predictor and a directory
cache. This result is consistent with the RW-sharing char-
acterization study of Sec. II-C, which shows Data Serving
to have a high sensitivity to the LLC access latency for
RW-shared data. Additionally, Data Serving shows a signif-
icant amount of remote vault hits (as shown in Fig. 11).
LocalMP and DirCache optimizations reduce the latency of
remote vault hits, thus improving performance. Web Frontend
exhibits similar sensitivity to the latency of RW-shared data
and fraction of remote vault hits as Data Serving. However,
the overall speedup achieved by SILO is modest on Web
Frontend (Fig. 10), and hence the benefits of performance
optimizations are small. We conclude that the benefits of the
considered design optimizations do not outweigh their cost
and extra design complexity.

C. Energy Efficiency

We examine the effects of SILO architecture on the mem-
ory subsystem energy dissipation using the parameters in
Sec. VI-B. Fig. 13 illustrates memory subsystem dynamic
energy in SILO normalized to that in the baseline system.
Compared to the baseline, SILO reduces dynamic energy by
26-87% across the evaluated scale-out workloads. The high
hit rate in SILO significantly reduces off-chip traffic, thereby

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. D

yn
am

ic
 E

ne
rg

y/
Ac

ce
ss LLC Main memory

Baseline SILO Baseline SILO Baseline SILO Baseline SILO Baseline SILO
Web Search Data Serving Web Frontend MapReduce SAT Solver

Fig. 13. Dynamic energy of the memory subsystem.

0.8

0.9

1.0

1.1

1.2

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

Baseline Baseline+DRAM$ SILO SILO−CO Vaults−Sh

TPCC Oracle Zeus Geomean

Fig. 14. Performance results for Enterprise workloads.

reducing dynamic energy in main memory and I/O, which
explains SILO’s energy-efficiency advantage.

While not shown in the figure, we note that SILO expends
more power in the LLC than the baseline due to a combination
of (i) higher static power of the large number of DRAM
banks, (ii) higher dynamic energy per LLC access, and (iii)
more accesses per unit time due to higher IPC. The total LLC
power consumption in SILO does not exceed 2.5W across all
evaluated workloads, which is a small fraction of the total
power budget of a 16-core server processor.

D. Performance on Other Workloads

We compare SILO against alternatives on enterprise and
batch workloads.

1) Enterprise workloads: Fig. 14 plots the performance of
enterprise workloads with results normalized to the baseline
system (see Sec. VI for a description of evaluated systems).
Compared to the baseline, SILO provides a geomean perfor-
mance improvement of 11% while for SILO-CO the gain is
5%. The Vaults-Sh design, with shared vaults, delivers a 9%
slowdown in performance. This slowdown can be attributed to
the long access latency to the LLC due to a combination of
DRAM access and NOC traversal.

Unlike on the scale-out workloads, the baseline+DRAM$
design shows performance gains across all enterprise work-
loads, achieving up to a 3% speed-up over the baseline.
These workloads operate on smaller datasets compared to
the scale-out applications from CloudSuite. The high capacity
DRAM cache in the baseline+DRAM$ design captures the
smaller datasets, resulting in frequent cache hits. Because the
conventional DRAM cache has an access latency 20% lower
than that of main memory, the DRAM cache hits contribute
to performance improvement.

10

0.8

1.0

1.2

1.4

1.6
N

or
m

al
ize

d
Pe

rfo
rm

an
ce Baseline SILO

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10

Fig. 15. Results for 4-core SPEC2006 mixes.

2) Multi-programmed Batch Workloads: Fig. 15 plots the
performance of 4-core SPEC’06 mixes for baseline and SILO
designs. Overall, SILO delivers a significant performance gain
of up to 47% (28% on average) due to its massive core-private
cache capacity. The capacity advantage comes at a similar
latency as the shared LLC and in a contention-free manner
– an issue further explored in the next section. While SILO
performs better on all mixes, we observe higher performance
gains on certain mixes, e.g. mix3, mix6, mix8, and mix9.
These mixes include memory-intensive applications such as
mcf, lbm, milc and astar, which benefit the most from
the larger capacity, and therefore, exhibit higher performance
improvement.

E. Performance Isolation

Heterogeneous applications colocated on the same physical
server contend for the available shared LLC. This inter-
core contention can compromise performance, which is a
particular concern for applications with strict latency targets.
An all-private cache hierarchy, provided by SILO, offers the
premise of removing LLC contention and guaranteeing strong
performance isolation.

In order to evaluate the degree of performance isolation
SILO provides, we measure the performance of Web Search
running on a processor (i) alone and (ii) together with mcf, a
memory-intensive SPEC’06 benchmark. Web Search runs on 8
cores while mcf, when present, runs on the other 8 cores of the
16-core setup. We use two LLC configurations: a traditional
shared LLC and SILO.

Table VI shows the results of the experiment where the
performance of Web Search is normalized to stand-alone Web
Search setup with a shared LLC. We observe two trends. First,
SILO improves performance of Web Search by 20% when
running alone. Secondly, the performance in a system with
SILO is unaffected by colocation with mcf. In contrast, Web
Search suffers a 10% performance degradation when running
on a shared LLC system under colocation. We conclude that
SILO not only delivers a significant performance improvement
compared to a shared LLC baseline, but also provides perfor-
mance isolation under colocation.

F. 3-Level Cache Hierarchy

So far, our evaluation has focused on a latency-optimized
two-level cache hierarchy based on Scale-out Processors [5]. In
this section, we evaluate a more conventional three-level cache

Shared LLC SILO
Web Search alone - +20%

Web Search + mcf -10% +20%
TABLE VI

PERFORMANCE OF WEB SEARCH UNDER DIFFERENT SETUPS.

0.8

1.0

1.2

1.4

N
or

m
al

ize
d

Pe
rfo

rm
an

ce 3level−SRAM 3level−eDRAM 3level−SILO

Web Search Data Serving Web Frontend MapReduce SAT Solver
0.8

1.0

1.2

1.4

Fig. 16. Performance on scale-out workloads with a 3-level hierarchy.

hierarchy, adding a 512KB private second-level SRAM cache
to all configurations. We consider two baseline designs: (1) an
Intel-like design featuring a 32MB SRAM-based NUCA LLC,
referred to as 3level-SRAM, and (2) a 128MB eDRAM-based
NUCA LLC similar to the POWER 9 [40], referred to 3level-
eDRAM. Using CACTI, we find the bank access latency in the
SRAM design to be 7 cycles, and optimistically assume the
same access latency for the larger eDRAM banks. To keep the
study focused, we only consider the latency-optimized SILO
variant titled 3level-SILO.

Fig. 16 shows the results of the study, which follow the
same trend as the results for a two-level hierarchy. Compared
to the 3-level SRAM LLC, the 3-level SILO design improves
performance on all workloads by 14%, on average, and a max
of 32%. Consistent with earlier results and studies in the moti-
vation section, the largest gains are registered on MapReduce
and SAT Solver workloads (20% and 32%, respectively), while
the smallest improvement of 5% is on Web Frontend, which
generally has the lowest sensitivity to cache optimizations
among the evaluated workloads.

The 3-level eDRAM design provides a modest performance
improvement of up to 8% over its SRAM counter-part, but is
always inferior to SILO. The overall trend is consistent with
the study in Sec. II-A, which showed that higher LLC capac-
ities at low latencies are beneficial to scale-out workloads.

VIII. RELATED WORK

Maximizing performance for planar LLCs: To reduce the
average access time for large, distributed LLCs, prior work
has proposed Non-Uniform Cache Architecture (NUCA) [22].
Static NUCA (S-NUCA) designs use address interleaving to
spread data across cache banks distributed on chip. While
simple to implement, such designs require multi-hop NOC
traversals in the common case, which result in high access
latencies to remote cache banks. Dynamic NUCA (D-NUCA)
designs use adaptive data placement to reduce the average
access latency through a combination of data placement,
replication and migration to make data available in the cache
banks nearest to the requesting core [41]–[45]. Fundamentally,
such schemes are limited by the small capacity of nearby banks

11

on a planar die. SILO circumvents capacity-latency trade-off
of planar caches by providing core-private die-stacked DRAM
vaults with hundreds of MBs of capacity.

Stacked DRAM Caches: Die-stacked DRAM technology
has been identified as a suitable means to provide gigascale
caches [23], [29], [30]. The technology extends high density
commodity DRAM with higher bandwidth and better power
efficiency. The target applications are bandwidth-intensive,
such as those running on GPUs and many-core HPC proces-
sors. Indeed, the latest Nvidia and AMD GPUs and Intel’s
Knight’s Landing feature die-stacked DRAM [13], [46], [47].
Due to the significant delays involved in routing the request
from the requesting core to the desired DRAM bank, access
latencies are comparable to main memory [48]. In fact, Intel’s
Knight’s Landing has a higher access latency to the DRAM
cache than to main memory [13].

To improve the high access latency of a serialized tag and
data lookup, research proposals have argued for tag placement
in SRAM [24], [29], [49], [50] and for using direct-mapped
in-DRAM tag designs [13], [23]. These policies reduce the
tag lookup cost, but leave the underlying DRAM technology
and processor organization unchanged. Jenga [51] introduced
a reconfigurable cache hierarchy composed of SRAM and die-
stacked DRAM tiles. While improving access locality is part
of Jenga, cores of a given application share the full set of cache
banks allocated to that application; as such, Jenga’s caches are
fundamentally shared across cores. SILO differs from these
works in its use of an all-private cache hierarchy and custom
DRAM technology.

DRAM Latency Optimization: Various custom DRAM tech-
nologies have been introduced in commercial products to pro-
vide lower latency but at higher cost-per-bit than commodity
DRAM [52]–[55]. Technical details are generally scarce for
these products, but they tend to advertise more banks and
subarrays than commodity DRAM, making them similar to
the vaults in SILO. However, due to the fact that the latency-
optimized dies are packaged into discrete DRAM chips, the
actual end-to-end latency savings are small due to the CPU-
side and chip-to-chip interconnect delays. In contrast, SILO
minimizes interconnect delays by using DRAM stacked di-
rectly on top of the processor die, and treating each DRAM
vault as a core-private cache.

On the research side, prior works have looked at mitigating
the overhead of additional peripheral circuitry for latency re-
duction by using segmented bitlines in DRAM [56], providing
additional circuitry for selective banks [57] and partitioning the
DRAM die into independent units [58], [59]. These techniques
can be applied to the custom DRAM technology in SILO
to increase vault capacities without compromising the access
latency. Other techniques target reducing DRAM latency by
overlapping accesses to different subarrays [60] and improving
row-buffer locality by exploiting access patterns [61]–[64].
While these techniques allow overlapping access latencies of
different requests, they do not reduce the actual access latency.

IX. CONCLUSION

As traditional technology scaling nears its end, processor
architectures must embrace emerging technologies and new ar-
chitectural paradigms in the quest for higher performance. This
work takes a step in this direction by showing that traditional
shared LLCs offer limited room for improving performance
in future server processors as they are unable to satisfy the
requirement of large cache capacity and low access latency
demanded by scale-out workloads. In response, we intro-
duce SILO – a Die-Stacked Private LLC Organization which
combines on-chip private caches with per-core LLC slices
in die-stacked DRAM. SILO resolves the latency/capacity
conundrum through the use of a private LLC organization and
latency-optimized die-stacked DRAM. Our evaluation of SILO
shows that it improves performance by 5-54% over a state-of-
the-art server processor design on a set of scale-out workloads
while also providing a high degree of performance isolation.

ACKNOWLEDGMENT

We would like to thank Priyank Faldu, Nikos Nikoleris,
Vijay Nagarajan, Daniel Sorin and the anonymous reviewers
for their valuable feedback. This work was supported by the
Engineering and Physical Sciences Research Council (grant
EP/L01503X/1), EPSRC Centre for Doctoral Training in Per-
vasive Parallelism at the University of Edinburgh, School of
Informatics and ARM PhD Scholarship Program.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, vol. 8, 2013.

[2] N. R. Council et al., Productivity and Cyclicality in Semiconductors:
Trends, Implications, and Questions: Report of a Symposium. National
Academies Press, 2004.

[3] Intel Xeon Processor E7-8890 v3,
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon/e7-
processors/e7-8890-v3.html.

[4] IBM Power8, https://www.ibm.com/power/hardware.
[5] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, Y. O. Koçberber,

J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Özer, and B. Falsafi,
“Scale-out processors,” in 39th International Symposium on Computer
Architecture, 2012.

[6] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“CPI2: CPU performance isolation for shared compute clusters,” in 8th
Eurosys Conference, 2013.

[7] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in 40th International Symposium on Computer Architecture, 2013.

[8] H. Kasture and D. Sanchez, “Ubik: efficient cache sharing with strict
qos for latency-critical workloads,” in 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2014.

[9] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-
grain cache partitioning,” in 38th International Symposium on Computer
Architecture, 2011.

[10] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: a study of emerging scale-out workloads on modern hard-
ware,” in 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012.

[11] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized
3D-stacked memory architecture by exploiting excessive, high-density
tsv bandwidth,” in 16th International Conference on High-Performance
Computer Architecture, 2010.

12

[12] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge,
S. Reinhardt, and K. Flautner, “Picoserver: using 3D stacking technology
to enable a compact energy efficient chip multiprocessor,” in 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[13] A. Sodani, “Knights landing (KNL): 2nd generation Intel® Xeon Phi
processor,” in Hot Chips 27 Symposium, 2015.

[14] J. Kim and Y. Kim, “HBM: Memory solution for bandwidth-hungry
processors,” in Hot Chips 26 Symposium, 2014.

[15] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips 23
Symposium, 2011.

[16] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simulta-
neous multi-layer access: Improving 3D-stacked memory bandwidth at
low cost,” ACM Transactions on Architecture and Code Optimization,
vol. 12, 2016.

[17] K. H. Kyung, C. W. Kim, J. Y. Lee, J. H. Kook, S. M. Seo, J. H. Kim,
J. Sunwoo, H. C. Lee, C. S. Kim, B. H. Jeong et al., “A 800mb/s/pin 2Gb
DDR2 SDRAM using an 80nm triple metal technology,” in International
Digest of Technical Papers. Solid-State Circuits Conference, 2005.

[18] Hybrid Memory Cube Specification 2.1, http://hybridmemorycube.org/.
[19] G. H. Loh, “3D-stacked memory architectures for multi-core proces-

sors,” in 35th International Symposium on Computer Architecture, 2008.
[20] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.

Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. P. Shen, and C. Webb, “Die stacking (3D)
microarchitecture,” in 39th International Symposium on Microarchitec-
ture, 2006.

[21] International Technology Roadmap for Semiconductors 2.0,
http://www.itrs2.net/.

[22] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in 10th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2002.

[23] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” in 45th International Symposium on
Microarchitecture, 2012.

[24] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” in 44th International
Symposium on Microarchitecture, 2011.

[25] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
Scalable shared memory multiprocessors. Springer, 1992, pp. 167–192.

[26] L. Gwennap, “ThunderX rattles server market,” Microprocessor Report,
vol. 29, 2014.

[27] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 44th International
Symposium on Computer Architecture, 2017.

[28] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “BuMP: Bulk memory ac-
cess prediction and streaming,” in 47th Annual International Symposium
on Microarchitecture, 2014.

[29] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint cache,”
in 40th International Symposium on Computer Architecture, 2013.

[30] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked dram cache,” in 47th International
Symposium on Microarchitecture, 2014.

[31] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in 40th International Symposium on Microarchitecture, 2007.

[32] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “CACTI-3DD: Architecture-level modeling for 3D die-
stacked dram main memory,” in Design, Automation & Test in Europe
Conference & Exhibition, 2012.

[33] Micron. 1.35V DDR3L power calculator (4Gb x16 chips), 2013.
[34] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,

and J. C. Hoe, “SimFlex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, 2006.

[35] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in 30th International Symposium on Computer Architecture,
2003.

[36] CloudSuite: The Benchmark Suite of Cloud Services,
http://cloudsuite.ch/.

[37] K. Biswas, Darwin Streaming Server 6.0.3 - Performance and Load
tests, https://www.codeproject.com/Articles/41874/Darwin-Streaming-
Server-setup-customization.

[38] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, 2006.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in 42nd
International Symposium on Computer Architecture, 2015.

[40] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “IBM
Power9 processor architecture,” IEEE Micro, vol. 37, 2017.

[41] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage capac-
ity allocation and sharing within large caches,” in 15th International
Conference on High-Performance Computer Architecture, 2009.

[42] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: adaptive
selective replication for CMP caches,” in 39th International Symposium
on Microarchitecture, 2006.

[43] M. Zhang and K. Asanovic, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in 32nd Interna-
tional Symposium on Computer Architecture, 2005.

[44] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA substrate for flexible CMP cache sharing,” IEEE Transactions
on Parallel Distributed Systems, vol. 18, 2007.

[45] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in 36th International Symposium on Computer Architecture,
2009.

[46] NVIDIA TESLA V100, https://www.nvidia.com/en-us/data-center/tesla-
v100/.

[47] High Bandwidth Memory, https://www.amd.com/en/technologies/hbm.
[48] D. W. Chang, G. Byun, H. Kim, M. Ahn, S. Ryu, N. S. Kim, and

M. Schulte, “Reevaluating the latency claims of 3D stacked memories,”
in 18th Asia and South Pacific Design Automation Conference, 2013.

[49] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell, “Optimizing communication
and capacity in a 3D stacked reconfigurable cache hierarchy,” in 15th
International Conference on High-Performance Computer Architecture,
2009.

[50] S. Franey and M. Lipasti, “Tag tables,” in 21st International Symposium
on High Performance Computer Architecture, 2015.

[51] P. Tsai, N. Beckmann, and D. Sánchez, “Jenga: Software-defined cache
hierarchies,” in 44th International Symposium on Computer Architecture,
2017.

[52] Micron. RLDRAM 2 and 3 Specifications,
https://www.micron.com/products/dram/rldram-memory.

[53] Y. Sato, T. Suzuki, T. Aikawa, S. Fujioka, W. Fujieda, H. Kobayashi,
H. Ikeda, T. Nagasawa, A. Funyu, Y. Fuji, K. Kawasaki, M. Yamazaki,
and M. Taguchi, “Fast cycle RAM (FCRAM); a 20-ns random row
access, pipe-lined operating DRAM,” in Symposium on VLSI Circuits.
Digest of Technical Papers, 1998.

[54] W. Leung, F.-C. Hsu, and M. E. Jones, “The ideal soc memory: 1T-
SRAMTM,” in 13th International ASIC/SOC Conference, 2000.

[55] Tezzaron DiRAM4 3D Memory, https://tezzaron.com/applications/diram4-
3d-memory/.

[56] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-latency DRAM: A low latency and low cost DRAM architec-
ture,” in 19th International Symposium on High Performance Computer
Architecture, 2013.

[57] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing
memory access latency with asymmetric DRAM bank organizations,”
in 40th International Symposium on Computer Architecture, 2013.

[58] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained DRAM: energy-efficient DRAM
for extreme bandwidth systems,” in 50th International Symposium on
Microarchitecture, 2017.

[59] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-
DRAM: A high-bandwidth and low-power DRAM architecture from the
rethinking of fine-grained activation,” in 41st International Symposium
on Computer Architecture, 2014.

[60] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting
subarray-level parallelism (SALP) in DRAM,” in 39th International
Symposium on Computer Architecture, 2012.

13

[61] K. Sudan, N. Chatterjee, D. W. Nellans, M. Awasthi, R. Balasub-
ramonian, and A. Davis, “Micro-pages: increasing DRAM efficiency
with locality-aware data placement,” in 15th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2010.

[62] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged memory scheduling: Achieving high performance and
scalability in heterogeneous systems,” in 39th International Symposium
on Computer Architecture, 2012.

[63] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in 35th International Symposium on Computer Architecture, 2008.

[64] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee,
O. Ergin, and O. Mutlu, “Chargecache: Reducing DRAM latency by
exploiting row access locality,” in 22nd International Symposium on
High Performance Computer Architecture, 2016.

14

