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Mapping and sequencing of a significant quantitative trait locus
affecting resistance to Koi herpesvirus in common carp
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4 Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic

Abstract

Cyprinids are the most highly produced group of fishes globally, with common carp being one
of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high
levels of mortality, causing major economic losses, and is listed as a notifiable disease by the
World Organisation for Animal Health. Selective breeding for host resistance has the potential
to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host
resistance and methods of incorporating genomic data into breeding for resistance may
contribute to a decrease in economic losses in carp farming. In the current study, a population
of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was
challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by
sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide
association analyses were performed to investigate the genetic architecture of resistance to
KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage
group 44, explaining approximately 7 % of the additive genetic variance. Pooled whole genome
resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed

to characterize QTL regions, including identification of putative candidate genes and functional

© The Author(s) 2013. Published by the Genetics Society of America.
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annotation of associated polymorphisms. The TRIM25 gene was identified as a promising
positional and functional candidate within the QTL region of LG 44, and a putative premature

stop mutation in this gene was discovered.

Introduction

Common carp (Cyprinus carpio and Cyprinus rubrofuscus), is one of the most highly produced
aquaculture fish species globally (FAQ, 2015), being farmed in a wide variety of environments
and production systems (Balon 1995). However, in common with many aquaculture species,
only a minority of farmed carp are derived from family-based selective breeding programs
(Vandeputte 2003; Janssen et al. 2017). The potential for selective breeding to enhance
production in carp is highlighted by several studies, but much of the production of commercial
stock is still generated via intraspecific crossbreeding (Kocour et al. 2005, 2007; Vandeputte

et al. 2008; Nielsen et al. 2010; Prchal et al. 2018).

Koi herpesvirus (KHV), also known as Cyprinid herpesvirus-3 (CyHV-3), is one of the main
threats to carp production. The first major outbreaks were recorded in 1998 (Hedrick et al.
2000), and subsequent outbreaks in many carp producing countries were reported worldwide
(Haenen et al. 2004). The seriousness of the KHV threat is highlighted by its listing as a
notifiable disease by the European Union (Taylor et al. 2010) and the World Organization for
Animal Health (OIE 2018). Selective breeding is a valuable tool for contributing to sustainable
food production through the prevention and management of infectious outbreaks in a wide
range of species (Bishop and Woolliams 2014). This may be particularly true in aquaculture
species, due to moderate to high heritabilities of disease resistance documented in numerous

cases (Ddegard et al. 2011; Houston 2017), and successful examples of disease control using
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marker-assisted breeding, e.g. the case of the IPN virus in Atlantic salmon; Salmo salar

(Houston et al. 2008; Moen et al. 2009).

Several studies have investigated the genetic basis of KHV resistance in carp (utilizing data
and samples collected from disease challenge trials), showing encouraging results with large
variation in survival both between families (Dixon et al. 2009; Tadmor-Levi et al. 2017) and
between strains (Shapira et al. 2005; Piackova et al. 2013). Results from candidate gene
association studies have suggested a possible role for polymorphism in MHC loci (Rakus et al.
2009) and Interleukin-11 (Kongchum et al. 2011) in host resistance to KHV. Taken together,
these studies indicate that selective breeding has the potential to increase resistance to KHV,
with potential downstream benefits for the carp aquaculture industry and fish welfare.
However, to date, genome-wide polymorphisms have not been applied to investigate the

genetic architecture of resistance to KHV.

Restriction-site associated DNA sequencing (RADseq) (Baird et al. 2008) and similar
genotyping by sequencing techniques have been widely applied to generated genome-wide
SNP markers due to their cost-efficiency in a wide range of aquaculture species (Robledo et
al. 2017), including common carp ((Palaiokostas et al. 2018a). Various genome wide
association studies (GWAS) using this technique have been published in aquaculture species
(e.g. Campbell et al. 2014; Palti et al. 2015). GWAS have been used to study disease resistance
in various aquaculture species including salmonids (Correa et al. 2015, 2017; Vallejo et al.
2017; Barria et al. 2018; Robledo et al. 2018), catfish (Zhou et al. 2017), European sea bass
(Palaiokostas et al. 2018b) and Pacific oyster (Gutierrez et al. 2018) amongst others. With the
notable exception of the aforementioned case of IPN resistance in salmon, the GWAS results

have pointed to a polygenic or oligogenic architecture for disease resistance in aquaculture
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species. The main aim of this study was to investigate genetic resistance to KHV in common
carp using a RADseq approach. Classical genome wide association study (GWAS) and
weighted genomic best linear unbiased predictor (WGBLUP) approaches were taken to
examine the genetic architecture of resistance. Finally, pooled whole genome sequencing
(PWGS) was performed in a subset of samples with divergent resistance and susceptibility to
characterize and annotate QTL regions, and to identify potential gene candidates and

polymorphisms involved in KHV resistance.

Materials and Methods

Sample collection and disease challenge

A population of Amur Mirror Carp was created at the University of South Bohemia in Ceské
Budgjovice, Czech Republic in May 2014 using artificial insemination (Vandeputte et al. 2004)
involving four factorial crosses of five dams x ten sires (20 dams and 40 sires in total).
Incubation of eggs was performed in 9 L Zugar jars at 20°C. At the first swimming stage,
randomly sampled progeny from each mating (of approximately equal total volume) were
pooled and stocked into several nursery earthen ponds at stocking density of 150,000 larvae /
ha and reared under semi-intensive pond conditions throughout the growing season (from May
to September). Before the challenge test a random sample of 1,500 fish described above were
tagged and fin clipped for DNA extraction. These fish were the same as those described in
Palaiokostas et al. (2018a). These animals were acclimatized for five days at water temperature
of 22 °C and bathed in FMC solution (formalin, malachite green, methylene blue using a dose
of 2 mL per 100 L of water) to eliminate ectoparasites. Subsequently, the fish were transferred
to Veterinary Research Institute (VRI) in Brno (Czech Republic) to perform the KHV disease
challenge test. A small (n = 215) sample of koi carp were challenged alongside the Amur mirror

carp as a positive control, since Koi carp are highly susceptible to KHV.
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A cohabitation challenge was performed in a 1,400 L tank equipped with recirculation and
biological filtration. Koi carp received an intraperitoneal injection with 0.2 mL culture medium
containing 10* TCID 50 / mL KHV at day 0 and were added into the tank with challenged fish.
Mortality of individual fish was recorded twice a day for a period of 35 days post infection
(dpi). Presence of KHV on a sample of dead fish (n = 100) was confirmed by PCR according
to guidelines by the Centre for Environment, Fisheries & Aquaculture Science, UK (Cefas)
(Pokorova et al. 2010). The experiment was run until mortalities were negligible, implying that
survivors were resistant. The entire experiment was conducted in accordance with the law on
the protection of animals against cruelty (Act no. 246/1992 Coll. of the Czech Republic) upon
its approval by Institutional Animal Care and Use Committee (IACUC) of the VRI and
appropriate state authority. All people conducting the experiment hold a certificate about
qualification to conduct experiments on the live animals, and the VRI is accredited for the

culture of experimental animals according to the aforementioned law.

Library preparation and sequencing

The RAD library preparation protocol followed the methodology originally described in Baird
et al. (2008) and presently in detail in Palaiokostas et al (2018a). Briefly, template DNA was
digested using the Sbfl (recognizing the CCTGCA|GG motif) high fidelity restriction enzyme
(New England Biolabs; NEB). DNA shearing was conducted with a Pico bioruptor
(Diagenode). Following a final gel elution step into 20 uL EB buffer (MinElute Gel
Purification Kit, Qiagen), 66 libraries (24 animals each) were sent to BMR Genomics (Italy),
for quality control and high-throughput sequencing. RAD libraries were run in fourteen lanes

of an Illumina NextSeq 500, using 75 base paired-end reads (v2 chemistry).
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Whole genome sequencing libraries (n = 4) from pooled DNA samples (30 animals each
library) of susceptible and resistant animals were constructed using the lllumina TruSeq DNA
PCR free kit (350bp insert). Sequencing was performed in Edinburgh Genomics facilities using

two lanes of Illumina HiSeq 4000.

SNP discovery and genotyping

The process of obtaining the SNP genotype data from the RADSeq reads was described in
detail in Palaikostas et al (2018a). Briefly, sequenced reads were aligned to the common carp
reference genome assembly version GCA _000951615.2 (Xu et al. 2014) using bowtie2
(Langmead and Salzberg 2012). The aligned reads were sorted into RAD loci and SNPs were
identified using the Stacks software 1.4 (Catchen et al. 2011). The SNPs were detected using
a minimum stack depth of at least ten or five for the parental and offspring samples
respectively. SNPs with minor allele frequency (MAF) below 0.01, greater than 20 % missing
data, and deviating from expected Hardy-Weinberg equilibrium in the parental samples (P <
1e-06) were discarded. R/hsphase (Ferdosi et al. 2014) software was used for parentage
assignment allowing for a maximum genotyping error of 4 %. The pedigree obtained was
further validated for possible erroneous assignments using FImpute (Sargolzaei et al. 2014). In
total, 1,214 offspring were uniquely assigned, forming 195 full-sib families (40 sires, 20 dams).
Since the carp reference genome assembly is currently very fragemented, a medium density
linkage map of 12,311 SNPs grouped in 50 linkage groups was created (Palaiokostas et al.

2018b), and used to orientate the results from the GWAS.

Heritability estimation

The probit link function was used to connect the observed binary phenotype (0 = dead, 1

= alive) with the underlying liability scale. Variance components were estimated using the
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R/BGLR (Pérez and de Los Campos 2014) software with the following animal model:

1=Xb+ Zu+e, (1)

where lis the vector of latent variables, b is the vector of the fixed effects (cross, standard
length), X is the incidence matrix relating phenotypes with the fixed effects, Z is the
incidence matrix relating phenotypes with the random animal effects, u is the vector of
random animal effects ~ N(0, Acg?) [where A corresponds to the pedigree-based
relationship matrix and is replaced by G for analyses using the genomic relationship matrix
(VanRaden 2008) and o’ is the additive genetic variance], e the vector of residuals ~N(0,

I62) where 62 is the residual variance.

The parameters of this model were estimated through Markov chain Monte Carlo (MCMC)
using Gibbs sampling (11 M iterations; burn-in: 1 M; thin: 1,000). Convergence of the
resulting posterior distributions was assessed both visually (inspecting the resulting
MCMC plots) and analytically using R/coda v0.19-1 (Plummer et al. 2006). Heritability
for the trait of survival during the KHV challenge (on the underlying liability scale) was

estimated using the following formula:

2
h2= 28
og+0d

where agz is the previous estimated additive genetic variance and 62 the residual variance.

Residual variance on the underlying scale is not identifiable in threshold models

(Goldstein et al. 2002; Nakagawa and Schielzeth 2013) and was therefore fixed to 1.

Genome wide association analysis (GWAS)
To test the association between individual SNPs and resistance to KHYV, a classical genome
wide association study (CGWAS) was performed using R/gaston (Perdry and Dandine-

Roulland 2016). The mixed model applied for overall survival had the same format as in
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(1) with the addition of including each SNP as a fixed effect. The variance components
were estimated using the penalized quasi-likelihood approach (Chen et al. 2016). The
genome-wide significance threshold was calculated using a Bonferroni correction (0.05 /

N), where N represents the number of tested SNPs.

Weighted genomic best linear unbiased predictor (WGBLUP) was performed (Wang et al.
2012) using direct genomic values (DGV) (Lourenco et al. 2015; Zhang et al. 2016). The

weighted genomic relationship matrix was initially created following VVanRaden (2008) as:

G*=7DZ'q

where Z is the design matrix relating genotypes of each locus, D is a weight matrix for all
SNPs, and g is a weighting vector derived from observed SNP frequencies. SNP weights were
calculated using the nonlinearA method (VanRaden 2008). Briefly the steps for performing

WGBLUP were as follows (Wang et al. 2012):

a) Initialize D = I and t=1, where | the identity matrix and t is the iteration number.

b) Calculate G".

c) Estimate DGVs.

d)  Estimate SNP effects from GEBVs : @ = qDZ'G*1i , where @ the vector of SNP
effects and u the vector of DGV

la;l

e)  Calculate the weight for each SNP: dl.(i”l): 1.1255@ °  where @ the estimated SNP
effect (VanRaden 2008).

) Normalize SNP weights so the total genetic variance remains constant.

g)  Loop to step d) until convergence (1014).

Convergence of SNP weights was tested using the convergence criterion BLUPF90 uses for
variance components estimation

_ Zi(6i— &)?
= i6;

Percentage of additive genetic variance was estimated by non-overlapping windows of 10

adjacent SNPs as follows:
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where var(ai) the additive genetic variance of the tested window of adjacent SNPs and O'é
the total additive genetic variance. The weighted GBLUP analyses were performed using
THRGIBBSF90 for estimating DGVs (Misztal et al. 2002) combined with iterations of

PreGSF90 and PostGSF90 (Aguilar et al. 2011) until convergence (10°'%).

Pooled whole genome sequencing analysis

Pools of genomic DNA (25 ng / ul) from 60 survivors and 60 mortalities from the disease
challenge experiment were prepared. These animals originated from 20 full-sib families,
and the family structure was balanced between the resistant and susceptible pools.
Libraries were prepared using the TruSeq DNA PCR free kit (350 bp insert size) and
sequenced in two lanes of an Illumina HiSeq 4000 using paired-end sequencing by

Edinburgh Genomics.

Reads were QC-filtered (phred score above 30) and trimmed to 140 bp long using
Trimmomatic v0.36 (Bolger ef al. 2014). Reads were aligned to the carp reference genome
GCA _000951615.2 (Xu et al. 2014) using bowtie2 (Langmead and Salzberg 2012). SNP
identification was performed using Burrows-Wheeler Aligner v0.7.8 (BWA-mem, Li
2013). Pileup files describing the base-pair information at each genomic position were
generated from the alignment files using the mpileup function of Samtools v1.6 (Li et al.
2009) requiring minimum mapping and base quality of 20. A Cochran-Mantel-Haenszel
test was performed to test the significance of the allele frequency differences using
Popoolation 2 v1.201 (Kofler et al. 2011). Only those genomic positions with at least 6

reads of the alternative allele across all pools and a maximum coverage of 50 reads and a
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minimum of 8 in all pools were considered SNPs. All QC-filtered SNPs were annotated

using SNPeff (Cingolani et al. 2012).

Data availability

Raw reads were deposited in the National Centre for Biotechnology Information (NCBI)
repository under project ID PRINA414021. Table S1 contains the phenotypic data. Table S2

contains the pedigree. Table S3 contains the genotypic data.

Results

Disease challenge

Mortalities began at 12 dpi reaching a maximum between 21 and 24 dpi (98 — 130 mortalities
per day) decreasing thereafter with no mortalities observed after 35 dpi (Figure 1). The overall
mortality in the KHV challenge experiment for the Amur Mirror Carp was 66 %. All observed
mortalities displayed typical KHV symptoms (e.g. weakness, lethargy, loss of equilibrium,
erratic swimming, sunken eyes, excessive mucous production, increased respiratory rate,
discoloration, and hemorrhagic lesions on the skin and gills). The presence of KHV was

confirmed in all tested samples (n = 100).

Heritability estimation

There was marked between-family variation in survival rate for both sires (6 — 83 %) and dams
(0 — 52 %), suggesting the existence of considerable genetic variation for host resistance.
Heritability estimates of overall survival for the pedigree and genomic relationship matrix on
the underlying scale were 0.61 (HPD interval 95%: 0.42 — 0.80) and 0.50 (HPD interval 95%:

0.38 — 0.63) respectively.

10
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Genome wide association approaches - SNP annotation in QTL region

The three SNPs with the highest association according to classical GWAS were located on
linkage group 44 (chromosome 33; P < 1e-05; denoted by stars in Fig 2). This QTL was also
identified using the WGBLUP approach (Figure 3) suggesting it accounted for approximately
7 % (convergence obtained after 5 iterations) of the additive genetic variance on the underlying
scale. In addition the WGBLUP identified QTLs explaining more than 1% of the additive
genetic variance in linkage groups 34 ( ~ 2.5%) and 42 (~ 1.1%). Whole genome sequencing
data from the pools of resistance and susceptible animals was used to discover and annotate
additional SNPs in the QTL region (Figure 4), and potential candidate genes were identified.
Further, SNPs with significant allele frequency differences (P-value < 0.05) between the two
groups were identified. A SNP coding for a putative premature stop codon was identified in
gene TRIM25 (Glu258*), an E3 ubiquitin ligase with a major role in initiation of intracellular

antiviral response to herpesviruses (Gupta et al. 2018).

Discussion

In the current study, high throughput sequencing was applied to study genetic resistance of
common carp to KHV. While genomic data in the form of genetic markers can be a valuable
addition to selective breeding for disease resistance, how to apply this data depends on the
underlying genetic architecture. In the case of traits controlled by a major QTL, it may be most
effective to use marker-assisted selection, while in the case of polygenic traits genomic
selection is likely to be preferable. Modern genomic tools also facilitate high resolution study
of the genomic regions underpinning genetic resistance, facilitating identification and
annotation of promising functional candidate genes which may play a direct role in differential

host response to infection.
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Following pedigree reconstruction using the RAD SNP data, the heritability of resistance as
measured by survival on the underlying scale was estimated to be 0.61 (pedigree) and 0.50
(genomic). This is an unusually high heritability estimate, but is comparable to the estimated
of 0.79 that was previously documented for this trait (@degard et al. 2010). These independent
high estimates of heritability of resistance to KHV highlight that selective breeding has major
potential for producing carp with increased resistance. Additionally, in a recent study of
introgression of KHV resistance from a wild carp strain to a farmed carp strain, significant
additive genetic variation in resistance was detected (Tadmor-Levi et al. 2017). Furthermore,
the authors showed that resistant carp do become infected, implying that resistance is due to an
effective host response to infection (Tadmor-Levi et al. 2017). Early stage host response to
KHYV infection is likely to have a major interferon pathway component, with Interferon af, and

interleukin 12 suggested to play a major role in Koi and Red common carp (Hwang et al. 2017).

The CGWAS resulted in the identification of genome-wide significant QTL on linkage group
44. While this test is the most commonly used association analysis, it fails to utilize all available
information since it does not consider linkage disequilibrium between adjacent SNPs, resulting
in reduced statistical power as opposed to methods where all SNPs are used simultaneously
(Wang et al. 2012). The WGBLUP approach incorporates multiple SNPs and combines the
computational efficiency of GBLUP with an increased statistical power for QTL detection
(Zhang et al. 2016). However, WGBLUP has limitations as well like the heuristic influence
regarding optimal number of iterations and the difficulty to determine appropriate significance
levels for the identified QTL (Wang et al. 2012; Lourenco et al. 2015; Zhang et al. 2016). The
recent implementation of nonlinearA (VanRaden 2008) in PostGSF90 (Misztal et al. 2018)
may help circumvent the issue of optimal number of iterations due to its better convergence

properties. NonlinearA benefits particularly in situations where a non normal prior distribution

12
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more accurately describes the trait under study (VanRaden 2008). In the current study, both
CGWAS and WGBLUP provided significant evidence for the existence of a QTL associated
with resistance to KHV on linkage group 44, explaining approximately 7 % of the genetic

variation in a highly heritable trait.

The SNP with highest association in the CGWAS was located ~6.5 Kb upstream of TRIM25,
an E3 ubiquitin ligase with a major role in initiation of intracellular antiviral response to
herpesviruses. Auto-ubiquitinisation of TRIM25 is a viral strategy for functional inactivation
of the pattern recognition protein RIG1, and subsequent cellular interferon response (Gack et
al. 2008). In the PWGS, the majority of the SNPs with significant allele frequency differences
between the resistant and susceptible pools were annotated as ‘intergenic’. However,
interestingly, a putative premature stop mutation in position 258 of the carp TRIM25 protein
was identified. TRIM25 has 649 - 682 amino acids (isoform dependant), and therefore this stop
mutation is highly likely to result in loss of function. The premature stop causing allele is rare
in the population, but reads of this allele were more common in the susceptible (n = 11) than
the resistance (n = 3) pools, albeit the Cochran-Mantel-Haenszel test p-value for this SNP was
only nominaly significant (0.049). This may fit with a loss of function of TRIM25 in

susceptible fish, being unable to trigger an appropriate antiviral response.

It will be interesting to study whether this single genome-wide significant QTL for resistance
to KHV has an effect in other carp populations and strains. Follow up functional studies of
candidate genes in the QTL region, including assessment of gene expression response to
infection and the differential response between alternate QTL types, may be a fruitful avenue
to shortlist functional candidate genes. Currently, TRIM25 and its premature stop mutation

seem to be the most promising candidates, and additional genotyping of this SNP alongside
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directed functional studies may help to test if it may be causative for the QTL. While the QTL
identified in the current study was highly significant, the proportion of genetic variation
explained was relatively moderate, implying multifactorial causal mechanisms underlying host
resistance. Nonetheless, it is plausible that genetic markers within the QTL region may have
value for marker-assisted selection, either directly or via a genomic prediction strategy with

increased weighting on QTL-region SNPs.

Conclusions

In conclusion, the results from the current study demonstrate that SNP markers generated via
RADseq are effective at studying the genetic variation in resistance to KHV in a common carp
breeding population. The RAD-derived SNPs facilitated the identification of a genome-wide
significant QTL on LG 44 affecting resistance to KHV. The sequencing and annotation of the
QTL regions provided candidate functional genes and polymorphisms for future study to
understand the mechanisms underlying the QTL. This QTL may have value for selective
breeding via incorporation into marker-assisted or genomic selection, albeit genetic resistance

to KHV in common carp appears to be multifactorial in nature.
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Figures legends

Figure 1. Daily mortality levels of fish during the KHV challenge experiment.

Figure 2. Classical Genome wide association plot for overall survival during the KHV
challenge.

Figure 3. WGBLUP for resistance to KHV. The additive genetic variance explained was
calculated using windows of 10 adjacent SNPs.

Figure 4. Annotation of the QTL region on LG 44 including identification of putative genes in

the region, functional annotation of SNPs.
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