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Abstract
We are concerned with solving linear programming problems arising in the plastic
truss layout optimization. We follow the ground structure approach with all possible
connections between the nodal points. For very dense ground structures, the solutions
of such problems converge to the so-called generalized Michell trusses. Clearly, solv-
ing the problems for large nodal densities can be computationally prohibitive due to the
resulting huge size of the optimization problems. A technique called member adding
that has correspondence to column generation is used to produce a sequence of smaller
sub-problems that ultimately approximate the original problem. Although these sub-
problems are significantly smaller than the full formulation, they still remain large
and require computationally efficient solution techniques. In this article, we present a
special purpose primal-dual interior point method tuned to such problems. It exploits
the algebraic structure of the problems to reduce the normal equations originating
from the algorithm to much smaller linear equation systems. Moreover, these systems
are solved using iterative methods. Finally, due to high degree of similarity among
the sub-problems after preforming few member adding iterations, the method uses a
warm-start strategy and achieves convergence within fewer interior point iterations.
The efficiency and robustness of the method are demonstrated with several numerical
experiments.
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1 Introduction

Optimization of truss structures goes back to a seminal work of Michell [26] and has
grown to a variety of disciplines in structural optimization for which several advanced
formulations dealingwith practical requirements, theories on existence and uniqueness
of solutions, efficient solutionmethods, and benchmark problems have been proposed,
[2–5,15,17,20–23,28,29,35] to mention only a few.

In this paper, we are concerned with solving the topology optimization problems in
plastic designby linear programming.These problem formulations are known to ignore
kinematic compatibility conditions. However, for single-load case, their equivalence
to the (elastic design)minimumcompliance problemhas been shown, for examples see
[1,3–5,17,36]. For multiple-load case, establishing the equivalence is harder, except
for some special cases [31]. Nevertheless, it is worth mentioning that the solution
of the simplified linear programming formulations provides a reference lower bound
plastic design that can be used at early design stages or as an initial truss layout for
multilevel optimization problems, for example [16].

The optimization problems are usually formulated by using a ground structure
approach [8] in which a set of nodes is distributed in the design domain and all the
possible interconnecting bars are generated. The main goal is then to determine the
optimal cross-sectional areas of these bars and obtain the lightest structure that is
able to sustain a given set of applied load cases. In order to find the ultimate optimal
designs that converge to the corresponding exact solution of the so-called generalized
Michell trusses [15,22,23] or solutions less sensitive to nodal positions, which may
actually be dealt with by non-linear geometry optimization of involving smaller size
problems [5], we need to use a very large number of nodes [9]. However, this results in
a huge number of possible bars and causes that the underlying optimization problems
impose additional requirements on the existing solution techniques. The challenges are
apparent for a single-load case problems and increase significantly whenmultiple-load
case problems are dealt with. Although attempts have been made to split the multiple-
load case problems into certain set of single-load case problems based on the principle
of superposition, they have been successful only for special loading conditions [30].
A need for a rigorous treatment of multiple-load case problems still exists.

An adaptive ground structure approach proposed in [10] has been applied in several
studies [33]. It is an iterative procedure, closely related to column generation methods
for linear programming [14,24] where the problems are initially solved for a minimal
connecting bars and subsequently members are added until the optimal design is
obtained. The technique is very attractive because it relies on solving a sequence
of smaller problems and avoids the need of solving the full formulation which is
prohibitively expensive due to its excessive size. However, after performing the first
few member adding iterations, the size of the sub-problems grows and they require
extensive computational effort to reach the solution.

The purpose of this article is to address these challenges by developing a special
purpose solution technique based on primal-dual interior point method [37] which is
well-known to deliver fast convergence in practice and excel on large-scale problems.
For more details and a survey of recent developments in the primal-dual interior point
method, we refer the reader to [12] and the references therein.

123



A specialized primal-dual interior point method for the…

Interior point methods usually reach a solution after a modest number of iterations.
However, a single iteration in these methods might be expensive when very large-
scale problems are solved. In such cases, an improvement in the efficiency might
sometimes be delivered by replacing direct linear algebra techniques with well-suited
iterative methods equipped with efficient preconditioners, see [6,7,12] and the refer-
ences therein.

In this paper, we address several aspects of interior point method implementation
and demonstrate how to specialize it to single- and multiple-load case plastic truss
layout optimization problems and achieve major improvements of its efficiency. In
particular, we focus on three important algorithmic features of IPMs which contribute
most to the improvement of the overall efficiency of the method.

First of all, we exploit the algebraic structure of structure of the optimization prob-
lems when solving normal equation formulation of the reduced Newton systems. We
exploit a particular sparsity structure of the LP constraint matrix to perform implicit
eliminations and to reduce significantly the size of these linear equation systems in
which we determine the search direction for the virtual displacements. To be precise
with the size of the linear systems, for problems on N -dimensional design domain,
with d nodes inter-connected by n(� d) member bars, and subjected to nL indepen-
dent load cases, we solve linear systems with anm ·nL ×m ·nL ,m ≈ Nd, coefficient
matrix instead of that with an (m+n) ·nL × (m+n) ·nL matrix in the case of standard
normal equations.

Secondly, we employ iterative methods to solve the already reduced linear systems.
We use conjugate gradient method [18,32] with a preconditioner designed to exploit
the particular sparsity structure and other mathematical properties of the reduced
geometry matrix.

Finally, we take advantage of the similarity of the sequence of problems after some
of the first few member adding iterations. In that case, a warm-start strategy [11,13]
is used to define an initial point for the interior point algorithm. This significantly
reduces the number of interior point iterations when compared to a cold-start strategy
which consists of solving every problem from scratch.

Let us mention at this point that interior point methods have already been applied
in the context of truss topology optimization problems. A specialized variant of such
methodwas used in [19]. The linear systems applied to compute search directionswere
reduced to involve only the displacement variables and one dual variable associated to a
volume constraint. The resulting linear systemswere dense because nomember adding
strategy was used. These systems were solved using direct methods of linear algebra.
Alternative approaches to truss topology optimization problem include a reformulation
as an unconstrained optimization problem using only displacement variables, solved
by a gradient descent method [4].

The article is organized in the following manner. In Sect. 2, the overview of a the
primal-dual interior point method for a standard linear programming is presented. In
Sect. 3, the plastic truss layout optimization, its dual formulation, and the member
adding scheme are described. In Sect. 4, the structure-exploiting linear algebra tech-
niques are discussed. In Sect. 5, the iterative method and the applied preconditioner
are described. In Sect. 6, the warm-start strategy is explained. The implementation of
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the method is discussed in Sect. 7 and the numerical results are discussed in Sect. 8.
Finally, the conclusions are given in Sect. 9.

2 Primal-dual interior point method for linear programming

Consider the standard primal linear problem

minimize
x

cT x

subject to Ax = b
x ≥ 0,

(1)

where A ∈ R
m×n , x, c ∈ R

n , and its dual problem

maximize
y,s

bT y

subject to AT y + s = c
s ≥ 0,

(2)

where y, s ∈ R
m . In primal-dual interior point methods, we introduce a barrier param-

eter μ > 0 and formulate the perturbed first-order optimality conditions as

Ax = b

AT y + s = c

XSe = μe

x ≥ 0, s ≥ 0,

(3)

where X = diag(x), S = diag(s), and e = (1, . . . , 1) of appropriate size. Then, we
solve the system (3) for a sequence of μk → 0 to find the solution of the primal (1)
and dual (2) problems. We apply Newton’s method to the optimality conditions (3)
and solve the linear system

⎡
⎣
0 AT I
A 0 0
S 0 X

⎤
⎦

⎡
⎣

Δx
Δy
Δs

⎤
⎦ =

⎡
⎣

ξd
ξp
ξc

⎤
⎦ , (4)

where ξd = c−AT y−s, ξp = b−Ax , , and ξc = μe−XSe.We follow theMehrotra’s
predictor-corrector method [25] to determine the search directions (Δx,Δy,Δs) in
two steps. First, we solve the system (4) with the right hand side (ξd , ξp,−XSe)T to
find the predictor direction (Δxa,Δya,Δsa). Then, we determine the maximal primal
ᾱp and dual ᾱd step lengths

ᾱp = max{α ∈ (0, 1] : x + αΔxa ≥ 0}
ᾱd = max{α ∈ (0, 1] : s + αΔsa ≥ 0}. (5)

123



A specialized primal-dual interior point method for the…

Next, we compute μ as

μ = ((x + ᾱpΔxa)T (s + ᾱdΔsa))3

n(xT s)2
, (6)

and solve once again the system (4) with the right hand side (0, 0, μe − ΔXaΔsa)T

to find the corrector direction (Δxc,Δyc,Δsc). Finally, we determine the final primal
αp and dual αd step lengths as

αp = τ max{α ∈ (0, 1] : x + α(Δxa + Δxc) ≥ 0}
αd = τ max{α ∈ (0, 1] : s + α(Δsa + Δsc) ≥ 0}, (7)

where τ ∈ (0, 1). Then, the new iterate (x+, y+, s+) is

x+ = x + αp(Δxa + Δxc)

(y+, s+) = (y + αd (Δya + Δyc), s + αd(Δsa + Δsc)). (8)

When solving the system (4) in most primal-dual interior point algorithms, the
unknowns Δs and Δx are eliminated first and a smaller system called the normal
equations is solved.

AXS−1ATΔy = ξ, (9)

where ξ is the appropriate right hand.
We assume any general solver that uses interior point method would solve the

normal equations (9) or other larger systems and perform backward substitution to
determine the other directions. Particularly, in case of (9), Δx and Δs.
However, for the plastic layout optimization of trusses covered in this article, we can
further exploit their algebraic structure and find a much smaller system than (9) which
can be efficiently solved. This is described in Sect. 4.

3 The plastic truss layout optimization problem

The plastic truss layout optimization problem is formulated following the ground
structure approach in which a finite set of nodes, say d, are (uniformly) distributed
in the design domain. The nodes are then connected by all possible potentials bars
n � d. If the overlapping bars are included, then n = d(d − 1)/2. We define an
optimization problem in which the design variables are the cross-sectional areas ai ,
i = 1, . . . , n of the member bars.

Let m(≈ Nd, N is the dimension of the design domain) be the number of the
non-fixed degrees of freedom, f� ∈ R

m, � ∈ {1, . . . , nL} be a set of external forces
applied to the structure, and q+

� , q−
� ∈ R

n+ be the associated tensile and compressive
forces of the bars, respectively.
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Then, the multiple-load least-weight truss topology optimization in plastic design can
be formulated as

minimize
a,q�

lT a

subject to Bq+
� − Bq−

� = f�, � = 1, . . . , nL
a ≥ 1

σ+ q
+
� + 1

σ− q
−
� , � = 1, . . . , nL

a ≥ 0
q+
� ≥ 0, q−

� ≥ 0, � = 1, . . . , nL ,

(10)

where l ∈ R
n is a vector of bar lengths, and σ− > 0 and σ+ > 0 are the

material’s yield stresses in compression and tension, respectively. Problem (10) is
a linear program. After introducing primal slack variables x� ∈ R

n+, � ∈ {1, . . . , nL}
to the inequality constraints and transforming them to equality constraints, i.e.,
to

−a + 1

σ+ q+
� + 1

σ− q−
� + x� = 0, � = 1, . . . , nL ,

we derive the dual problem associated with (10) given by

maximize
u�,y�,sa ,sq� ,sx�

∑
f T� u�

subject to −∑
y� + sa = l

BT u� + 1
σ+ y� + sq+

�
= 0, � = 1, . . . , nL

−BT u� + 1
σ− y� + sq−

�
= 0, � = 1, . . . , nL

y� + sx�
= 0, � = 1, · · · , nL

sa ≥ 0

sq+
�

≥ 0, sq−
�

≥ 0, sx�
≥ 0, � = 1, . . . , nL ,

(11)

where u� ∈ R
m denotes the virtual nodal displacement, sq+

�
, sq−

�
, y� ∈ R

n, � ∈
{1, . . . , nL}, and sa ∈ R

n .

3.1 Themember adding

We follow the member adding strategy proposed in [10]. It is an iterative process that
starts with a structure constituting a minimum connectivity, see Fig. 1 for example.
Let n0 be the number of bars in the initial structure. Let K0 ⊂ {1, . . . , n} be the
set of indices of the bars for which the optimization problems (10) and (11) are cur-
rently solved. Next, we compute the dual violations and generate the set K defined
by

K =
{
j ∈ {1, . . . , n}\K0| 1

l j

nL∑
�=1

(
σ−ε−

� j
+ σ+ε+

� j

)
≥ 1 + β

}
, (12)
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(a) (b)

Fig. 1 Initial designs. a Two-dimensional problems b three-dimensional problems

where the virtual strains are ε+
� j

= max{(BT u∗
�) j , 0} and ε−

� j
= max{−(BT u∗

�) j , 0}
with u∗

� denoting the optimal virtual nodal displacement and β > 0 some allowed
tolerance. Then, the bars with indices in K are identified, filtered, and finally added
in new problem instance. The member adding process stops when K = ∅.

There are several heuristics approaches to filter and determine how many of the
bars with indices in K should be added when formulating the new problem instances.
Here, we present three.

AP1 Include all members in K .
AP2 Sort the members in K and include the largest min{αn0, |K |}members, where

α ≤ 1. For example, α = 0.1 implies at most 10% of the initial number of
bars. This is one of the techniques used in [10].

AP3 Include those in { j ∈ K |l j ≤ Lk}, where Lk is a limit on the lengths of the
bars to be added at the kth member adding iteration. Its value increases at every
member adding iteration, and reaches the maximum possible length. Particu-
larly, for the numerical experiments in this paper, we use a simple heuristic
rule Lk = 2kr , where r is the diagonal distance between two adjacent nodes.
This is motivated by the scheme used in [33].

4 Exploiting the algebraic structures

In this section, we describe how the utilize the structure of the least-weight truss layout
problems. The primal and dual least-weight truss layout problems (10) and (11) are
equivalent to the standard primal-dual linear programming problems (1)-(2) with

x = (
a, q+

1 , . . . , q+
nL , q

−
1 , . . . , q−

nL , x1, . . . , xnL
)

y = (
u1, . . . , unL , y1, . . . , ynL

)

s =
(
sa, sq+

1
, . . . , sq+

nL
, sq−

1
, . . . , sq−

nL
, sx1 , . . . , sxnL

)
, (13)
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and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 B · · · 0 −B · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...

0 0 · · · B 0 · · · −B 0 · · · 0
−I 1

σ+ I · · · 0 1
σ− I · · · 0 I · · · 0

...
...

. . .
...

...
. . .

...
...

. . .
...

−I 0 · · · 1
σ+ I 0 · · · 1

σ− I 0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

0 B̃ −B̃ 0
− Ĩv

1
σ+ Ĩ 1

σ− Ĩ Ĩ

]
, (14)

where (borrowing Matlab notation) B̃ = blkdiag(B, . . . , B), Ĩ = blkdiag(I , . . . , I ),
and Ĩv = (I , . . . , I )T . Consequently, the coefficient matrix of the normal equations
(9) is

AXS−1AT =
⎡
⎣
B̃ D̃11 B̃T B̃ D̃12

D̃T
12 B̃

T D̃22

⎤
⎦ , (15)

where

D̃11 = Q̃+ S̃−1
q+ + Q̃− S̃−1

q−

D̃12 = 1

σ+ Q̃+ S̃−1
q+ − 1

σ− Q̃− S̃−1
q−

D̃22 = ĨvAaS
−1
a Ĩ Tv + 1

(σ+)2
Q̃+ S̃−1

q+ + 1

(σ−)2
Q̃− S̃−1

q− + X̃ S̃−1
x (16)

and Aa = diag(a), Q̃+ = blkdiag(Q+
1 , . . . , Q+

nL ) with Q+
� = diag(q+

� ), Q̃− =
blkdiag(Q−

1 , . . . , Q−
nL )with Q−

� = diag(q−
� ), X̃ = blkdiag(X1, . . . , XnL )with X� =

diag(x�), Sa = diag(sa), S̃q+ = blkdiag(Sq+
1
, . . . , Sq+

nL
)with Sq+

�
= diag(sq+

�
), S̃q− =

blkdiag(Sq−
1
, . . . , Sq−

nL
)with Sq−

�
= diag(sq−

�
), and S̃x = blkdiag(Sx1, . . . , SxnL )with

Sx�
= diag(sx�

).
The matrix in (15) has dimension (m + n) · nL × (m + n) · nL of which D̃22 is

an n · nL × n · nL matrix and recall that n � m. When the problems are solved with
general solvers that use the primal-dual interior point method, the Newton system in
(4) is at most reduced to the normal equations with the coefficient matrix in (15).
In this article, we further utilize the structure of the matrix D̃22 which is a diago-
nal matrix for single-load case problems and built of blocks of diagonal matrices for
multiple-load case problems. Example of such structure for a three-load case is dis-
played in Fig. 3b. In either case, it can be explicitly inverted at almost no cost. Then,
instead of solving the normal equations with the larger coefficient matrix (15) which
displays structures as in Fig. 2a and c, we solve a much smaller system

B̃ D̃ B̃TΔu = ξu, (17)
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(a) (b) (c) (d) 

Fig. 2 a and c show the sparsity structure of (15), and b and d show the sparsity structure of (17). a
Single-load case, b single-load case, c three-loads case, d three-loads case

where
D̃ = D̃11 − D̃12 D̃

−1
22 D̃T

12 (18)

and ξu the resulting appropriate right hand side. The coefficient matrix B̃ D̃ B̃T has
dimension m · nL × m · nL and its corresponding sparsity structures are shown in
Fig. 2b and d. Note that for the single-load case problems, the reduction does not even
affect the sparsity structure of the block (1, 1) of (15).

Remark 1 The matrix B̃ D̃ B̃T has always a dimension m · nL × m · nL . However, its
sparsity depends on the member adding iterations.

Remark 2 Algebraic structure was exploited in interior point method for a nonlin-
ear programming formulation of the minimum compliance problem for truss design
developed in [19]. The linear systems in this method were reduced to the ones which
involved only the displacements and one extra dual variable corresponding to the
volume constraint. The reduced systems in [19] solved using direct methods were
completely dense, and no member adding strategy was used.

5 Iterativemethods for linear systems

Applying direct methods of linear algebra to (17) is challenging due to the size and
density of the matrix involved especially for the three-dimensional problems, see
Sect. 8.3 and Table 6. Hence, we use the preconditioned conjugate gradient method,
that is, we solve the system

M−1 B̃ D̃ B̃TΔu = M−1ξu, (19)

where M is a suitable preconditioner. In this section, we propose a preconditioner
that well approximates the matrix B̃ D̃ B̃T in the sense of Frobenius norm and has the
sparsity pattern determined from the detailed features of B̃ and D̃. These are described
below for two-dimensional problems. Similar steps can be followed to extend the
analysis to three-dimensional problems, see also Remark 3.

We start with analyzing the entries of the matrix B ∈ R
m×n . Since, theses are

direction cosines, we have |Bi j | ≤ 1,∀(i, j). The number of non-zero entries in
each row cannot exceed m/2 which implies (BBT )i i ≤ m/2,∀i . Note that, m/2 is
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Fig. 3 a The matrix BBT for a two dimensional problem. m = 56, maxi (BB
T )i,i = 20.1058,

maxi |(BBT )i,i+1| = 6.7788, and ||BBT ||F = 108.8457. b The sparsity structure of the matrix D̃ in
(17) for three-loads case problem

the number of nodes in the structure before removing any fixed degrees of freedom.
Assembling B in the natural way, the sub-diagonal elements of BBT are the sum
of products of sines and cosines of angles which implies |(BBT )i,i+1| ≤ m/4 ∧
|(BBT )i−1,1| ≤ m/4. Otherwise, |(BBT )i, j | ≤ 1. Therefore, the Frobenius norm
of BBT is dominated by the elements on its three diagonals, that is, the entries with
indices in the set T defined by

T = {
(i, j) ∈ Zm++ × Zm++||i − j | ≤ 1

}
. (20)

See also Fig. 3a. Moreover, we derive the following bound

||BBT ||2F ≤ m
(m
2

)2 + (2m − 2)
(m
4

)2 + (m2 − (3m − 2)), (21)

where the first and second terms in the right hand side are contributions from the
entries with indices in T and the last term accounts for the remaining off-diagonal
elements.

Recall that B̃ = blkdiag(B, . . . , B) and D̃ has the sparsity structure displayed in
Fig. 3b. Then, the matrix B̃ D̃ B̃T has the structure

B̃ D̃ B̃T =
⎡
⎢⎣

BD̃1,1BT · · · BD̃1,nL B
T

...
. . .

...

BD̃nL ,1BT · · · BD̃nL ,nL B
T

⎤
⎥⎦ (22)

where the block matrices D̃k,l , k, l ∈ {1, . . . , nL} are diagonal. Define the sets

B = ∪nL
k=1

{
i |(D̃k,k)i i ≥ δ

}
and N = {1, . . . , n}\B, (23)
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and consequently consider the partition B = [BB, BN ] that gives B̃ = [B̃B, B̃N ] and
D̃ = [D̃B, D̃N ]. Then

B̃ D̃ B̃T = B̃B D̃B B̃T
B + B̃N D̃N B̃T

N . (24)

Let ni be themaximumnumber of non-zero entries in row i of BN . Then ni ≤ m/2,∀i .
Moreover, |(BN BT

N )i,i | ≤ ni , |(BN BT
N )i,i−1| ≤ ni/2 and |(BN BT

N )i,i+1| ≤ ni/2.
Then, the error in the normal equations after dropping the contribution of the Dii , i ∈
N can be estimated as

||B̃ D̃ B̃T − B̃B D̃B B̃T
B ||2F = ||B̃N D̃N B̃T

N ||2F
≤ δ2n4L ||BN BT

N ||2F
≤ δ2n4L

( m∑
i

n2i +
2m−2∑

i

(ni
2

)2 + Δ
)

(25)

whereΔ ≤ (m2−(3m−2)) is the less significant contribution from the non-tridiagonal
elements.

We propose the preconditioner M defined by

(Mk,l)i j =
{

(BD̃k,l BT )i j , if (i, j) ∈ T

(BB D̃Bk,l BT
B )i j , otherwise,

(26)

for k, l ∈ {1, . . . , nL}. In this case, we have

||B̃ D̃ B̃T − M ||F ≤ δn2L
√

Δ. (27)

Remark 3 For three dimensional problems, the set of indces T in (20) is extended to

T = {
(i, j) ∈ Zm++ × Zm++||i − j | ≤ 2

}
. (28)

Remark 4 For some of the first few interior point iterations, we use a simpler precon-
ditioner

(Mk,l)i j =
{

(BD̃k,l BT )i j , if (i, j) ∈ T

0, otherwise,
(29)

for k, l ∈ {1, . . . , nL} unless the the warm-start strategy described in Sect. 6 is acti-
vated.

In Sect. 7,wediscuss inmore detail the practical effects of using the preconditioners,
their implementation, and the spectral properties of linear systems solved.
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6 Warm-start strategy

Here, we describe the warm-start strategy for truss layout optimization problems. At
every member adding iteration described in Sect. 3.1, we generate the set K in (12)
to identify and add the new members. In that case, the size of the problem grows and
the new variables are appended to the problem

(a, q+
� , q−

� , x�) → (a, ā, q+
� , q̄+

� , q−
� , q̄−

� , x�, x̄�)

(u, y�) → (u, y�, ȳ�)(
sa, sq+

�
, sq−

�
, sx�

)
→

(
sa, s̄a, sq+

�
, s̄q+

�
, sq−

�
, s̄q−

�
, sx�

, s̄x�

)
, (30)

where all the variables with the super-bar are vectors in R
k , k = |K |, and � ∈

{1, . . . , nL}.

6.1 Computing a warm-start point

The starting point for the part of the variables in the right hand side of (30) that
correspond to the old ones, i.e., those without super-bar, is the solution that is saved
while solving the preceding problem with a loose relative optimality tolerance that
depends on the level of similarity between the problems, see Sect. 7. This choice of
loose tolerances is to avoid points located close to the boundary of the feasible region
which could adversely affect the behaviour of interior point methods [11]. Below we
propose the initial point for the newly added variables.

We set ȳ as

(ȳ�) j = −σmax |(B̄T u�) j | − μ
1
2
0 , ∀ j ∈ K , (31)

where σmax = max{σ−, σ+} and μ0 is the value of the barrier parameter at the time
when the solution was saved. Next, we define the new dual slack variables as

(s̄a) j = max

{∣∣∣∣∣l̄ j +
∑

�

(ȳ�) j

∣∣∣∣∣ , μ
1
2
0

}
, ∀ j ∈ K

s̄q+
�

= −B̄T u� − 1

σ+ ȳ� ≥ μ
1
2
0

σ+ ,

s̄q−
�

= B̄T u� − 1

σ− ȳ� ≥ μ
1
2
0

σ− , s̄x�
= −ȳ�, ∀� ∈ {1, . . . , nL}. (32)

Moreover, the new primal variables are set as

(q̄+
� ) j = (q̄−

� ) j = 0.1μ
1
2
0 , ∀ j ∈ K , ∀� ∈ {1, . . . , nL}

ā = μ0 S̄
−1
a e

x̄� = ā, ∀� ∈ {1, . . . , nL}. (33)
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Finally, we derive the bounds on the violations of primal and dual infeasibility and
complementarity constraints for these newly introduced variables.

6.1.1 Primal infeasibility

The primal infeasibilties ξp�
= (ξp1,� , ξp2,� ), � ∈ {1, . . . , nL} are

∥∥ξp1,�

∥∥∞ = || f� − Bq+
� − B̄q̄+

� + Bq−
� + B̄q̄−

� ||∞
= || f� − Bq+

� + Bq−
� ||∞

=
∥∥∥ξ0p1,�

∥∥∥∞ ,

||ξp2,� ||∞ =
∥∥∥∥ā − 1

σ+ q̄+
� − 1

σ− q̄−
� − x̄�

∥∥∥∥∞

=
∥∥∥∥− 1

σ+ q̄+
� − 1

σ− q̄−
�

∥∥∥∥∞

≤ 0.2μ
1
2
0

σmin
, (34)

where σmin = min{σ−, σ+} and ||ξ0p1,� || is the infeasibiliy from the prior problem.
The expressions in (34) illustrate that primal infeasibility is expected to be small and
therefore should not be an issue.

6.1.2 Dual infeasibility

The last three dual infeasibilties in (11) can be easily shown to be (ξd2,� , ξd3,� , ξd4,� ) =
(0, 0, 0) from (32) by direct substitution. However, for ξd1,� , we have

∥∥ξd1

∥∥∞ =
∥∥∥∥∥l̄ +

∑
�

ȳ� − s̄a

∥∥∥∥∥
∞

≤
∥∥∥∥∥2

∣∣∣∣∣

(
l̄ − σmax

∑
�

∣∣∣B̄T u�

∣∣∣
)∣∣∣∣∣ + (2nL + 1)μ

1
2
0 e

∥∥∥∥∥
∞

. (35)

This is the violation of the first dual constraint in (11) which is actually proportional to
the magnitude of the dual violations used as criteria for adding the members, see (12).
Such violation may be considerable, especially in the early member adding iterations.
The warm starting routine [11,13] will be applied to absorb it.

6.1.3 Centrality

In order to assess the centrality of the new point, we will compute complementarity
products for all newly added variables. The pairs (ā, s̄a) are μ0-centered from (33).
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Below, we evaluate the remaining complementarity products (q̄+
� , s̄q+

�
), (q̄−

� , s̄q−
�
),

(x̄�, s̄x�
), � ∈ {1, . . . , nL}.

(q̄+
� ) j

(
s̄q+

�

)
j
= 0.1μ

1
2
0

(
−B̄T u� − 1

σ+ ȳ�

)

j

= 0.1μ
1
2
0

(
−B̄T u� + σmax

σ+ |B̄T u�| + 1

σ+ μ
1
2
0 e

)

j
, (36)

(q̄−
� ) j

(
s̄q−

�

)
j
= 0.1μ

1
2
0

(
B̄T u� − 1

σ+ ȳ�

)

j

= 0.1μ
1
2
0

(
B̄T u� + σmax

σ− |B̄T u�| + 1

σ− μ
1
2
0 e

)

j
. (37)

The above two equations show that for any j ∈ K , either of the products (q̄+
� ) j (s̄q+

�
) j

or (q̄−
� ) j (s̄q−

�
) j is always nearlyμ0-centered when σ+ = σ− depending on the sign of

(B̄T u�) j . Nevertheless, using the fact that the maximum number of non-zero entries
in each column of B̄ is 2N for N -dimensional problem and the absolute value of these
entries does not exceed unity, we have

|(B̄T u) j |� ≤ 2N |u�|∞, N ∈ {2, 3}.

Then, we get the following general estimate.

0.1

σ+ μ0 ≤ (q̄+
� ) j

(
s̄q+

�

)
j
≤ 0.1μ

1
2
0

(
2
σmax

σ+ |B̄T u�| + 1

σ+ μ
1
2
0 e

)

j

≤ 0.1

σ+ μ0 + 0.4μ
1
2
0 N

σmax

σ+ |u�|∞, ∀ j ∈ K . (38)

Similarly,

0.1

σ− μ0 ≤ (q̄−
� ) j

(
s̄q−

�

)
j
≤ 0.1

σ− μ0 + 0.4μ
1
2
0 N

σmax

σ− |u�|∞, ∀ j ∈ K . (39)

Finally,

(x̄�) j
(
s̄x�

)
j = −(ā) j (ȳ�) j = −μ0

(ȳ�) j
(s̄a) j

= −μ0
(ȳ�) j

max

{∣∣l̄ j + ∑
�(ȳ�) j

∣∣ , μ
1
2
0

}

≤ −μ
1
2
0 (ȳ�) j = μ

1
2
0

(
σmax |(B̄T u�) j | + μ

1
2
0

)

≤ μ0 + 2μ
1
2
0 N |u�|∞. (40)
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On the other hand,

(x̄�) j
(
s̄x�

)
j = −μ0

(ȳ�) j

max

{∣∣l̄ j + ∑
�(ȳ�) j

∣∣ , μ
1
2
0

}

= μ0

(
σmax |(B̄T u�) j | + μ

1
2
0

)

max

{∣∣l̄ j − σmax
∑

�

∣∣ (B̄T u�) j

∣∣∣∣−nLμ
1
2
0

∣∣∣∣ , μ
1
2
0

}

≥ μ0

(
σmax |(B̄T u�) j | + μ

1
2
0

)

max

{
σmax

∑
� |(B̄T u�) j | + nLμ

1
2
0 , μ

1
2
0

}

= μ0

(
σmax |(B̄T u�) j | + μ

1
2
0

)

σmax
∑

� |(B̄T u�) j | + nLμ
1
2
0

≥ μ0
μ

1
2
0

2nLσmax N max� |u�|∞ + nLμ
1
2
0

= μ0
1

nL

(
2σmaxμ

−1
2
0 N max� |u�|∞ + 1

) (41)

Then,

1

nL

(
2σmaxμ

−1
2
0 N max� |u�|∞ + 1

)μ0 ≤ (x̄�) j (s̄x�
) j ≤ μ0+2μ

1
2
0 N |u�|∞, ∀ j ∈ K .

(42)
The estimates in (38), (39), and (42) show that the pairs (q̄+

� , s̄q+
�
), (q̄−

� , s̄q−
�
), (x̄�, s̄x�

),
� ∈ {1, . . . , nL} have no significant outliers from the μ0-centrality because the shift-

like terms involving |u�|∞ in the upper bounds are multiplied by μ
1
2
0 . Therefore, their

contribution to the violation of μ0-centrality is reduced to some extent. Moreover,
these terms are found out to be small in practice.

7 Implementation, algorithmic parameters, and problem data

The interior pointmethod is implemented inMATLAB (R2016a).All numerical exper-
iments are performed on Intel(R) Core(TM) i5-4590T CPU, running at 2.00 GHz with
16 GB RAM. The interior point iterations stop when

123



A. G. Weldeyesus, J. Gondzio

||ξ kp||∞
1 + ||b||∞ ≤ εp,

||ξ kd ||∞
1 + ||c||∞ ≤ εd , and

|cT xk − bT yk |
1 + |cT xk | ≤ εopt , (43)

or μ < 10−10, where ξp and ξd are given as (4).

7.1 Algorithmic parameters

The initial points for the case of cold-start are set x0, s0 both to unity and y0 to
zero. The feasibility tolerances in (43) are set as εp = εd = 10−6 when the linear
systems (17) are solved using direct methods. Otherwise εp = εd = 10−5. For the
optimality tolerance, we use loose tolerances in the first few member adding iterations
and then tighter in the last ones, i.e., εopt = [10−2, 10−2, 10−2, 10−2, 10−3, 10−4],
and then always 10−5, unless specified. We use τ = 0.95 in (7) for the step lengths
and β = 0.001 in (12) for the the member adding criteria.

7.2 The preconditioner

In case of the cold-start, we use the simple preconditioner (29) as long as μ > 10−3

since there is a relative uniformity in the diagonal elements of the matrix D̃ in (18).
However, when μ ≤ 10−3 or in general when the warm-starting strategy is invoked,
we use the splitting preconditioner (26). To determine the threshold parameter δ in
(23), recall that m is the number of non-fixed degrees of freedom and n(� m) is the
number of bars. We then set δ to be the smallest of the largest m diagonal elements in
D̃ in (18) for the two-dimensional problems, and the smallest of the largest [m/3] ele-
ments for the three-dimensional problems. This choice is based on performing many
numerical experiments and at this stage we do not have any theoretical justification
why we needed a larger number of the diagonal elements in D̃ for two-dimensional
problems compared to that of the three-dimensional problems.We have included Fig. 4
to give an insight into the eigenvalue distribution of the unpreconditioned B̃ D̃ B̃T and
preconditioned M−1 B̃ D̃ B̃T matrices for small size two- and three-dimensional prob-
lems Example 5a I and Example 5c I in Table 1. The distributions are shown for the
final linear programs in the member adding scheme and the last interior point itera-
tion. The histograms display the number of eigenvalues of a given magnitude. The
Fig. 4a and c show that eigenvalues of the upreconditioned matrices are spread over
a large range roughly between 10−7−108 for the two-dimensional and 10−6−106 for
the three-dimensional problems. However, for the preconditioned matrices the distri-
bution clusters within the interval roughly 0.003–2 for the two-dimensional problem
and 0.01–2 for the three-dimensional problem, see Fig. 4b and d. Moreover, most of
these eigenvalues are clustered near 1.

For the preconditioned conjugate gradient method (pcg), we set the maxi-
mum number of iterations to 100 when the simple preconditioner (29) is used
and to 80 when the splitting preconditioner (26) is used. The tolerance is set to
max{min{10−4, 0.1||ξ ||2}, 10−6}, where ξ is the residual given as in (4), i.e, we use
tighter tolerance for the pcg when iterates are close to optimality.
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(a) (b)

(c) (d)

Fig. 4 Eigenvalue distributions of the unpreconditioned B̃ D̃ B̃T and preconditioned M−1 B̃ D̃ B̃T matri-
ces for the problems Example 5a I and Example 5c I in Table 1 for the final LPs and during the last
interior point iterations. Logarithmic scale for eigenvalue magnitude is used. a Example 5a I: Eigenvalue
distribution of B̃ D̃ B̃T . b Example 5a I: Eigenvalue distribution of M−1 B̃ D̃ B̃T , nnz(M)/nnz(B̃ D̃ B̃T ) =
0.2003. c Example 5c I: Eigenvalue distribution of B̃ D̃ B̃T . d Example 5c I: Eigenvalue distribution of
M−1 B̃ D̃ B̃T , nnz(M)/nnz(B̃ D̃ B̃T ) = 0.0915

Table 1 Problem statistics for the problems in Fig. 5 for three level of nodal density distributions

Problems Nodal densities Number of potential bars Number of DOF Load cases

Example 5a I 41 × 81 5,512,860 16,538,580 1

Example 5a II 61 × 121 27,235,890 81,707,670 1

Example 5a III 81 × 161 85,027,320 255,081,960 1

Example 5b I 41 × 81 5,512,860 27,564,300 2

Example 5b II 61 × 121 27,235,890 136,179,450 2

Example 5b III 81 × 161 85,027,320 425,136,600 2

Example 5c I 21 × 11 × 11 3,227,070 9,681,210 1

Example 5c II 29 × 15 × 15 21,284,550 63,853,650 1

Example 5c III 41 × 21 × 21 163,452,240 490,356,720 1

Example 5d I 9 × 9 × 25 2,049,300 10,246,500 2

Example 5d II 13 × 13 × 37 19,546,878 97,734,390 2

Example 5d III 17 × 17 × 49 100,259,880 501,299,400 2

The number of degrees of freedom (DOF) is based on the problem formulation (10), i.e, for the variables
(a, q+

�
, q−

�
). See also Remark 7
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Remark 5 For all of the two-dimensional problems in our numerical experiments, we
always use direct methods for solving the linear systems (17) unless n > 4m including
the case when the option is set to use iterativemethods. This is because, direct methods
significantly outperform the iterative ones as long as n remains comparable to m. In
practice, we observed that this happens only in the first two member adding iterations
for the AP3 filtering approach which is our choice.

7.3 The warm-start

If the option to use the warm-starting strategy is set to ’on’, then it is activated as
early as in the third member adding iteration. We use the solutions obtained with
tolerance εopt = 0.1 for warm-starting the third and fourth, εopt = 0.01 for the fifth
and sixth, and εopt = 0.001 for the seventh and the other subsequent problem instances
in the member adding iterations. This is because, the similarity between the problems
increases as we approach the last stages of the member adding iterations.

Remark 6 When the problems are too close, i.e., when only very few members are
added the initial points used in warm-starts often correspond to optimality tolerances
which are smaller than the prescribed ones 0.001–0.1. In that case, we save the solution
obtained after the third interior point iteration.

7.4 Problem data

For the numerical experiments, we solve the problems displayed in Fig. 5. The loads
are all nodal of unit magnitude. The dimensions of the design domains are 1 × 2,
1 × 2, 2 × 1 × 1, and 1 × 1 × 3 of unit lengths. The problems are solved for three
levels of nodal density distributions. The problem instances are named as Example 5a
I, Example 5a II, Example 5a III, Example 5b I and so on. Their statistics are given in
Table 1. The number of degrees of freedom is based on the problem formulation (10),
i.e, for the variables (a, q+

� , q−
� ). See also Remark 7. In all cases, we consider equal

tensile and compressive strengths of unity. The optimal designs are given in Fig. 6
where the bars shown are those with cross-sectional area ≥ 0.001amax.

Remark 7 Note that the size of the corresponding standard linear program of the form
(1) with the matrix A in (14) can be obtained from Table 1. For example, for the
three-dimensional problem Example 5c III with 163, 452, 240 bars, the corresponding
standard linear program (1)will have 653, 808, 960 primal variables and 163, 506, 471
constraints. Of course, by applying the member adding technique we avoid the need
of dealing with problems of such excessive sizes.

7.5 Starting structures

We always start with the structures shown in Fig. 1a for two-dimensional problems
and Fig. 1b for three-dimensional problems and then upgrade these structures based
on the member adding procedure described in Sect. 3.1.
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Fig. 5 Design domains, boundary conditions, and loads

Fig. 6 Optimal designs for the problems in Fig. 5. The bars shown are those with cross-sectional area
≥ 0.001amax
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Table 2 Numerical results comparing AP1, AP2, and AP3 for the problem Example 5a I in Table 1

AP1 AP2 AP3 All bars

α = 0.05 α = 0.1 α = 1

Volume 3.14725 3.14719 3.14722 3.14718 3.14720 3.14753

Final num. of bars 1,087,898 32,394 34,514 78,382 41,952 5,512,860

Mem. add. iter. 3 34 21 9 12 1

Total CPU (s) 558 121 70 50 25 1663

The linear systems (17) are solved using direct methods. Warm-start strategy activated at the third member
adding iterations. For AP1, εopt = [10−2, 10−4, 10−5, . . .] and when all bars are used as the last column
εopt = 10−5

Table 3 Numerical results comparing AP2 and AP3 for the problems Example 5a II and Example 5a III in
Table 1

Example 5a II Example 5a III

AP2 AP3 AP3

α = 0.05 α = 0.1 α = 1 α = 0.05 α = 0.1 α = 1

Volume 3.14508 3.14505 3.14502 3.14509 3.14399 3.14396 3.14393 3.14396

Final num. bars 77,497 90,826 221,822 100,508 141,657 167,446 463,324 197,132

Mem add. iter. 40 26 12 9 42 30 13 11

Total CPU (s) 544 356 385 90 1367 1087 1269 282

The linear systems (17) are solved using direct methods. Warm-start strategy activated at the third member
adding iterations

8 Numerical results

The reported CPU times correspond only to solving the optimization problems. In
Tables 2, 3, 4, 5, 6 and 7, the label “Final num. of bars” refers to the number of bars
considered in the linear programming problem formulation of the last member adding
iteration and not the number of bars with non-zero cross-sectional area.

8.1 The filtering approaches

We compare the three filtering approaches AP1, AP2, and AP3 in the member adding
process described in Sect. 3.1 applied to test problem Example 5a. It is solved for three
nodal densities

using the interior point method described in this paper where the linear systems (17)
are solved using direct methods, and the warm-start strategy is used. The numerical
results are presented in Tables 2 and 3. In the first table, we present all approaches
that additionally include the case when the problem is solved for all potential member
bars. In the second table, we compare only AP2 and AP3 as the problem is larger in
this case. In general, the results illustrate two outcomes. The first one is the efficiency
of the member adding method, i.e, it obtains solutions using approximately 1% of
all the possible members and it needs significantly less time than a method which
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Table 5 Comparison of the number of interior point iterations when using cold-start and warm-start strate-
gies

Mem add. iter. 1 2 3 4 5 6 7 8 9 10 11 12

Example 5a I IPM iter. cold-start 10 13 18 19 23 28 30 31 31 31 30 –

IPM iter. warm-start 10 13 13 11 11 11 10 12 10 6 5 3

Example 5a II IPM iter. cold-start 11 14 20 22 26 32 37 37 38 – – –

IPM iter. warm-start 11 14 13 13 13 18 15 13 10 – – –

Example 5b I IPM iter. cold-start 13 17 17 19 23 28 30 30 30 31 – –

IPM iter. warm-start 13 17 17 12 12 13 18 14 – – – –

Example 5b II IPM iter. cold-start 15 20 20 22 28 32 36 35 35 – – –

IPM iter. warm-start 15 20 21 15 16 13 16 10 7 – – –

Example 5c I IPM iter. cold-start 12 16 18 17 21 23 26 – – – – –

IPM iter. warm-start 12 16 20 15 14 10 – – – – – –

Example 5c II IPM iter. cold-start 14 20 22 22 26 39 32 32 31 – – –

IPM iter. warm-start 14 20 24 17 14 11 9 6 – – – –

Example 5d I IPM iter. cold-start 14 17 19 19 22 26 28 – – – – –

IPM iter. warm-start 14 17 19 15 13 15 12 – – – – –

Example 5d II IPM iter. cold-start 16 21 24 23 28 33 40 37 37 37 – –

IPM iter. warm-start 16 21 21 19 16 13 12 9 – – – –

The linear systems (17) are solved using direct methods. AP3 filtering approach is used

uses all potential bars, see columns 6 and 7 in Table 2. The second observation is
that the approach AP3 seems to outperform the others. It obtains solutions faster by
using fewer member adding iterations keeping the sizes of the problems small enough,
somewhere between those obtained by strategy AP2 with α = 0.1 and α = 1. We
have also noticed this behaviour has been consistent for the other examples. Based on
these results, AP3 becomes our method of choice and we follow this approach in all
of the next examples.

8.2 Cold-start versus warm-start

In Table 4, we present numerical results to compare the warm-start and cold-start
strategies. The linear systems (17) are solved using direct methods. As it can be seen
in columns 5 and 10, the use of the warm-start strategy reduces the computational
time. This is achieved by reducing the number of interior point iterations, see Table 5.

Remark 8 In the early member adding iterations, warm-starting strategy is able to save
merely a few interior point iterations. However, in later stages of the member adding,
when only a few new members are added and the problem instances do not change
significantly, the warm-starting technique is very successful. In Table 5 the full history
of the interior point iterations is reported for a number of examples with cold-start
and warm-start strategies used. Additionally, in Fig. 7 we present the corresponding
optimal designs obtained with cold start and warm start strategies, respectively. The
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(a) (b)

(c) (d)

Fig. 7 Optimal designs for the problems Example 5a I and Example 5a II for cold-start and warm-start
strategies. The bars shown are those with cross-sectional area ≥ 0.001amax. a Example 5a I, cold-start. b
Example 5a I, warm-start. c Example 5a II, cold-start. d Example 5a II, warm-start

reader will observe that there is no noticeable difference in the optimal solutions
obtained with these two variants of the starting strategies.

Remark 9 We have observed that, the efficiency of the warm-start strategy further
improves when the iterative methods are used to solve the linear systems. This is
because it promotes the early start of the more efficient splitting preconditioner.

8.3 Direct methods versus iterative methods

In this section, we present numerical results to make comparisons between the use of
the direct and iterative methods to solve linear system (17). For direct methods, we use
the Matlab built-in function chol to find the Cholesky factorization of the coefficient
matrix. Once again, we consider some of the problems listed in Table 1 and report their
solution statistics in Table 6. The computational times reported in columns 4 and 8
demonstrate the efficiency of the iterative methods specially for the three-dimensional
problems, see the CPU times for Example 5d II in Table 6. There are two main
reasons why their efficiency for two-dimensional problems is not as pronounced as
for three-dimensional ones. Firstly, as pointed out in Sect. 7, we neededmore non-zero
entries of the diagonal matrix D̃ to determine the splitting preconditioner for the two-
dimensional problems. Thismakes the preconditionermore dense andmore expensive.
Secondly, the linear systems solved to compute the predictor and corrector directions
require relatively larger number of pcg iterations for two-dimensional problems, see
columns 11 and 12 of Table 6. These pcg iterations seem to be reduced if we consider
a denser preconditioner, but this leads to longer run times.
It is worth mentioning that three-dimensional problems are more relevant for practical
applications. However, they involve more complicated grids and this causes a quick
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loss of sparsity in computations. The use of iterative linear algebra solver produces
more spectacular savings over direct methods in this case.

8.4 Large-scale problems

In this section, we consider solutions of all the problem instances listed in Table 1
including the ones with the finest nodal density distributions. We include numerical
results when the problems are solved by a commercial solver MOSEK (version 7)
[27] with Matlab interface. This is to give an insight into the overall performance
of the interior point method of this paper and the techniques employed in reference
to existing solvers. For MOSEK, we set the algorithm to interior point method, the
maximum number of interior point iterations to 70, pre-solve ’on’, the primal and
dual feasibility tolerances 10−6, a member adding dependant optimality tolerance
[10−2, 10−2, 10−2, 10−2, 10−3, 10−4], and then always 10−5. This is similar to the
settings presented in Sect. 7 for our implementation.

Remark 10 The numerical results in Table 7 for using MOSEK and our version of
interior point method should not be considered as a direct comparison between the two
solvers for many reasons. There are important differences between these two solvers.
First, the implementations use different programming languages. Moreover, MOSEK
uses direct methods to solve linear systems in its interior point implementation. In
addition, the linear systems are reduced only to the normal equation systems (9) (or
(15) for the truss layout problems of this paper) and not further to the smaller system
(17). MOSEK uses powerful presolving which may significantly reduce the problem
size and as a result simplify the normal equations. For example, MOSEK’s CPU with
pre-solve turned ‘off’ for the first eleven problems in Table 7 is 75, 250, 522, 214,
605, 1890, 99, 785, 8413, 221, and 9555s. Our solver does not use pre-solve. Finally,
MOSEK uses its own default initial point and does not use a warm-start point.

The numerical results presented in Table 7, particularly columns 4 and 8, show that the
IPM of this paper is competitive for two-dimensional problems and very efficient for
three-dimensional problems, see the last four rows of these columns. Once again as
mentioned in the discussion on direct versus iterative methods, most practical appli-
cations are spacial, i.e., three-dimensional problems, and they are more challenging
to solve due to their excessive size. Therefore, having an efficient tool such as the one
presented in this paper able to solve three-dimensional problems is paramount.

Remark 11 Note that for a very dense nodal distribution, the solution of test problem
Example 5a is expected to be π [10], and those of problems Example 5b and d are
expected to converge to 7.78480 and 19.67476 which are the corresponding analytic
solutions to the exact least-weight truss layout problems as shown in [31] and [34],
respectively.

9 Conclusions

We have described a primal-dual interior point method that exploits the algebraic
structure of multiple-load plastic layout optimization of truss structures. The method
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is supported with a warm-start strategy that benefits from the closeness of the prob-
lems after performing few member adding iterations. Moreover, large linear systems
arising in the interior point method are solved using Krylov type iterative method.
The numerical results in Sect. 8 illustrate the overall efficiency of the method to solve
large-scale problems. The method excels on three-dimensional problems which are
more challenging due to high connectivity of the grids involved, and are significantly
more important for practical engineering applications than two-dimensional problems.
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