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ARTICLE INFO ABSTRACT

Keywords: Introduction: Inadequate fetal growth has severe consequences for both neonatal and adult development. It is
Placenta hypothesised that the feto-maternal interface associated with the lightest and male fetuses will undergo more
Eﬂdo_memum apoptosis and less proliferation than those supplying the closest to mean litter weight (CTMLW) and female
Porcine fetuses respectively.

Apoptosis

Methods: Placental and endometrial samples associated with the lightest and CTMLW (gestational day (GD) 18
and 30), male and female (GD45, 60 and 90) Large White X Landrace conceptuses or fetuses were obtained. The
mRNA expression of candidate genes involved in apoptosis or proliferation (BAX, BCL2, P53 and KI67) was
quantified by qPCR. TUNEL staining was performed on placental samples supplying the lightest and CTMLW
fetuses (GD45 and 60), of both sex (GD60).

Results: Placentas associated with the lightest fetuses had decreased P53 and KI67 expression compared to the
CTMLW fetuses at GD45. At GD60, P53 expression was increased in placentas supplying the lightest compared to
CTMLW fetuses. P53 expression was increased in endometrial samples associated with the lightest compared to
the CTMLW fetuses at GD45. At GD30 and GD60 respectively, BAX expression was increased and BCL2, P53 and
KI67 expression were decreased in endometrial samples associated with females compared to their male lit-
termates. TUNEL staining revealed no association between fetal size or sex, and apoptotic cell number.
Discussion: This study has highlighted dynamic associations between fetal size, sex, and apoptosis and pro-
liferation at the porcine feto-maternal interface. Further studies should be performed to improve the under-

Sexual dimorphism
Intrauterine growth restriction (IUGR)

standing of the mechanisms behind these findings.

1. Introduction

The establishment and maintenance of pregnancy requires sig-
nificant changes in uterine structure and function, including the for-
mation of new blood vessels in both the endometrium and placenta.
Apoptosis can occur by activation of either extrinsic or intrinsic path-
ways [1]. The intrinsic apoptosis pathway is tightly regulated by pro-
and anti-apoptotic members of the B-cell lymphoma 2 (BCL2) family of
proteins [1]. In response to cell stressors, tumour suppressor protein 53
(P53) is upregulated which initiates the intrinsic pathway.

Apoptosis has been described in the human placenta where it is
essential for trophoblast invasion, differentiation and survival [2-9].
Similarly, apoptosis and proliferation have been suggested to play a role
in implantation in the pig [10-13]. As pigs exhibit non-invasive epi-
theliochorionic placentation, extensive remodelling must occur at the
porcine feto-maternal interface to ensure that adequate nutrient
transfer can occur to meet fetal demands [14]. This remodelling is

* Corresponding author.

likely to involve extensive apoptosis and proliferation. Cristofolini et al.
[15], demonstrated that apoptotic cells are present in the porcine pla-
centa throughout gestation and that the number of apoptotic cells re-
lative to the total cell number in placental villi was associated with
gestational day (GD). A high number of apoptotic cells was observed at
GD28, presumably reflecting the extensive remodelling that occurs at
the feto-maternal interface during placentation. They also suggested
that BCL-2-associated X protein (BAX) is expressed at the feto-maternal
interface in early and late gestation, which would provide further evi-
dence for the activation of the intrinsic apoptotic pathway.
Appropriately regulated proliferation is essential for the establish-
ment and maintenance of a successful pregnancy. Several factors known
to be expressed at the feto-maternal interface during implantation have
been shown to activate Phosphatidylinositol-3 kinase (PI3K) - protein
kinase B (AKT) and Mitogen-activated Protein Kinase (MAPK) signaling
pathways to induce proliferation and/or migration of porcine tro-
phectoderm cells in vitro [reviewed by Ref. [16]]; highlighting the role
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of proliferation in pregnancy establishment in the pig.

Dysregulated apoptosis has been linked to pregnancy complications
including gestational trophoblast disease [17,18], preeclampsia
[19-23] and intrauterine growth restriction (IUGR) [21,24-30]. Pla-
centas associated with term IUGR human infants have increased
apoptosis compared to those supplying normally-grown infants [27,31].
Decreased placental BCL2 expression [29,30], accompanied by in-
creased BAX [29] expression has been observed in term IUGR placentas
compared to those supplying normally-grown infants. In the pig, it has
been suggested on a protein level that components of the proliferation
pathway are downregulated, accompanied by increased apoptotic stress
in placentas associated with IUGR fetuses compared to normal-body
weight fetuses at GD60, 90 and 110 [32].

Recent studies have revealed sexual dimorphism in human pla-
centas [33,34], with fetal sex influencing the expression of placental
genes and the inflammatory response [35,36]. Intriguingly, sexual di-
morphism has been demonstrated in P53 knockout mice, with de-
creased implantation rate, pregnancy rate and litter size observed when
matings were carried out using female P53 null mice, but not with male
P53 null mice [37]. On occasions where human pregnancy is compli-
cated by preeclampsia and IUGR, male offspring have increased peri-
natal mortality and morbidity [36,38]. Although it is proposed that
male new-born piglets have a survival disadvantage compared to their
female littermates [39], the possibility of sexual dimorphism in porcine
placental development is poorly understood. However, recent in-
vestigations in our laboratory have revealed striking relationships be-
tween fetal sex and both placental and endometrial vascularity [40].

This study aimed to improve the understanding of the relationship
between fetal size, sex and apoptosis and proliferation at the porcine
feto-maternal interface. It is hypothesised that IUGR in the pig occurs
due to aberrant conceptus attachment. Specifically, it is hypothesised
that apoptosis and proliferation pathways will be up- and down-regu-
lated respectively in the feto-maternal interface associated with the
lightest compared to the closest to mean litter weight (CTMLW) con-
ceptus or fetus and that the feto-maternal interface associated with
male fetuses will have increased apoptosis and decreased proliferation
compared to those supplying female fetuses throughout gestation.

2. Materials and methods

All procedures were performed with approval from The Roslin
Institute (University of Edinburgh) Animal Welfare and Ethical Review
Board and in accordance with the U.K. Animals (Scientific Procedures)
Act, 1986.

2.1. Experimental animals and sample collection

Large White X Landrace gilts (age 11-14 months; n = 31) were
observed daily for signs of oestrus and were housed in groups of 6-8
animals per pen. Oestrous cyclicity and ovarian function were con-
trolled in accordance with routine normal practice at The Roslin
Institute Large Animal Unit. In a subset of gilts (distribution between
the GD investigated indicated in Supplementary Table 1) oestrus was
synchronised by daily feeding of 20 mg Altrenogest (Regumate, Hoechst
Roussel Vet Ltd., Milton Keynes, U.K.) for 18 days followed by injection
of pregnant mare serum gonadotrophin (PMSG, Intervet UK Ltd, Milton
Keynes, U.K.) and human chorionic gonadotrophin (hCG; Intervet UK
Ltd, Milton Keynes, U.K.) [41]. All gilts were inseminated twice daily
for the duration of oestrus with semen from one of four sires (Large
White). The sires used were equally distributed throughout the GD to
attempt to minimise the effect of sire. The first day of insemination was
assigned as GDO and samples were obtained at GD18, 30, 45, 60 and 90
(n =5, 6, 6,11, and 8 respectively). Gilts were euthanised at the GD of
interest with sodium pentobarbitone 20% w/v (Henry Schein Animal
Health, Dumfries, U.K.) at a dose of 0.4 ml/kg by intravenous injection
via a cannula inserted in the ear vein. Following confirmation of death,
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mid-ventral incision revealed the reproductive tract. The tract was
lifted from the body cavity and placed in a dissecting tray. Both uterine
horns were dissected from the ovary towards the cervix.

At GD18, the uterine tract was rinsed with saline and pieces of string
were used to tie the end of the right and left uterine horns at the bi-
furcation. The uterine horns were cut between the two pieces of string
and each uterine horn was placed in a floatation device containing a
solution to preserve the integrity of the RNA. This solution was pre-
pared by dissolving 700 g ammonium sulphate (SLS, Nottingham, U.K.)
in 935 ml of RNase free water. Once dissolved, 25ml of 1 M sodium
citrate (Fisher Scientific, Loughborough, U.K.) and 40ml of 0.5M
ethylenediaminetetraacetic acid (EDTA) were added, and the solution
was adjusted to pH 5.2 using concentrated sulphuric acid. Using dis-
section scissors, the uterine horn was opened along the mesometrial
side, and the conceptuses floated upwards in the solution. The con-
ceptuses were removed and weighed in a cryovial (Starlab, Milton
Keynes, U.K.). The uterine lumen was occluded between each conceptus
to ensure that endometrial samples associated with individual con-
ceptuses could be identified. The lightest and CTMLW conceptus was
identified based on weight, and endometrial samples were taken from
each conceptus of interest. Samples were snap-frozen in liquid nitrogen
and stored at —80°C for RNA extraction or fixed in Bouin's (Sigma
Aldrich, St Louis, Missouri, U.S.A.) for histology.

On the remaining GD investigated, the uterine lumen was occluded
between each feto-placental unit by tying with string to ensure that
tissues associated with individual conceptuses or fetuses could be
identified later. Fetuses were identified as ‘live’ or ‘dead’ based on their
morphology at the time of dissection and were weighed. At GD45, 60
and 90, sex was determined morphologically. DNA was isolated from
the GD30 fetuses using the DNeasy Blood and Tissue DNA extraction kit
(Qiagen, Manchester, U.K.), and PCR was performed for the sex-de-
termining region Y (SRY) region of the Y chromosome [42]. The lightest
and CTMLW fetus (GD30), of both sex (GD45, 60 and 90) were iden-
tified based on fetal weight. From the anti-mesometrial side, placental
and endometrial samples were taken from each feto-placental unit of
interest and snap-frozen in liquid nitrogen or fixed in Bouin's (Sigma
Aldrich).

2.2. Analysis of candidate gene expression by qPCR

2.2.1. Total RNA extraction and cDNA synthesis

RNA was extracted from 20 to 50 pg of tissue from snap-frozen
samples as previously described [43], with the addition of a DNase
treatment step (RNase-free DNase, Qiagen, Manchester, U.K.). The RNA
was quantified spectrophotometrically using a Nanodrop ND-1000
(Labtech International Ltd., Heathfield, U.K.), and the quality assessed
electrophoretically using a Tapestation 2200 (Agilent Technologies,
Edinburgh, U.K.) (Supplementary Table 2). If the RINe value obtained
was lower than the desired ranges (Supplementary Table 2), the sample
was excluded from the analyses.

Complementary DNA (cDNA) was prepared from 0.3 ug of RNA with
SuperScript III reverse transcriptase (Life Technologies, ThermoFisher
Scientific, Altrincham, U.K.). Each reaction contained 250 ng random
primers (Promega, Southampton, U.K.) and 40 units RNaseln (Promega,
Southampton, U.K.). Negative controls without reverse transcriptase
were included to check for genomic contamination. Reverse transcrip-
tion was performed in duplicate for each sample and pooled.

2.2.2. Relative expression of candidate genes

Quantitative PCR was performed on a Stratagene MX3000 instru-
ment using Platinum SYBR Green SuperMixUTG (Life Technologies,
ThermoFisher Scientific, Altrincham, U.K.) using cDNA from placental
samples at GD30, 45, 60 and 90, and endometrial samples at GD18, 30,
45, 60 and 90 (n = 5, 6, 6, 6 and 8 litters respectively). The samples
were associated with the lightest and CTMLW conceptuses or fetuses at
GD18 and 30, and the lightest and CTMLW fetuses of both sex at GD45,
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Table 1

Temporal Changes in both Placental and Endometrial mRNA Expression were observed.
Gene GD18 GD30 GD45 GD60 GD90 P Value
Relative Placental mRNA Expression (Mean + S.E.M.)
BAX n/a 1.563 * 0.186° 2.891 + 0.116° 2.149 + 0.202° 2.764 + 0.193° P < 0.001
BCL2 n/a 6.495 + 1.198* 22.071 + 3.254™ 15.305 + 2.609"¢ 26.433 * 4.539° P < 0.001
BAX:BCL2 Ratio n/a 0.327 + 0.068 0.190 + 0.026 0.178 + 0.015 0.189 + 0.039 ns
P53 n/a 2.126 + 0.169* 3.908 + 0.145" 3.213 + 0.229"¢ 3.081 + 0.282° P <0.01
K167 n/a 2.134 + 0.182% 2.700 = 0.140% 1.945 + 0.180° 2.207 + 0.206% P <0.05
Relative Endometrial mRNA Expression (Mean = S.E.M.)
BAX 4.079 + 0.634 4.298 + 0.217 4.665 + 0.446 3.812 + 0.385 3.450 + 0.863 ns
BCL2 6.639 + 0.640% 2.930 + 0.379" 3.569 + 0.460" 3.630 + 0.419" 2.592 + 0.871° P < 0.001
BAX:BCL2 Ratio 0.636 + 0.093% 1.670 = 0.197° 1.506 *+ 0.156" 1.141 += 0.110%° 1.354 + 0.922° P <0.05
P53 6.511 + 0.727% 4.888 + 0.560%" 4,069 + 0.411° 4161 * 0.396" 3.268 + 0.869° P <0.01
KI67 2.408 + 0.257 2.654 + 0.226 2.264 + 0.211 2.335 + 0.190 1.958 + 0.898 ns

P value indicates overall temporal change detected by ANOVA with a block for gilt or Kruskal-Wallis. Differing superscript letters indicate that group means differ

from one another. n = 10-23 samples per group. ns=not significant.

60 and 90. The final concentrations of magnesium, ROX reference dye
and each primer were 3 mM, 50 nM and 400 nM respectively in a 25 pl
reaction volume. All qPCRs were carried out at an annealing tempera-
ture of 60 °C and dissociation curves consisting of single peaks were
generated. The mRNA expression of BAX, BCL2, P53 and KI67 was
quantified. In addition, the ratio of BAX:BCL2 expression was calcu-
lated. The reference genes hypoxanthine phosphoribosyl-transferase 1
(HPRT1) and TATA box binding protein 1 (TBP1), and TBP1 and
YWHAZ (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein, zeta polypeptide) were utilised to normalise pla-
cental and endometrial gene expression respectively. These reference
genes were identified as having stable expression in the samples by
analysis of eleven candidate reference genes [44,45] using geNORM
V3.5 (Ghent University Hospital, Centre for Medical Genetics). Primer
sequences are detailed in Supplementary Table 3.

Serial dilutions of pooled cDNA ranging from 1:5 to 1:640 in nu-
clease-free water were used as standards. Sample cDNA was diluted
1:25 and 5 pl of sample, standard or control were added per well. Each
plate contained duplicate wells of a no template control, standards,
sample cDNA and reverse transcriptase blanks. Data were analysed
using gbase + software V3.0 (Biogazelle, Zwijnaarde, Belgium). A
target and run specific strategy was employed and the results, nor-
malised to the two reference genes, were scaled to the minimum
sample. The mean slope, intercept, PCR efficiency and R? values are
detailed in Supplementary Table 4.

2.2.3. TUNEL staining of GD45 and 60 placentas

Placental samples supplying the overall lightest fetus compared
with the overall CTMLW fetus (hereafter referred to as true lightest and
true CTMLW) at GD45 (n = 4 litters (all male fetuses)) and GD60
(n = 6 litters (equal numbers of fetuses of both sex)) were used. These
GD were investigated due to the dynamic changes in gene expression
observed. The samples were fixed with Bouin's overnight at room
temperature (RT) and changed daily for ~1 week in 70% ethanol
(Genta Medical, York, U.K.). The samples were placed in histological
cassettes and dehydrated by passing through graded ethanol and xylene
(Genta Medical, York, U.K.), before being embedded in paraffin wax
and sectioned at 5 pm thickness. The TUNEL assay was performed using
the ApopTag plus Peroxidase In Situ Apoptosis Detection Kit (S7101,
Merck Millipore, Cork, Ireland). A slide of normal female rat mammary
gland 3-5 days post-weaning was used as a positive control. As a ne-
gative control, CTMLW female GD45 and GD60 placental sections were
treated with PBS instead of TDT enzyme.

The slides were imaged using the NanoZoomer slide scanner
(Hamamatsu, Welwyn Garden City, U.K.). The placental stromal and
the chorioallantoic membrane (CAM) regions were analysed separately,
with 6 images taken of both regions at X 20 magnification from 2
sections per sample from the slide scans. For the stromal image analysis,
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all cells were counted in each image and the data were expressed as the
number of positive cells per total number of cells counted. As the
images were all taken at the same magnification, they occupied the
same area. For the CAM, the positively stained cells in the CAM region
were counted and the area of the CAM region in each image was
measured. This was then expressed as the number of positively stained
cells per 10,000 um? to allow direct comparison between samples.

2.3. Statistical analysis

All statistical analyses were performed using Minitab 17
(Pennsylvania, U.S.A.) or GenStat 13.1 (VSN International Ltd., Oxford,
U.K.). Throughout the mean value was taken for each sample and the
normality of the distribution of the data was assessed by an Anderson-
Darling test. If a P value of <0.05 was obtained, then the data were not
considered to have a normal distribution. Outliers were tested for using
a Grubbs outlier test and were excluded systematically, with normality
within each group being reassessed following each exclusion. Logl0
transformations were carried out where appropriate to improve the
normality of the distribution of the data. Fetal size was compared for
the true lightest and true CTMLW, and fetal sex was compared using
samples from the true lightest and true CTMLW fetuses at GD30, and
the lightest and CTMLW fetuses of both sex at GD45, 60 and 90. Where
data had a normal distribution, ANOVA for GD, fetal size or sex was
performed, with a block for gilt to account for the common maternal
environment. A post-hoc Tukey test was performed where appropriate.
Where data did not have a normal distribution, Kruskal-Wallis and
Mann Whitney tests were performed.

3. Results

There were significant temporal changes in the placental expression
of BAX (P < 0.001, Table 1) and BCL2 (P < 0.001; Table 1) throughout
gestation, with the lowest expression observed at GD30, the highest
expression at GD45 and 90, and an intermediate expression level ob-
served at GD60. No significant temporal changes in placental BAX:BCL2
ratio were observed (Table 1). P53 expression was decreased at GD30
compared to GD45 and 90 (P < 0.01; Table 1). KI67 expression showed
a moderate fluctuation throughout gestation (P < 0.05; Table 1), with a
statistically significant decrease in expression observed between GD45
and 60.

No temporal changes in endometrial expression of BAX or KI67
(Table 1) were observed. Increased BCL2 expression was observed in
GD18 endometrial samples compared to the other GD investigated
(ANOVA P < 0.001; Table 1). The BAX:BCL2 ratio was decreased at
GD18 compared to GD30, 45 and 90 (ANOVA P < 0.05; Table 1). En-
dometrial P53 expression decreased with advancing gestation (ANOVA
P < 0.01; Table 1), with a statistically significant decrease observed
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Fig. 1. BAX, BCL2, BAX:BCL2 Ratio, P53 and KI67 mRNA expression in placental tissues associated with the lightest and CTMLW fetuses on days 30, 45, 60
and 90 of pregnancy. No relationship between fetal size and the placental expression of BAX (A), BCL2 (B), or the BAX:BCL2 ratio (C) were observed. D: The
expression of P53 was decreased in placental samples associated with the lightest fetuses compared to the closest to mean litter weight (CTMLW) fetuses at
gestational day (GD) 45 (P = 0.07). The direction of this difference switched at GD60 (P = 0.08), with placentas associated with the lightest fetuses having increased
P53 expression compared to the CTMLW fetuses. E: At GD45, the expression of KI67 was decreased in placentas supplying the lightest fetuses compared to the
CTMLW fetuses ( P = 0.071). Error bars represent S.E.M. n = 4-7 samples per group.

between GD18 and 45.

No association between fetal size and the placental expression of
BAX, BCL2, or the BAX:BCL2 ratio was observed (Fig. 1A-C). P53 ex-
pression was decreased in placental samples associated with the lightest
fetuses compared to the CTMLW fetuses at GD45 (ANOVA P = 0.07;
Fig. 1D). Intriguingly, the direction of this difference switched at GD60
(ANOVA P = 0.08), with placentas associated with the lightest fetuses
having increased P53 expression compared to the CTMLW fetuses. At
GD45, the expression of KI67 was also decreased in placentas supplying
the lightest fetuses compared to the CTMLW fetuses (ANOVA P = 0.07;
Fig. 1E).

No association between fetal size and endometrial expression of
BAX (Fig. 2A), BCL2 (Fig. 2B), BAX:BCL2 Ratio (Fig. 2C) or KI67
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(Fig. 2E) was observed. Increased P53 expression was observed in en-
dometrial samples supplying the lightest fetuses compared to the
CTMLW fetuses at GD45 (P < 0.05; Fig. 2D).

A trend towards decreased BAX expression in placental samples
associated with female fetuses compared to their male littermates was
observed at GD45 (P = 0.06; Fig. 3A). No statistically significant as-
sociations between fetal sex and placental BCL2 (Fig. 3B), BAX:BCL2
Ratio (Fig. 3C), P53 (Fig. 3D) or KI67 (Fig. 3E) expression were ob-
served.

BAX expression was increased in endometrial samples supplying
female fetuses compared to those supplying male fetuses at GD30
(P < 0.05; Fig. 4A). Endometrial samples supplying female fetuses had
decreased BCL2 expression compared to those supplying male fetuses at
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Fig. 2. BAX, BCL2, BAX:BCL2 Ratio, P53 and KI67 mRNA expression in endometrial tissues associated with the lightest and CTMLW fetuses on days 18, 30,
45, 60 and 90 of pregnancy. No association between conceptus or fetal size and endometrial expression of BAX (A), BCL2 (B), BAX:BCL2 Ratio (C), or KI67 (E) were
observed. D: The expression of P53 was increased in endometrial samples supplying the lightest fetuses compared to the closest to mean litter weight (CTMLW)
fetuses at gestational day (GD) 45. Error bars represent S.E.M. *P < 0.05. n = 4-6 samples per group.

GD60 (P < 0.001; Fig. 4B). Endometrial P53 (P < 0.01; Figure 4D) and
KI67 (P < 0.05; Fig. 4E) expression were decreased in samples sup-
plying female fetuses compared to those supplying male fetuses at
GD60.

More TUNEL stained cells, indicating increased apoptosis, were
observed in both the stroma (P < 0.001; Fig. 5A; Supplementary Figure
1) and CAM (P < 0.05; Fig. 5B; Supplementary Figure 1) of GD60
placentas compared to GD45 placentas.

No statistically significant relationships were observed between the
number of TUNEL stained cells and fetal size, in the placental stroma or
CAM at either GD investigated (Fig. 5C-F; Supplementary Figure 1).

No statistically significant associations were observed between fetal
sex and TUNEL staining in the stroma or CAM at GD60 (Fig. 5G and H;
Supplementary Figure 1).
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4. Discussion

The experiments described in this study have highlighted novel
relationships between fetal size, and more intriguingly fetal sex, and
apoptosis and proliferation at the porcine feto-maternal interface.

The current study has reported temporal changes in mRNA ex-
pression in both the placenta and endometrium, accompanied by tem-
poral changes in placental TUNEL staining. Intriguingly, different
temporal profiles in mRNA expression were observed in the two tissues,
reflecting the dynamic nature of the porcine feto-maternal interface and
the differences in function of the two tissues. The significant decrease in
placental KI67 expression observed between GD45 and 60 could reflect
the change in the relationship between the placenta and the developing
fetus that occurs at this stage of pregnancy. At GD45, placental growth
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Fig. 3. BAX, BCL2, BAX:BCL2 Ratio, P53 and KI67 mRNA expression in placental tissues associated with male and female fetuses on days 30, 45, 60 and 90
of pregnancy. A: A trend towards decreased BAX expression in placental samples associated with female fetuses compared to their male littermates was observed at
GD45 (P = 0.06). No statistically significant associations between fetal sex and placental BCL2 (B), BAX:BCL2 Ratio (C), P53 (D) or KI67 (E) expression were

observed. Error bars represent S.E.M. n = 5-12 samples per group.

occurs at a greater rate than fetal growth whereas at GD60, placental
growth begins to plateau whilst the fetus undergoes exponential growth
[46-49]. Therefore, the observed decrease in cell proliferation, and
increase in TUNEL staining observed at this GD may reflect the decrease
in placental growth rate. It has previously been suggested that porcine
endometrial samples have high expression of both anti- and pro-apop-
totic, and proliferation associated genes at GD14 [10]. This, in combi-
nation with the observed high endometrial expression of P53 and BCL2
at GD18 in this study, suggests tight regulation of apoptosis at the feto-
maternal interface during implantation. Further, the temporal and
tissue-specific changes in P53 expression may be explained by the sig-
nificant remodelling of the feto-maternal interface to meet increasing
fetal demand [14].

Aberrant regulation of apoptosis has been heavily implicated in

20

human IUGR. In the current study, placental KI67 expression was de-
creased, suggesting decreased proliferation, in samples associated with
the lightest fetuses compared to the CTMLW at GD45. This supports the
work published by Chen et al. [32], which suggested that components
of the proliferation pathway were downregulated on a protein level in
porcine placental and endometrial samples associated with IUGR fe-
tuses compared to those associated with normal birth weight (NBW)
fetuses at GD60, 90, and 110.

The increased expression of P53 observed in GD60 placentas asso-
ciated with the lightest fetuses compared to those supplying the
CTMLW fetuses reinforces the findings of Chen et al. [32], who de-
monstrated increased apoptotic stress in placentas associated with
IUGR fetuses compared to NBW fetuses at GD60, 90 and 110. In con-
trast, at GD45, placental and endometrial P53 expression were
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decreased in samples associated with the lightest fetuses compared to
the CTMLW fetuses. At GD45, placental growth occurs at a greater rate
than fetal growth however, at GD60 placental growth begins to plateau
whilst the fetus undergoes exponential growth. This period of devel-
opment is likely to be highly dynamic which may reflect the changes in
gene expression observed between GD45 and 60. In the current study,
fetal size was not found to be associated with placental TUNEL staining
at GD45 and 60, although a modest sample size was used to investigate
this. Temporal changes in the activation of intrinsic and extrinsic
apoptosis have been suggested at the porcine feto-maternal interface
[15,50]. Considering this, further assessment of components of both the
intrinsic and extrinsic pathway should be performed to ensure that
placentas supplying the lightest fetuses are utilising the same pro-
grammed cell death pathway as those supplying the CTMLW fetuses.

21

Whilst temporal changes in the activation of intrinsic and extrinsic
apoptosis have been suggested at the porcine feto-maternal interface
[15,50], additional forms of cell death [51,52] such as necroptosis,
which has been implicated in human IUGR [53], have not yet been
investigated and may further the understanding of the mechanisms
which regulate remodelling of the porcine feto-maternal interface.

Of particular interest, were relationships between placental and
endometrial gene expression and fetal sex. The expression of the pro-
apoptotic gene BAX was increased in endometrial samples supplying
female fetuses compared to those supplying male fetuses at GD30.
Interestingly, this was not observed in the placenta, where instead a
trend towards decreased BAX expression in placental samples asso-
ciated with female fetuses compared to their male littermates was ob-
served at GD45. This intriguing finding may be explained by differential
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early signaling events between conceptuses of different sex and the

endometrium, which should be investigated further.

In contrast, at GD60 endometrial samples supplying female fetuses
had decreased expression of BCL2, P53, and KI67 compared to those
supplying male fetuses. In this study males were heavier than their
female littermates throughout gestation (data not presented) and could
therefore place an increased demand on the placenta for nutrients. It
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Fig. 5. TUNEL staining of placentas
supplying fetuses of different size
and sex at days 45 and 60 of preg-
nancy. An increased number of TUNEL
stained cells, indicating an increase in
placental apoptosis, were observed in
both the stroma (P < 0.001; A) and
CAM (P < 0.05; B) at gestational day
(GD) 60 (n = 12) compared to GD45
(n = 8). No statistically significant re-
lationships were observed between the
number of TUNEL stained cells and fetal
size in the placental stroma (C and E) or
CAM (D and F) at GD45 (n = 8) or 60
(n = 12). No statistically significant as-
sociations were observed between fetal
sex and TUNEL stained in the stroma or
CAM at GD60 (n = 12) (G and H). Error
bars represent the S.E.M.

could be hypothesised that increased remodelling of the feto-maternal
interface is required to accommodate the increasing demands being
placed on placentas supplying male fetuses compared to those sup-
plying female fetuses. This would require increased apoptosis and
proliferation, reflecting the relationship between fetal sex and gene

expression illustrated in this study.

To date, there have been limited investigations into the relationship

22
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between fetal sex and placental and endometrial expression of apop-
tosis and proliferation related genes. Fetal sex was not found to influ-
ence BCL2 or BAX protein staining in term human placentas [54]. Al-
though, in instances of preeclampsia, it has been demonstrated that
placentas supplying male fetuses have increased apoptotic activity,
with a greater number of TUNEL positive cells, and increased expres-
sion of PUMA and BAX than placentas supplying females [38]. In the
current study, fetal sex was not associated with placental TUNEL
staining at GD60, although a modest sample size was utilised. Given the
considerable temporal changes in gene expression patterns observed,
further analyses utilising an increased number of samples on both
placental and endometrial samples at additional GDs would provide
further insights into the relationship between fetal sex and cell death at
the porcine feto-maternal interface.

This study has highlighted novel relationships between fetal size,
and more intriguingly fetal sex, and placental and endometrial apop-
tosis and proliferation. It is hoped that further investigation into the
roles of these processes at the feto-maternal interface will advance
understanding of the mechanisms governing fetal growth.
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