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Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a major livestock

and public health problem in both high and low-income countries. With the current

absence of an effective vaccine, control in cattle populations is reliant on regular testing

and removal of positive animals. However, surveillance and control are hampered by

imperfect diagnostic tests that have poorly described properties in naturally infected

populations. Recent research in cattle co-infected with the temperate liver fluke, Fasciola

hepatica, has raised concerns about the performance of the intradermal skin test

in high fluke incidence areas. Further, recent studies of parasitic co-infections have

demonstrated their impact on Th1 and Th2 responses, concurrent disease pathology and

susceptibility to mycobacterial infections. Here we report for the first time the association

of co-infection with the tropical liver fluke, Fasciola gigantica, with the presence of

bTB-like lesions and the IFN-γ response in naturally infected African cattle. After adjusting

for age and sex we observed a complex interaction between fluke status and breed.

Fulani cattle had a higher risk of having bTB-like lesions than the mixed breed group.

The risk of bTB-like lesions increased in the mixed breed group if they had concurrent

evidence of fluke pathology but was less clear in the coinfected Fulani breed. Further, we

observed a slight decline in the IFN-γ levels in fluke infected animals. Finally we explored

factors associated with IFN-γ false negative results compared to the presence of bTB-like

lesions. Fulani cattle had a higher risk of having a false negative result compared to

the mixed breed group. Further, the mixed breed cattle had an increased risk of being

false negative if also co-infected with fluke. Interesting, as with the risk of bTB-like
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lesions, this association was less clear in the Fulani cattle with weak evidence of a slight

decrease in risk of having a false negative test result when fluke pathology positive.

This interesting interaction where different breeds appear to have different responses

to co-infections is intriguing but further work is needed to confirm and understand more

clearly the possible confounding effects of different other co-infections not measured

here, breed, management or exposure risks.

Keywords: bovine tuberculosis, M. bovis, co-infection, F. gigantica, fasciolosis, Cameroon, diagnostic tests,

interferon-γ

INTRODUCTION

In natural populations, individuals are usually infected with
multiple pathogens, also known as “co-infections,” rather than
single infections (1). In the presence of multiple co-infections,
the immune response observed to an individual pathogen, across
a population, is variable. This has been shown to depend on
the combination of infections and their differing interactions
with the host immune system and other infections (2). Like
many infectious diseases, Mycobacterium bovis infection has
been studied in isolation until relatively recently. Co-infections
with Fasiola hepatica have been implicated as a potential reason
for poor bTB diagnostic test performance and disagreement
between tests (3). More specifically, co-infections with F. hepatica
have been shown to down-regulate the Th1 responses (with a
resultant dampening of the IFN-γ response), with subsequent
predominance of Th2 responses, in order for the parasite to
survive and reproduce (4–8).

Bovine tuberculosis (bTB), caused by the bacterium M.
bovis, is both a major veterinary and public health disease of
cattle and other livestock. It is an important zoonosis (9, 10)
causing pulmonary and extra-pulmonary disease in people and is
responsible for an estimated 3% of human tuberculosis globally
(11) amounting to an estimated 147,000 zoonotic cases per
year, of which 70,000 are in sub-Saharan Africa (www.who.
int/tb/areas-of-work/zoonotic-tb/en/). In many high-income
countries, such as the United Kingdom and New Zealand,
compulsory bTB “test and slaughter” programs coupled with
compensation have been successful in reducing transmission of
M. bovis in livestock populations (12–14). Diagnostic testing
involves detection of immune responses in the early stages of
infection, such as dominant Th1 responses (15), to remove bTB
positive animals as soon possible. Ante-mortem diagnostic tests,
such as the single intradermal comparative cervical test (SICCT)
or the interferon-γ (IFN-γ ) assay, are based on detecting the
Th1 immune response to M. bovis (16). However, the variable
sensitivity of the SICCT (55.1-93.5%) and the IFN-γ assay (73-
100%), which rely on detecting this Th1 response, particularly in
late stage disease when a Th2 immune response dominates, can
lead to false negative cattle persisting within the population (17)
resulting in continuing transmission and larger outbreaks.

Although the co-infection relationship has yet to be fully
elucidated, various studies have demonstrated that F. hepatica
co-infection is associated with a reduced Th1 immune response
(3) and a reduced mycobacterial burden (18), which potentially

leads to the underestimation of bTB prevalence (19). This is
particularly important when using the IFN-γ assay to detect
bTB positive cattle. IFN-γ is a cytokine which is produced as
part of the Th1 immune response to M. bovis infection (20). It
has been demonstrated that F. hepatica infections down-regulate
IFN-γ pro-inflammatory cytokine responses in favor of Th2
cytokine induction and an IgG1 response (21). When using the
IFN-γ assay to detect bTB infected animals, the presence of F.
hepatica co-infection can lead to a reduction in IFN-γ response
below the diagnostic test cut-off leading to false negative results
(22). However, the extent of bTB misdiagnosis using the IFN-γ
assay in bTB endemic cattle populations co-infected with other
Fasciola species, remains unquantified. In addition, although
similar immune evasion and modulation strategies to F. hepatica
have been identified in bovine F. gigantica infections, the effect
of co-infection with F. gigantica on bTB immune responses has
been minimally investigated (23).

This paper reports the first study of co-infection with
F. gigantica (23) in bTB infected cattle under natural conditions
in a tropical African population. Bovine tuberculosis (24–26) and
F. gigantica (27–29) infections are endemic in cattle populations
in Cameroon and are currently poorly controlled, providing
an opportunity to study their interaction within a natural
transmission setting. The data used for this analysis were a subset
of data that were generated from a larger study of M. bovis
epidemiology in Cameroonian cattle (26, 29, 30). We describe
the association of F. gigantica co-infection with the presence of
observable bTB-like lesions and diagnostic test results using the
IFN-γ assay.

METHODS

Abattoir Cross-Sectional Study
Data were collected at the Ngaoundere municipal abattoir in the
Adamawa Region, a major cattle-producing area of Cameroon
(Figure 1). The details of study design and sample collection are
reported elsewhere (26) and were based on collection of bTB-like
lesion material for culture. In brief, based on previous estimates
of bTB-like lesions from the North West Region of Cameroon
(31) we assumed a prevalence of lesions of ∼5% and calculated
a target sample size of ∼1000 cattle to ensure recovery of at
least 25 isolates assuming a 50% recovery from culture. This
would allow the within abattoir prevalence of 5% to be estimated
with a precision of ±1.3% at 95% confidence. During sampling,
cattle were cast for slaughter by the butchers, after which the
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FIGURE 1 | Map of Cameroon showing the location of the Ngaoundere abattoir and the catchment areas of cattle feeding into it. This figure was generated using

QGIS 2.2 (www.qgis.org) and shp files obtained from the GADM database of Global Administrative Areas (www.gadm.org).

research team tagged the animal, collected a heparinized blood
sample and recorded animal-level data on owner/butcher, sex,
breed as reported by the butcher, dentition score (DS) as an
estimation of age (32) and market of origin as reported by
the butcher. Post mortem meat inspection was carried out by
local Ministry of Livestock, Fisheries and Industrial Agriculture
(MINEPIA) inspectors who examined the carcass and offal for
presence of granulomatous bTB-like lesions and evidence of liver
damage/cirrhosis. Once identified by the veterinary inspectors,
the research team collected up to 3 macroscopic bTB-like lesions
from different anatomical sites per animal into sterile 25ml
universal tubes using forceps and scalpel blades. Lesion grades
were also recorded following identification and tissue samples
taken (33, 34). Matching numbered tags issued by the research
team were used to link animal data, blood samples, meat
inspection of the carcass, offal (including the liver) and head.
In addition to the tissue samples for culture from animals with
lesions, a number of animals classed as non-lesioned by the
meat inspectors were randomly sampled (using random number
generator www.Random.org) and a single retropharyngeal lymph
node per animal collected for culture as controls.

Tissue samples (lesioned lymph nodes) were stored in the
vapor phase in liquid nitrogen dry shippers (Taylor-Wharton)
and shipped to the Tuberculosis Reference Laboratory (TBRL)
Bamenda. Upon arrival at the TBRL the samples were stored at
-80◦C until processed. Heparinised blood samples were stored in
a coolbox at the abattoir (ranging between 10◦C to 26◦C) and
then taken to the lab and kept at room temperature prior to being
stimulated in the IFN-γ assay (Bovigam R©) described below.
Animal data recorded on paper in the abattoir, was transferred

to a relational Microsoft Access database where the results could
be linked back to individual animals.

Diagnostic Tests
Fasciola Pathology at Meat Inspection
All carcases were inspected for evidence of F. gigantica infection
byMINEPIAmeat inspectors. The meat inspectors examined the
liver systematically to identify gross pathology associated with
Fasciola infection by slicing down the common bile duct with
an additional 1–2 slices through the liver parenchyma. Once an
animal was identified to have gross fasciolosis related pathology,
the liver was graded by amember of the research team and scored
0–3 (35). A score of 0 = no visible pathology; 1 = low grade
pathology with minimal damage to the parenchyma of the liver
through migratory fibrotic/ cirrhotic tracts from the parasite,
thickening of bile ducts with a few F. gigantica parasites noted
in bile ducts; 2 = moderate grade pathology with F. gigantica
species parasites found in the bile ducts and up to approximately
half the liver having evidence of fibrosis/ cirrhosis; 3 = severe
grade pathology with the majority of the liver is noted to have
extensive fibrosis/ cirrhosis without having to cut the surface
of the liver. For this analysis the score was converted into a
presence (positive) or absence (negative) of F. gigantica pathology
for subsequent analysis.

Mycobacterial Culture and Typing
The tissue samples were prepared and cultured as previously
described (26) following the World Organization of Animal
Health (OIE) guidelines with minor modifications. Briefly,
samples were processed, inoculated into a Mycobacterial Growth
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Indicator Tubes (MGIT) and incubated for 8 weeks on
the BACTEC MGIT 960 automated culture system (Becton,
Dickinson and Company, 1 Becton Drive, Franklin Lakes, NJ,
USA) following the manufacturer’s instructions. A further 2
cultures were prepared by inoculating 0.1 ml (2 drops) of
prepared sample onto each of two Lowenstein Jensen (LJ) slopes
(one supplemented with pyruvate and the other with glycerol).
These were observed weekly for up to 12 weeks. A smear was
made with 3% formal saline from any observed growth on the
LJ media and any MGIT indicated positive tube. The smears
were heat-fixed, stained by the Ziehl-Neelsen (ZN) method (36)
and microscopically observed for the presence of acid fast bacilli
(AFB). All acid fast bacilli were typed using the Hain GenoType R©

MTBC assay and GenoType R© Mycobacterium CM/AS kit (Hain
Lifescience R©,GmbH, Nehren, Germany) (26). Animals were
classed as confirmed bTB cases (as opposed to having a bTB-like
lesion) if one ormore lesions were positive by one ormore culture
methods confirmed by the Hain Genotype R© test.

Interferon-Gamma Assay
The IFN-γ ELISA (Bovigam R©) was conducted as per published
protocol (37, 38). Briefly within 6–12 h of collection three
aliquots of heparinised blood, per animal, were incubated with
either avian PPD, bovine PPD (Prionics R© Lelystad Tuberculin
PPD) or PBS for 24 h at 37◦C in a portable polystyrene egg
incubator (http://www.theincubatorshop.co.uk) run in the field.
Following incubation samples were centrifuged at 300g for 10
minutes, the plasma was aliquotted and stored at −20◦C in a
portable travel freezer (Waeco CF50 12V/240 fridge freezer)).
Plasma samples were transported at −20◦C to the LEID and
the IFN-γ ELISA was conducted as per the published protocol.
The acceptable averaged negative bovine OD value was <0.130
and positive bovine control was >0.700. Animals with a bovine
stimulated sample optical density of ≥0.1 above that of the avian
PPD sample were classified as test positive and interpreted as the
animal being infected withM. bovis.

Statistical Analysis
The proportions of cattle with bTB-like lesions, a positive IFN-γ
result and liver fluke pathology were calculated and various co-
infection definitions were explored using Fasciola pathology and
one of the bTB outcomes (positive IFN-γ , bTB-like lesion or M.
bovis culture positive).

Multivariable logistic regression (MLR) models were
developed to explore the association between fluke infection and
bTB status using a number of different definitions including
IFN-γ , bTB-like lesion andM. bovis culture results. Animal-level
explanatory variables (breed, dentition score and sex) were
always included in the models as fixed effects to control for
confounding. Model selection was based on the AIC and the
best model was selected using the lowest AIC and 1AIC (39).
MLR models were constructed using the brglm function in the
brglm package (40) with AIC and 1AIC calculated using the
modavg function from the AICcmodavg package (41). Predicted
probabilities and their standard errors were calculated from each
model for specific covariate patterns using the predict function
and used to produce 95% confidence intervals for plotting.

Some variables were simplified due to small numbers of
observations in some categories. The dentition score (DS) was
simplified from number of permanent teeth to a binary age
category based on the approximate relationship between age and
eruption of permanent incisors in cattle. DS <2 was categorized
as “<3 years old” and DS of ≥2 was categorized as “≥3 years
old.” The breed variable was simplified to “mixed” (collapsing
mixed breed, where the butchers were unsure of the breed cross
and Gudali to a single category) or “Fulani” (collapsing Red and
White Fulani to a single category).

RESULTS

Summary Statistics
During a 4 week period in August 2013, 935 cattle were examined
at the Ngaoundere abattoir. The details of bacterial culture results
have been presented elsewhere (26). A total of 173 records were
dropped due to missing data (at random) due to the hectic nature
of the sampling in the abattoir environment which resulted in
occasional failure to collect a blood sample or link samples to a
carcass. A further 30 animals from one day were dropped from
this analysis due to missing IFN-γ results giving a final dataset of
732 animals.

During the sampling period 10.7% (78/732) of animals had
visible bTB-like lesions observed. The proportion of animals
with evidence of liver fluke infection was 49.6% (363/732) and
the proportion of animals positive by the IFN-γ assay was
6.6% (48/732). The distribution of the prevalances of bTB-
like lesion, liver fluke pathology and IFN-γ based on animal
dentition (as a measurable proxy for age) are given in Figure 2.
Exploratory bivariate relationships between the variables of
interest (age, breed, sex, lesion status, fluke status and IFN-
γ status) were checked prior to inclusion in the multivariable
models (Figure 3A). Breed and fluke status were strongly
associated with presence of visible bTB-like lesions and breed was
strongly associated with IFN-γ status. There was an association
between breed and the ordinal distribution of fluke pathology
scores (χ2 test p-value<0.001) but the odds ratios did not change
across pathology scores above zero so the effect is captured by
collapsing the fluke score into a binary variable (Figure 3B).

Association of F. gigantica Co-infection
With Bovine Tuberculosis-Like Lesions
A multivariable logistic regression (MLR) model of the
association between visible lesion and fluke status was developed
(Table 1). This suggests a complex interaction between breed and
F. gigantica pathology status with the probability of observing
visible TB-like lesions in cattle in this setting. Fulani cattle had
a higher risk of having observable bTB-like lesions than the
mixed breed group. However, the risk in the mixed breed group
increased if they also had fluke pathology. This association ith
fluke pathology was less clear in Fulani cattle. For example, an
adult, female, mixed breed animal, that had no fluke pathology
had a ∼ 5.2% (95% CI: 2.5–7.8) probability of having a TB-like
lesion compared to ∼ 27.7% (95% CI: 16.8–38.4) for a Fulani
animal (Figure 5A). The presence of fluke increased this risk in
mixed breed animals to ∼ 12.0% (95% CI: 7.7–16.3) while the
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FIGURE 2 | Distribution of (A) lesion, (B) fluke, and (C) IFN-γ prevalences based on animal dentition for Ngaoundere abattoir (n = 732).

FIGURE 3 | (A) Bivariable odds ratios and p-values for pairwise associations of variables of interest for inclusion in multivariable models. (B) Proportion of Fulani (n =

194) and mixed breed (n = 538) classified cattle sampled in Ngaoundere abattoir by F. gigantica pathology score. Legend: Lesion, lesion status (positive/negative);

sex, male/female; Breed, Fulani/mixed; Age, <3 years/≥3 years; Fluke, fluke pathology status (positive/negative); IFN-γ , IFN-γ test positive/negative.

risk declined (although the evidence is weaker) in Fulani cattle to
∼ 15.6% (95%CI: 8.8–22.2). The age and sex terms were included
to control for confounding but do not appear to be important for
this model.

Impact of F. gigantica co-infection on
IFN-Gamma Responses
The association between IFN-γ result and F. gigantica pathology
status was investigated. The raw PPD-B minus PPD-A difference
in ELISA OD readings were explored in the subset of animals
which were confirmed M. bovis culture positive (n = 53). The
raw difference is plotted, stratified by F. gigantica pathology status
in Figure 4 where there is some evidence of a dampening of the
IFN-γ response with a smaller variance in the fluke pathology
positive group. When the outlying high value for the fluke
pathology positive group is removed the variances are statistically
significantly different (Mann-Whitney test p < 0.001, n= 52).

A multivariable linear regression model of the raw PPD-B
minus PPD-A difference was developed (with the outlying value
dropped) and after accounting for age, sex and breed there was a

TABLE 1 | Multivariable logistic regression model for the presence of TB lesions at

slaughter (n = 732).

Variable Levels Odds ratio 95% CI

Sex Female 1

Male 1.17 0.50–2.47

Age ≥3 years 1.00

<3 years 0.60 0.25–1.26

Breed Mixed 1

Fulani 7.00 3.36–14.95

Fluke Negative 1

Positive 2.51 1.32–4.98

Breed*Fluke 0.19 0.07–0.51

Key: Lesion, TB lesion result (Positive or negative); Sex, Sex of cattle (Male or Female);

Age, Age of cattle by dentition score (<3 years or ≥3 years); Fluke, F. gigantica pathology

score; Breed, Breed of cattle (Mixed breed or Fulani breed); *Interaction between

variables.

small mean decrease in the difference of −0.02 (−0.04 to 0.00)
in OD value in the fluke pathology positive animals (Table 2).
A multivariable logistic regression model for IFN-γ binary test
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FIGURE 4 | IFN-γ response (PPD-B minus PPD-A) stratified by F. gigantica

pathology status (neg, no pathology; pos, evidence of fluke pathology) in the

subset of M. bovis culture positive cattle (n = 53). Individual cattle; Orange

circles. Dashed red line IFN-γ recommended test cut-off of 0.1.

status and fluke pathology status was also developed including
age, breed and sex as potential confounders (Table 3). Both these
regression models give some weak support for an association
between the IFN-γ result and F. gigantica pathology status, with
fluke pathology positive cattle more likely to have a lower OD
value difference and to be IFN-γ negative. The association using
the binary test results suggest an adult, female, mixed breed cow
had a∼ 5.6% (95%: 3.1–8.1) probability of testing positive which
dropped to ∼ 3.5% (95%: 1.7-5.6) if infected with liver fluke
compared to a Fulani, adult, female animal which had a∼ 16.3%
(95%: 8.7–24.0) of testing positive which dropped to ∼ 11.1%
(95%: 5.9–16.2) if fluke pathology positive (Figure 5B).

Factors Associated With a False Negative
IFN-γ Test Result When Compared to
TB-Like Lesion
Using the subset of results where the IFN-γ test result was
negative (n = 684) a new variable was generated where a IFN-γ
test result was classified as a false negative if there was an
observed bTB-like lesion (n = 54) and true negative if there
was no lesion observed (n = 630). A multivariable logistic
regression analysis to explore the associationwith fluke pathology
was conducted including sex, age and breed as confounders.
In addition, for this model the presence or absence of non-
tubercular mycobacteria (NTM), based on the Haines typing
from cultured samples from lesions, was also included as a known

TABLE 2 | Multivariable regression model for the raw IFN-γ PPD-B minus PPD-A

difference (n = 731).

Variable Levels Coef 95% CI

Sex Female 1

Male –0.01 –0.46 to 0.02

Age ≥3 years 1

<3 years –0.01 –0.31 to 0.02

Breed Mixed 1.00

Fulani 0.02 0.13 to 1.46

Fluke Negative 1

Positive –0.02 –1.92 to 0.01

Key: IFN-γ , IFN-γ assay result (PPD-B - PPD-A); Sex, Sex of cattle (Male or Female);

Age, Age of cattle by dentition score (<3 years or ≥3 years); Fluke, F. gigantica pathology

score; Breed, Breed of cattle (Mixed breed or Fulani breed).

TABLE 3 | Multivariable logistic regression model for the raw IFN-γ PPD-B minus

PPD-A difference (n=731).

Variable Levels Odds ratio 95% CI

Sex Female 1

Male 0.91 0.28–2.29

Age ≥3 years 1

<3 years 0.99 0.38–2.22

Breed Mixed 1.00

Fulani 3.18 1.73–5.85

Fluke Negative 1

Positive 0.62 0.33–1.13

Key: IFN-γ , IFN-γ assay result (Positive or negative); Sex, Sex of cattle (Male or Female);

Age, Age of cattle by dentition score (<3 years or ≥3 years); Fluke, F. gigantica pathology

score; Breed, Breed of cattle (Mixed breed or Fulani breed).

potential confounder for being lesion positive but test negative.
The final model is given in Table 4. Again the best fitting model
includes an interaction between fluke pathology status and breed.
The baseline probability of being a false negative IFN-γ test
result in adult, female, non-tubercular mycobacterium negative
(NTM), fluke pathology negative mixed breed cows was ∼ 4.3%
(95%: 1.9–6.7) which increased to ∼ 10.4% (95%: 6.3–14.5) if
they had fluke pathology. In comparison IFN-γ test negative
Fulani cattle had a ∼ 16.0% (95%: 6.3–25.6) probability of being
a false negative which declined to∼ 8.5% (95%: 3.1–14.0) if fluke
pathology positive (Figure 5C). An NTM infection also was also
associated with a large increased risk of giving a false negative
IFN-γ result.

DISCUSSION

It is well recognized, though still poorly studied, that co-
infecting pathogens can have a range of synergistic or antagonist
effects. For example, (42) showed African buffalo co-infected
with strongyle nematodes had a dampened Th1 response
which facilitated bTB invasion and establishment of infection.
Interactions between bovine tuberculosis and the temperate liver
fluke F. hepatica have been shown in the United Kingdom (3, 19)
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FIGURE 5 | Predicted probabilities for an adult female animal by breed (MX, mixed breed; FU, Fulani) and fluke status (neg, no fluke pathology; pos, evidence of fluke

pathology) based on the logistic regression models described in the results section.

TABLE 4 | Multivariable logistic regression model (n = 684) for being IFN-γ false

negative result conditioned on having a negative IFN-γ test result and using

observable TB-like lesions as the true state (gold standard).

Variable Level Odds ratio 95% CI

Sex Female 1

Male 0.97 0.31–2.46

Age ≥3 years 1

<3 years 0.68 0.24–1.57

NTM Negative 1

Positive 15.29 3.32–75.7

Breed Mixed 1

Fulani 4.23 1.68–10.44

Fluke Negative 1

Positive 2.59 1.28–5.49

Breed*Fluke 0.19 0.06–0.64

Key: Lesion, TB lesion result (Positive or negative); Sex, Sex of cattle (Male or Female);

Age, Age of cattle by dentition score (<3 years or ≥3 years); Fluke, F. gigantica pathology

score; Breed, Breed of cattle (Mixed breed or Fulani breed); NTM, non-tubercular

mycobacterium; *Interaction between variables.

but less is known about the interactions of bovine tuberculosis
and the tropical fluke F. gigantica. Despite the ecological, genetic
and antigen differences between these two species, both species
appear to evade and modulate the host immune response to
infection (43). Here we have examined the association between
both bTB-like lesion occurrence and the Bovigam (M. bovis
specific) IFN-γ response in a naturally F. gigantica infected cattle
population in Africa.

The levels of fluke infection were very high in this abattoir
population with nearly 50% of animals showing liver pathology
consistent with fluke infections and/or adult fluke identified in
the bile ducts. Previous studies have identified an association with
visible bTB-like lesions and being fluke positive in slaughter cattle
populations such as in Zambia (44). Further, in experimental
infections in mice it has been shown that mice infected with M.
tuberculosis have higher bacterial loads and TB lesion pathology

when co-infected with the trematode S. mansoni (45). It is
proposed that the fluke infection suppresses the Th1 response
resulting in a reduced level of IFN-γ . In cattle, previous studies
have reported that co-infection results in a lower bacterial load
but no qualitative or quantitative differences in tuberculous
lesions ofM. bovis (18).

In the present study, we observed a complex interaction
between cattle breed and liver fluke pathology status and the
presence of visible bTB-like lesions. There is strong support
for an increased risk of having bTB-like lesions in Fulani
cattle compared to the mixed breed group. In Cameroon,
Fulani cattle have been reported to have a higher prevalence
of bTB than other breeds (31) but this study was from the
Northwest Region. One explanation may be to do with differing
responses in different cattle/host genotypes. It has been reported
in the UK that Holstein cattle with the INRA111 genotype
appeared to be less likely to develop bTB (46). Similarly, in
Ethiopia comparing Holstein cattle and indigenous zebu B.
indicus cattle, researchers found that Holstein cattle were more
susceptible (33).

The presence of fluke pathology in the mixed breed group
was associated with an increased risk of visible lesions. In
Fulani cattle, which are more likely to have bTB-like lesions, co-
infection with fluke was not associated with an increased risk
but potentially a reduced probability of having visible bTB-like
lesions, although the evidence was weak for this association in
Fulani cattle. Our study relied on the butchers classification of
breed recorded in the hectic environment of the slaughterhouse.
There is the possibility that their classification was incorrect in
some cases, however, this is more likely to reduce the chances of
observing an association. To improve on this we are currently
genotyping the subset of cattle from which we collected lymph
nodes for culture (both lesioned and the random sample of non-
lesioned lymph nodes). Alternatively, the breed association may
be due to confounding by other unobserved variables such as
differingmanagement between breeds or differences in exposures
interacting with different genotypes of M. bovis. However, these
are more difficult to untangle.
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The IFN-γ assay is particularly useful to detect early (1-
4 weeks post infection) M. bovis infections as part of control
programs often in combination with the SICCT (20, 47). Previous
studies have demonstrated that F. hepatica co-infection can
down-regulate IFN-γ responses to M. bovis infection (21, 22).
In this African cattle population there was weak evidence of
a reduced IFN-γ response (reduced variance in the raw PPD-
B - PPD-A value) in fluke infected animals conditional on
having been bTB culture positive. This reduction in IFN-γ was
also weakly observed in the linear regression analysis (on the
continuous test result) and in the logistic regression analysis
(on the binary result). However, we did observed a moderate
association between increased IFN-γ levels and breed, with
Fulani cattle having a higher probability of testing positive. Given
the higher rates of infection observed in the lesion data, this
is not surprising. This represents relatively weak evidence for a
decline in test sensitivity in fluke infected animals and increased
risk of leaving potential bTB positive animals in a herd. However,
the prevalence of bTB was relatively low in this relatively small
study, meaning the power to detect these effects is less than
ideal and further larger studies are needed to confirm these
findings.

In order to further explore this potential decline in test
sensitivity, we looked at the subset of IFN-γ test negative animals
(based on the binary cut-off of 0.1 as recommended by the
manufacturers). Using visible bTB-like lesions as the comparison
test, which we know from culture results from these cattle
is reasonably specific (sp=69.7%) and sensitive (95.8%), (with
a positive predictive value of 65.1% and negative predictive
value of 96.6% calculated from (30) for this sample), we looked
at factors associated with false negative results in the IFN-γ
negative subset of animals. The risk of false negative results
was strongly associated with NTM infections. This is to be
expected as we know that lesions are an imperfect predictor
of M. bovis and that a number of these animals with lesions
had NTMs based on culture results (30). Interestingly, having
accounted for a major source of the disagreement, there again
remained a complex interaction between breed and fluke status.
In the mixed breed animals the risk of being a false negative
increased from ∼ 4% to ∼ 10% consistent with suppression
of the Th1 response by fluke infections. Also Fulani cattle had
higher rates of false positives compared to the mixed breed
group but Fulani cattle with fluke pathology had a drop in
risk from ∼ 16% to ∼ 8.5%, although the statistical support
for this decline is weak. Again, this may be due to different
host genetics, management or exposures and needs further
investigation.

More work is needed to understand these interactions between
co-infecting pathogens. Variation in immune interaction of
the host, with M. bovis and Fasciola gigantica, at different
stages in the pathogenesis of one pathogen may affect the
pathogenesis of the other (48, 49). One possible explanation
for this complexity may be that we have not accounted for
other confounding co-infections. Conducting studies to look
at all possible co-infections can become extremely complex,
expensive and logistically challenging (50). There have been a
number of co-infection studies including nematode infections

in buffalo (42) and fluke in cattle (19) with evidence of
associations with bTB-like lesions or interference with IFN-
γ test results, however, a recent paper failed to find a
statistical association with fluke or bovine viral infections (51)
in European cattle, although they did find an association
with paratuberculosis co-infections, which were associated
with an increased probability of observing visible bTB-like
lesions.

It is clear that co-infections can have complex impacts on test
diagnostics and pathogen invasion and this may have important
implications for control programmes. As one bacillus is sufficient
to establish M. bovis infection within a host (52), leaving any
infected animals behind in a control programme has the potential
to maintain transmission and there was evidence here that in
the mixed breed group at least, fluke infections were associated
with an increased risk of a false negative IFN-γ result. Certainly,
test and slaughter programs are likely to continue to play their
part in bTB control in high income settings and certain wildlife
control settings. Mitigating against Fasciola spp. co-infections (or
other co-infections such as paratuberculosis) or being able to
incorporate the likely impact on test performance may improve
ante-mortem diagnostic test sensitivity within cattle or wildlife
populations.

In conclusion, this study explored the association between
co-infection with the tropical liver fluke F. gigantica on the
pathology and detection of M. bovis infections in a natural
ecological setting in African cattle. We have shown a complex
association between the presence of visible bTB-like lesions in
carcasses and the presence of concurrent Fasciola infections
which appears to be also affected by breed. Furthermore, we have
shown that the IFN-γ response may be slightly dampened down
in F. gigantica infected cattle although further data are needed to
confirm this. However, it does appear to be sufficient to increase
the false negative risk in the mixed breed group at lest in this
population. The reduction in sensitivity of the IFN-γ assay by
Fasciola spp. co-infection could have profound effects on bTB
control and eradication programs as Fasciola spp. are present
worldwide (53). Given the complexity of determining whether
animals are truly M. bovis infected, there is a need to develop
more subtle and sophisticated algorithms for interpretation of
individual animal bTB diagnostic test results that use the raw test
readings as well as other animal and related herd variables.
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