

Edinburgh Research Explorer

Learning to Adapt: a Meta-learning Approach for Speaker
Adaptation

Citation for published version:
Klejch, O, Fainberg, J & Bell, P 2018, Learning to Adapt: a Meta-learning Approach for Speaker Adaptation.
in Proc. of Interspeech 2018. Hyderabad, India, pp. 867-871, Interspeech 2018, Hyderabad, India, 2/09/18.
DOI: 10.21437/Interspeech.2018-1244

Digital Object Identifier (DOI):
10.21437/Interspeech.2018-1244

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proc. of Interspeech 2018

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195268035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.21437/Interspeech.2018-1244
https://www.research.ed.ac.uk/portal/en/publications/learning-to-adapt-a-metalearning-approach-for-speaker-adaptation(3e8a6794-b604-4686-8650-21bad72b1a4e).html

Learning to adapt: a meta-learning approach for speaker adaptation

Ondřej Klejch, Joachim Fainberg, Peter Bell

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK
{o.klejch, j.fainberg, peter.bell}@ed.ac.uk

Abstract
The performance of automatic speech recognition systems

can be improved by adapting an acoustic model to compen-
sate for the mismatch between training and testing conditions,
for example by adapting to unseen speakers. The success of
speaker adaptation methods relies on selecting weights that are
suitable for adaptation and using good adaptation schedules to
update these weights in order not to overfit to the adaptation
data. In this paper we investigate a principled way of adapt-
ing all the weights of the acoustic model using a meta-learning.
We show that the meta-learner can learn to perform supervised
and unsupervised speaker adaptation and that it outperforms a
strong baseline adapting LHUC parameters when adapting a
DNN AM with 1.5M parameters. We also report initial ex-
periments on adapting TDNN AMs, where the meta-learner
achieves comparable performance with LHUC.
Index Terms: automatic speech recognition, speaker adapta-
tion, meta-learning

1. Introduction
The accuracy of automatic speech recognition (ASR) systems
can be improved by adapting their acoustic models (AM) to new
speakers with available adaptation data. There are three possi-
ble approaches to speaker adaptation: feature-space approaches
estimate feature transforms to maximise the log-likelihood of
the adaptation data [1, 2]; model-based approaches update the
parameters of the AM [3, 4, 5, 6]; and hybrid approaches use
auxiliary features to provide information about the speaker to
the AM [7, 8].

In this paper we focus on model-based adaptation of neural
network AMs. The aim is to compensate for a mismatch be-
tween training and testing data by adapting the weights of an
AM. This may include adapting all the weights [5, 9] or only
a subset of the weights [3, 4, 10, 11]. The biggest problem of
adapting all the weights is that in scenarios with small amounts
of adaptation data it tends to overfit. Methods that adapt only
a subset of the weights try to overcome this problem by limit-
ing the expressivity of the adaptation. Another problem is that
adapting all the weights has a much bigger memory-footprint
than adapting only a subset of the weights.

Typically methods that adapt only a subset of the weights
work by inserting new weights that scale activations of some
hidden layer. For example, the Learning Hidden Unit Contri-
butions (LHUC) method [3] uses a speaker dependent vector r
(called LHUC parameters in the rest of the paper) as element-
wise multipliers to scale the activations of a hidden layer h:

h′ = r ◦ h. (1)

Other methods use a speaker dependent matrix A to adapt the
activations of a hidden layer h [12]:

h′ = Ah. (2)

Since the matrix A can be quite big in terms of the number of
speaker dependent parameters that have to be estimated using
adaptation data, it is usually inserted after a layer with small di-
mensions. That can be a bottleneck layer or it can be inserted af-
ter a bottleneck obtained by decomposing a layer into a product
of two low-rank matrices using singular value decomposition
(SVD) [4, 13].

Even adapting only a subset of the weights of a context-
dependent AM might result in data sparsity issues arising from
small amounts of adaptation data, as the posterior probabilities
of senones that are unseen in the adaptation data are pushed to-
wards zero [14]. Different regularisation techniques have been
proposed to alleviate this issue, such as L2 normalisation of the
difference between the original and the adapted weights [5],
Kullback-Leibler divergence of the posteriors of the original
and the adapted model [6] or maximum a posteriori (MAP)
adaptation [14]. Alternatively, it has also been proposed to
use a lower entropy task for adaptation, leveraging context-
independent targets [15, 16].

While adapting only a subset of all weights benefits from a
small memory footprint and a robustness to overfitting to adap-
tation data [3], it lacks the expressivity of adapting all weights.
Therefore, we decided to find a reliable way of adapting all the
weights of the AM which would eventually enable online and
iterative adaptation [13]. To reliably adapt all the weights it is
important to use a good adaptation schedule (number of adapta-
tion steps, learning rate, etc.). Recently it has been shown that
meta-learning can find good update rules for training neural net-
works [17, 18], we therefore decided to evaluate it in the context
of speaker adaptation.

Meta-learning tries to replace hand-crafted algorithms with
learned, specialised algorithms in a similar way to how deep
learning replaced hand-crafted features with features extracted
using neural networks. Recently, Andrychowicz et al. [17] used
a meta-learning approach to learn task specific update rules that
outperform general update rules such as Adam [19]. They did
so by training a coordinate-wise meta-learner that updates in-
dividual parameters of the trained model (see Section 2.1 for
more details). The same approach was later used by Ravi and
Larochelle [18] to train a meta-learner for a few-shot learning
scenario, where the meta-learner is required to train a new clas-
sifier for a set of unseen classes given only a few examples of
each class (typically 1 or 5 examples per class). Speaker adap-
tation might be viewed as a special case of few-shot learning
because we try to adapt a speaker-independent model to unseen
speaker conditions using limited adaptation data. Therefore, we
decided to evaluate the same meta-learning approach using the
coordinate-wise meta-learner for speaker adaptation. There are
several reasons for using meta-learning for speaker adaptation:

1. Speaker adaptation is performed many times, hence it is
important to find a reliable adaptation schedule that will
work for different speakers in different environments.

2. The meta-learner learns how to adapt weights, but it

ought to implicitly learn which sets of weights are suit-
able for adaptation in a given scenario.

3. The meta-learner ought to find the best adaptation sched-
ule given some external constraints such as the type of
the AM, the number of adaptation steps, the amount of
adaptation data, supervised/unsupervised targets, etc.

In this paper we investigate the use of a coordinate-wise
meta-learner [17, 18] for supervised and unsupervised speaker
adaptation and we compare it with adapting only LHUC pa-
rameters [3] and adapting all the weights of the AM. The rest of
the paper is organised as follows. We formulate speaker adapta-
tion as a meta-learning task and we describe the coordinate-wise
meta-learner in Section 2, we describe adaptation experiments
conducted in the domain of TED talks in Section 3 and we con-
clude the paper in Section 4.

2. Method
As stated in Section 1, meta-learning aims to replace hand-
crafted algorithms with learned task-specific algorithms. In or-
der to train a meta-learner for a particular task it is necessary to
find an appropriate meta-learning architecture and a loss func-
tion. In this section we describe these components for the meta-
learner that we used for speaker adaptation.

2.1. Speaker adaptation as a meta-learning task

In this paper we view speaker adaptation as a function, adapt,
with a set of parameters Φ that adapts a set of weights Θ of an
acoustic model f(x; Θ) to a set of adapted weights Θ′ using
adaptation data D = (X,Y), where X are acoustic features
and Y are labels. It can be formalised by the equation

adapt(f,Θ, D; Φ)→ Θ′. (3)

Depending on the adaptation scenario, the labels Y might
correspond to true labels (supervised speaker adaptation) or la-
bels obtained from a one-best path from a first pass decoding
(unsupervised speaker adaptation).

The meta-learner is then trained to adapt the weights of
the original model using adaptation data such that it improves
cross-entropy loss L on test data. In this paper we approx-
imate this by splitting the training data into C equally sized
chunks and training the meta-learner to adapt on chunk c con-
taining N frames with corresponding data Dc = (Xc, Yc) to
improve cross-entropy L on the following chunk c + 1 with
data Dc+1 = (Xc+1, Yc+1). The loss J for training of the
meta-learner is

J(Φ) =

C∑
c=1

∑
(x,y)∈Dc+1

L(y, f(x; adapt(f,Θ, Dc,Φ))). (4)

We do not need access to the test data for training the meta-
learner. We can train the meta-learner with held-out data that
was not used for training the AM, although it is beneficial if
the held-out data resembles the test data as the meta-learner can
learn the most suitable adaptation schedule for the AM for the
given test set.

During evaluation the meta-learner uses adaptation data
D = (X,Y) to improve performance on test data by predicting
a set of updated weights Θ′ that are then used for decoding:

Θ′ = adapt(f,Θ, D; Φ). (5)

It is important to note that in both the supervised and the
unsupervised adaptation settings we use the true labels as ytest
for training the meta-learner, because we want to maximise per-
formance on true labels. For yadapt, however, we only use the
true labels in the supervised speaker adaptation setting. In un-
supervised speaker adaptation we use labels obtained from the
first pass decoding.

2.2. Coordinate-wise meta-learner

The adaptation function, adapt(f,Θ, D; Φ) → Θ′, is imple-
mented as a two layer LSTM with a set of parameters Φ as
in [18]. The coordinate-wise meta-learner updates each weight
θ ∈ Θ individually – each weight θ is presented as a single data
sample to the meta-learner. Note, that in practice we batch all
the weights Θ and we adapt them jointly. This has two advan-
tages. First, the parameters of the meta-learner, Φ, are shared
across all weights Θ of the acoustic model. Second, the param-
eters of the meta-learner, Φ, have much smaller dimensionality
because they do not need to work with big inputs. In the fol-
lowing section we will describe how the meta-learner adapts a
single weight θ ∈ Θ using adaptation data D. The process is
also illustrated in Figure 1.

The first layer is a standard LSTM which at time step t ac-
cepts a vector vt with three values: the current value of the
weight θt, the current loss value Lt, and the corresponding gra-
dient∇θtLt:

vt =

 θt
Lt
∇θtLt

 . (6)

The loss Lt is computed using adaptation data D and current
weights Θt:

Lt =
∑

(x,y)∈D

L(y, f(x; Θt)), (7)

and we initialise θ1 = θ. Using this input vector vt the first
LSTM layer produces a hidden representation

ht = LSTM(vt). (8)

The second LSTM layer uses this hidden representation ht to
predict the value of a forget gate ft with parameters WF and
bF :

ft = σ(WF · [ht, ft−1] + bF), (9)

and to predict the value of an input gate it with parameters WI

and bI :
it = σ(WI · [ht, it] + bI). (10)

Both the forget gate ft and the input gate it are used to update
the weight θt to θt+1 using the corresponding gradient∇θtL:

θt+1 = ft · θt − it · ∇θtL. (11)

In this update rule the input gate acts as a learning rate and the
forget gate can be used to escape local minima when the loss is
high but the gradient is close to zero [18].

Note that we followed [17] and preprocessed the losses Lt
with the following method using the suggested value p = 10:

Lt →

{
(log(|Lt|)

p
, sgn(x)) if |Lt| ≥ ep

(−1, epLt), otherwise.
(12)

Similar preprocessing was applied to the gradients∇θLt.

L1θ1 = θ (θ1, L1,∇θ1L1)
T

META

θ2

L2 (θ2, L2,∇θ2L2)
T

META

θ3

L3 (θ4, L4,∇θ4L4)
T

META

θ4

Figure 1: An illustration of how the meta-learner adapts a single weight θ in three adaptation steps.

3. Experiments
3.1. Dataset

All experiments were performed on TED talks. We used the
TED-LIUM dataset [20] for training of the acoustic models and
we tested these models on a combined test set of IWSLT 2010,
2011 and 2012 [21, 22, 23]. To comply with the IWSLT eval-
uation protocol we only used talks that were recorded before
the end of 2012 for training of the acoustic model. This pruned
training set contains 134 hours of training data. The combined
test set contains 30 speakers and is 5.3 hours long.

3.2. Baseline DNN Setup

Training the coordinate-wise meta-learners requires large
amounts of memory – linear in the number of weights of the
acoustic model. Therefore, we decided to evaluate the adapta-
tion methods on smaller acoustic models. We used Kaldi [24]
to train a small deep neural network model (called DNN in Ta-
ble 1 and Table 2) with 1.5M weights across 6 hidden layers,
each with 256 neurons, using sigmoid activation functions and
an output layer corresponding to 3792 tied context-dependent
phones and an input corresponding to 7 acoustic frames.

We also experimented with the adaptation of a time-delayed
neural network model (TDNN) [25] to show that the meta-
learner works with state-of-the-art architectures. Again we
trained a smaller model with 2.1M weights across 6 hid-
den layers, with 300 units each and RELU activation func-
tion and splice indexes -2,-1,0,1,2 -1,2 -3,3 -7,2
-3,3 0. We evaluated the adaptation of two TDNN models,
one using batch-normalisation and the other using L2 normali-
sation1 (TDNN-BN and TDNN-RN in Table 1 and Table 2). All
models used a pruned 3-gram language model for decoding, we
did not use a 4-gram language model for rescoring.

3.3. Adaptation Setup

We explored adaptation using only a small amount of adapta-
tion data: in all the experiments we used the first 10 seconds of
data to perform speaker adaptation. For the baseline adaptation
experiments we either adapted all layers or only the LHUC pa-
rameters of each unit in each layer (denoted ALL and LHUC
in Table 1 and Table 2). For both technique we adapted for 3
epochs using stochastic gradient descent (SGD) with a learning
rate of: 0.01 for the DNN model; 2.5·10−6 for the TDNN mod-
els (ALL); and 0.7 (LHUC) for both DNN and TDNN models.

We used the development sets from IWSLT 2010 and 2012
[21, 23] to train the meta-learner. Together these datasets con-

1y = x * sqrt(dim(x)) * target-rms / |x|

tain 3 hours of audio. The data for the first 13 speakers was
used as the training set and the last 5 speakers as the validation
set. We trained the meta-learner to adapt the acoustic model us-
ing 10 seconds of adaptation data to improve performance on
the following 10 seconds. The meta-learner was trained using
Adam [19] with a learning rate of 0.001. During training we
monitored the loss on the validation set. We selected the meta-
learner that achieved the best validation loss for testing. Note
that we initialized a bias of the input gate bI to small values
(sampled uniformly from [−5,−4]) and a bias of the forget gate
bF to high values (sampled uniformly from [4, 5]) such that the
meta-learner starts training with an update rule similar to SGD.

When training a meta-learner for the DNN model we split
the data into chunks of 1000 frames and we trained a meta-
learner with 20 units in the hidden layer to perform one full-
batch adaptation step. We also experimented with more adap-
tation steps, but we did not observe any improvements com-
pared to performing a single adaptation step. When we tried the
same procedure with TDNN models, the meta-learner learned
to overfit to silent frames, producing too many deletion errors.
This was surprising as the amount of silent frames in the align-
ments obtained with TDNN models was similar to those ob-
tained by the DNN model. We hypothesized that this might
be due to the much larger context (29 acoustic frames) of the
TDNN models, so we therefore removed silent phones from the
meta-learner training data and from the adaptation data – there
is not much benefit from doing speaker adaptation on silent
frames. We preprocessed the data by trimming silence at the
beginning and end of each utterance, splitting each utterance
into 50 ms chunks, and discarding chunks that contained more
than 10% silent frames. Next we also changed the input vector
to the meta-learner, v, to contain the normalised position of the
weight in the weight matrix instead of the weight value θ. If
the weight θ corresponded to an element at a position i, j in a
weight matrix W ∈ Rm×n then the input vector v was:

vt =

 i/m
j/n
Lt
∇θtLt

 . (13)

This should provide the meta-learner with much finer control
over which weights are suitable for adaptation instead of just
learning different adaptation schedules for each layer.

We implemented the meta-learner2 in Tensorflow [26] and
Keras [27].

2https://github.com/choko/learning_to_adapt

DNN TDNN-BN TDNN-RN
original 20.7 15.2 15.2
LHUC 20.1 14.3 14.6
ALL 20.6 14.5 14.6
META 19.8 14.4 14.6

Table 1: WER (%) of the supervised speaker adaptation experi-
ments using 10s of adaptation data.

DNN TDNN-BN TDNN-RN
original 20.7 15.2 15.2
LHUC 20.5 14.6 14.8
ALL 20.6 14.7 14.8
META-sup 20.0 14.7 15.0
META-unsup 19.7 14.7 14.9

Table 2: WER (%) of the unsupervised speaker adaptation ex-
periments using 10s of adaptation data.

3.4. Results

In this paper we evaluated relatively small models in order to
be able to train a meta-learner for them. The DNN model
achieves a word error rate (WER) of 20.7% on our test set and
both TDNN models achieve a WER of 15.2% which is close
to a model used in [28] which achieves WER 14.9% while the
TDNN models are 20× smaller.

First we performed supervised speaker adaptation using
10 seconds of adaptation data (Table 1). When adapting the
LHUC parameters of the DNN model we got an improvement
of 0.6% absolute which is comparable to other previous ex-
periments [3]. Adapting all the weights performed worse as
the adaptation schedule may have overfitted to the adaptation
data, but the meta-learner was able to learn a good adaptation
schedule that outperforms adapting LHUC parameters by an-
other 0.3% absolute. Note that the meta-learner performed only
1 adaptation step and LHUC used 3 adaptation steps. We be-
lieve that finding a way to train the meta-learner for more adap-
tation steps might bring further improvements. When adapting
TDNN models the meta-learners were not that successful, they
were not able to match performance of LHUC (TDNN-BN) or
outperform LHUC (TDNN-RN). The meta-learner may require
more tuning to be able work with such complicated models as
TDNNs. It is interesting to point out that the TDNN with batch
normalisation benefits much more from LHUC adaptation than
the TDNN trained with L2 normalisation. This finding is similar
to [29] where they adapted only batch normalisation parameters
during speaker adaptation.

We then performed unsupervised adaptation using 10 sec-
onds of adaptation data (Table 2). When adapting the DNN
model, the meta-learner outperforms adapting only LHUC pa-
rameters. To test whether the meta-learner is able to determine
the best adaptation in the given scenario, we evaluated a meta-
learner that was trained to use supervised targets for adaptation
(META-sup) and a meta-learner that was trained to use unsuper-
vised targets for adaptation (META-unsup). The results show
that it is very beneficial to train the meta-learner in the same
conditions as in testing. Unfortunately, unsupervised adaptation
of TDNN models with a current implementation of the meta-
learner did not match the performance of LHUC.

4. Conclusions
In this paper we tried to find a reliable way of adapting all the
weights of a neural network AM because we believe that adapt-
ing only a subset of the weights limits expressivity of the adap-
tation. We investigated a meta-learning approach for finding
a good adaptation schedule – we showed that speaker adapta-
tion can be formulated as a meta-learning task by defining a
loss to train a coordinate-wise meta-learner as in [17, 18] to
perform supervised and unsupervised speaker adaptation using
only 10 seconds of adaptation data. We compared this approach
with adapting all weights of the AM and LHUC parameters us-
ing SGD. Our results on adaptation of the DNN model suggest
that meta-learning might be a useful method for speaker adap-
tation, especially for unsupervised speaker adaptation when the
meta-learner is trained to perform unsupervised speaker adapta-
tion. So far we were not able to outperform adaptation of LHUC
parameters in TDNN models but we believe that the meta-
learner ought to learn better adaptation strategy when properly
trained.

In future work we want to focus on better understanding
the training of the meta-learner. In this paper we used around
3 hours of data divided between 18 speakers to train the meta-
learner. It is possible that because of this small training dataset
the meta-learner is overfitting to speakers in the training data.
Therefore, we plan to train the meta-learner with much larger
training datasets to enable it to learn inter-speaker variability.

Another issue in training of the meta-learner is that the
loss, as formulated in the Equation (4), does not penalise the
meta-learner when it learns that the best strategy is to overfit to
senones seen in the adaptation data. For example, when there
is a big overlap in senones between two consecutive chunks the
best strategy for the meta-learner is to predict only senones seen
in the adaptation data. Therefore, we need to study how to regu-
larise the meta-learner to not learn to overfit to adaptation data,
either by using L1/L2 penalty on the difference of the adapted
and the original weights [5] or by using Kullback-Leibler di-
vergence between the posteriors of the adapted and the original
model [6]. In preliminary experiments we tried to use L1 reg-
ularisation which forced the meta-learner to learn to adapt only
some layers, but it did not improve the accuracy of the adapted
model. Alternatively, we could use a lower entropy task for
adaptation [15, 16], however we believe that a more expressive
form of the meta-learner ought to figure out a relation between
senones and monophones and co-adapt senones that correspond
to the same phone.

Finally, it is necessary to explore ways of scaling the meta-
learning both to larger models and to larger amounts of adap-
tation data. The problem with scaling to larger models is that
it is not possible to fit a meta-learner to the GPU memory as
the memory consumption is linear in the number of weights of
an AM. Therefore, we would like to reparameterise the meta-
learner to learn to perform some form of low-rank adaptation
with lower memory requirements. Lower memory requirements
would allow us to perform more adaptation steps without using
truncated backpropagation through time.

5. Acknowledgements
This work was partially supported by the H2020 project
SUMMA, under grant agreement 688139, and a PhD stu-
dentship funded by Bloomberg. We would like to thank Steve
Renals for many insightful discussions.

6. References
[1] C. J. Leggetter and P. C. Woodland, “Maximum likelihood lin-

ear regression for speaker adaptation of continuous density hidden
markov models,” Computer speech & language, vol. 9, no. 2, pp.
171–185, 1995.

[2] M. J. Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” Computer speech & language,
vol. 12, no. 2, pp. 75–98, 1998.

[3] P. Swietojanski and S. Renals, “Learning hidden unit contri-
butions for unsupervised speaker adaptation of neural network
acoustic models,” in SLT, 2014.

[4] J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular value de-
composition based low-footprint speaker adaptation and person-
alization for deep neural network,” in ICASSP, 2014.

[5] H. Liao, “Speaker adaptation of context dependent deep neural
networks,” in ICASSP, 2013.

[6] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regu-
larized deep neural network adaptation for improved large vocab-
ulary speech recognition,” in ICASSP, 2013.

[7] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[8] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hybrid
NN/HMM model for speech recognition based on discriminative
learning of speaker code,” in ICASSP, 2013.

[9] Y. Huang and Y. Gong, “Regularized sequence-level deep neural
network model adaptation,” in Interspeech, 2015.

[10] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation
of context-dependent deep neural networks for automatic speech
recognition,” in Spoken Language Technology Workshop (SLT),
2012 IEEE. IEEE, 2012, pp. 366–369.

[11] Y. Zhao, J. Li, J. Xue, and Y. Gong, “Investigating online low-
footprint speaker adaptation using generalized linear regression
and click-through data,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 4310–4314.

[12] R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. De Mori, “Lin-
ear hidden transformations for adaptation of hybrid ANN/HMM
models,” Speech Communication, vol. 49, no. 10-11, pp. 827–835,
2007.

[13] Y. Zhao, J. Li, K. Kumar, and Y. Gong, “Extended low-rank plus
diagonal adaptation for deep and recurrent neural networks,” in
ICASSP, 2017.

[14] Z. Huang, S. M. Siniscalchi, I.-F. Chen, J. Wu, and C.-H. Lee,
“Maximum a posteriori adaptation of network parameters in deep
models,” arXiv preprint arXiv:1503.02108, 2015.

[15] P. Swietojanski, P. Bell, and S. Renals, “Structured output layer
with auxiliary targets for context-dependent acoustic modelling,”
in Interspeech, 2015.

[16] Z. Huang, J. Li, S. M. Siniscalchi, I.-F. Chen, J. Wu, and C.-H.
Lee, “Rapid adaptation for deep neural networks through multi-
task learning,” in Interspeech, 2015.

[17] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient de-
scent by gradient descent,” in NIPS, 2016.

[18] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[20] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-
LIUM corpus with selected data for language modeling and more
TED talks,” in LREC, 2014.

[21] M. Paul, M. Federico, and S. Stücker, “Overview of the IWSLT
2010 evaluation campaign,” in IWSLT, 2010.

[22] M. Federico, L. Bentivogli, M. Paul, and S. Stücker, “Overview
of the IWSLT 2011 evaluation campaign,” in IWSLT, 2011.

[23] M. Federico, M. Cettolo, L. Bentivogli, M. Paul, and S. Stüker,
“Overview of the IWSLT 2012 evaluation campaign,” in IWSLT,
2012.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz,
J. Silovský, G. Stemmer, and K. Veselý, “The Kaldi speech recog-
nition toolkit,” in ASRU, 2011.

[25] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts.” in Interspeech, 2015.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A
system for large-scale machine learning.” in OSDI, vol. 16, 2016,
pp. 265–283.

[27] F. Chollet et al., “Keras,” https://github.com/keras-team/keras,
2015.

[28] P. Bell, P. Swietojanski, J. Driesen, M. Sinclair, F. McInnes, and
S. Renals, “The UEDIN ASR systems for the IWSLT 2014 evalu-
ation,” in Proc. IWSLT, 2014.

[29] Z. Q. Wang and D. Wang, “Unsupervised speaker adaptation of
batch normalized acoustic models for robust ASR,” in ICASSP,
2017.

