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A B S T R A C T

Regularization occurs when the output a learner produces is less variable than the linguistic data they observed.
In an artificial language learning experiment, we show that there exist at least two independent sources of
regularization bias in cognition: a domain-general source based on cognitive load and a domain-specific source
triggered by linguistic stimuli. Both of these factors modulate how frequency information is encoded and pro-
duced, but only the production-side modulations result in regularization (i.e. cause learners to eliminate var-
iation from the observed input). We formalize the definition of regularization as the reduction of entropy and
find that entropy measures are better at identifying regularization behavior than frequency-based analyses.
Using our experimental data and a model of cultural transmission, we generate predictions for the amount of
regularity that would develop in each experimental condition if the artificial language were transmitted over
several generations of learners. Here we find that the effect of cognitive constraints can become more complex
when put into the context of cultural evolution: although learning biases certainly carry information about the
course of language evolution, we should not expect a one-to-one correspondence between the micro-level
processes that regularize linguistic datasets and the macro-level evolution of linguistic regularity.

1. Introduction

Languages evolve as they pass from one mind to another. Immersed
in a world of infinite variation, our cognitive architecture constrains
what we can perceive, process, and produce. Cognitive constraints, such
as learning biases, shape languages as they evolve and can help to ex-
plain the structure of language (Bever, 1970; Slobin, 1973; Newport,
1988; Newport, 2016; Christiansen & Chater, 2008; Christiansen &
Chater, 2016; Culbertson, Smolensky, & Legendre, 2012; Kirby,
Griffiths, & Smith, 2014). Early on, debate over the nature of these
biases was polarized: Chomsky’s nativism program explained linguistic
structure as the product of a language-specific acquisition device
(Chomsky, 1957) while behaviorists claimed general-purpose learning
mechanisms, such as reinforcement learning, could explain language
acquisition (Skinner, 1957). Recent experimental research has found
domain-general learning mechanisms underpin many aspects of lan-
guage learning (Saffran & Thiessen, 2007), such as the statistical
learning involved in word segmentation by infants (Saffran, Aslin, &
Newport, 1996) and how memory constraints modulate learners’ pro-
ductions of probabilistic variation in language (Hudson Kam & Chang,
2009). However, it is likely that a mixture of domain-general and do-
main-specific mechanisms are involved in language learning (e.g. Pearl

& Lidz, 2009; Culbertson & Kirby, 2016).
This paper offers a first attempt to quantify the relative contribution

of domain-general and domain-specific learning mechanisms to lin-
guistic regularization behavior. Regularization is a well-documented
process by which learners impose structure on data by reducing the
amount of variation in that data. When language learners encounter
linguistic elements in free variation, such as two realizations of a par-
ticular phoneme, two synonyms for one meaning, or two possible word
orders for constructing a clause, they tend to reduce that free variation
by either eliminating one of the variants, or conditioning their variant
use on some aspect of the context (e.g. on the adjacent linguistic con-
text). Natural languages rarely exhibit free (i.e. unconditioned) varia-
tion (Givón, 1985) and the regularization behavior of language learners
is likely to be the cause. Regularization has been documented ex-
tensively in natural language use and in the laboratory. In natural
language, regularization occurs in children’s acquisition of language
(Berko, 1958; Marcus et al., 1992; Singleton & Newport, 2004; Smith,
Durham, & Fortune, 2007), during the formation of creole languages
from highly variable pidgin languages (Bickerton, 1981; Sankoff, 1979;
DeGraff, 1999; Lumsden, 1999; Meyerhoff, 2000; Becker & Veenstra,
2003), during the formation of new signed languages (Senghas,
Coppola, Newport, & Supalla, 1997; Senghas, 2000; Senghas & Coppola,
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2001), and in historical trends of language change (Schilling-Estes &
Wolfram, 1994; Lieberman, Michel, Jackson, Tang, & Nowak, 2007; van
Trijp, 2013). In the laboratory, regularization has been studied in depth
through artificial language learning experiments with children (Hudson
Kam & Newport, 2005; Hudson Kam & Newport, 2009; Wonnacott,
2011; Culbertson & Newport, 2015) and adults (Wonnacott & Newport,
2005; Hudson Kam & Newport, 2005; Hudson Kam & Newport, 2009;
Reali & Griffiths, 2009; Smith & Wonnacott, 2010; Perfors, 2012;
Culbertson et al., 2012; Fehér, Wonnacott, & Smith, 2016; Smith et al.,
2017). Here we focus on regularization of lexical variation by adult
learners in an artificial language learning paradigm. Future research
should explore whether our results generalize to regularization by child
learners.

Behavioral experiments offer special insight into the regularization
process, because they allow researchers to present participants with
controlled linguistic variation, precisely measure the way participants
transform that variation, and test hypotheses about what causes parti-
cipants to alter patterns of variation. For example, Hudson Kam and
Newport (2009) investigated the regularization of pseudo-determiners
in an artificial language learning experiment. In Experiment 1, adult
participants were trained on a language that consisted of several verbs,
several nouns (divided into 2 noun classes), 2 main determiners (one for
each noun class), and zero to 16 noise determiners (which could occur
with any noun). In the training language, each noun occurred with its
main determiner on 60% of exposures; the remaining exposures were
equally divided across the noise determiners. In the testing phase,
participants described scenes using the language they had learned.
When participants encountered only two noise determiners during
training, they regularized slightly by producing the main determiners
with 70% of the nouns, rather than the 60% they observed in the
training language. Regularization increased with the number of noise
determiners, reaching its highest level with 16 noise determiners,
where the main determiners were produced with nearly 90% of the
nouns. In Experiment 2, Hudson Kam & Newport showed that adult
participants regularize the same artificial language less when the noise
determiners are conditioned on particular nouns in a more predictable
and consistent way.

These results are consistent with Newport’s Less-is-More hypothesis.
Originally conceived as an explanation for why children regularize
more than adults (Newport, 1990), it states that learners with limited
memory capacity may regularize inconsistent input because they have
difficulty storing and retrieving forms that are lower in frequency or
used less consistently. Regularization behavior varies considerably be-
tween children and adults (see e.g. Hudson Kam & Newport, 2009,
Experiment 3). However, regularization due to memory limitations may
also apply to adults, albeit to a lesser degree (Hudson Kam & Chang,
2009). Overall, the Less-is-More hypothesis constitutes a domain-gen-
eral account of linguistic regularization in terms of cognitive constraints
on memory encoding and retrieval. If this hypothesis describes a truly
domain-general effect, we should expect to see the same kind of reg-
ularization behavior in non-linguistic domains.

Gardner (1957) conducted a frequency prediction experiment in
which adult participants had to predict which of several lights would
flash in any given trial. When participants observed two lights flashing
at random in a 60:40 ratio (light A flashed 60% of the time and light B
flashed 40% of the time), they probability matched this ratio in their
predictions, meaning that about 60% of their guesses were that light A
would flash next and about 40% of their guesses were on light B. They
also probability matched when observing a 70:30 ratio. However, when
participants were trained on three lights (four ratios were tested:
70:15:15, 70:20:10, 60:20:20, and 60:30:10), they regularized by over-
predicting the most frequent light and under-predicting the less fre-
quent lights, which is similar to the behavior of participants in Hudson
Kam and Newport (2009). In another experiment, Kareev, Lieberman,
and Lev (1997) report an effect of individual differences in working
memory capacity (as determined by a digit-span test) on participants’

perception of the correlation of two probabilistic variables. Participants
with lower memory capacity overestimated the most common variant,
whereas participants with higher capacity did not. Similarly, Dougherty
and Hunter (2003) show that participants with lower working memory
were less likely to consider alternative choices in an eight-item pre-
diction task and were also less likely to consider the low-frequency
alternatives than participants with higher working memory. Each of
these cases can be identified as regularization where the higher-fre-
quency variants are over-represented in participants’ behavior.

There is therefore strong evidence for the existence of domain-
general drivers of regularization, but the extent to which they account
for the level of regularity that we observe in language is not clear. This
is because domain-specific learning mechanisms may play a role on
their own, or interact with general mechanisms. For example, Perfors
(2012) presented seven carefully controlled manipulations of cognitive
load during the encoding stage of an artificial language learning task
and found no effect on regularization behavior. This suggests that the
Less-is-More Hypothesis may apply more to retrieval than to storage,
and that the effects of working memory found in the non-linguistic
experiments of Kareev et al. (1997) and Dougherty and Hunter (2003)
may not operate as strongly in language learning. Furthermore, Reali
and Griffiths (2009) show an effect of domain on regularization beha-
vior: participants reduce variation when learning about words but in-
crease variation when learning about coin flips. However, cognitive
load was lower in the coin flipping condition (one coin was flipped,
whereas 6 objects were named), so it is unclear whether the higher
cognitive load or linguistic domain caused participants to regularize in
the word learning task.

In the following, we present a two-by-two experimental design that
manipulates cognitive load (following Hudson Kam & Newport, 2009;
Gardner, 1957) and task domain (directly comparing regularization in
linguistic and non-linguistic domains). To manipulate cognitive load we
vary the number of stimuli a learner must track concurrently. We ma-
nipulate task domain by manipulating the type of stimuli the learner
must track: objects being named with words (linguistic domain) or
marbles being drawn from containers (non-linguistic domain). Our
method is closely based on the artificial language learning experiment
in Reali and Griffiths (2009) and our high load linguistic condition
replicates their Experiment 1.

Although we compare regularization behavior in one particular
linguistic task (word learning) to one particular non-linguistic task
(marble drawing), any differences in regularization behavior revealed
by this comparison constitute an existence proof for general and lan-
guage-specific drivers of regularization behavior. Little is known about
how regularization behavior compares across different levels of lan-
guage and the only systematic study of this to date (comparing mor-
phology to word order) reports no global difference in regularization
behavior across these two levels (Saldaña, Smith, Kirby, & Culbertson,
2017). Our two-by-two design can easily be extended to various lin-
guistic tasks at different levels of language (e.g. phonology, mor-
phology, and word order variation) and appropriately matched non-
linguistic tasks (coin flipping, flashing light prediction, etc.) to de-
termine the generalizability of the present results.

Based on the work reviewed above, we predict that regularization
behavior will increase when cognitive load is raised. We also predict
that regularization behavior will increase when the task is presented
with linguistic stimuli. However, we have no clear prediction about the
existence of an interaction between domain and cognitive load, or the
relative amount of variation that will be removed from the data due to
load or domain. Knowing the relative contribution of domain-general
and domain-specific biases to structure in language is important be-
cause it tells us how much we can ground our theories of language
learning in general mechanisms of memory and statistical learning.

In order to address these questions, we need a principled measure of
regularization that is comparable across different distributions of var-
iation and stimuli domains. In Section 2, we provide this measure by
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formalizing the definition of regularization as the reduction of entropy
in a data set. Readers may skip this section if they are willing to accept
the following statement: the amount of variation a participant reg-
ularizes is equal to the drop in entropy of their productions relative to
their observations. In Section 3, we present the experimental method
and design. In Section 4, we present the main result (both cognitive
load and linguistic stimuli elicit regularization), followed by three
supporting analyses that explore regularization behavior in greater
depth. In Section 5, we use our empirical data to investigate the evo-
lution of regularity as learners’ biases are repeatedly applied under a
model of cultural transmission. This gives us a sense of how predictive
known regularization biases can be for the level of regularity found in
culturally-transmitted behaviors, such as languages.

2. Defining and quantifying regularization

In the existing literature, regularization is described as the elim-
ination or reduction of free variation. Therefore, we will define reg-
ularization in terms of this lost variation and quantify it as the amount
of variation that was lost from learners’ productions when compared to
the data the learners observed. The amount of variation in any data set
can be quantified by the information-theoretic notion of entropy (e.g.
Cover & Thomas, 1991) and a growing number of studies are using
entropy measures to analyze regularization behavior (e.g. Smith &
Wonnacott, 2010; Perfors, 2012; Fedzechkina, 2014; Ferdinand, 2015;
Cuskley et al., 2015; Perfors, 2016; Fehér et al., 2016; Smith et al.,
2017; Saldaña et al., 2017; Samara, Smith, Brown, & Wonnacott, 2017).

The variation in a distribution of items, such as linguistic variants, can
be quantified by Shannon entropy (Shannon, 1948):

H V p v p v( ) ( )log ( )
v V

i i2
i

=
(1)

where V is the set of linguistic variants in question, p V( ) is the probability
distribution over those variants, and p v( )i is the probability of ith variant
in that set. For example, take the probability distribution over the 4 de-
terminers used in the “2 noise determiner” condition of Hudson Kam and
Newport (2009)’s artificial language learning experiment:
p V( ) {0.3, 0.3, 0.2, 0.2}= . The Shannon entropy of this distribution is
1.97 bits. Imagine a participant who was trained on this language and on
testing produced the distribution p V( ) {0.7, 0.1, 0.1, 0.1}= . The Shannon
entropy of p V( ) is 1.36 bits and the change in variation is −0.61 bits.
This means that 0.61 bits of variation among determiners was regularized
(i.e. removed) by the participant. Or, more intuitively, ·100 31%0.61

1.97 = of
the variation in determiners was regularized by the participant.

Variation can also be lost when variants become conditioned on
other linguistic variables or contexts. For example, each determiner
may have a conditional probability p v c( )i j of being produced with a
particular noun class cj, such that if one knows the class of the noun,
one is better able to predict which determiner a speaker of that lan-
guage will use with that noun. The variation in a distribution of items,
after a conditioning variable is taken into account, is quantified by
conditional entropy (Shannon, 1948):

H V C p c p v c p v c( ) log
c C

j
v V

i j i j2
j i

=
(2)

where V is the set of linguistic variants and C is the set of conditioning
contexts. Again, p V( ) is the probability distribution over variants, p C( )
is the probability distribution over contexts, p v c( )i j is the conditional
probability of observing the ith variant in the jth context, and p c( )j is
the probability that the jth context occurs. Given the format of this
equation, we can see that the conditional entropy is the sum of the
entropy of variants per context, weighted by the probability of each
context. Assume for a moment that the p V( ) distribution over de-
terminers is not conditioned on each noun class, meaning that all de-
terminers have the same probabilities regardless of the noun class they

are used with, for example: p v c( )i 1 = {0.3, 0.3, 0.2, 0.2} and p v c( )i 2 =
{0.3, 0.3, 0.2, 0.2}. Assume also that any noun has the following
probabilities of being in noun class 1 or 2: p C( ) {0.6, 0.4}= . Let us call
this mapping A. The conditional entropy of mapping A is 1.97 bits,
identical to the entropy of the determiners themselves, because the
noun class carries no information about which determiner is used. We
can contrast this with another mapping, mapping B, where determiner
use is conditioned on noun class such that p v c( )i 1 = {0.5, 0.5, 0.0, 0.0}
and p v c( )i 2 = {0.0, 0.0, 0.5, 0.5}. Here, the first two determiners in the
set are exclusively produced with noun class 1 and the third and fourth
determiners are exclusively produced with noun class 2. The condi-
tional entropy of mapping B is 1.00 bit, while its entropy over de-
terminers remains at 1.97 bits. If a participant had been trained on a
language with mapping A and produced a language with mapping B,
then they would have regularized 0.97 bits, or ·100 49%0.97

1.97 = of the
variation in mapping A.

Based on these examples, it should be clear that H V( ) and H V C( )
are two different kinds of variation that a language can have. H V( ) is
about the total number of different linguistic forms there are and how
often each one is used. H V C( ) is about how often different linguistic
elements occur together. It is important to note that H V( ) and H V C( ),
by themselves, do not fully describe the variation in a mapping between
linguistic variants and contexts. Fig. 1 shows the six quantities that are
relevant to a complete description of the variation in a linguistic
mapping. The largest quantity, H V C( , ), is the total amount of varia-
tion in the mapping and is equal to the area covered by the two over-
lapping circles. H V C( , ) is the joint entropy of the mapping:

H V C p v c p v c, , log ,
v V c C

i j i j2
i j

=
(3)

where p v c( , )i j is the joint probability of observing the ith variant and
the jth context together. Looking at Fig. 1, it is possible to imagine how
the joint entropy of the system can increase by moving the two circles
away from one another. As the circles move apart, V and C carry less
information about one another. This has the effect of increasing the two
conditional entropy values and reducing the mutual information,
I C V( ; ), between V and C. Mutual information is not a measure of
variation, but one of structure: it measures how much uncertainty is
reduced in V when C is known, I V C H V H V C( ; ) ( ) ( )= , and how
much uncertainty is reduced in C when V is known,
I C V H C H C V( ; ) ( ) ( )= . Note that I V C I C V( ; ) ( ; )= . The five entropy
values, on the other hand, are all measures of variation. Although they
each refer to different types of variation, they are related and do con-
strain one another. For example, H V C( ) can never be larger than H V( )

Fig. 1. The relationship between entropy quantities in a mapping between
linguistic variants (V) and their conditioning contexts (C).
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and H C V( ) can never be larger than H C( ). It is also important to note
that H V C H C V( ) ( ) (because H V( ) and H C( ) can take different
values). Regularization can be quantified in terms of these five entropy
values and be said to occur when one or more of these values decreases.

Regularization is the reduction or elimination of entropy in a data
set.

We define regularization as any reduction to the space in Fig. 1.
Regularization can occur by eliminating linguistic variants (reducing
H V( )), eliminating conditioning contexts (reducing H C( )), or in-
creasing the degree to which variants and contexts are conditioned on
one another (reducing H V C( ) and/or H C V( )). Joint entropy always
decreases when there is a net loss of variation. Mutual information, on
the other hand, does not necessarily change when regularization occurs.
In the following experiment, we construct a stimuli set in which lexical
items are variants and the objects they refer to are contexts. In a mat-
ched non-linguistic stimuli set, marbles are variants and the containers
they are drawn from are contexts. The experiment is designed such that
H V H V C( ), ( ), and H V C( , ) will always change by the same number of
bits when participants regularize and H C H C V( ), ( ), and I V C( ; )
cannot be changed by participants.

3. Frequency learning experiment

In this experiment we manipulate cognitive load and task domain,
allowing us to quantify the amount of variation participants regularize
due to each source. Participants observe an input mapping among sti-
muli and then produce behavior from which an output mapping is ex-
tracted. Finally, they estimate the frequencies of the input stimuli and
these estimates are compared to their output behavior.

3.1. Participants

573 participants were recruited via Amazon’s Mechanical Turk
crowdsourcing platform and completed our experiment online.
Informed consent was obtained for experimentation. Participant loca-
tion was restricted to the USA and verified by a post hoc check of
participant IP address location. 61 participants were excluded on the
basis of the following criteria: failing an Ishihara color vision test (15),
self-reporting the use of a pen or pencil during the task in an exit
questionnaire (10), not reporting their gender or age (6), self-reporting
an age below 18 (1), or having previously participated in this or any of
our related experiments, as determined by their user ID with MTurk
(26). More participants were recruited than necessary with the ex-
pectation that some would be excluded by these criteria. Once the
predetermined number of participants per condition was met, the last
participants were excluded (3). All participants (included and excluded)
received the full monetary reward for participating in this task, which
was 0.10 USD in the one-item conditions (marbles1 and words1) and
0.60 USD in the six-item conditions (marbles6 and words6).1 The
average time taken to complete the one-item conditions was 3 min and
50 s, with a standard deviation of 1 min and 27 s. Average time to
complete the six-item conditions was 11 min and 32 s, with a standard
deviation of 2 min and 6 s. Of the final 512 participants, 274 reported
female, 238 reported male, and the mean age was 33.7 years
(min = 18, max = 72) with a standard deviation of 11.3 years.

3.2. Materials and stimuli

The experiment was coded up as a Java applet that ran in the par-
ticipant’s web browser in a 600 × 800-pixel field. Photographs of 6
different containers (a bucket, bowl, jar, basket, box, and pouch) and

computer-generated images of marbles in 12 different colors (blue,
orange, red, teal, pink, olive, lime, purple, black, yellow, grey, and
brown) served as non-linguistic stimuli. Photographs of 6 different
novel objects (resembling mechanical gadgets) and 12 different non-
sense words (buv, kal, dap, mig, pon, fud, vit, lem, seb, nuk, gos, tef) served
as linguistic stimuli. Stimuli were chosen to have similar visual com-
plexity across domain (determined by gzip complexity and area of sti-
muli). Marbles and words were organized into fixed pairs that max-
imized distinctiveness between the stimuli in the pair. The stimuli lists
above appear in order of these pairings (blue and orange were paired,
buv and kal were paired, etc.). Marble colors were paired to differ in hue
and brightness. Within-pair hue differences were greater than 120° (i.e.
chosen from approximately opposite sides of the color wheel) and
within-pair brightness differences were greater than 20%. Words were
paired to be contrastive. Within-pair words utilized different letters and
vowels and within-pair consonants differed by place of articulation.
These stimuli are closely based on the word stimuli used in Reali and
Griffiths (2009) and selected to not look or sound like existing words
when pronounced by an American English speaker. Words were pre-
sented visually and were not accompanied by auditory stimuli.

3.3. Conditions and design

We use a two-by-two design to investigate the effects of domain and
cognitive load in four experimental conditions:

(1) Non-linguistic single frequency learning (marbles1)
Participants observed two marble colors being drawn from one
container at a particular ratio (for example, 5 blue marbles and 5
orange marbles displayed in random order). Participants were then
asked to demonstrate what another several draws from the same
container are likely to look like. They were not asked to predict
specific future draws and thus no feedback was given. Participants
observed 10 marble draws and produced 10 marble draws. Each
participant observed a set of draws in one of six possible ratios: 5:5,
6:4, 7:3, 8:2, 9:1, and 10:0. These constitute six input ratio condi-
tions. We will refer to the ratio that a participant observed as the
input ratio and the ratio that the participant produced as the output
ratio. There were 32 participants in each input ratio condition, to-
taling 192 participants in marbles1. Container stimuli were rando-
mized across participants: each participant saw one of the six
containers. Equal numbers of participants saw each container.
Marble pairs were also randomized across participants: each par-
ticipant saw one of the six marble pairs. Equal numbers of partici-
pants saw each marble pair. One variant in each pair was randomly
assigned to be the majority variant (i.e. have the frequency of 6, 7,
8, 9, or 10). The full details of the observation and production re-
gimes can be found in Section 3.4 and Fig. 2.

(2) Non-linguistic multiple frequency learning (marbles6)
This condition is similar to the marbles1 condition, with the dif-
ference that participants observed and produced 10 draws each
from 6 different containers, where each container differed in the
ratio of the two marble colors. Containers, marble pairs, and input
ratios were randomly assigned to one another, without replace-
ment, and these assignments were randomized between partici-
pants. Each participant saw all six of the containers, all six of the
marble pairs, and all six of the input ratios (the same input ratios as
were used in the marbles1 condition: 5:5, 6:4, 7:3, 8:2, 9:1 and
10:0). There were 64 participants in this condition, yielding data for
384 (64 × 6) input ratios.

(3) Linguistic single frequency learning (words1)
This condition is similar to the marbles1 condition, differing only by
the use of linguistic stimuli (objects and words) instead of the non-
linguistic stimuli (containers and marbles) and minimal adaptation
of the instructions to the linguistic domain. Participants observed
one object being named with two words at a particular ratio (for

1 Data collection began in 2012, when this was standard reimbursement for
participants recruited through MTurk. In current practice, standard re-
imbursement is US federal minimum wage.

V. Ferdinand et al. Cognition 184 (2019) 53–68

56



example, buv 5 times and kal 5 times, in random order) and were
then asked to name the object like they had observed it being
named. They were not asked to predict specific future namings and
thus no feedback was given. Participants observed 10 namings and
produced 10 namings. Each of the 6 possible input ratios (same
ratios as used in marbles1) was observed by 32 participants, totaling
192 participants.

(4) Linguistic multiple frequency learning (words6)
This condition is similar to the marbles6 condition, again differing
only by the use of linguistic stimuli and minimal adaptation of the
instructions to the linguistic domain. This condition constitutes a
replication of the word learning experiment in Reali and Griffiths
(2009), but with different object stimuli, modified word stimuli,
and participants who completed the experiment online rather than
in the laboratory. There were 64 participants in this condition,
yielding data for 384 (64 × 6) input ratios.

3.4. Procedure

The experiment consisted of an observation phase and a production
phase. Fig. 2 shows the structure and timing of the trials. Participants
were not told how many observation or production trials there would
be. In the observation phase, marble/word stimuli were presented in
random order. In the high load conditions, the containers/objects were
presented in random order. In each production trial, the left-right lo-
cation of the two marbles/words was randomized. When the participant
moused over an answer, a 100 × 100 pixel box was displayed around
the choice. When clicked, the box remained and an OK button appeared
equidistant between the two choices. Participants could change their
answer and clicked OK to confirm their final response. Their choice was
shown over the container/object and the next trial began. The OK
button served to re-center the participant’s cursor between trials.

After the production phase, participants were asked to estimate the
generating ratio that underlies the input ratio they saw. This was ac-
complished by asking them how many marbles of each color were in
each container, or how often each word is said for each object in the
artificial language. Participants provided their response with a discrete
slider over 11 options of relative percentages (Fig. 3).

3.5. Entropy of the training stimuli set

Each participant observes a stimuli set that is composed of co-oc-
currences between marbles and containers or words and objects. For the
purpose of quantifying the variation in the stimuli sets, we consider the
marbles and words to be variants and consider the containers and ob-
jects to be contexts. Table 1 shows the co-occurrence frequencies be-
tween contexts and variants. In the high cognitive load conditions, this
table describes the complete stimuli set that each participant was
trained on in the observation phase. In the low cognitive load condi-
tions, each participant was trained on only one row from the this table.
Fig. 4 shows the entropy values associated with Table 1 and describes
the population-level variation in stimuli. These values are the same
across conditions, allowing the direct comparison of mean change in
entropy between conditions.

It is important to note that the experimental design prevents parti-
cipants from changing H C( ) because contexts are presented the same

Fig. 2. Schema of the experiment’s observation and production phases. Top: Low cognitive load condition. Bottom: High cognitive load condition. Examples shown
are the linguistic condition. In the non-linguistic condition, containers are shown in place of the object, and marbles are shown in place of the words.

Fig. 3. Screen shot of the sliders page in the high cognitive load linguistic
condition, showing three answers selected. Participants could change their
answers up until “Save Answers” was clicked. “Back” took participants back to
the question and instruction about the sliders. In the low load condition, only
one slider was shown.
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number of times in the observation and production phases. H C V( )
cannot be changed either because the only production options are the
two variants that were shown per context in the observation phase. If
participants regularize, H V H V C( ), ( ), and H V C( , ) will drop by the
same number of bits.

The entropy of the stimuli that one participant observes in the high
cognitive load condition is identical to Fig. 4. However, the entropy of
stimuli in the low cognitive load condition is lower and varies by the
input ratio observed: in condition 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0,
H V H V C H V C I V C( ) ( ) ( , ) ( ; )= = = =1 bit, 0.97 bits, 0.88 bits, 0.72
bits, 0.47 bits, and 0 bits, respectively, and H C H C V( ) ( ) 0= = bits.

4. Results

First, we describe participant behavior and present the main result:
cognitive load and linguistic stimuli both elicit regularization behavior.
Next, three supporting analyses explore regularization behavior in greater
depth: Section 4.5 shows that participants’ regularization behavior was
due to production biases rather than an encoding bias, Section 4.6 ana-
lyzes individual differences in regularization during this experiment, and
Section 4.7 shows primacy effects help explain why some individuals
regularized with the minority variant, rather than the majority variant.

4.1. Regularization behavior profiles

Before analyzing the data in terms of its entropy, we first visually
inspect how participants changed each input ratio. In Fig. 5, each panel
shows the distribution of ratios that participants produced in response
to each input ratio they observed, per experimental condition.

The first row (marbles1) shows clear probability matching behavior,
where both the mean and mode of participant responses are near the
input ratio. Participants in this condition tended to successfully re-
produce their input ratio, with a small amount of error. The second row
(marbles6) shows clear regularization behavior. Participants in this
condition have moved distributional mass away from the input ratio
and toward the maximally regular ratios, 0:10 and 10:0. Responses to
the 5:5 input ratio seem to be a combination of probability matching
behavior (13 participants also produced a 5:5 ratio) and regularization
behavior (15 participants produced maximally regular ratios).

The third row (words1) shows a mixture of probability matching and
regularization behavior for all input ratios. Roughly half of the parti-
cipants appear to have probability matched with error rates similar to
marbles1, and roughly half of the participants appear to have regular-
ized at levels comparable to marbles6. In the 10:0 input condition, none
of the participants choose the unseen word on any production trial. The
fourth row (words6) shows a similar regularization profile to marbles6,
but with a more extreme movement of distributional mass to the edges,
such that the majority of participants produced maximally regular ra-
tios. This condition constitutes a successful replication of the first ex-
periment reported in Reali and Griffiths (2009).

4.2. Regularization per condition

In this section, we report the differences in regularization behavior
within and between the four experimental conditions. We do this by
calculating the change in Shannon entropy for each pair of input-output
ratios obtained from participants. For example, if a participant observes a
5:5 ratio of orange and blue marbles for the jar, and then produces a 6:4
ratio of orange and blue marbles for the jar, the Shannon entropy for that
pair of input-output ratios changes by 0.12 bits.2 Fig. 6 shows the mean
change in entropy for all input-output ratio pairs per condition. Negative
values mean participants made ratios more regular on average.

To assess the significance of differences in regularization within and
between conditions, a linear mixed effects regression analysis was
performed using R (R Core Team, 2013) and lme4 (Bates, Maechler,
Bolker, & Walker, 2013). The dependent variable was the change in
entropy of the input-output ratios. Experimental condition was the in-
dependent variable. Participant was entered as a random effect (with
random intercepts). No obvious deviations from normality or homo-
scedasticity were apparent in the residual plots.

Within-condition changes were assessed by re-leveling the model to
obtain the intercept value for each condition. The intercept equals the
condition’s mean change in entropy and the regression analysis pro-
vides a t-statistic to evaluate whether this mean is significantly different
from zero. Three of the four experimental conditions elicited a
significant amount of regularization behavior (Fig. 6). Participants
regularized an average of 0.17 bits in marbles6
(S E t p. . 0.03, (1152) 5.53, . 001= = < ), 0.19 bits in words1
(S E t p. . 0.03, (1152) 6.52, . 001= = < ), and 0.36 bits in words6
(S E t p. . 0.03, (1152) 11.34, . 001= = < ). In marbles1, the mean loss of
0.01 bits was not significantly different from zero, which indicates that
participants are probability matching in this condition
(S E t p. . 0.03, (1152) 0.35, 0.73= = = ). Overall, participants regular-
ized 26%, 28%, and 53% of the conditional entropy in marbles6, words1,
and words6, respectively.

Pairwise comparison of regularization between conditions is
also obtained from this re-leveled model. All pairwise comparisons
showed a significant difference in regularization behavior at the
p . 001< level, except for that between words1 and marbles6
(S E t p. . 0.04, (1152) 0.34, 0.73= = = ).

Table 1
Co-occurence frequencies among the twelve variants and six contexts in the
experimental stimuli set. Each cell gives the number of times that the partici-
pant observed varianti along with contextj.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 5 5 0 0 0 0 0 0 0 0 0 0
c2 0 0 6 4 0 0 0 0 0 0 0 0
c3 0 0 0 0 7 3 0 0 0 0 0 0
c4 0 0 0 0 0 0 8 2 0 0 0 0
c5 0 0 0 0 0 0 0 0 9 1 0 0
c6 0 0 0 0 0 0 0 0 0 0 10 0

Fig. 4. Entropy of the training stimuli (in bits). In the linguistic condition, V is
the distribution over words and C is the distribution over objects. In the non-
linguistic condition, V is the distribution over marbles and C is the distribution
over containers. Refer back to Section 2 for the definition of each quantity. The
experiment is designed so participants can change the size of the outer circle
only.

2 From here onward, whenever we refer to the “entropy of a ratio” we mean
the Shannon entropy of the two variants in ratio x y: , where the probability
distribution over the variants is p V( ) { , }x y

10 10= .
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4.3. Domain vs. cognitive load

Effects of the experimental manipulations were assessed by con-
structing a full linear mixed effects model with three independent vari-
ables (i.e. fixed effects) and their interaction: domain, cognitive load, and

entropy of the input ratio. The dependent variable was the change in
entropy of the input-output ratios. Participant was entered as a random
effect (with random intercepts). The significance of each fixed effect was
determined by likelihood ratio tests, on the full model (described above)
against a reduced model which omits the effect in question. There was a
significant effect of domain ( p(4) 46.048, . 0012 = < ), cognitive load
( p(4) 105.07, . 0012 = < ), and input ratio ( p(4) 520.23, . 0012 = < ).
Interactions between fixed effects were also determined by likelihood
ratio tests by comparing a reduced model (which omits all interactions)
to one which includes the interaction of interest. Two interactions were
found to be significant: cognitive load and input ratio
( p(1) 74.695, . 0012 = < ) and domain and input ratio
( p(1) 4.4462, 0.032 = = ). The interaction between domain and cogni-
tive load was not significant ( p(1) 0.0059, 0.942 = = ).

Therefore, the best-fit model contained an interaction between do-
main and input ratio, an interaction between cognitive load and input
ratio, but only an additive relationship between domain and cognitive
load (loglikelihood 278.71= ). A summary of the best-fit model is in-
cluded in the Appendix, Table 4. The effect of input ratio on entropy
change is due to different amounts of regularization being possible
under each input ratio (the maximum drop in entropy achievable under
the 5:5 through 0:10 ratios are 1, 0.97, 0.88, 0.72, 0.47, and 0 bits,
respectively). As input entropy increases from 0 to 1 bits, output en-
tropy changes by 0.14 bits. This means that participants regularize
more when the entropy of the input ratio increases from 0 bits (the 10:0
ratio) to 1 bit (the 5:5 ratio). The interactions mean that the effect of
input entropy on output entropy is greater by 0.1 bits when linguistic
stimuli are used and greater by 0.5 bits when cognitive load is high.
The additive relationship suggests that domain and cognitive load are
independent drivers of regularization behavior.

Fig. 5. Each row shows the results of
one experimental condition. Each
column corresponds to one of the six
input ratios, ranging from 5:5 (left) to
10:0 (right). Each pane contains the
distribution of output ratios that parti-
cipants produced in response to one
input ratio. Output ratios are displayed
on the x-axis as the number of times a
participant produced variant x from
the input ratio x:y, where variant x
corresponds to whatever marble/word
was in the majority during the ob-
servation phase. (In the 5:5 input ratio
a random marble/word was coded as
variant x.) All input ratios are indicated
by a dashed line.

Fig. 6. Entropy drops when learners regularize. Each bar shows the average
change in Shannon entropy over all pairs of input-output ratios, per condition.
Stars indicate significant difference from zero. Error bars indicate the 95%
confidence intervals computed with the bootstrap percentile method (Efron,
1979). A significant drop in entropy means that participants regularized in that
condition. Non-significant differences from zero are obtained when participants
probability match. The lower and upper bounds on mean entropy change for
this experiment are 0.67 and 0.33+ bits.

V. Ferdinand et al. Cognition 184 (2019) 53–68

59



4.4. Frequency-based analysis of regularization

In much of the linguistic regularization literature to date, regular-
ization is measured in terms of stimulus frequency, rather than entropy.
In this section, we repeat the analyses from Sections 4.2 and 4.3 with a
different dependent variable, change in frequency of the majority variant
(as in, e.g. Hudson Kam & Newport, 2005; Reali & Griffiths, 2009), to
illustrate the difference between these two approaches. Fig. 7 shows the
mean change in frequency of the majority variant (x from input ratio
x y: ). For example, if a participant produces a 7:3 ratio in response to a
9:1 input ratio, there is a −0.2 change in majority variant frequency for
that pair of input-output ratios. In the 5:5 input condition, a random
variant was encoded as the “majority” variant. Positive changes mean
participants over-produced the majority variant and negative changes
mean participants over-produced the minority variant. In Fig. 7 we see
that none of the conditions elicit over-production of the majority var-
iant on average, despite the fact that participants in marbles6, words1,
and words6 are clearly regularizing input ratios (compare to Fig. 6).

Applying the analysis in Section 4.2 to the change in majority var-
iant frequency, we find that neither linguistic condition shows a sig-
nificant change in majority variant frequency (words1:
S E t p. . 0.02, (1152) 0.22, 0.82= = = ; words6: S E t. . 0.01,=

p(1152) 0.65, 0.51= = ). However, the frequency-based analysis does
reveal something that the entropy-based analysis was unable to capture:
a significant over-production of the minority variant in the marble-
drawing domain, marbles1 (S E t p. . 0.02, (1152) 2.882, .004= = = ) and
marbles6 (S E t p. . 0.01, (1152) 3.269, .001= = = ).

To determine the effects of the experimental manipulations, we apply
the analysis in Section 4.3 to the change in majority variant frequency
(and we change the fixed effect entropy of the input ratio to input frequency
of the majority variant in order to match the dependent variable). We find
a significant effect of domain ( p(4) 16.391, 0.0032 = = ) and input
frequency ( p(4) 14.634, 0.0062 = = ) on change in majority variant
frequency, but no significant effect of cognitive load
( p(4) 3.0755, 0.552 = = ). We also find a significant interaction be-
tween domain and input frequency ( p(4) 6.7741, 0.0092 = = ). There-
fore, the best-fit model contains an effect of domain, input frequency,
and an interaction between domain and input frequency (loglikelihood

77.0= , see Appendix Table 5).

In summary, the frequency analysis fails to capture the effect of
cognitive load on regularization behavior and fails to capture the fact
that participants are eliminating variation in the linguistic domain. The
reason mean change in frequency is not different than zero in the lin-
guistic domain is because participants sometimes regularized with the
majority variant and other times regularized with the minority variant,
in a way that tends to cause frequency changes to average out to zero.
However, as is clear from the raw data, it would be incorrect to con-
clude that participants are probability matching in the linguistic do-
main.

4.5. Regularization during encoding

As discussed in the Introduction, regularization behavior is often
explained as a result of general cognitive limitations on memory en-
coding and/or retrieval. The high cognitive load manipulation in this
experiment affected both the observation and production phases be-
cause both phases consisted of 60 interleaved trials. Therefore, the
regularization behavior we observed could be due to encoding multiple
frequencies under load (during the observation phase) and/or re-
trieving frequencies under load (during the production phase).
Furthermore, it is possible that linguistic domain may have a specific
effect on the encoding of frequency information. To determine whether
encoding errors contribute to participants’ regularization behavior in
this experiment, we asked participants to estimate (using a slider) the
underlying ratio that generated the marble draws or naming events they
observed, per container or object (see Section 3.4, last paragraph). If
participants’ estimates are not significantly different from the ratios
they observed, then we can assume frequency encoding was unbiased.
This result would point to a production-side driver of regularization.

Fig. 8 (dark grey bars) shows the average change in entropy be-
tween participants’ estimates and the actual input ratios they observed.
The same linear mixed effects regression analysis described in Section
4.2 was applied to this data, using the change between input and es-
timate entropy as the dependent variable. Only one condition, marbles1,
elicited a significant difference (of 0.05 bits) between the input ratios
and estimates (S E t p. . 0.02, (1152) 2.29, 0.02= = = ). In this condition,
participants estimated the generating ratio to be significantly more
variable than the ratio they had observed, indicating a slight encoding
bias toward variability. None of the conditions show any bias toward
regularity in participants’ estimates. Effects of the experimental ma-
nipulations were assessed by the same procedure described in Section
4.3, using change between input and estimate entropy as the dependent
variable. The best-fit model contained a significant effect of domain
( p(4) 11.735, 0.022 = = ), cognitive load ( p(4) 34.916, . 0012 = < ),
and input ratio ( p(4) 562.04, . 0012 = < ) (loglikelihood = 72.558,
see Appendix Table 6). One interaction was found to be a significant
predictor of participants’ estimates: cognitive load and input ratio
( p(1) 27.916, . 0012 = < ). Interactions between domain and input
ratio ( p(1) 0.7554, 0.382 = = ) and domain and cognitive load
( p(1) 0.6741, 0.412 = = ) were not significant. Although the estimate
data shows no bias toward regularity, the same factors that affected
regularization behavior (cognitive load, domain, and input ratio) also
affect participants’ estimates. Additionally, we find that the cognitive
load manipulation resulted in noisier estimates (F p56.487, . 001= < ,
with Levene’s test for homogeneity of variance), whereas the domain
manipulation did not (F p0.4416, 0.51= = ). This suggests that the high
load condition was indeed more difficult than the low load condition
and that the two domains were well-matched in terms of difficulty and
stimuli complexity.

Fig. 8 (light grey bars) shows the difference in entropy between the
ratio participants produced and their estimate of that ratio, i.e. the
extent to which their productions were more regular than their own
estimate of their input data. The same linear mixed effects regression
analysis described in Section 4.2 was applied to this data, using the
difference in entropy between the produced and estimated ratios as the

Fig. 7. Raw changes in frequency fail to capture regularization behavior. Each
bar shows the average difference between the number of times participants
observed the majority variant in the training set and the number of times they
produced that variant in the testing phase. Error bars indicate the 95% con-
fidence intervals computed with the bootstrap percentile method (Efron, 1979).
Values significantly higher than zero indicate a population-level trend in over-
producing the majority variant. Values significantly lower than zero indicate a
population-level trend in over-producing the minority.
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dependent variable. In all conditions, production ratios are significantly
more regular than the estimates participants made (marbles1:
S E t p. . 0.03, (1152) 2.55, 0.01= = = ; marbles6: S E. . 0.03= ,
t p(1152) 6.97, . 001= < ; words1: S E t. . 0.03, (1152)= =

p8.20, . 001< ; words6: S E. . 0.03,= t (1152) 10.69= , p . 001< ). This
means that regularization occurs during the production phase and is
likely to be involved in the retrieval and use of frequency information.
Interestingly, production-side regularization occurs in all four condi-
tions, even in marbles1 where participants probability matched their
productions to their inputs (effectively “correcting” the variability bias
in their estimates). This suggests that regularity is broadly associated
with frequency production behavior, even in cases that do not lead to
overt regularization behavior.

In summary, raising cognitive load resulted in noisier encoding,
however the noise was not biased in the direction of regularity.
Estimates in the linguistic domain were not biased toward regularity
either. It appears that the bulk of regularization occurs during the
production-side of the experiment and is likely to involve processes of
frequency retrieval and use.

4.6. Individual differences in frequency learning strategy

The bimodal distributions over output ratios (refer back to Fig. 5)
suggest individual differences in frequency learning strategies. We
break frequency learning behavior into three categories: regularizing,
probability matching, and variabilizing. How many participants fall into
each category? And in the high load conditions, where participants
respond to more than one item, how consistent are their responses with
one strategy?

We define probability matching as sampling from the input ratio, with
replacement. This leads to output ratios that are binomially distributed3

about the mean (where the mean equals the input ratio). Although the
single most likely output ratio a participant could sample is the set of
input ratios itself, most probability matchers will sample a ratio that has

higher or lower entropy than the input ratio. We will classify partici-
pants who produced ratios within the 95% confidence interval of
sampling with replacement behavior as probability matchers. We
classify participants as variabilizers if they produced ratios with sig-
nificantly higher entropy than likely under probability matching be-
havior. These could be participants who were attempting to produce a
maximally variable set (all 5:5 ratios) or randomly selecting among the
two choices on each production trial. Likewise, we classify participants
as regularizers if they produced ratios with significantly lower entropy
than likely under probability matching behavior. It is important to note
that a participant with a very weak bias for regularity or variability may
consistently produce data that falls within the 95% confidence range of
probability matching. However, we take a conservative approach by
grouping individuals as regularizers or variabilizers only when prob-
ability matching has low probability.

In the low load conditions, where participants only sample one
ratio, the 95% confidence intervals on output ratios were determined
with the Clopper-Pearson exact method.4 In the high cognitive load
conditions, where participants sample a set of six ratios, we classify the
set of ratios according to their conditional entropy H V C( ) (refer back
to Section 2). The 95% confidence interval on conditional entropy for
probability matching in this experimental setup is 0.43 to 0.75 bits
(determined by 105 runs of simulated probability matching behavior).
Participants who produced data with entropy in the range

x0.43 0.75 were classified as probability matchers, those who
produced data in the range x0 0.43< were classified as regularizers,
and those who produced data in the range x0.75 1< were classified
as variabilizers.

Table 2 shows the number of participants that fell into each fre-
quency learning category, per condition. All strategies are represented
within each experimental condition. There is a significant effect of
cognitive load ( p(2) 151.63, . 0012 = < ) and domain
( p(2) 31.49, . 0012 = < ) on the distribution of frequency learning
strategies, meaning that the experimental manipulations elicit different
frequency learning strategies from participants. Because fewer data
points were collected from participants in the low load condition,
probability matching behavior is not easily ruled out, hence the high
number of participants classified as probability matchers in marbles1
and words1. It is possible that the difference in dataset size between the
low and high conditions is responsible for the significant effect of load.
The effect of domain, however, is reliably due to the experimental
manipulation. Therefore, the remainder of this section focuses on the
high load data.

Fig. 9 shows the set of six output ratios that each participant pro-
duced in the high cognitive load conditions. The sets are sorted by their
entropy and the shaded box shows the sets that fell into the

x0.43 0.75 bit range (classified as probability matchers). Partici-
pants to the left of the box are classified as regularizers and participants
to the right are classified as variabilizers. More regularizers were found
in the linguistic domain, more variabilizers were found in the non-lin-
guistic domain, and probability matchers seem equally likely to be
found in either domain. At the extreme left of the x-axis, we see the
subset of regularizers, numbering 6 participants in marbles6 and 22 in
words6, who produced a maximally regular set (all 10:0 or 0:10, con-
ditional entropy = 0 bits). No participants produced a maximally
variable set (all 5:5 ratios, conditional entropy = 1 bit). Participants
are more likely to maximally regularize in the linguistic condition
( p(1) 10.2857, .0012 = = ). Although some participants regularized
with the majority variant exclusively, no participants regularized with
the minority variant exclusively. Points in the 0–4 range on the y-axis

Fig. 8. Production bias, not encoding bias, drives regularization. Dark grey:
Average difference in regularity between the input ratios participants actually
observed and their estimates of the underlying ratio that generated the input
ratio. A significant increase in entropy means that participants estimated the
underlying ratio to be more variable than the input ratio, and a significant
decrease means they estimated it to be more regular. Light grey: Average dif-
ference between production ratio regularity and estimated ratio regularity.
Error bars indicate the 95% confidence intervals computed with the bootstrap
percentile method (Efron, 1979).

3 Humans can probability match with variance that is significantly lower than
binomial variance (Ferdinand, 2015, pp.45-57). Therefore, the definition of
probability matching used in this paper is a conservative one.

4 95% confidence interval on probability matching per input ratio: 5:5,
x0.19 0.81; 6:4, x0.26 0.88; 7:3, x0.35 0.93; 8:2, x0.44 0.97;

9:1, x0.55 0.99; 10:0, x0.69 1, where x is the frequency of the majority
variant.
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correspond to output ratios that contained a large number of minority
variant productions (i.e. the majority variant had frequency of between
0 and 4). Most participants regularized with 1–2 minority variants and
4–5 majority variants.

In summary, we found that all frequency learning strategies, reg-
ularizing, probability matching, and variabilizing, are present in each
condition and the use of linguistic stimuli causes more participants to
consistently regularize.

4.7. Primacy and recency effects on regularization

Studies on regularization often find that participants regularize by

over-producing or over-predicting the majority variant, and this serves
as the standard definition of regularization (e.g. Hudson Kam &
Newport, 2005). However, many studies report some participants who
regularize with the minority variant (e.g. Hudson Kam & Newport,
2009; Reali & Griffiths, 2009; Smith & Wonnacott, 2010; Culbertson
et al., 2012; Perfors, 2012; Perfors, 2016). What causes some partici-
pants to regularize with the majority variant, and others to regularize
with the minority variant? In the previous section, we saw minority
regularization is not due to individual differences in frequency learning

behavior. If minority regularization is not a feature of individuals, it
may be a feature of the training data they received.

One possible data-driven explanation for minority regularization
lies in the effects of a stimulus’s primacy and recency on participant
behavior. In the observation phase, participants were presented with a
randomly-ordered sequence of variants, such that the probability of any
particular variant occurring at the beginning or end of the input se-
quence is proportional to its frequency in the sequence. Therefore, some
participants would have received minority variants toward the begin-
ning and/or end of the sequence, whereas others would have not. Many
experiments on the serial recall of lexical items show that participants
are better at recalling the first and last few items in a list of words (e.g.

Table 2
Participants classified by frequency learning strategy. Percentages show how
the strategies break down within each condition.

Regularizers Probability matchers Variabilizers

marbles1 10 (5%) 173 (90%) 9 (5%)
words1 50 (26%) 139 (72%) 3 (2%)
marbles6 30 (47%) 15 (23%) 19 (10%)
words6 42 (66%) 14 (22%) 8 (12%)

Fig. 9. Linguistic and non-linguistic stimuli evoke different frequency learning strategies. Data are from the high cognitive load conditions marbles6 (top) and words6
(bottom). The x-axis shows participant number, sorted by their conditional entropy (low to high). The y-axis shows the frequency of the majority variant in the
participant’s output; each point represents performance on a single container/object, and there are therefore 6 points per participant. The shaded region contains all
participants classified as probability matchers. Participants to the left of the shaded region are classified as regularizers and participants to the right are classified as
variabilizers.
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Deese & Kaufman, 1957; Murdock, 1962). This effect also extends to the
learning of mappings between words and referents: Poepsel and Weiss
(2014) found that when participants in a cross-situational learning task
were confronted with several possible synonyms for an object, their
confidence in a correct mapping was positively correlated with the
primacy of that mapping in the observation phase. Therefore, we in-
vestigated the effect of the minority variant’s position in the input se-
quence on participants’ tendency to regularize with the minority var-
iant.

Unlike most research on primacy and recency (which present par-
ticipants with a long list of unique stimuli), our input sequences only
consist of two variants, presented several times each. Therefore, we can
quantify the strength of minority primacy as the imbalance of the
variants across the input sequence. To do this, we will use the notion of
net torque. In this analogy, we consider the input sequence to be a
weightless lever of length 10 (the number of observation trials), we
consider each minority variant to be a weight of one unit which is
placed on the lever according to its observation trial number, and we
assume the lever is balanced on a fulcrum at its center. The sum of the
distance of the weights located right of center minus the sum of the
distance of the weights left of center is the net torque. We will use the
following standardization of net torque5, and refer to it as the primacy
score:

primacy score
w d
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where w is the sequence of weights and d is the distance of that weight
from the start of the sequence. In the 5:5 input sequences, a random
variant is coded as the “minority” variant. N is the length of w and m is
the total number of minority variants in the sequence. Positive values
mean that the minority variants occur more toward the beginning of the
sequence and negative values mean they occur more toward the end of
the sequence. The maximum primacy score is 1 and the minimum is
−1. The average primacy score is 0 and is obtained when the sequence
is balanced (i.e. minority variants are equally distributed early and late
in the input sequence). For example (where 1 indicates an occurrence of
the minority variant in the input sequence), the primacy score of se-
quence 1110000000 is 1, 0000000001 is 1, 0101001000 is 0.33,
1000000001 is 0, and 0000110000 is 0.

Primacy analyses were restricted to the input sequences that parti-
cipants regularized. Table 3 shows a breakdown of the number of
regularized production sequences per experimental condition (i.e. all
output sequences that had lower entropy than their corresponding
input sequence). Participants regularized a total of 570 input sequences.

Fig. 10 plots the primacy scores of the 420 sequences that were
regularized with the majority variant (grey) and the 150 sequences that
were regularized with the minority variant (black). We constructed a
logit mixed effects model of regularization type (majority or minority
regularization) as a function of primacy score. Participant was entered
as a random effect (with random intercepts). A likelihood ratio test was
performed on this model and a reduced model which omits primacy
score as a predictor. We found a significant effect of primacy score on
regularization type ( p(1) 6.4082, 0.012 = = ). On average, primacy
score is 0.11 points higher (± 0.04 standard errors) in sequences that
were regularized with the minority. This means that participants are
more likely to regularize with the minority variant when they saw it
toward the beginning of their input sequence (i.e. when minority var-
iant primacy is high). However, minority regularization is not entirely
explained by minority primacy. As can be seen in Fig. 10, minority
regularization was obtained across all primacy scores and even when
the minority was maximally recent (left-most black bar).

In summary, we found that participants who saw the minority
variant toward the beginning of the observation phase were more likely
to regularize with the minority variant. This helps explain some of the
individual differences in regularization behavior, by grounding those
differences in the properties of the data each participant observed.

5. Predicting the evolution of regularity

In the previous sections, we showed that learners regularize novel
word frequencies due to domain-general and domain-specific con-
straints. This was accomplished by analyzing one cycle of learning,
which spans the perception, processing, and production of a set of
variants. Although this informs us about the relevant constraints that
may underpin regularity in word learning, and even how much reg-
ularity each constraint imposes on a given data set, it does not ne-
cessarily tell us how much regularity we will expect to see in a set of
linguistic variants over time. This is because languages are transmitted
between generations of learners and are therefore subject to multiple
learning cycles, where each individual has an opportunity to impose
some amount of regularity on the language.

In this section, we address the complex relationship between reg-
ularization biases and the level of regularity found in culturally trans-
mitted data. In particular, we will focus on the evolution of regularity in
the marbles6 and words1 conditions, because these two conditions eli-
cited similar amounts of regularization behavior from two very dif-
ferent causes: domain-general and domain-specific constraints on fre-
quency learning. Would a data set which is culturally transmitted under
conditions of only high cognitive load (as in marbles6) or only linguistic

Table 3
Number of regularized production sequences per condition. Parentheses show
the number of minority-regularized sequences as a percentage of all regularized
sequences.

Production sequences marbles1 words1 marbles6 words6

Total 192 192 384 384
Regularized 43 85 201 241
Regularized w/minority 16 (37%) 18 (21%) 53 (26%) 63 (26%)

Fig. 10. Participants are more likely to regularize with the minority variant
when they observe it toward the beginning of the input sequence. The x-axis is
the primacy of the minority variant in the input sequence, ranging from 1
(maximal recency) to 1 (maximal primacy). Bars show the number of input
sequences that were regularized by over-producing the minority variant (black)
and by over-producing majority variant (grey).

5 Thanks to Andrew Berdahl for providing this solution. The score was stan-
dardized in order to de-correlate net torque with input ratio.
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framing (as in words1) ultimately acquire the same amount of reg-
ularity?

To answer this question, we will explore the dynamics of change in
our existing data using an iterated learning model of cultural trans-
mission (Kirby et al., 2014) in which the output of one learner serves as
the input to another (e.g. Kirby, 2001; Brighton, 2002; Smith, Kirby, &
Brighton, 2003; Kirby, Cornish, & Smith, 2008; Reali & Griffiths, 2009;
Smith & Wonnacott, 2010). Several cycles of iterated learning result in
a walk over the complex landscape of constraints that shape the
transmitted behavior, and several walks can be used to estimate this
landscape and its likely evolutionary trajectories. Griffiths and Kalish
(2007) have shown that iterated learning is equivalent to a Markov
process, which is a discrete-time random process over a sequence of
values of a random variable, v v v, , ,t t t n1 2 …= = = , such that the random
variable is determined only by its most recent value (Papoulis, 1984,
p.535):

P v v v v P v v( , , , ) ( )t t t t t t1 2 1 1… == = (5)

This describes a memoryless, time-invariant, process in which only
the previous value (vt 1) has an influence on the current value (vt). This
is the case for iterated learning chains when learners only observe the
behaviors of the previous generation. All of the possible values of the
random variable constitute the state space of this system. A Markov
process is fully specified by the probabilities with which each state will
lead to every other state and these probabilities between states can be
represented as a transition matrix, Q (Norris, 2008, p.3). The prob-
abilities in Q are the landscape over which a culturally transmitted
dataset evolves.

In our experimental data, each state s corresponds to one of the
eleven possible ratios: s s s, , ,0 1 10… = {0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4,
7:3, 8:2, 9:1, and 10:0}, where st 1 is the input ratio and st is the output
ratio. Our experiment was designed so that Q could be estimated for
each of the four experimental conditions, by collecting data from par-
ticipants in each of the eleven possible states. Fig. 11 (top row) shows
the estimated transition matrix from each experimental condition. Each
estimation consists of the raw data in that condition, smoothed with a
small value

length row
1
( )2= . Each cell in the matrix, Qij, gives the tran-

sition probability from state si t 1= to state sj t= .
The transition matrices can be used to estimate the regularity of the

data after an arbitrarily large number of learning cycles. No matter
what start state is used to initialize an iterated learning chain, an ar-
bitrarily large number of iterations will converge to a stationary dis-
tribution, s . The stationary distribution is defined as s Q s= , meaning
that once the data take the form of the stationary distribution and serve
as the input to Q, the output will be the same distribution and the
subsequent generations of data will not change anymore. The stationary
distribution is a probability distribution over all states in the system,
where each probability corresponds to the proportion of time the
system will spend in each state, and can be solved for any matrix by
decomposing the matrix into its eigenvalues and eigenvectors: s is
proportional to the first eigenvector. Fig. 11 (bottom row) shows the
stationary distribution for each transition matrix. From these distribu-
tions, we see that an arbitrarily long iterated learning chain will pro-
duce maximally regular (0:10 and 10:0) ratios approximately 40% of
the time when participants are learning about 12 marbles and six
containers (marbles6) and approximately 80% of the time when parti-
cipants are learning about two words and one object (words1). The
difference between stationary distributions here means that the evolu-
tionary dynamics of these two experimental conditions differ.

We calculate the level of regularity in the stationary distribution by
multiplying the Shannon entropy of the ratio (defined by each state, si )
by the probability of observing that state, p s( )i . The results are 0.61
bits of conditional entropy H V C( ) in marbles1, 0.43 bits in marbles6,
0.16 bits in words1, and 0.24 bits in words6. We compare these values to
the results of the experiment (the average conditional entropy achieved

after one learning cycle), which was 0.66 bits in marbles1, 0.50 bits in
marbles6, 0.48 bits in words1, and 0.32 bits in words6. Fig. 12 plots these
values in terms of entropy change: as the difference between the mean
input entropy and the mean output entropy after one learning cycle (in
dark grey) and after convergence to the stationary distribution (in light
grey). Here we see that, despite showing similar mean entropy change
in the experiment, the regularization biases involved in marbles6 and
words1 ultimately produce different levels of regularity via cultural
transmission (inferred by the non-overlapping 95% confidence intervals
in stationary regularity between marbles6 and words1). This is due to
the different distribution of probabilities within the transition matrices.
These probabilities constitute different landscapes that attract iterated
learning chains into different regions of the state space. One reason why
the words1 data regularizes more than the other data sets, is that it has a
markedly lower probability of transitioning out of the 10:0 and 0:10
states, trapping generations of learners in this highly regular region for
longer amounts of time.

In summary, we have shown that the regularity elicited by two
different constraints on frequency learning (the domain-general reg-
ularization biases involved in marbles6 and the domain-specific reg-
ularization biases involved in words1) is similar in one generation of
learners, but displays different evolutionary dynamics under simulated
cultural transmission. This finding has important implications for the
relationship between learning biases and structure in language: it
means that culturally transmitted systems, such as language, do not
necessarily mirror the biases of its learners (see Kirby, 1999; Kirby,
Smith, & Brighton, 2004; Smith et al., 2017). Previously, we showed
that cognitive load and linguistic domain are independent sources of
regularization in individual learners. Looking at the data from in-
dividual learners, we may even infer that cognitive load and linguistic
domain inject similar amounts of regularity into language. However,
the fact that words1 has higher stationary regularity than marbles6
means, at least in terms of the present data, that the amount of reg-
ularity we ultimately expect to find in a language is not simply pre-
dicted from a learner’s biases. Instead, the process of cultural trans-
mission is an indispensable piece of the puzzle in explaining how
learning biases shape languages.

6. Discussion

Regularity in language is rooted in the cognitive apparatus of its
learners. In this paper, we have shown that linguistic regularization
behavior results from at least two, independent sources in cognition.
The first is domain-general and involves constraints on frequency
learning when cognitive load is high. The second is domain-specific and
is triggered when the frequency learning task is framed with linguistic
stimuli.

Cognitive load was manipulated by varying the number of stimuli in
a frequency learning task. When participants observed and produced
for more stimuli, they regularized stimuli frequencies more on average
than when they were observing and producing for fewer stimuli. This
result held when stimuli were non-linguistic (marbles and containers)
and when stimuli were linguistic (words and objects) and has pre-
viously been observed in separate non-linguistic and linguistic experi-
ments (Gardner, 1957; Hudson Kam & Newport, 2009). We have
shown, within the same experimental setting and for identical dis-
tributions of variation, that increasing cognitive load causes partici-
pants to regularize both non-linguistic and linguistic stimuli. Further-
more, we have shown that participants regularize a similar amount of
variation in both cases, eliminating 24.6% of the variation in marbles
conditioned on containers and 25.5% of the variation in words condi-
tioned on objects. This similarity suggests that learners have general
limits on the amount of variation they can process and reproduce,
which are independent of the learning domain. It is quite possible that
cognitive load makes a fixed contribution to regularization behavior,
however it remains to be seen whether this result holds over different
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learning domains and cognitive load manipulations.
One possible alternative explanation for the cognitive load effect on

regularization behavior is the differing length of the two tasks. Our
design kept duration per stimulus constant across conditions, rather
than total task duration, because it is unknown how stimuli presenta-
tion length affects regularization behavior. However, it is possible that
participants’ attention was lower at the end of the high cognitive load
tasks, causing them to over-produce the stimuli they saw early on in the

training phase. Given our finding that primacy affects minority reg-
ularization more than recency, this could be the case, although that
effect was quite small. Future research should address the effect of
stimulus duration and presentation order on the degree to which par-
ticipants regularize.

Domain was manipulated by varying the type of stimuli used in the
frequency learning task. When participants observed and produced
mappings between words and objects, they regularized more than
participants who observed and produced mappings between marbles
and containers. Participants appear to have a higher baseline regular-
ization behavior when learning about linguistic stimuli: an additional
27% of variation was regularized due to linguistic domain in each
cognitive load condition (26.7% in the low condition, 27.4% in the high
condition).

The use of linguistic stimuli may trigger any number of domain-
specific learning mechanisms or production strategies. One possibility is
that the stimuli manipulation changed participants’ pragmatic in-
ferences about the frequency learning task. In an artificial language
learning task, Perfors, 2016 showed that participants regularize more
when they believe that the variation in labels for objects can be the
result of typos, suggesting that participants are more likely to maintain
variation when they think it is meaningful. It is possible that partici-
pants make different assumptions about the importance of variation in
marbles versus words when they are required to demonstrate what they
have learned to an experimenter. However, it is not clear what these
assumptions may be. Another possibility is that the use of linguistic
stimuli encourages participants to consider the communicative con-
sequences of variation. Participants in artificial language learning tasks
regularize more when they are allowed to communicate with one an-
other (Fehér et al., 2016; Smith, Fehér, & Ritt, 2014) and even when
they erroneously believe they are communicating with another parti-
cipant (Fehér et al., 2016). This suggests that participants strategically
regularize variation in situations that are potentially communicative
and may be the reason that regularization is observed in a wide range of
language learning tasks, including the present study.

Fig. 11. The data from the experiment is used to predict the cultural evolution of regularization. Top: Estimated transition matrices for each experimental condition
contain the probabilities that a learner produces any given output ratio from any given input ratio (presented in terms of the frequency of variant x in each input ratio
x:y). The shading of the cells denote the transition probabilities between states. Each row in the matrix corresponds to the distribution of output ratios produced in
response to one input ratio (rows are the same distributions in Fig. 5, only smoothed). For example, row 5 in the marbles1 transition matrix corresponds to the upper
left panel of Fig. 5, and the probability of transitioning from st 1 5= to st 6= is equivalent to the (smoothed) proportion of participants that produced a 6:4 ratio when
trained on a 5:5 ratio. Likewise, rows 4 and 6 correspond to the 6:4 panel in Fig. 5, but this distribution is flipped in row 4 to display the results in terms of the
minority variant. Bottom: The stationary distribution shows the percentage of learners who will produce each output ratio, after the ratios have evolved for an
arbitrarily large number of generations. Each stationary distribution is the solution to the matrix above it.

Fig. 12. Same learning biases lead to different degrees of regularization after
many generations of cultural transmission. Dark grey: Average change in en-
tropy after one learning cycle (same data in Fig. 6, reprinted here for com-
parison). Light grey: Average change in entropy of variants after convergence to
the stationary distribution (i.e. after an infinite number of learning cycles).
Error bars indicate 95% confidence intervals, computed by the bootstrap per-
centile method (Efron, 1979) on 10,000 resamples of the transition matrix,
where each matrix was solved for its stationary distribution and mean change in
entropy.
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The use of non-linguistic stimuli may not fully put participants into
a non-linguistic task framing: participants may be saying “orange”,
“blue”, etc as they observe the marbles or verbalizing a rule such as
“there are more blue marbles in the jar”. If humans rely on language for
solving complex problems, they may trigger linguistic representations
when stimuli become more complex, regardless of the learning domain.
Following this logic, any increase in cognitive load could make any task
more linguistic. This would change the interpretation of our results,
such that degree-differences in regularization behavior map on to de-
gree-differences in the amount of linguistic representation involved.
Adopting this interpretation of our experiment, however, would require
an overhaul of the definition of “domain-general learning mechanisms”
in statistical learning.

We also investigated the role of encoding errors on regularization
behavior. After the production phase, participants estimated the ratio of
the variants associated with each container or object they had observed.
We found that the same factors that affected production data also af-
fected estimates (domain, cognitive load, and input frequency).
However, the estimates themselves were not significantly more regular
than the input ratios that participants observed. This suggests that
participants had access to somewhat accurately encoded frequency in-
formation when making their estimates. Because participants regular-
ized their productions without showing a corresponding bias in esti-
mates, this implies that the bulk of their regularization occurred during
the production phase of the task. This production-side interpretation is
in line with the results of Hudson Kam and Chang (2009), who showed
that adult participants regularize more when stimuli retrieval is made
harder; Perfors (2012), who found adult participants do not regularize
when encoding is made harder; and Schwab, Lew-Williams, and
Goldberg (2018), who show that children regularize during production
despite demonstrated awareness of all word forms used during training.
This result also suggests that the Less-is-More hypothesis (Newport,
1990), which states that learners regularize because they fail to encode,
store, or retrieve lower-frequency linguistic forms, applies more to re-
trieval and less to encoding. However, it is possible that biased en-
coding could result from more complex mappings than those used in
this experiment.6

An alternative explanation for the difference between the estimates
and productions could be due to how these two types of data were
elicited from participants. It is likely the estimation question elicited
more explicit knowledge about stimuli frequencies and the production
task elicited more implicit knowledge (see Cleeremans, Destrebecqz, &
Boyer, 1998 for review). If this is the case, it would mean that parti-
cipants’ explicit knowledge of observed frequencies is more accurate
than their implicit knowledge and imply that regularization behavior is
more closely associated with implicit knowledge retrieval.

This paper also explored the topic of minority regularization in
depth. We found that minority regularization is not the result of in-
dividual differences. Although participants did differ in frequency
learning strategies (we found regularizers, probability matchers, and
variabilizers in all four conditions), most participants regularized with
only one or two minority variants. Therefore, we investigated differ-
ences in the randomized stimuli that each participant saw and found
that participants are significantly more likely to regularize with the
minority variant when it occurs toward the beginning of the observa-
tion sequence. This primacy effect is in line with the results of Poepsel
and Weiss (2014), which showed that participants in a cross-situational

learning task had higher confidence in the correctness of a mapping
between words and referents when those items co-occurred early in the
observation phase. We also demonstrated how minority regularizers
can confound regularization analyses which are based on the majority
variant’s change in frequency (Section 4.4) and argue that regulariza-
tion should not be defined exclusively as “overproduction of the
highest-frequency or dominant form”. Alternative analyses that over-
come this issue are Perfors (2012, 2016)’s regularization index and en-
tropy-based analyses, as we use here (see Section 2).

There are several pros and a few cons to using entropy-based ana-
lyses. Regularization occurs whenever learners increase the predict-
ability of a linguistic system and therefore directly equates to a system’s
decrease in entropy. Entropy measures allow us to quantify linguistic
variation directly, in a mathematically-principled way based on pre-
dictability. They also allow us to quantify all of the variation in a set of
linguistic variants at once. Analyses based on majority-variant fre-
quency only tell us about changes to one or a subset of the variants in a
language. Overproduction of majority forms certainly can cause a lan-
guage’s entropy to drop, but regularity also can increase when minority
forms are overproduced or when forms are maintained but conditioned
on other linguistic contexts or meanings. Entropy measures also force us
to be explicit about what type of linguistic variation we are analyzing
(i.e. the number of variants or their predictability in conditioning
contexts) and allow direct comparison between different experiments
(see footnote 6 as an example). However, entropy and frequency ana-
lyses are sensitive to different aspects of linguistic data. Entropy is
better for quantifying regularization and positively identifying it,
whereas frequency is better for detecting a population-level trend in
over- or under-producing a particular variant. For example, the fre-
quency method used in Section 4.4 did not capture the effect of cog-
nitive load on frequency learning behavior, but it did capture an in-
teresting domain difference that the entropy analysis missed: marble
drawers overproduced the minority variant on average, whereas word
learners did not. These two methods also show differences in the clas-
sification of probability matching behavior: the entropy method iden-
tified marbles1 as consistent with probability matching behavior and the
frequency method did not (because there is a significant bias toward the
minority variant). This raises important questions about the nature of
probability matching: should it be defined as reproducing the same
amount of variation (as the entropy measure captures) or reproducing
the same amount of variation along with the correct mapping of varia-
tion to stimuli (as the frequency measure captures)?

Overall, this paper explored how various cognitive constraints on
frequency learning give rise to regularization behavior. But what can
detailed knowledge of these constraints tell us about the regularity of
languages? One possibility is that the relationship between constraints
on learning and structure of languages is straightforward, such that
learning biases can be directly read off the typology of languages in the
world (e.g. Baker, 2001) or the probability that a learner ends up
speaking any given language can be read off the probability of the
language in its prior (Griffiths & Kalish, 2007). Under other conditions,
however, cultural transmission distorts the effects of learners’ biases on
the data they transmit, making it impossible to simply read learning
biases off of language universals (Kirby, 1999; Kirby et al., 2004).
Often, this distortion increases the effects of the bias over time, such
that weak biases have strong effects on the structure of culturally
transmitted data (e.g. Kalish, Griffiths, & Lewandowsky, 2007; Kirby,
Dowman, & Griffiths, 2007; Griffiths, Christian, & Kalish, 2008; Reali &
Griffiths, 2009; Smith & Wonnacott, 2010; Thompson, 2015). However,
the opposite can also occur: biases can have weaker effects or no effects
at all (Smith et al., 2017). This suggests that cultural transmission in-
creases the complexity of the relationship between individual learning
biases and the structure of language. By plugging the data obtained
from our population of participants into a model of cultural transmis-
sion, we also found a complex relationship between regularization
biases and regularity in culturally transmitted datasets. Although

6 Vouloumanos (2008) found that learners are able to encode and retrieve
fine-grained differences in the statistics of low-frequency mappings between
words and objects (which we calculate had a joint entropy of 4.41 bits), but
failed to encode and retrieve fine-grained differences for a more complex sti-
muli set (with a joint entropy of 5.15 bits). The joint entropy of our high
cognitive load mappings, at 3.26 bits, is within Vouloumanos (2008)’s de-
monstrated threshold for accurate frequency representation.
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participants produced similar amounts of regularity in response to the
domain and load manipulations, the domain manipulation resulted in
significantly higher regularity once the data was culturally transmitted.

Future research should explore whether similar effects of domain
and demand on regularization behavior will be seen with child, rather
than adult, learners. It is possible that child learners would show dif-
ferent relative contributions of domain general and domain specific
biases than adults do. Therefore, to the extent that language change is
shaped specifically by biases in child acquisition (see Hudson Kam &
Newport, 2005; Slobin, 2014, for opposing views), this may have im-
plications for the role of language-specific and domain-general biases in
shaping the evolution of linguistic regularity.

7. Conclusion

When learners observe and reproduce probabilistic variation, we
find they regularize (reduce variation) when cognitive load is high and
when stimuli are linguistic. We conclude that linguistic regularization
behavior is a co-product of domain-general and domain-specific biases
on frequency learning and production. Furthermore, we find that load
and domain affect how participants encode frequency information.
However, encoded frequencies are not more regular than the data

participants observed: the bulk of regularization occurs when partici-
pants produce data. Finally, we show that the relative contributions of
load and domain to the regularity in a set of linguistic variants can
change when data are transmitted culturally. In order to understand
how various regularity biases create regularity in language, experi-
ments that quantify learning biases need to be coupled with cultural
transmission studies.
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