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Numerous studies in humans and in animal models have demonstrated

that exposure to adverse environmental conditions in early life results in

long-term structural and functional changes in an organism, increasing the

risk of cardiometabolic, neurobehavioural and reproductive disorders in

later life. Such effects are not limited to the first generation offspring but

may be transmitted to a second or a number of subsequent generations,

through non-genomic mechanisms. While the transmission of ‘programmed’

effects through the maternal line could occur as a consequence of multiple

influences, for example, altered maternal physiology, the inheritance of

effects through the male line is more difficult to explain and there is much

interest in a potential role for transgenerational epigenetic inheritance. In

this review, we will discuss the mechanisms by which induced effects

may be transmitted through the paternal lineage, with a particular focus

on the role of epigenetic inheritance.

This article is part of the theme issue ‘Developing differences: early-life

effects and evolutionary medicine’.
1. Introduction
Numerous studies in humans and in animal models have demonstrated that

although development is highly regulated, embryos remain sensitive to

environmental cues, and exposure to adverse environmental conditions may

result in long-term structural and functional changes, increasing the risk of car-

diometabolic, neurobehavioural and reproductive disorders in later life [1].

These ideas have led to the rapid growth of the Developmental Origins of

Health and Disease (DOHaD) field. More recently, studies have shown that

these effects are not limited to the first generation (F1) but may be transmitted

to a second (F2) or a number of subsequent generations, through non-genomic

mechanisms [2–4]. For example, human epidemiological studies have demon-

strated evidence for such effects on birth weight and cardiovascular risk [5–8].

Such human studies are obviously difficult because of the time scales involved

and the influence of genetic, social and cultural factors, and animal studies have

been undertaken to better understand the underlying mechanisms [9–11].

These confirm that diverse prenatal insults appear to influence the health of

future generations, with effects on cardiometabolic risk factors, reproductive

health and neurodevelopment/behaviour [12]. Understanding how effects in

one individual may affect multiple subsequent generations is clearly important,

and there are implications for health promotion strategies, such that improving

health in one generation may significantly improve the health prospects of

subsequent generations.

In terms of mechanisms, the transmission of induced, or ‘programmed’,

effects on the phenotype through the maternal line could occur as a consequence

of multiple influences, for example, through re-exposure via programmed altera-

tions in maternal physiology, such as higher maternal blood pressure, increased
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maternal glucocorticoid levels, maternal glucose/insulin

dyshomeostasis or altered maternal size [13]. Alternatively,

programmed changes in maternal care behaviour may lead

to the reproduction of the same/similar phenotypes in her

children [14]. Although the inheritance of effects through the

male line has been described in many studies (for example,

see [9,15–19]), this is more difficult to explain, particularly

because the influence of the male tends to be limited to the

periconceptual period in many animal models. As such, it

has been suggested that paternal transmission of a phenotype

occurs through effects in the germline (i.e. transmissible

through sperm), because in general, in these models, the

male contributes little else to the offspring and its environ-

ment. In this review, we will discuss potential mechanisms

by which induced effects may be transmitted through the

paternal lineage, with a particular focus on the role of

epigenetic inheritance.
.Soc.B
374:20180118
2. Intergenerational and transgenerational
effects

While the terms ‘intergenerational’ and ‘transgenerational’

have frequently been used interchangeably in the literature,

here we will use the following generally accepted definitions.

First, ‘intergenerational effects’ refers to the inheritance

of characteristics between two generations where the

developing germline has also been exposed to the same

environmental insult. Examples include when a pregnant

female (F0) is exposed to an insult, this may result in direct

effects on her developing F1 offspring and in addition, the

developing germline, which will become the F2 generation,

is also exposed. Similarly, when an adult male (F0) is exposed

to an insult, the germ cells that will form the F1 generation

are also exposed directly. The term ‘transgenerational effects’

is used to describe the transmission of effects across multiple

generations where the germline has not been directly

exposed. Thus, in the examples given above, transmission

to the F3 generation through the female line and to the F2

through the male line.
3. Epigenetic inheritance and the barrier of
epigenetic reprogramming

Perhaps surprisingly, there is no universal definition of the

term ‘epigenetic’, and as such, the term means different

things to different people—the changing definitions and

usage of the term have been recently discussed in a useful

review by Lappalainen & Greally [20]. In studies in the

DOHaD field, the term has often been used very broadly to

include DNA methylation, histone modifications and/or

non-coding RNA. Over the past decade, many animal and

human studies reporting associations between the early life

environment and later phenotypes have reported differences

in DNA methylation, histone modification and/or non-

coding RNA (reviewed in [21]), such that it has almost

become accepted dogma that the early life environment

influences health through induced changes in these marks,

despite a general lack of mechanistic evidence.

Leading on from this, a growing number of studies have

suggested that ‘epigenetic inheritance’ may be the mechan-

ism by which environmentally induced phenotypic changes
can influence progeny [2,22,23]. Epigenetic inheritance is

known to occur in plants, in which the germline arises

from somatic cells late in the life cycle [22]. The mechanisms

include the germline inheritance of DNA methylation pat-

terns (reviewed in [24]) and a role for small RNAs (sRNA)

that can target the epigenetic machinery to initiate and main-

tain transcriptional silencing that can be transmitted to

subsequent generations in the absence of the initiating RNA

[22]. There is also substantial evidence for epigenetic inheri-

tance in the nematode Caenorhabditis elegans, in which the

germline is specified at the zygote stage [25,26]. Again, this

involves RNAi-based mechanisms, resulting in gene silencing

in both soma and germline and these effects can be trans-

mitted, so that the organism maintains a memory of

induced changes in gene expression patterns for many gener-

ations [27]. For example, piwi-interacting RNAs (piRNAs)

can initiate highly stable, heritable epigenetic silencing in

the germline that can persist for at least 20 generations [26].

Once established, this long-term memory becomes indepen-

dent of the piRNA trigger but remains dependent on the

nuclear RNAi/chromatin pathway [26] and may mediate

the transmission of environmentally induced effects across

generations [28,29]. Also in C. elegans, double-stranded

RNA can be transferred from neurons to the germline and

cause transgenerational gene silencing [30].

In mammals, a major barrier to the transmission of

‘epigenetic marks’ across generations is the phenomenon

of epigenetic reprogramming that occurs in the germline to

ensure the totipotency of the zygote. While reprogramming

of DNA methylation occurs in the plant germline and

embryo, this is incomplete, facilitating transgenerational

inheritance [31]. By contrast, in mammals, extensive repro-

gramming of the epigenome is thought to be essential

to remove potential epimutations and to erase parental

imprints. Epigenetic reprogramming occurs during two dis-

tinct developmental phases [32]: first, DNA methylation in

primordial germ cells (PGCs) is erased during early develop-

ment in both males and females following the migration of

PGCs into the genital ridge [33]. Although this process

occurs over the majority of the genome, such that the overall

DNA methylation level is reduced by more than 90%, DNA

methylation is maintained at some potentially deleterious

retroelements, including intracisternal A particle (IAP) retro-

transposons, at some other repetitive elements and at a

number of single copy genes, including regions of the

genome that have been associated with metabolic and

neurological disease [34–36]. This is followed by the

re-establishment of DNA methylation marks, which occurs

during late gestation in males (at least in rodents) and postna-

tally in females [33,37]. This process is accompanied by

extensive remodelling of histone modifications [33]. A further

wave of genome-wide epigenetic reprogramming occurs

in the zygote following fertilization, including DNA

demethylation and remethylation and chromatin remodelling

[38], although imprinted loci (and potentially some other

regions) are protected from reprogramming during this

phase (reviewed in [39]). These processes of epigenetic

reprogramming, which would also ensure the removal of

epigenetic marks acquired during development and/or

induced by environmental factors, represent a major barrier

to epigenetic inheritance. Nevertheless, it is possible that

abnormal epigenetic reprogramming occurring as a conse-

quence of environmental influences could persist, resulting
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in effects in subsequent generations that could be deleterious

or beneficial, although this remains an area of considerable

controversy [22,40–43]. When considering intergenerational

effects as defined above, the developing germline will already

be present at the time when the insult is experienced

and could therefore also be influenced directly—including

disruption of the normal process of epigenetic reprogram-

ming. However, for transgenerational effects, the germline

should have undergone a normal round of epigenetic repro-

gramming in the absence of any environmental insult,

suggesting that any induced effects must be preserved, main-

tained and transmitted to a subsequent generation in the

absence of an ongoing environmental influence.
Phil.Trans.R.Soc.B
374:20180118
4. A role for DNA methylation in epigenetic
inheritance?

Cytosine methylation (5-methylcytosine, 5mC) at CpG

dinucleotides occurs through the actions of the DNA methyl-

transferases (Dnmts). 5mC is important in the regulation

of gene expression, particularly in the maintenance of

transcriptional silencing, and it is particularly found at

heterochromatic regions of the genome and over repetitive

elements. 5mC is important in the silencing of retro-

transposons and endogenous retroviral sequences, in the

phenomenon of genomic imprinting and in the inactivation

of the X-chromosome. DNA methylation can also occur in

non-CpG contexts, including CpA, which may account for a

significant proportion of cytosine methylation in some cell

types [44]. DNA demethylation can either occur passively

through DNA replication or actively through the action of

the Ten–eleven translocation methylcytosine dioxygenases

(Tets) 1–3 [45,46]. So, what is the evidence that induced

abnormalities in DNA methylation can be transmitted to

offspring through the male germline?

The term ‘epiallele’ defines an allele that can exist in

variable epigenetic states and ‘metastable epialleles’ are

mammalian alleles at which variable expression associates

with epigenetic differences. Thus, the stochastic establish-

ment of DNA methylation at metastable epialleles during

early development can lead to differences in epigenetic signa-

tures between individuals. Metastable epialleles have been

described in mice, notably the murine agouti viable yellow
(Avy) gene. The wild-type agouti gene encodes a molecule pro-

ducing either black eumelanins (a) or yellow phaeomelanin

(A). Transient A expression during a specific stage of hair

growth results in a sub-apical yellow band, resulting in the

brown (agouti) coat colour of wild-type mice. The insertion

of an IAP into the agouti gene produced the Avy metastable

epiallele, and the resulting ectopic gene expression results

in obesity, yellow fur colour and the development of

tumours. Methylation of the 50 long-terminal repeat (LTR)

of the Avy IAP correlates with gene transcription and the sto-

chastic establishment of DNA methylation at the LTR during

development leads to a variable phenotype even among

isogenic littermates. Importantly, studies showed that the

availability of methyl donors in the maternal diet during ges-

tation can impact on the phenotype of the offspring [23],

supporting the concept that DNA methylation at metastable

epialleles is labile and can be influenced by the environment

at a critical stage of development. In the AxinFu mouse, an

IAP element incorporated within AxinFu leads to the
transcription of a form of Axin that associates with the devel-

opment of a kinked tail. IAP methylation correlates with tail

kinkiness and maternal methyl donor supplementation can

affect the tail phenotype of the offspring [47]. In the Avy

strain, the phenotype is transmissible through the maternal

line to her offspring [48]; however, studies suggest

that DNA methylation at the Avy locus is erased and

re-established normally between generations, so that rather

than differences at this locus being transmitted directly,

other mechanisms must be responsible for the similarity

of DNA methylation patterns between parents and offspring

[49]. Epigenetic inheritance has also been shown with AxinFu

but this is influenced by strain background [50]. Whether

these phenomena exist in other mammals, particularly

in humans, is unclear; indeed, several potential epialleles

causing human disease have been found to be dependent

on DNA sequence polymorphisms, so that the aberrant

gene silencing (epimutation) is established anew in each gen-

eration after normal germline epigenetic reprogramming [51].

In utero exposure to undernutrition, including unbalanced

maternal nutrition, is commonly used to induce programmed

effects including alterations in birth weight, adiposity,

glucose/insulin homeostasis and behaviour. For example,

in a mouse model of maternal undernutrition, the first gener-

ation (F1) offspring of undernourished dams have low birth

weight, altered adiposity and later glucose intolerance and

these effects were transmissible through the paternal line to

a second (F2) generation [3]. In the F1 male offspring, exten-

sive profiling of germline DNA methylation identified

hypomethylation at a number of differentially methylated

regions (DMRs) enriched at nucleosome-containing regions

[3]. Although this differential methylation was not main-

tained in F2 offspring brain or liver, the expression of a

number of neighbouring genes was altered, suggesting that

although DNA methylation does not directly affect gene

expression at these loci, there may be long-term effects of

altered DNA methylation in early development [3]. Other

environmental insults that have been shown to induce pro-

grammed effects include ‘endocrine disruptors’—chemicals

that can interfere with endocrine systems—and a high-

profile series of studies using the fungicide vinclozolin has

reported inter- and transgenerational effects on a number of

health parameters in rats, in association with alterations in

DNA methylation in the sperm of multiple generations (for

example [11,19,52]). Whether this phenomenon is wide-

spread is unclear, indeed a recent detailed study in mice

showed negligible effects of vinclozolin exposure on de novo
DNA methylation and only subtle transcriptional changes

in F1 prospermatogonia, which were not seen in a second gen-

eration [53]. Furthermore, the fact that the transgenerational

effects of vinclozolin differ between inbred and outbred strains

of rats suggests that genetic, rather than epigenetic variation

could be responsible [54]. In a well-characterized rat model,

we have shown that in utero glucocorticoid overexposure

associates with low birth weight and glucose intolerance in

the exposed F1 offspring in association with intergenerational

effects—the phenotype is transmissible to the F2 generation

through both maternal and paternal lines [9,10,16]. We

found altered gene expression and DNA methylation at

candidate imprinted genes in liver from F1 and F2 offspring

of glucocorticoid-treated females; however, notably, the

direction of the changes in gene expression and the location

of DNA methylation changes differed between the two
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generations [16]. Furthermore, using both methylated DNA

immunoprecipitation-sequencing and enhanced reduced

representation of bisulfite sequencing to profile DNA

methylation in the germline and sperm of F1 males, we

were unable to detect any differences between glucocorti-

coid-exposed and control males [10]. Furthermore, although

in the Avy model, feeding pregnant dams a diet rich in

methyl donors during pregnancy was associated with a

shift in DNA methylation at the Avy locus in her F1 offspring

[23], maternal diet-induced Avy hypermethylation was

not transmitted across generations, despite the established

precedent for intergenerational effects in this mouse

strain [55].

Early postnatal exposures can also lead to effects on

behaviour and metabolic health, with inter- and transgenera-

tional consequences. Exposure to chronic unpredictable stress

during the early postnatal period results in altered behaviour

in exposed male mice in adulthood and in their offspring

[56]. In this model, there were very small changes in DNA

methylation upstream of the transcription initiation site of

candidate genes in the germline of exposed males [56,57].

Notably, some of these differences in DNA methylation

occurred within CpG islands, areas of the genome that are

generally maintained in a hypomethylated state. There were

also small changes in CpG methylation in the same genic

regions in the offspring brain, which were present at some,

but not all of the same CpGs, and at some additional sites

[56,57]. Also in mice, the offspring of males maintained on

a low protein diet following weaning had altered hepatic

expression of a number of genes important in lipid metab-

olism and modest changes in hepatic DNA methylation

when compared to offspring of males on control diet,

although there were no differences in DNA methylation in

sperm [58]. In another mouse model, exposure of adult (F0)

males to an odorant stressor is associated with effects on

the behaviour of two subsequent generations (F1 and F2),

and detailed experiments using in vitro fertilization and

cross-fostering suggest that the transmission of these effects

occurs through the gametes [59]. Specifically, small changes

in DNA methylation at a single CpG were identified at

the 30 end of a candidate locus (an odorant receptor) in the

sperm of F0 exposed males and at the same and one

additional CpG in their F1 offspring, although this was not

seen in the crucial areas of the brain thought to be responsible

for the behavioural phenotype [59]. Finally, in mice, exposure

of males to chronic unpredictable stress in early life results in

effects on behaviour in adulthood, with effects on some, but

not all of the same behaviours in males but not females in the

next (F1) generation and effects in females but not males in

the F2 generation [60]. However, very small differences in

DNA methylation were reported at a single gene in F1

male sperm—this occurs at a region where DNA methylation

appears to be in the range 1–3%—such that the biological

relevance of these differences, and how they might result in

sex-specific effects in the offspring, are unclear.

Although these and other studies suggest that early life

exposure to insults can lead to effects on DNA methylation

in sperm in association with the transmission of a phenotype

to the next generation, the extent to which these changes in

DNA methylation are responsible for this transmission is

unclear. In these models, the penetrance of the phenotype

is high—indeed, effects are found using very small numbers

of animals—but the percentage DNA methylation changes
that are reported in sperm are very low [56,59].

DNA methylation at any individual CpG in haploid sperm

is binary (i.e. a single sperm will carry either a methylated

or unmethylated CpG at that locus), so that small changes

in DNA methylation in a population of sperm reflect altered

DNA methylation in a small proportion of sperm only. This

does not fit well with specific outcomes that depend on

fertilization by a single sperm. Additionally, the observed

effects on gene expression in the offspring tissue(s) of interest

often occur in the absence of detectable changes in DNA

methylation [3,61]. This suggests that direct transmission of

changes in DNA methylation is unlikely to be the underlying

mechanism for the transmission of the phenotype, at least

in these models [3,61]. Furthermore, recent studies showing

that the effects of interindividual ‘epivariation’ exert a stron-

ger influence on the sperm epigenome than environmental

exposures—for example, stochastic epigenetic variation affects

the mouse sperm methylome to a greater extent than diet—

suggest that factors other than DNA methylation may account

for the transmission of environmental effects on the phenotype

to the offspring [62,63].
5. Histone modifications
During the final stages of mammalian spermatogenesis, most

histones are replaced by sperm-specific protamines; however,

a small percentage of histones are retained at key loci

in mature sperm [64] and some studies have suggested

that alterations in sperm histones may underpin the trans-

generational transmission of phenotypes [65,66]. Disruption

of histone methylation by overexpressing the KDM1A histone

lysine 4 demethylase results in the loss of the histone mark

H3K4me2 and changes in sperm RNA content, in association

with an increased rate of birth defects, neonatal mortality and

altered gene expression in the offspring [65]. There are some

reports of alterations in sperm histones in animal models as a

consequence of environmental exposures that associate with

intergenerational effects, including dietary challenge and

drug administration. In mice, consumption of a high-fat

diet is associated with altered histone H3 occupancy at key

genes and changes in H3K4me1 enrichment at transcription

regulatory genes in sperm and with altered expression

of some candidate genes in offspring liver [66]. Cocaine

administration in rats results in changes in histone modifi-

cations specifically at the brain-derived neurotrophic factor

(Bdnf ) locus in sperm [67]. Although this was associated

with altered Bdnf gene expression in the medial prefrontal

cortex, this effect was only seen in male offspring. Addition-

ally, histone acetylation was altered at the Bdnf locus in

the male brain, but whether this was also the case in the

female brain was not reported [67]. Induction of hepatic

damage using the hepatotoxin carbon tetrachloride results

in intergenerational effects on liver fibrosis and this occurs

in association with alterations in histone methylation at a

candidate gene—the antifibrogenic factor peroxisome prolif-

erator activated receptor g (PPARg) [68].

It is not known how changes in histone modifications in

sperm avoid the considerable remodelling of modified histones

that occurs in the early embryo and persists at specific gene loci

and in specific cells/tissues in the adult offspring (and often in

a sex-specific manner). Thus, further studies are required to

delineate the mechanism(s) by which induced alterations in



royalsocietypublishing

5
histones lead to the transmission of phenotypes and the impor-

tance of this phenomenon in mammals. Indeed, in contrast to

studies focusing on candidate loci, in our studies in which

we undertook detailed genome-wide profiling of activating,

repressive and enhancer-associated histone modifications in

the glucocorticoid-programmed rat model, we identified no

differences between sperm from glucocorticoid-exposed and

control males [10].
 .org/journal/rstb
Phil.Trans.R.Soc.B

374:20180118
6. Small RNAs
Studies in plants and in C. elegans suggest that sRNAs are

important in the triggering of heritable gene silencing

[22,28,29]. In mammals [18,62,69], mature sperm carries a sig-

nificant population of sRNAs including miRNA, piRNA,

tRNA-derived small RNAs (tRNAs) and repeat associated

sRNAs, all of which may be important in the post-fertilization

zygote [70,71]. Accordingly, a growing number of studies have

suggested that alterations in sRNA might be important in the

inter- and/or transgenerational transmission of induced effects

through the male germline. In rodent studies, paternal con-

sumption of a high-fat diet has been linked to altered

expression of sperm miRNAs in some [69,72], but not all studies

[73]. Exposure of pregnant female mice to vinclozolin leads to

the specific dysregulation of miRNA in PGCs, with downstream

effects on PGC differentiation, an effect that persists for three

generations [74]. Early postnatal stress exposure has been

reported to lead to altered expression of sperm miRNAs

[75,76], although we were unable to find any changes in

sRNAs in the germline following in utero glucocorticoid overex-

posure in rats, despite performing deep sequencing and

candidate gene analysis of miRNAs that were altered in other

models. Recent studies have suggested a role for tRNAs. Protein

restriction in mice has been found to affect sRNA levels in

mature sperm, with increased levels of tRNA fragments,

which are delivered into sperm by epididymosomes during

maturation [62]. In mice, paternal exposure to a high-fat diet

up to six months of age associates with metabolic dysfunction

in the offspring and this effect is reported to be mediated by

sperm tRNAs [18]. Although the authors suggest that sperm

tRNA might lead to metabolic dysfunction in adulthood by

affecting metabolic gene expression through a transcriptional

cascade effect, the precise mechanisms by which this is targeted

specifically to pancreatic islet cells remain unclear. Recent data

from this, and other groups, suggest a key role for the tRNA

methyltransferase Dnmt2 in this process [77,78]: deletion of

Dnmt2 abolished the sRNA-mediated transmission of the

high-fat diet-mediated metabolic dysfunction in the offspring.

Furthermore, Dnmt2-mediated post-transcriptional RNA modi-

fications may impact on the biological properties of sRNAs and it

is possible that these modifications are of particular importance

in the transmission of effects through the germline [18].
7. Potential alternative mechanisms
Although the potential importance of ‘epigenetic inheritance’

is of great interest, questions remain about its relative impor-

tance in mediating the transmission of programmed effects

across generations in mammals. So, what other explanations

might there be? DNA damage in sperm may affect offspring

development [79] and exposure to environmental insults may

affect sperm motility, morphology and function [80]. Alterna-

tive mechanisms include the actions of factors in seminal

fluid [81], sperm exosomes [82], microbiome transfer (to the

mother during mating) or the transmission of metabolites

[22,83]. Studies suggest that the prior experience of the

father can influence the behaviour of the mother [84,85] so

that paternally induced maternal effects in the offspring

could be important in mediating trans- and intergenerational

effects (reviewed in [86]). For example, differences in mate

quality may affect a mother’s investment in her offspring’s

growth and development, either to maximize the survival of

‘high-quality’ offspring or to improve the survival of offspring

from ‘lower-quality’ fathers. Indeed, in mice, females mated

with males that have experienced social enrichment invest

more time nursing their offspring [87]. The current interest

and focus on epigenetic inheritance have meant that

many of these alternative mechanisms for the transmission of

phenotypes across generations have been somewhat neglected.
8. Conclusion
A large number of studies have shown that the early life

environment influences health and disease risk and a growing

number of reports suggest that these effects occur in association

with alterations in DNA methylation, histone modifications

and/or sRNAs. Such effects are also associated with alterations

in the germline epigenome and have resulted in the suggestion

that the transmission of effects across generations occurs as a

result of transgenerational epigenetic inheritance. Despite the

substantial interest that has been generated in this area, the

data in support of transgenerational epigenetic inheritance in

mammals remain limited. Further studies are necessary to

understand whether (and how) induced alterations in the

germline epigenome can escape the barrier of epigenetic repro-

gramming in the germline and following fertilization and to

delineate the mechanisms by which small alterations in the

sperm epigenome might lead to complex, tissue/cell-type

specific and often sex-specific effects in offspring.

Data accessibility. This article has no additional data.

Authors’ contributions. Both authors undertook the literature review,
drafted the article and approved the final version.

Competing interests. We have no competing interests.

Funding. Work in A.J.D.’s laboratory is supported by the Medical
Research Council (MR/K018310/1) and the British Heart
Foundation.
References
1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth
ME. 1989 Growth in utero, blood pressure in
childhood and adult life, and mortality from
cardiovascular disease. Br. Med. J. 298, 564 – 567.
(doi:10.1136/bmj.298.6673.564)
2. Drake AJ, Walker BR. 2004 The intergenerational
effects of fetal programming: non-genomic
mechanisms for the inheritance of low birth weight
and cardiovascular risk. J. Endocrinol. 180, 1 – 16.
(doi:10.1677/joe.0.1800001)
3. Radford EJ et al. 2014 In utero
undernourishment perturbs the adult sperm
methylome and intergenerational metabolism.
Science 345, 1255903. (doi:10.1126/science.
1255903)

http://dx.doi.org/10.1136/bmj.298.6673.564
http://dx.doi.org/10.1677/joe.0.1800001
http://dx.doi.org/10.1126/science.1255903
http://dx.doi.org/10.1126/science.1255903


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180118

6
4. Dunn GA, Bale TL. 2011 Maternal high-fat diet
effects on third-generation female body size via the
paternal lineage. Endocrinology 152, 2228 – 2236.
(doi:10.1210/en.2010-1461)

5. Baird D. 1985 Changing problems and priorities in
obstetrics. Br. J. Obstet. Gynaecol. 92, 115 – 121.
(doi:10.1111/j.1471-0528.1985.tb01062.x)

6. Emanuel I, Filakti H, Alberman E, Evans SJ. 1992
Intergenerational studies of human birthweight
from the 1958 birth cohort. 1. Evidence for a
multigenerational effect. Br. J. Obstet. Gynaecol. 99,
67 – 74. (doi:10.1111/j.1471-0528.1992.tb14396.x)

7. Kaati G, Bygren LO, Edvinson S. 2002 Cardiovascular
and diabetes mortality determined by nutrition
during parents’ and grandparents’ slow growth
period. Eur. J. Hum. Genet. 10, 682 – 688. (doi:10.
1038/sj.ejhg.5200859)

8. Kaati G, Bygren LO, Pembrey M, Sjostrom M. 2007
Transgenerational response to nutrition, early life
circumstances and longevity. Eur. J. Hum. Genet. 15,
784 – 790. (doi:10.1038/sj.ejhg.5201832)

9. Drake AJ, Walker BR, Seckl JR. 2005 Intergenerational
consequences of fetal programming by in utero
exposure to glucocorticoids in rats. Am. J. Physiol.
288, R34 – R38. (doi:10.1152/ajpregu.00106.2004)

10. Cartier J, Smith T, Thomson JP, Rose CM, Khulan B,
Heger A, Meehan RR, Drake AJ. 2018 Investigation
into the role of the germline epigenome in the
transmission of glucocorticoid-programmed effects
across generations. Genome Biol. 19, 50. (doi:10.
1186/s13059-018-1422-4)

11. Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005
Epigenetic transgenerational actions of endocrine
disruptors and male fertility. Science 308,
1466 – 1469. (doi:10.1126/science.1108190)

12. Hoffman DJ, Reynolds RM, Hardy DB. 2017
Developmental origins of health and disease:
current knowledge and potential mechanisms. Nutr.
Rev. 75, 951 – 970. (doi:10.1093/nutrit/nux053)

13. Avril I, Blondeau B, Duchene B, Czernichow P,
Breant B. 2002 Decreased b-cell proliferation
impairs the adaptation to pregnancy in rats
malnourished during perinatal life. J. Endocrinol.
174, 215 – 223. (doi:10.1677/joe.0.1740215)

14. Francis DD, Champagne FA, Liu D, Meaney MJ. 1999
Maternal care, gene expression, and the
development of individual differences in stress
reactivity. Ann. N. Y. Acad. Sci. 896, 66 – 84. (doi:10.
1111/j.1749-6632.1999.tb08106.x)

15. Jimenez-Chillaron JC et al. 2009 Intergenerational
transmission of glucose intolerance and obesity by
in utero undernutrition in mice. Diabetes 58,
460 – 468. (doi:10.2337/db08-0490)

16. Drake AJ, Liu L, Kerrigan D, Meehan RR, Seckl JR.
2011 Multigenerational programming in the
glucocorticoid programmed rat is associated with
generation-specific and parent of origin effects.
Epigenetics 6, 1334 – 1343. (doi:10.4161/epi.6.11.
17942)

17. Ng S-F, Lin RCY, Laybutt DR, Barres R, Owens JA,
Morris MJ. 2010 Chronic high-fat diet in fathers
programs b-cell dysfunction in female rat offspring.
Nature 467, 963 – 966. (doi:10.1038/nature09491)
18. Chen Q et al. 2016 Sperm tsRNAs contribute to
intergenerational inheritance of an acquired
metabolic disorder. Science 351, 397 – 400. (doi:10.
1126/science.aad7977)

19. Ben Maamar M et al. 2018 Alterations in sperm DNA
methylation, non-coding RNA expression, and histone
retention mediate vinclozolin-induced epigenetic
transgenerational inheritance of disease. Environ.
Epigenet. 4, dvy010. (doi:10.1093/eep/dvy010)

20. Lappalainen T, Greally JM. 2017 Associating cellular
epigenetic models with human phenotypes. Nat. Rev.
Genet. 18, 441 – 451. (doi:10.1038/nrg.2017.32)

21. Godfrey KM, Costello PM, Lillycrop KA. 2016
Development, epigenetics and metabolic
programming. Nestle Nutr. Inst. Workshop Ser. 85,
71 – 80. (doi:10.1159/000439488)

22. Heard E, Martienssen RA. 2014 Transgenerational
epigenetic inheritance: myths and mechanisms. Cell
157, 95 – 109. (doi:10.1016/j.cell.2014.02.045)

23. Waterland RA, Jirtle RL. 2003 Transposable elements:
targets for early nutritional effects on epigenetic gene
regulation. Mol. Cell. Biol. 23, 5293– 5300. (doi:10.
1128/MCB.23.15.5293-5300.2003)

24. Hauser MT, Aufsatz W, Jonak C, Luschnig C. 2011
Transgenerational epigenetic inheritance in plants.
Biochim. Biophys. Acta 1809, 459 – 468. (doi:10.
1016/j.bbagrm.2011.03.007)

25. Rechavi O, Minevich G, Hobert O. 2011
Transgenerational inheritance of an acquired small
RNA-based antiviral response in C. elegans. Cell 147,
1248 – 1256. (doi:10.1016/j.cell.2011.10.042)

26. Ashe A et al. 2012 piRNAs can trigger a
multigenerational epigenetic memory in the
germline of C. elegans. Cell 150, 88 – 99. (doi:10.
1016/j.cell.2012.06.018)

27. Minkina O, Hunter CP. 2018 Intergenerational
transmission of gene regulatory information in
Caenorhabditis elegans. Trends Genet. 34, 54 – 64.
(doi:10.1016/j.tig.2017.09.012)

28. Alcazar RM, Lin R, Fire AZ. 2008 Transmission
dynamics of heritable silencing induced by double-
stranded RNA in Caenorhabditis elegans. Genetics
180, 1275 – 1288. (doi:10.1534/genetics.108.
089433)

29. Grishok A, Tabara H, Mello CC. 2000 Genetic
requirements for inheritance of RNAi in C. elegans.
Science 287, 2494 – 2497. (doi:10.1126/science.287.
5462.2494)

30. Devanapally S, Ravikumar S, Jose AM. 2015 Double-
stranded RNA made in C. elegans neurons can enter
the germline and cause transgenerational gene
silencing. Proc. Natl Acad. Sci. USA 112,
2133 – 2138. (doi:10.1073/pnas.1423333112)

31. Kawashima T, Berger F. 2014 Epigenetic
reprogramming in plant sexual reproduction. Nat.
Rev. Genet. 15, 613 – 624. (doi:10.1038/nrg3685)

32. Smallwood SA, Kelsey G. 2012 De novo DNA
methylation: a germ cell perspective. Trends Genet.
28, 33 – 42. (doi:10.1016/j.tig.2011.09.004)

33. Rose CM, van den Driesche S, Meehan RR, Drake AJ.
2013 Epigenetic reprogramming: preparing the
epigenome for the next generation. Biochem. Soc.
Trans. 41, 809 – 814. (doi:10.1042/BST20120356)
34. Xu Q, Xie W. 2018 Epigenome in early mammalian
development: inheritance, reprogramming and
establishment. Trends Cell Biol. 28, 237 – 253.
(doi:10.1016/j.tcb.2017.10.008)

35. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, Wen L, Tang F.
2017 Single-cell multi-omics sequencing of mouse
early embryos and embryonic stem cells. Cell Res.
27, 967 – 988. (doi:10.1038/cr.2017.82)

36. Li L et al. 2018 Single-cell multi-omics sequencing
of human early embryos. Nat. Cell Biol. 20,
847 – 858. (doi:10.1038/s41556-018-0123-2)

37. Rose CM, Van den Driesche S, Sharpe RM, Meehan
RR, Drake AJ. 2014 Dynamic changes in DNA
modification states during late gestation male germ
line development in the rat. Epigenetics Chromatin
9, 19. (doi:10.1186/1756-8935-7-19)

38. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W,
Reik W. 2013 Reprogramming DNA methylation in
the mammalian life cycle: building and breaking
epigenetic barriers. Phil. Trans. R. Soc. B 368,
20110330. (doi:10.1098/rstb.2011.0330)

39. Radford EJ. 2018 Exploring the extent and scope of
epigenetic inheritance. Nat. Rev. Endocrinol. 14,
345 – 355. (doi:10.1038/s41574-018-0005-5)

40. Isbel L, Whitelaw E. 2015 Commentary: far-reaching
hypothesis or a step too far: the inheritance of
acquired characteristics. Int. J. Epidemiol. 44,
1109 – 1112. (doi:10.1093/ije/dyv024)

41. Szyf M. 2015 Nongenetic inheritance and
transgenerational epigenetics. Trends Mol. Med. 21,
134 – 144. (doi:10.1016/j.molmed.2014.12.004)

42. Szabo PE. 2015 Response to: the nature of
evidence for and against epigenetic inheritance.
Genome Biol. 16, 138. (doi:10.1186/s13059-015-
0714-1)

43. Nadeau JH. 2015 The nature of evidence for and
against epigenetic inheritance. Genome Biol. 16,
137. (doi:10.1186/s13059-015-0709-y)

44. Lister R et al. 2009 Human DNA methylomes at
base resolution show widespread epigenomic
differences. Nature 462, 315 – 322. (doi:10.1038/
nature08514)

45. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC,
Zhang Y. 2010 Role of Tet proteins in 5mC to 5hmC
conversion, ES-cell self-renewal and inner cell mass
specification. Nature 466, 1129 – 1133. (doi:10.
1038/nature09303)

46. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg
JA, He C, Zhang Y. 2011 Tet proteins can convert
5-methylcytosine to 5-formylcytosine and
5-carboxylcytosine. Science 333, 1300 – 1303.
(doi:10.1126/science.1210597)

47. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X,
Tahiliani KG. 2006 Maternal methyl supplements
increase offspring DNA methylation at Axin fused.
Genesis 44, 401 – 406. (doi:10.1002/dvg.20230)

48. Daxinger L, Whitelaw E. 2012 Understanding
transgenerational epigenetic inheritance via the
gametes in mammals. Nat. Rev. Genet. 13,
153 – 162. (doi:10.1038/nrg3188)

49. Blewitt ME, Vickaryous NK, Paldi A, Koseki H,
Whitelaw E. 2006 Dynamic reprogramming of DNA
methylation at an epigenetically sensitive allele in

http://dx.doi.org/10.1210/en.2010-1461
http://dx.doi.org/10.1111/j.1471-0528.1985.tb01062.x
http://dx.doi.org/10.1111/j.1471-0528.1992.tb14396.x
http://dx.doi.org/10.1038/sj.ejhg.5200859
http://dx.doi.org/10.1038/sj.ejhg.5200859
http://dx.doi.org/10.1038/sj.ejhg.5201832
http://dx.doi.org/10.1152/ajpregu.00106.2004
http://dx.doi.org/10.1186/s13059-018-1422-4
http://dx.doi.org/10.1186/s13059-018-1422-4
http://dx.doi.org/10.1126/science.1108190
http://dx.doi.org/10.1093/nutrit/nux053
http://dx.doi.org/10.1677/joe.0.1740215
http://dx.doi.org/10.1111/j.1749-6632.1999.tb08106.x
http://dx.doi.org/10.1111/j.1749-6632.1999.tb08106.x
http://dx.doi.org/10.2337/db08-0490
http://dx.doi.org/10.4161/epi.6.11.17942
http://dx.doi.org/10.4161/epi.6.11.17942
http://dx.doi.org/10.1038/nature09491
http://dx.doi.org/10.1126/science.aad7977
http://dx.doi.org/10.1126/science.aad7977
http://dx.doi.org/10.1093/eep/dvy010
http://dx.doi.org/10.1038/nrg.2017.32
http://dx.doi.org/10.1159/000439488
http://dx.doi.org/10.1016/j.cell.2014.02.045
http://dx.doi.org/10.1128/MCB.23.15.5293-5300.2003
http://dx.doi.org/10.1128/MCB.23.15.5293-5300.2003
http://dx.doi.org/10.1016/j.bbagrm.2011.03.007
http://dx.doi.org/10.1016/j.bbagrm.2011.03.007
http://dx.doi.org/10.1016/j.cell.2011.10.042
http://dx.doi.org/10.1016/j.cell.2012.06.018
http://dx.doi.org/10.1016/j.cell.2012.06.018
http://dx.doi.org/10.1016/j.tig.2017.09.012
http://dx.doi.org/10.1534/genetics.108.089433
http://dx.doi.org/10.1534/genetics.108.089433
http://dx.doi.org/10.1126/science.287.5462.2494
http://dx.doi.org/10.1126/science.287.5462.2494
http://dx.doi.org/10.1073/pnas.1423333112
http://dx.doi.org/10.1038/nrg3685
http://dx.doi.org/10.1016/j.tig.2011.09.004
http://dx.doi.org/10.1042/BST20120356
http://dx.doi.org/10.1016/j.tcb.2017.10.008
http://dx.doi.org/10.1038/cr.2017.82
http://dx.doi.org/10.1038/s41556-018-0123-2
http://dx.doi.org/10.1186/1756-8935-7-19
http://dx.doi.org/10.1098/rstb.2011.0330
http://dx.doi.org/10.1038/s41574-018-0005-5
http://dx.doi.org/10.1093/ije/dyv024
http://dx.doi.org/10.1016/j.molmed.2014.12.004
http://dx.doi.org/10.1186/s13059-015-0714-1
http://dx.doi.org/10.1186/s13059-015-0714-1
http://dx.doi.org/10.1186/s13059-015-0709-y
http://dx.doi.org/10.1038/nature08514
http://dx.doi.org/10.1038/nature08514
http://dx.doi.org/10.1038/nature09303
http://dx.doi.org/10.1038/nature09303
http://dx.doi.org/10.1126/science.1210597
http://dx.doi.org/10.1002/dvg.20230
http://dx.doi.org/10.1038/nrg3188


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180118

7
mice. PLoS Genet. 2, e49. (doi:10.1371/journal.
pgen.0020049)

50. Rakyan VK, Chong S, Champ ME, Cuthbert PC,
Morgan HD, Luu KV, Whitelaw E. 2003
Transgenerational inheritance of epigenetic states at
the murine AxinFu allele occurs after maternal and
paternal transmission. PNAS 100, 2538 – 2543.
(doi:10.1073/pnas.0436776100)

51. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong
JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL. 2011
Dominantly inherited constitutional epigenetic
silencing of MLH1 in a cancer-affected family is linked
to a single nucleotide variant within the 5’UTR. Cancer
Cell 20, 200 – 213. (doi:10.1016/j.ccr.2011.07.003)

52. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner
MK. 2012 Dioxin (TCDD) induces epigenetic
transgenerational inheritance of adult onset disease
and sperm epimutations. PLoS ONE 7, e46249.
(doi:10.1371/journal.pone.0046249)

53. Iqbal K, Tran DA, Li AX, Warden C, Bai AY, Singh P,
Wu X, Pfeifer GP, Szabo PE. 2015 Deleterious effects
of endocrine disruptors are corrected in the
mammalian germline by epigenome
reprogramming. Genome Biol. 16, 59. (doi:10.1186/
s13059-015-0619-z)

54. Schneider S, Kaufmann W, Buesen R, van
Ravenzwaay B. 2008 Vinclozolin—the lack of a
transgenerational effect after oral maternal exposure
during organogenesis. Reprod. Toxicol. 25,
352 – 360. (doi:10.1016/j.reprotox.2008.04.001)

55. Waterland RA, Travisano M, Tahiliani KG. 2007 Diet-
induced hypermethylation at agouti viable yellow is
not inherited transgenerationally through the
female. FASEB J. 21, 3380 – 3385. (doi:10.1096/fj.
07-8229com)

56. Franklin TB, Russig H, Weiss IC, Gräff J, Linder N,
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