

Edinburgh Research Explorer

ShieldBox: Secure Middleboxes using Shielded Execution

Citation for published version:
Trach, B, Krohmer, A, Gregor, F, Arnautov, S, Bhatotia, P & Fetzer, C 2018, ShieldBox: Secure
Middleboxes using Shielded Execution. in SOSR 2018 : Symposium on SDN Research., 2, ACM, Los
Angles, CA, Symposium on SDN Research, Los Angelos, United States, 28/03/18. DOI:
10.1145/3185467.3185469

Digital Object Identifier (DOI):
10.1145/3185467.3185469

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SOSR 2018 : Symposium on SDN Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195267959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3185467.3185469
https://www.research.ed.ac.uk/portal/en/publications/shieldbox-secure-middleboxes-using-shielded-execution(3599802d-67aa-41ae-8b15-f7b24b1fda6d).html

ShieldBox: SecureMiddleboxes using Shielded Execution

Bohdan Trach†, Alfred Krohmer†, Franz Gregor†, Sergei Arnautov†,
Pramod Bhatotia‡, Christof Fetzer†

†Technische Universität Dresden ‡University of Edinburgh

Abstract

Middleboxes that process confidential data cannot be se-
curely deployed in untrusted cloud environments. To se-
curely outsource middleboxes to the cloud, state-of-the-art
systems advocate network processing over the encrypted
traffic. Unfortunately, these systems support only restrictive
functionalities, and incur prohibitively high overheads.

This motivated the design of ShieldBox—a secure middle-
box framework for deploying high-performance network
functions (NFs) over untrusted commodity servers. Shield-
Box securely processes encrypted traffic inside a secure con-
tainer by leveraging shielded execution. More specifically,
ShieldBox builds on hardware-assisted memory protection
based on Intel SGX to provide strong confidentiality and
integrity guarantees. For middlebox developers, ShieldBox
exposes a generic interface based on Click to design and
implement a wide-range of NFs using its out-of-the-box ele-
ments and C++ extensions. For network operators, ShieldBox
provides configuration and attestation service for seamless
and verifiable deployment of middleboxes. We have imple-
mented ShieldBox supporting important end-to-end features
required for secure network processing, and performance op-
timizations. Our extensive evaluation shows that ShieldBox
achieves a near-native throughput and latency to securely
process confidential data at line rate.

CCS Concepts

• Networks→Middle boxes / network appliances;

1 Introduction

Modern enterprises ubiquitously deploy network appliances
or “middleboxes" to manage the networking infrastructure.
These middleboxes are extensively used to maintain a wide
range of workflows for improving the efficiency (e.g., WAN
optimizers), performance (e.g., caching, proxies), reliability
(e.g., load balancers, monitoring), and security (e.g., firewalls,
IDS). Due to their widespread usage, they incur significant
deployment, maintenance, and management costs [50].

To overcome these limitations, many enterprises are con-
templating outsourcing middleboxes to the cloud [38, 50].

Conference’17, July 2017, Washington, DC, USA

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Cloud computing offers the economies of scale for compu-
tational resources with the ease of management, elasticity,
and fault tolerance. Realizing the vision of middleboxes as
a service in the cloud is strengthened by the advancements
in network function virtualization (NFV) [33]. NFV offers a
flexible and modular architecture that can be easily deployed
on commodity hardware. Thus, NFV is a perfect candidate
to reap the outsourcing benefits of the cloud infrastructure.

However, middleboxes that process confidential data can-
not be securely deployed in the untrusted cloud environ-
ments. In cloud environment, an accidental or, in some cases,
intentional action from a cloud administrator could compro-
mise the confidentiality and integrity of execution. These
threats of potential violations to the integrity and confiden-
tiality of customer data are often cited as a key barrier to the
adoption of cloud services [43]. Furthermore, cloud providers
are increasingly offering edge computing resources in col-
laboration with third-party ISPs and CDN operators to meet
stringent low-latency performance requirements (SLAs) of
modern online applications [17]. Since the underlying in-
frastructure is operated by multiple third-party providers,
such a hybrid cloud-edge computing infrastructure further
exacerbate secure deployment of middleboxes.

To securely outsource middleboxes in the cloud, state-of-
the-art systems advocate network processing over encrypted
traffic [29, 51]. However, these systems support only restric-
tive type of functionalities, and incur prohibitively high per-
formance overheads since they require complex computa-
tions over encrypted network traffic.
These limitations motivated our work—we strive to an-

swer the following question:Howto securely outsourcemiddle-

boxes on the untrusted third-party platform without sacrificing

performance while supporting a wide range of enterprise NFs?

To answer this question, we present ShieldBox—a secure
middlebox framework for deploying high-performance net-
work functions (NFs) on untrusted commodity servers. The
architecture of ShieldBox is based on four design principles:
(1) Security — we aim to provide strong confidentiality and
integrity guarantees against a powerful adversary, (2) Per-
formance — we strive to achieve near-native throughput and
latency, (3) Generality — we aim to support a wide range of
network functions (same as plain-text processing) with the
ease of programmability, and, (4) Transparency — we aim to
provide a transparent, portable, and verifiable environment

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Trach et al.

for deploying middleboxes, without major changes to the
systems source code and deployment procedure.

To achieve these design goals, ShieldBox leverages hardware-
assisted secure enclaves based on Intel SGX [15] for pro-
viding strong security properties. In particular, ShieldBox
builds on Scone [42]—a shielded execution framework to
securely process network packets on commodity untrusted
infrastructure. However, the architectural limitations of In-
tel SGX present a significant challenge for middleboxes
requiring high-performance network I/O. To achieve high
performance despite the inherent limitations of the SGX ar-
chitecture, we have designed a high-performance I/O library
for shielded execution using Intel DPDK [2] to efficiently
process packets in the userspace secure enclave memory.

For the developers, ShieldBox provides a flexible and mod-
ular framework to build a rich set of NFs by adapting the
Click [26] architecture. In this way, ShieldBox supports a
wide range of NFs with the ease of programmability using
Click’s out-of-the-box elements and C++ extensions. Finally,
ShieldBox builds on the Docker container technology with
a remote attestation and configuration service, which pro-
vides network operators a portable and cryptographically
verifiable deployment mechanism.

Furthermore, we have designed several important end-to-
end features required for secure middleboxes:
• New Click elements for secure packet processing.
• Efficient shared memory packet transfer in the multi-
ple SGX enclaves setup for NFVs chaining [23].
• Secure state persistence layer for fault-tolerance and
stateful migration of middleboxes [49].
• On-NIC PTP clock as time source for the SGX enclaves.
• Memory safety mechanism to defend against DPDK-
specific Iago attacks [14].

We have implemented the aforementioned security fea-
tures, and also added several SGX-specific performance opti-
mizations to ShieldBox. Lastly, we have evaluated the system
using a series of micro-benchmarks, and two case-studies:
a multiport IP Router, and IDS. Our evaluation shows that
ShieldBox achieves near-native throughput and latency. A
detailed version of this paper with additional evaluation re-
sults is available as a technical report [54].

2 Shielded Execution

Shielded execution provides strong confidentiality and in-
tegrity guarantees for unmodified legacy applications run-
ning on untrusted platforms. Ourwork builds on Scone [42]—
a shielded execution framework based on Intel SGX [15].
Intel SGX is a set of ISA extensions for Trusted Execu-

tion Environments (TEE) released as part of the Skylake
architecture. Intel SGX provides an abstraction of secure
enclave—a memory region for which the CPU guarantees the
confidentiality and integrity of the data and code residing

Inside SGX enclave

Userspace

Kernel and

SGX driver

Click

SCONE runtime

DPDK

NIC

Rx Tx

Figure 1: ShieldBox basic design

in it. Specifically, the enclave memory is located in Enclave
Page Cache (EPC)—a dedicated memory region protected
by MEE, an on-chip Memory Encryption Engine. The MEE
encrypts and decrypts cache lines with writes and reads in
the EPC, respectively.
The architecture of SGX suffers from two major limita-

tions: First, EPC is a limited resource, currently restricted to
128MB (out of which only 94MB is available to all enclaves).
To overcome this limitation, SGX supports a secure paging
mechanism to an unprotected memory region. However, the
paging mechanism incurs very high overheads depending
on the memory access pattern (2× to 2000×). Second, the
execution of system calls is prohibited inside the enclave. To
execute a system call, the executing thread has to exit the en-
clave. Such enclave transitions are expensive—especially, for
middleboxes—because of security checks and TLB flushes.
Scone is a shielded execution framework for unmodi-

fied POSIX applications based on Intel SGX [42]. In Scone,
legacy applications are statically compiled and linked against
a modified standard C library (Scone libc). In this model,
application’s address space is confined to the enclave mem-
ory, and interaction with the outside world (or the untrusted
memory) is performed only via the system call interface.
Scone libc executes system calls outside the enclave on
behalf of the shielded application. The Scone framework
protects the executing application from the outside world,
such as untrusted OS, through shields. Furthermore, Scone
provides a user-level threading mechanism inside the enclave
combined with the asynchronous system call mechanism in
which threads outside the enclave asynchronously execute
the system calls without forcing the enclave threads to exit
the enclave [53]. Lastly, Scone provides a transparent inte-
gration to Docker using which users can seamlessly deploy
container images, and remote attestation and configuration

system to securely provision secrets to the application.

3 Overview

Basic design. At a high-level, the core of our system con-
sists of a simple integration of a DPDK-enabled Click [26]
that is running inside the SGX enclave using Scone [42].
Figure 1 shows the high-level architecture of ShieldBox.

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

While designing ShieldBox, we need to take into account
the architectural limitations of Intel SGX. As described in
§2, an enclave context switch (or exiting the enclave syn-
chronously for issuing system calls) is quite expensive in the
SGX architecture. The Scone framework overcomes this lim-
itation using an asynchronous system call mechanism [53].
While the asynchronous syscallmechanism is good enough
for common Web services like HTTP servers or KV stores, it
is not sufficient to sustain the line rate as required by mod-
ern middleboxes. Especially, numerous modern middleboxes
require a fast path bypassing kernel network stack to achieve
the line rate [5]. Therefore, we designed a high-performance
I/O library for shielded execution based on the userspace
DPDK library [2] as a better fit for the SGX enclaves.
Furthermore, we need to ensure that the memory foot-

print of ShieldBox code and data is minimal, due to several
reasons: As described in §2, enclaves that use more than
94MB of physical memory suffer high performance penal-
ties due to EPC paging (2× to 2000×). In fact, to process
data packets at line rate, even stricter resource limit must be
obeyed—the working set of the application must fit into the
L3 cache. Therefore, our design diligently ensures that we
incur minimum cache misses, and avoid EPC paging.
Besides performance reasons, minimizing the code size

inside the enclave allows reducing the attack surface as it
leads to a smaller Trusted Computing Base (TCB). The core
of Click is already quite small (6MB for a statically linked
binary section that is loaded in the memory). We decrease
its size by removing the unnecessary Click elements at the
build time. Importantly, we designed ShieldBox with the
packet-related DPDK data structures running outside of the
enclave. More specifically, the TCB in our case comprises of
the following components: the CPU and the microcode that
implements the SGX functionality; code and data of Scone’s
C library as well as its remote attestation mechanism, DPDK
(except for the actual packet buffers), and Click. All other
components are untrusted.
Threatmodel.We target a scenario where the middleboxes
that process confidential data are deployed in the untrusted
cloud environment (or at the edge computing nodes) [50]. In
this context [29, 51], attackers might try to learn the contents
of encrypted data packets and system configuration such as
cryptographic keys, filtering and classification rules, etc. Fur-
thermore, attackers might try to compromise the integrity
of middlebox by subverting its execution.
To circumvent such attacks, we protect against a very

powerful adversary even in the presence of complex layers
of software in the virtualized cloud computing infrastructure.
More specifically, we assume that the adversary can control
the entire system software stack, including the OS or the
hypervisor, and is able to launch physical attacks, such as
performing memory probes.

Configuration and
Attestation Service

(CAS)

Network
Operator ShieldBox Runtime & LAS

Middlebox
image repository
(e.g. Docker Hub)

Middlebox
Developer

Step #1

Steps #2, #5

Steps #3, #6

Step #4
Step #6

Workflow steps:
#1: Build and host middlebox images using the SCONE toolchain
#2: Launch the CAS service on a trusted host
#3: Install LAS service on a ShieldBox host
#4: Install ShieldBox from the repository
#5: Provide ShieldBox configuration and secrets to CAS
#6: Launch ShieldBox & perform remote attestation, configuration

Figure 2: ShieldBox systemworkflow

We rely on Intel SGX to protect against direct memory-
reading attacks by the privileged software. This guarantees
confidentiality, integrity, and freshness of the SGX-protected
memory pages. We also assume the attacker can launchmem-
ory safety attacks by forging pointers into trusted memory
and pass them to ShieldBox [14, 28, 35].
However, we note that ShieldBox is not designed to pro-

tect against side-channel attacks [57], such as exploiting
timing and page fault information. Furthermore, since the
underlying infrastructure is controlled by the cloud opera-
tor we cannot defend against denial-of-service attacks. We
also assume that an attacker can arbitrarily reorder or drop
packets—we take no particular actions against such attacks.
Middlebox developers should protect against these using
cryptographic primitives, if necessary.
Systemworkflow. Figure 2 shows the system workflow of
ShieldBox. As a preparation for the deployment, developers
build middlebox container images, and upload them to an
image repository (such as Docker Hub [1]) using the Scone
toolchain. A network operator who wants to deploy a mid-
dlebox to the cloud should bootstrap a Configuration and
Attestation Service (CAS) on a trusted host, and a Local At-
testation Service (LAS) on the host that will be running the
middlebox (detailed in §4.1). After this, ShieldBox can be in-
stalled on the target machine in the cloud using the container
technology—either manually or deployed as a container im-
age from the image repository. Alternatively, it can be in-
stalled by transferring a single binary to the target machine.

The ShieldBox framework is bootstrapped using the Con-
figuration and Remote Attestation Service (CAS) (§4.1). The
CAS service is launched either inside an SGX enclave of an
(already bootstrapped) untrusted machine in the cloud or on
a trusted machine under the control of the network operator
outside the cloud. Middlebox developers implement the nec-
essary NFs asClick configurations and send them to the CAS

Conference’17, July 2017, Washington, DC, USA Trach et al.

Click

DPDK

Untrusted runtime
System call threads

Huge pages

Kernel

SGX Enclave: ShieldBox Userspace NIC

Code and data
Configuration and secrets

Packet descriptors
Protected packets

Code and data
NIC drivers
Platform abstraction

Control data structures

SCONE

Code and data
Trusted runtime

(All Click state
is protected)

SGX Module
UIO Module

Transmit queues
Receive queues

PTP Clock

Enclave creation &
system calls

NIC Timer Access (4.5)

Packet Rx/Tx

Protected packet copy

Ring packet IO

NFV Chaining (4.3)

Ring

Iago Attack Protection (4.6)

State Persistence (4.4)

Remote Attestation &
Configuration Service (4.1)

New Elements (4.2)

Figure 3: ShieldBox detailed design

service together with all necessary secrets (cryptographic
keys, proprietary IDS rules, etc.).

Once the operator launched ShieldBox, it connects to the
CAS and carries out the remote attestation (§4.1). If the at-
testation is successful, the ShieldBox instance receives the
configuration and necessary secrets. Thereafter, ShieldBox
executes user-defined Click elements, which are responsi-
ble for reading packets in the userspace memory directly
from NIC, performing network traffic processing, and send-
ing them back to the network. All elements run inside an
SGX enclave. Packets that must be processed under SGX pro-
tection are copied into the enclave explicitly. We efficiently
execute the expensive network I/O operations (to-and-from
the enclave memory) by using our high-performance I/O li-
brary for shielded execution based on DPDK. To summarize,
ShieldBox provides the following benefits:
• Security: ShieldBox provides strong confidentiality
and integrity for the middlebox execution by leverag-
ing hardware-assisted SGX memory enclaves.
• Performance: ShieldBox achieves near-native through-
put and latency by building a high-performance network-
I/O architecture for shielded execution by optimizing
the combination of Scone and DPDK.
• Generality: ShieldBox supports a wide range of NFs,
as supported in the plain-text network processing,
without restricting any functionalities by leveraging
Click’s simple and generic programming model.
• Transparency: ShieldBox provides network opera-
tors a portable, configurable, and verifiable architec-
ture for seamless deployment of middleboxes. It builds
on the container technology, and therefore, the changes

CAS ShieldBox LASOperator
Populate

configuration

Intel QE
ShieldBox Machine

TLS Connection
establishment SCONE quote

request

SCONE quote
SCONE quote

Configuration
and secrets

Once per
host

Configuration
request

Intel
quote request Intel

quote request
Quote requestIntel

quote replyIntel
quote reply

IAS

Verify quote

Verification report

Figure 4: ShieldBox’s configuration and attestation

to the software source code and deployment methods
are kept at the minimum.

Limitation. We note that neither DPDK nor Click have
built-in functionality for flow-based stateful traffic. More pre-
cisely, it has no functionality to reconstruct flows and process
packets in flow context using Click or DPDK— this function-
ality must be added to the C/C++ core of these applications.
This implies that ShieldBox currently supports NFs that work
on L2 and L3; as only restricted processing of L4-L6 traffic
is supported, which does not require flow reconstruction.

4 Design Details

We next present the design details of ShieldBox. Figure 3
shows the detailed architecture of ShieldBox.

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

4.1 Configuration and Remote Attestation

To bootstrap a trusted middlebox in the cloud, one has to
establish trust in the system components. While Intel SGX
provides a remote attestation feature, a holistic system must
be built for remote attestation and secure configuration of
network appliances [44]. To achieve this goal, we added a
generic remote attestation and configuration framework to
Scone. Figure 4 depicts our protocol.
In order to attest an enclave using Intel Remote Attesta-

tion, a verifier (operator of a ShieldBox instance) connects to
the application and requests a quote. The enclave requests
a report from SGX hardware and transmits it to the Intel
Quoting Enclave (QE), which verifies, signs, and sends back
the report. The enclave then forwards it to the verifier. This
quote can be verified using the Intel verification service [3].
Our remote attestation system extends Intel’s RA mech-

anism, and is integrated with a configuration system, which
provisions ShieldBox with its configuration in a secure way
using a trusted channel established during attestation. This
system consists of an enclave startup routine embedded in
the Scone library, Local Attestation Service (LAS), and Con-
figuration and Attestation Service (CAS).
• The enclave startup routine takes control before Shield-
Box’s main function is called and interacts with LAS
and CAS to carry out remote attestation, and allows
setting environment variables, command-line argu-
ments, and keys for the Scone shielding layer securely
and confidentially.
• Local Attestation Service is running on the same ma-
chine as ShieldBox middlebox. It, eventually, act as the
root of trust for remote attestation once CAS trusts
LAS. On each host, LAS only has to attest itself one
time using Intel RAmechanism to CAS. This decouples
our system from Intel’s.
• Configuration Attestation Service is running on a sin-
gle (possibly replicated) node and stores configuration
and secrets of the services built with Scone. It builds
trust into unknown LAS using Intel Attestation Ser-
vice (IAS), maintains information about attested LAS
instances, and provisions configuration to applications
using the startup routine.

To bootstrap the system, the operator launches CAS, either
on the host under his control or the host in the cloud inside
an SGX enclave. Then, the CAS service is populated with
configurations and secrets using the RESTAPI or a command-
line configuration tool. LAS instances are launched on cloud
hosts that will run ShieldBox instances either by the oper-
ator or the cloud provider. During startup, Scone’s startup
routine in each ShieldBox instance establishes a TLS connec-
tion to CAS. Simultaneously, it connects to LAS to request
a Scone quote that is forwarded to CAS. In case the LAS

ToEnclave
Transfers a packet to enclave, frees the original packet

Seal(Key, Security Association state)
Encrypts the packet with AES-GCM

Unseal(Key, Security Association state)
Decrypts the packet with AES-GCM

HyperScan(rule database)
High-performance regular expression matching engine

DPDKRing(Ring name)
Transfers a packet to the DPDK ring structures

StateFile(Key, path)
Provides settings to the persistent state engine
Table 1: ShieldBox new specialized elements

instance is not yet trusted, CAS uses Intel’s RAmechanism to
attest it. After LAS is trusted, ShieldBox’s Scone quote is ver-
ified by CAS proving the binary’s integrity and establishing
whether it is running under SGX protection. This removes
the distribution mechanisms (such as Docker Hub) from the
TCB. After that, CAS ensures that the TLS connection is orig-
inating from the ShieldBox instance it received the quote of
preventing man-in-the-middle attacks. Thereafter, ShieldBox
obtains its configuration from the CAS service and transfers
control to main ShieldBox code.

4.2 Secure Elements

As described in §3, we designed ShieldBox with the packet-
related data structures of DPDK running outside the enclave.
Therefore, we needed an efficient way to support the commu-
nication between DPDK and the enclave memory region. In
particular, we have to consider the overheads of accessing the
SGX-encrypted pages from the main memory and copying
of the data between the protected and unprotected mem-
ory regions. When possible, the data packets with plain-text
contents should not be needlessly copied into the enclave,
as it will degrade the performance. Therefore, we designed
specialized secure Click elements (shown in Table 1) for
copying the data packets into/outside the enclave to facili-
tate efficient communication.
By default, packets are read from NIC queues into the

untrusted memory. This reduces the overhead of using SGX
when processing packets that are not encrypted and can
be safely treated with fewer security mechanisms involved.
Such packets are immediately forwarded or dropped upon
header inspection. On the other hand, we must move pack-
ets into the enclave memory with explicit copy element. We
have implemented such an element (ToEnclave), and use it
to construct secure packet processing chains.

We have also added support for the commonly used AES-
GCM cipher into ShieldBox (Seal and Unseal elements).

Conference’17, July 2017, Washington, DC, USA Trach et al.

This allows us to construct VPN systems that use mod-
ern cryptographic mechanisms. These elements were im-
plemented using the Intel ISA-L crypto library. We use CAS
to distribute the VPN traffic encryption keys.
To allow the creation of high-performance IDS systems

based on ShieldBox, we have created an element based on the
HyperScan regular expression library. It allows fast match-
ing of multiple regular expressions for the incoming packets,
simplifying implementation of systems like Snort [6].

We have also added elements that implement more broad
mechanisms: DPDKRing (§4.3) for NFV chaining, and StateFile
(§4.4) for state persistence in network appliances.

4.3 NFVs Chaining

Typically NFVs are chained together to build a dataflow pro-
cessing graph with multiple Click elements, spanning across
multiple cores, sockets, and machines [23, 38]. The communi-
cation between different cores and sockets happens through
the shared memory, and communication across machines
via NICs over RDMA/Infiniband. DPDK supports NUMA
systems and always explicitly tries to allocate memory from
the local socket RAM nodes.

However, unlike normal POSIX applications, SGX enclaves
cannot be shared across different sockets. (The future SGX-
enabled servers might have support for the NUMA architec-
ture.) As a result, in the current Intel SGX architecture, the
users would need to run one ShieldBox instance per each
CPU socket. Another important reason for cross-instance
chaining is the collocation of middleboxes from different de-
velopers that do not necessarily trust each other. In this case,
developers would want to leverage SGX to protect the secrets.
Therefore, it is imperative for the ShieldBox framework to
provide an efficient communication mechanisms between
enclaves to support high-performance NFVs chaining.
We built an efficient mechanism for communication be-

tween different ShieldBox instances by leveraging existing
DPDK features. In particular, DPDK already provides a build-
ing block for high performance communication between
different threads or processes with its ring API. This API con-
tains highly optimized implementations of concurrent, lock-
less FIFO queues which use huge page memory for storage.
We have implemented the DPDKRing element (see Table 1)
for ShieldBox to utilize it for chaining. As huge page mem-
ory is shared between multiple ShieldBox instances, the ring
buffers are shared as well and can be used as an efficient way
of communication between multiple ShieldBox processes.
This solution requires assigning ownership of all shared

data structures to a single process. For this, we rely on the
DPDK distinction between primary and secondary processes.
Primary processes, the default type, request huge page mem-
ory from the OS, allocate memory pools and initialize the
hardware. Secondary processes skip device initialization and

Seal(StateFile)
Seals elements’ state in the StateFile

Unseal(StateFile)
Unseals elements’ state from the StateFile

Persist(timer, StateFile)
Periodically persists the state to StateFile
Table 2: ShieldBox APIs for state persistence

map the huge page memory already requested by the pri-
mary process into their own address space. To support NF
chaining using multiple processes, we added support for
starting ShieldBox instances as secondary DPDK processes.
Depending on the process type, the DPDKRing element

either creates a new ring (primary process) or looks up an ex-
isting ring (secondary process). In ShieldBox, packets pushed
towards a DPDKRing element are enqueued into the ring
and can be dequeued from the ring in another process for
further processing. A bidirectional communication between
two processes can be established by using a pair of rings.

4.4 Middlebox State Persistence

Middleboxes often maintain useful state (such as counter
values, Ethernet switch mapping, activity logs, routing table,
etc.) for fault-tolerance [49], migration [36], diagnostics [56],
etc. To securely persist this state, we extend ShieldBox with
new APIs (shown in Table 2) for the state persistence. The
Seal primitive is used to collect the state that must be per-
sisted from the elements, and write it down in encrypted
form to disk. Unseal reads this state from disk, decrypts it
and populates the elements with this state. In order to allow
secure cryptographic key generation inside the enclave, we
have exposed Scone functions for getting SGX Seal keys to
the ShieldBox internal APIs.

To configure this functionality, we have added a new con-
figuration element to ShieldBox, called StateFile (see Ta-
ble 1). Its parameters are file to which state should be written
and the key that should be used for encryption. Note that this
information is transmitted to ShieldBox instance in the con-
figuration string via remote attestation, and is not accessible
outside the enclave. We do not use Scone file system shield,
but encrypt and decrypt file as a single block instead. This
ensures confidentiality and integrity of stored data via the
use of AES-GCM cipher. Due to lack of monotonic counters
we do not protect against rollback attacks. To overcome this
limitation, we plan to integrate ShieldBox with Pesos [27],
a policy-enhanced secure object storage system [4].
We do not attempt to extract the relevant state transpar-

ently. Instead, we rely on the programmer providing neces-
sary serialization routines that save only necessary parts of
element state. These routines are available in ShieldBox as
read and write handlers, and are triggered in the ShieldBox
startup procedure after the configuration is loaded, parsed,

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

and initialization of the basic components is finished, or man-
ually via ControlSocket of the StateFile element. It’s also
possible to trigger them periodically via a timer.

4.5 NIC Time Source

Timer is one of the commonly used functionalities in mid-
dleboxes [33, 38]. It is used for a variety of purposes such as
measuring performance, scheduling NFs, etc.
The time measurement can be fine-grained or coarse-

grained based on the application requirements. For the fine-
grained cycle-level measurements, developers use rdtscp
instruction, which is extremely cheap and precise. Whereas
for the coarse-grained measurements, applications invoke
system calls like gettimeofday or clock_gettime.
However, in the context SGX enclaves, both rdtsc and

syscalls have unacceptable latency to use in middleboxes
for the line rate processing. More specifically, the rdtscp
instruction is forbidden inside the enclave, and therefore, it
causes an enclave exit event; whereas, asynchronous system
calls in Scone are submitted though a system call queue that
is optimized for the raw throughput, but not latency.
To overcome these limitations, we use the on-NIC PTP

clock as the clock source for the enclave. This clock can be
read inside the enclave reasonably fast (0.9 µsec, which is
on the same scale as reading HPET). Moreover, it neither
causes enclave exits nor requires submitting system calls.
Furthermore, the on-NIC clock is extremely precise since it
is intended to use for the PTP synchronization protocol.

We note that this time source is not secure, and can be used
as a DoS attack vector by a malicious OS. However, the same
is true for the other time sources—a trusted, efficient and
precise time source for SGX enclaves remains an unsolved
problem that will likely require changes to the hardware [46].

4.6 Memory Safety forDPDK-Specific Iago Attacks

Iago attacks [14] are a serious class of security attacks that
can be launched on shielded execution to compromise the
confidentiality and integrity properties. In particular, an Iago
attack originates through malicious inputs supplied by the
untrusted code to the trusted code. In the classical setting, a
malicious OS can subvert the execution of an SGX-protected
application by exploiting the application’s dependency on
correct values of system call return values [12].

The decision (§3) to allocate huge pages for packet buffers
andDPDK rings has security implications. The fact that pack-
ets are passed through rings by reference, and DPDK buffers
contain pointers, opens a new attack surface. Attackers with
access to this memory region could modify pointers to point
into the SGX-protected regions and make the enclave inad-
vertently leak secrets over the network [28, 35].

The scenario for Iago attack on DPDK as follows: DPDK
maintains a memory buffer associated with each received

packet in the unprotected memory. The attacker adds a mali-
ciously crafted memory buffer with an offset or data address
pointing to the enclave into the rte_ring structure. If NF
sends all packets that don’t have an IP header to the output,
this could leak memory content, and exfiltrate secrets.
To protect against DPDK-specific Iago attacks, we have

implemented a pointer validation function. More specifi-
cally, the scheme uses an enclave parameter structure that
is located inside the enclave memory and defines the en-
clave memory boundaries. Pointers are validated by check-
ing if they do not point into the enclave memory range
[base,base+enclave_size). We note that ShieldBox is already
protected against the classical syscall-specific Iago attacks
through Scone’s shielding interfaces.

This ensures that no pointers possibly pointing to the se-
crets stored in EPC are accepted through the unprotected
huge page memory. Pointers can still be modified by a ma-
licious attacker, but they can only point to the unprotected
memory. However, if they point to the unmapped virtual
memory, the operating system will terminate the application.
Furthermore, security measures such as ASLR also makes it
harder for the attackers to find a valid attack vector [48].

As it is possible for an application to enqueue and dequeue
arbitrary pointers into DPDK’s rte_ring structures, it is not
easily possible to integrate this pointer check directly into
DPDK. Instead, we implemented these pointer checks in the
DPDKRing and FromDPDKDevice (§4.3) elements. If Shield-
Box detects a malicious pointer, it assumes an attack, notifies
the application operator and drops the packet.

5 Implementation

5.1 Interaction with Scone andHardware

We use Scone to simplify porting of DPDK and Click. We
next describe how we adapted Scone for our system.
System startup.When ShieldBox starts, it performs remote
attestation and obtains the configuration. ShieldBox initial-
izes the DPDK subsystem, allocates huge page memory and
takes the control over NICs that are available. Then, it starts
running the Click element scheduler, which reads packets
from the NIC and passes them along the processing chain
until they leave the system or are dropped.
System calls. As one of the goals of the ShieldBox is high
performance, we minimize the rate of system calls in the fast
path of the application, as this would make it impossible for
us to sustain the line rate. On the other hand, systems calls
are necessary for the application startup, as it is necessary
to do remote attestation, gain access to NIC, etc. This means
that the asynchronous system call subsystem is mostly idle
after the startup, and causes no runtime overhead.
Memorymanagement.When the Scone runtime starts the
application, it automatically places the application code, stat-
ically allocated data, and heap (memory allocated via malloc,

Conference’17, July 2017, Washington, DC, USA Trach et al.

mmap) in the SGX-protected EPC memory. This mechanism is
in contrast to the way DPDK operates—DPDK by default al-
locates memory using x86_64 huge pages, which reduce the
TLB miss rate and ensure continuous physical memory lay-
out. Such pages are not supported inside the enclave; besides
that, the NIC can only deliver packets to the unprotected
memory, and network traffic entering or leaving machine
can be modified by an attacker. Therefore, we keep the huge
pages enabled in DPDK outside the enclave, and explicitly
copy packets that must be processed with SGX protection into

the enclave. With this scheme, DPDK-created packet data
structures are allocated outside the SGX enclave. We support
an efficient data transfer between the DPDK and enclave and
processing inside the enclave using the new secure Click
elements (detailed in §4.2).
Accessing huge pages in DPDK does not require bypass-

ing Scone, because of the specific way DPDK allocates huge
pages. In particular, instead of passing MAP_HUGETLB flag
to mmap(), it opens shared memory files in the hugetlbfs
virtual filesystem and passes those file descriptors to mmap
call. We configure Scone not to shield these file-to-memory
mapping requests, and directly pass them to the OS instead.
Partitioning ShieldBox. Another design aspect that is al-
ways present in designing software for Intel SGX is the ques-
tion of partitioning. One of the components that we could
have moved outside of the enclave is DPDK: in the end, NIC
cannot deliver data into the enclave, as this would violate
SGX security mechanism, which means that a big part of
DPDK data is outside of the enclave. This means that DPDK
can be easily moved out of the enclave. This would open
two possibilities for interaction with enclave: via concurrent
queue in shared memory or synchronously via enclave en-
ters/exits. We argue that both approaches are suboptimal
from the performance point of view.
If we use synchronous interface, we would have to con-

stantly execute enclave enters and exits, which have ex-
tremely high runtime cost. On the other hand, if we use
concurrent queue for communication, this leads to another
problem: in such partitioning scenario part of the coreswould
be wasted, because they only read packets from the network
into the concurrent queue. Therefore, we conclude that hav-
ingDPDK inside enclave is the optimal solution for achieving
high performance inside SGX enclaves.

5.2 Toolchain

We built ShieldBox’s toolchain using DPDK (version 16.11)
and Click (master branch commit 0e860a93). We further in-
tegrated it with the Scone runtime to compile ShieldBox. We
use gcc version 6.3.0 for the compilation process. We used
Boost C++ library (version 1.63) to build a static version of the
Hyperscan high performance regular expression matching
engine (master branch commit 7aff6f61) and incorporated

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 5: Throughput:Wire w/ varying packet size

it into ShieldBox. We use WolfSSL library [8] to implement
StateFile sealing and packet Seal/Unseal elements. The
toolchain contains automated scripts for building and de-
ploying middlebox images, and setting up ShieldBox and
CAS services (as described in the system workflow in §3).
To make the compilation of ShieldBox work with Scone,

some changes to DPDK were necessary. In particular, we
need to remove the helper functions for printing stack trace-
backs and provide some glibc-specific structures, macros,
and kernel header files. Click required no adaptions since
it is implemented in C++ mostly using high-level APIs.
The resulting ShieldBox binary is 8.2 MB in size, and

around 16 MB including minimal runtime stack and heap
allocation. This implies that we could run roughly up to six
instances of ShieldBox in parallel on one processor without
impacting the performance by EPC paging (94MB).

5.3 Optimizations

We further optimized the data path inside Click, especially
for the case of DPDK running inside the enclave, by identi-
fying the performance bottlenecks using the perf [7] tool.
Memory pre-allocation. The FromDPDK element allocated
memory for packet descriptor storage on the stack each
time the run_task function was called. We pre-allocated
this memory once in a constructor.
Branching hints. We inserted GCC-specific unlikely /
likelymacros in several if-clauses. These get translated to
platform-specific instructions to instruct the CPU to always
try the given branch first instead of using its prediction.
Modulo operations. We replaced all modulo operations in
the data path by cheaper compare-and-subtract operations.
Queue optimization. In the ToDPDKDevice Click element
we replaced the inefficient implementation of the queue by
the rte_ring structure provided in DPDK.
Timer event scheduler optimization. In the Click timer
event scheduler, we have optimized the code to reduce the
number of clock_gettime system calls.

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 6: Throughput: EtherMirror w/ varying

packet size

6 Evaluation

6.1 Experimental Setup

Testbed. We evaluated ShieldBox using two machines: (1)
load generator, and (2) SGX-enabled machine. The load gen-
erator is a Broadwell Intel Xeon D-1540 (2.00GHz, 8 cores, 16
hyperthreads) machine with 32GB RAM. The SGX machine
under test is Intel Xeon E3-1270 v5 (3.60GHz, 4 cores, 8 hyper-
threads) with 32GB RAM running Linux kernel 4.4. Each core
has private 32KB L1 and 256KB L2 caches, and all cores share
an 8MB L3 cache. The load generator is connected to the
test machine using 40 GbE Intel XL-710 network card. We
use pktgen-dpdk for throughput testing. The load generator
saturates the link starting with 128-byte packets.
Applications. For the micro-benchmarks, we use three ba-
sic Click elements: (1) Wire, which sends the packet im-
mediately after receiving; (2) EtherMirror, which sends
the packet after swapping the source and destination ad-
dresses; and (3) Firewall, which does packet filtering based
on PCAP-like rules.
For the case-studies, we evaluated ShieldBox using two

applications: (1) a multiport IPRouter, and (2) an IDS.
Methodology. For the performance measurements, we con-
sider several cases of our system:
• Native (Non-SGX) w/ and w/o generic optimizations.
• SGX-enabled ShieldBox w/ and w/o optimizations.
• SGX-enabled ShieldBox w/ the on-NIC timer.

We use native Click as the evaluation baseline since it is
the worst-case scenario for us. Lastly, unless stated other-
wise, ToEnclave element is not used in the benchmarks.

6.2 Throughput

We first report ShieldBox’s throughput with varying packet
size running on four cores. Figure 5, Figure 6, and Figure 7
present the throughput for Wire, Ethermirror, and Firewall,
respectively.

The results show that the performance of ShieldBoxmatches
the performance of Click. In the case of Wire application
with the packet sizes smaller than 256 bytes, ShieldBox is
better than the native version. This is explained by the fact
that Click timer event scheduler optimization is missing

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 7: Throughput: Firewall w/ varying packet

size

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 1024 1500
L
a
te

n
c
y
,
µ
s
e
c

Packet Size, bytes

Native
ShieldBox w/o opt.

ShieldBox+mod.sched.
ShieldBox+red.syscalls

ShieldBox+MS+RS
ShieldBox+NIC timer

Figure 8: Latency: EtherMirrormeasurements

in the native Click, which removes some system call over-
head from the Wire application. The impact is smaller with
other applications, because they contain elements that re-
duce the relative overhead of Click scheduler. We also see
that ShieldBox achieves line rate at 512 byte packets.

6.3 Latency

We have also measured the packet processing latency us-
ing the following scheme: the load generator continuously
generates a UDP packet and waits for its return from the
enclave. We study packet round-trip time measured at the
load generator. On the ShieldBox instance, we are running
the EtherMirror application. (We omit the results for other
applications due to the space constraint.) For this measure-
ments, we did not perform any latency-specific tuning of the
environment other than thread pinning, which is enabled by
default in DPDK. We expect that a production system with
stringent requirements for low latencywill use SCHED_FIFO
scheduler and have isolated cores.

Figure 8 presents the latencymeasurements for EtherMirror
with varying packet size. The low performance of ShieldBox
without optimizations is explained by the fact that Shield-
Box executes clock_gettime system calls in the timer event
scheduling code. Scone system calls are optimized for raw
throughput with a large number of threads, but not for low
latency; this makes the latency measurement result 3×worse
than the native execution. We have considered the following
latency optimizations:

Conference’17, July 2017, Washington, DC, USA Trach et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Cores

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 9: Scalability: Firewall w/ increasing cores

• Reduced system call rate for immediately-scheduled
timer events. It removes one system call round-trip
from the packet latency.
• Modified scheduler that prioritizes immediately-sche-
duled events and allows to remove a system call from
scheduler if there are no periodic timer events.

One of the surprising results that we have is that each of
these optimizations does not have a statistically significant
influence when applied individually, which can be explained
by the fact that once the system call thread has left the back-
off mode, it will execute system calls with low individual
overhead. On the other hand, when applied simultaneously,
they return the latency to almost-native levels—influence of
SGX and Scone on the latency is extremely small.
We consider using NIC timer as a separate optimization.

One can see that reading NIC timer is a costly operation; it
happens twice per packet in our measurements, adding ap-
proximately 0.9∗2=1.8µsec to the total latency. On the other
hand, it is much faster than executing clock-reading system
calls, and can further improve system timeliness when com-
bined with other optimizations.

6.4 Scalability

We next evaluate ShieldBox’s scalability with increasing
number of cores. (Our latest SGX-enabled server has max-
imum of 4 cores / 8 HT. Recently released Intel X-Series will
consist of 18 cores.) Figure 9 presents the throughput for
Firewall. (We omitted the throughput measurements for
other applications due to the space constraint.) The scalabil-
ity of both ShieldBox and Click is limited. We can see that
the performance for both native and ShieldBox peaks at four
cores. This is due to the fact DPDK and ShieldBox work best
with hyperthreading disabled. This is also confirmed by the
poor scalability of native Click.

6.5 ToEnclave Overheads

Throughput.We next measure the throughput of the new
secure ToEnclave element added in ShieldBox, which is used

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native + ToEnc

ShieldBox
 ShieldBox + ToEnc

Figure 10: ToEnclave Throughput: EtherMirror

measurements

Phase Average Duration, µsec
Attestation 19467

CAS communication 19301
LAS communication 1474

Configuration 825.6
Total time 26368

Table 3: Overheads of configuration and attestation

to copy the packet data inside SGX enclave protected mem-
ory. We evaluate the impact of this extra data copy by mea-
suring the throughput scaling with varying packet size. Fig-
ure 10 shows the results for EtherMirror. (We have omitted
other applications due to the space constraint.)
We can see that the overhead of the extra memory copy

peaks with small packet sizes. This is because for each re-
ceived packet, operations with rather high overhead must
be executed to allocate the packet. One way to reduce this
cost would be to batch the memory allocation for all packets.
Note that the overhead of ShieldBox compared to the native
execution is relatively small: ShieldBox with ToEnclave is
running within 88% of the native version with extra memory
copy in the worst case of small packet sizes, and within 60%
of the native Click without ToEnclave element.
Latency.The latency impact for the ToEnclave element is as
follows: at 64 byte packets (median, 95th percentile) latency
changes from (14.25,15.04) to (14.51,15.24) µsec, at 1500 byte
packets it changes from (16.39,17.39) to (17.49,18.24) µsec.
6.6 Configuration and Attestation

We next evaluate the overheads of the configuration and
attestation service in ShieldBox. The measurement results
are presented in Table 3. The results show that remote at-
testation has a negligible effect on ShieldBox’s startup time.
Furthermore, even though TLS session establishment is a
costly operation, it is performed once per instance start-up,
allowing an operator to use a single CAS node for thousands
of ShieldBox instances.
6.7 NFVs Chaining

To measure the throughput of the NFV chaining scheme,
we have implemented a chaining application. The chaining
application implements packet communication between two

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 11: NFV chaining application throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 12: Seal application throughput

ShieldBox instances running on the same machine through
a DPDK packet ring. One instance contains an application
that receives packets from the network and sends them to
the other instance via the DPDKRing element. The second
instance receives packets from the ring and sends them back
through a different DPDKRing element. These packets are
received by the first ShieldBox forming a circular ring. There-
after, the packets are transmitted back to the load generating
node. Note that the packets cross the rings twice. The chain-
ing application showcases the worst-case scenario for us
since the NF elements are not performing any computation.

Figure 11 presents the throughput with varying packet size
for the NFV chaining application. The results show that using
the ring communication causes a substantial performance
drop for ShieldBox independent of the optimizations. This
is mostly related to the way Scone runs enclaves—it must
allocate a constantly-running thread for the service threads
created by ShieldBox andDPDK. Due to this, there is interfer-
ence between the service threads and processing cores, which
decreases the throughput and also increases the variance.

Importantly, note that our experiment for the NF chaining
across multiple enclaves shows the scenario where two mid-
dleboxes are operated by different network operators, who
may not necessarily trust each other. Whereas, the perfor-
mance of NF chains within a single enclave would still be
comparable to the native execution.
6.8 Packet Sealing Performance

We next evaluate throughput of the Seal/Unseal secure
elements. In particular, we use our AES-GCM encryption
code running inside the SGX enclave. Figure 12 presents

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 13: IPRouter: Throughputmeasurements

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 1024 1500

L
a
te

n
c
y
,
µ
s
e
c

Packet Size, bytes

Native
ShieldBox w/o opt.

ShieldBox+mod.sched.
ShieldBox+red.syscalls

ShieldBox+MS+RS
ShieldBox+NIC timer

Figure 14: IPRouter: Latencymeasurements

the throughput of the Seal element with varying packet
size. The result shows that the code inside SGX enclave runs
within 88% of the native performance irrespective of the op-
timizations applied. This is explained by the fact that most
of the application CPU time is spent doing the encryption.
The difference between the native and SGX version can be
explained by different thread scheduling strategies used by
Scone and native POSIX. In POSIX, threads are pinned to the
real CPU cores, while in Scone, the userspace threads inside
enclave are pinned to the in-enclave kernel threads. This
makes thread pinning non-deterministic—sometimes two
threads that are to be pinned to different cores are pinned
to sibling hyper-threads.

6.9 Case Studies

We next evaluate ShieldBox’s performance with the follow-
ing two case-studies: (1) IPRouter, and (2) IDS.
IPRouter. IPRouter application is an adaptation of a multi-
port routerClick example application to our evaluation hard-
ware. This application first classifies all packets into three
categories: ARP requests, ARP replies, and all other packets.
ARP requests are answered. ARP replies are dropped. Other
packets are passed to a routing table element that sends them
to the NIC output port. Figure 13 shows the throughput of
the IPRouter application with varying packet size. We can
see that ShieldBox has the same performance as Click with
packet sizes bigger than 256 bytes, and performs within 90%
of Click with smaller packets.

We also measured the latency of the IPRouter application
as presented in Figure 14. We can see that even if the number

Conference’17, July 2017, Washington, DC, USA Trach et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128
256

512
1024

1500

T
h
ro

u
g
h
p
u
t,
 G

b
/s

Packet Size, bytes

Native
Native w/o opt.

ShieldBox
ShieldBox w/o opt.

ShieldBox + NIC timer

Figure 15: IDS: Throughputmeasurements

of elements in the application increases, the latency of the
application remains the same as the native execution.
Intrusion Detection System (IDS). IDS application imple-
ments NF that is commonly found in the enterprise network.
It pushes the traffic through the firewall, and then performs
traffic scanning with the HyperScan element. Traffic that
does not match any pattern is sent to the output, while match-
ing traffic passes through a counter and then dropped.

ShieldBox performs as close to the native Click execution
with a slight performance drop. This drop comes from the
general SGX overhead for memory accesses. Due to the space
constraint, we omit the latency measurements result for IDS.

7 RelatedWork

Middleboxes. Click’s [26] modular architecture has been
leveraged to buildmany useful software-basedmiddleboxes [11,
13, 22, 22, 31, 33]. Our work also builds on the Click archi-
tecture, but unlike the previous work, ShieldBox focuses on
securing the Click architecture on the untrusted hardware.
Most Click-based network appliances operate at the L2-

L3 layer, with the notable exception of CliMB [30]. To sup-
port flow-based abstractions, many state-of-the-art middle-
boxes [9, 10, 20, 32, 47] support comprehensive applications
and use-cases. Since both Click and DPDK are geared to-
ward L2-L3 network processing, our current architecture
does not support L4-L7 NFs. As part of the future work, we
plan to integrate a high-performance user-level networking
stack [21] in the Scone framework to support the develop-
ment of secure higher layer network appliances.
Secure middleboxes. APLOMB [50] is one the first sys-
tems to showcase that it is a viable alternative, performance-
and cost-wise, to outsource middleboxes from the enterprise
environment to the cloud. However, APLOMB did not con-
sider the security implications of outsourcing in the cloud.
To overcome the limitation of APLOMB, the follow-up sys-
tems, namely Embark [29] and BlindBox [51], advocate net-
work data processing over the encrypted traffic. In particular,
BlindBox [51] proposes an encryption scheme based on gar-
bled circuits to support string matching operations over en-
crypted traffic. However, Blindbox supports only a restricted
type of functionalities, such as NFs for DPI. To overcome
this limitation, Embark [29] extends BlindBox to support a

wider range of NFs. However, Embark suffers from prohibi-
tively low performance as it involves complex cryptographic
computations over the encrypted network traffic. In contrast,
ShieldBox supports a wide range of NFs (same as plain-text),
and achieves a near-native throughput and latency.

The recently published workshop papers [16, 18, 25] have
elaborated the challenges and potential usages of SGX in the
network applications. In the domain of network-intensive
applications, SGX-Tor [24] is one of the first systems to use
SGX to enhance the security and privacy of Tor. In a similar
vein, CBR [39] leverages SGX to support privacy-preserving
routing. Likewise, the ShieldBox project builds the first com-
prehensive system using Intel SGX to secure middleboxes.
The two other concurrent research projects also investi-

gated secure deployment of NFs: First, SafeBricks [40] is a
system for outsourcing NFs to the untrusted cloud. It has
high isolation properties stemming from Rust type system,
and implements least privilege principle for NFs. Secondly,
mbTLS [34] presents a modification to TLS v1.2 protocol that
allows seamless and secure integration of middleboxes into
connections between two peers. It leverages Intel SGX to
authenticate the middlebox, and has a high level of backward
compatibility with legacy peers.
Shielded execution. Shielded execution provides strong
security guarantees for legacy applications running on un-
trusted platforms [12, 28, 37, 42, 45, 52, 55]. Our work lever-
ages shielded execution based on Intel SGX. It is worth
noting that unlike the prior usage of shielded execution for
commonly used services like HTTP servers or KV stores,
we need to adapt the shielded execution to process the net-
work traffic at line rates. To achieve this, ShieldBox is the
first system that integrates a high-speed packet I/O frame-
work [2, 19, 41] with shielded execution.

8 Conclusion

In this paper, we presented the design, implementation, and
evaluation of ShieldBox—a secure middlebox framework for
deploying high-performance network functions (NFs) on un-
trusted commodity servers. ShieldBox exposes a generic in-
terface based onClick to design and implement awide-range
of NFs using its out-of-the-box elements and C++ extensions.
To securely process data at line rate, ShieldBox integrates a
high-performance I/O processing library (Intel DPDK) with
a shielded execution (Scone) framework based on Intel SGX.
We have also added several new useful features, and opti-
mizations for secure end-to-end network processing. Our
evaluation using a wide-range of NFs and case-studies show
that ShieldBox achieves near-native throughput and latency.
Acknowledgements.We thank our shepherdAurojit Panda
for the helpful comments. This project was funded by the
European Union’s Horizon 2020 program under grant agree-
ments No. 645011 (SERECA) and No. 690111 (SecureCloud).

ShieldBox: Secure Middleboxes using Shielded Execution Conference’17, July 2017, Washington, DC, USA

References

[1] Docker Hub. https://hub.docker.com/. Last accessed: February, 2018.
[2] Intel DPDK. http://dpdk.org/. Last accessed: February, 2018.
[3] Intel Software Guard Extensions Remote Attestation End-to-End Ex-

ample. https://software.intel.com/en-us/articles/intel-software-guard-
extensions-remote-attestation-end-to-end-example. Last accessed:
February, 2018.

[4] Kinetic Disks. https://www.openkinetic.org/. Last accessed: February,
2018.

[5] Newapproaches tonetwork fast paths. https://lwn.net/Articles/719850/.
Last accessed: February, 2018.

[6] Snort. https://www.snort.org/. Last accessed: February, 2018.
[7] perf: Linux profiling with performance counters. https://perf.wiki.

kernel.org/index.php/Main_Page. Last accessed: February, 2018.
[8] Wolf SSL Library. https://www.wolfssl.com/. Last accessed: February,

2018.
[9] A.Alim,R.G.Clegg, L.Mai, L.Rupprecht, E. Seckler, P.Costa, P. Pietzuch,

A. L. Wolf, N. Sultana, J. Crowcroft, A. Madhavapeddy, A. W. Moore,
R.Mortier,M.Koleni, L.Oviedo,M.Migliavacca, andD.McAuley. FLICK:
Developing andRunningApplication-SpecificNetworkServices. InPro-
ceedings of theUSENIXAnnual Technical Conference (USENIXATC), 2016.

[10] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xOMB:
Extensible OpenMiddleboxes with Commodity Servers. In Proceedings
of the Eighth ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (ANCS), 2012.
[11] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming

Slick Network Functions. In Proceedings of the 1st ACM SIGCOMM

Symposium on Software Defined Networking Research (SOSR), 2015.
[12] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an

Untrusted Cloud with Haven. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2014.
[13] A. Bremler-Barr, Y. Harchol, andD. Hay. OpenBox: A Software-Defined

Framework for Developing, Deploying, and Managing Network
Functions. In Proceedings of the 2016 ACMConference on Special Interest

Group on Data Communication (SIGCOMM), 2016.
[14] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call

API is a Bad Untrusted RPC Interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2013.
[15] V. Costan and S. Devadas. Intel SGX Explained. Cryptology ePrint

Archive, Report 2016/086, 2016.
[16] M. Coughlin, E. Keller, and E. Wustrow. Trusted Click: Overcoming

Security Issues of NFV in the Cloud. In Proceedings of the ACM

International Workshop on Security in Software Defined Networks

Network Function Virtualization (SDN-NFVSec), 2017.
[17] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,

A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: Vision and challenges. SIGCOMMCCR, 2015.

[18] J. Han, S. Kim, J. Ha, and D. Han. SGX-Box: Enabling Visibility on
Encrypted Traffic Using a Secure Middlebox Module. In Proceedings

of the First Asia-Pacific Workshop on Networking (APNet), 2017.
[19] S. Han, K. Jang, K. Park, and S.Moon. PacketShader: AGPU-accelerated

Software Router. In Proceedings of the 2010 ACM Conference on Special

Interest Group on Data Communication (SIGCOMM), 2010.
[20] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mOS: A Reusable

Networking Stack for FlowMonitoring Middleboxes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

[21] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.
mTCP: a Highly Scalable User-level TCP Stack for Multicore Sys-
tems. In 11th USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2014.

[22] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. Stateless
Network Functions. In Proceedings of the 2015 ACM SIGCOMMWork-

shop on Hot Topics in Middleboxes and Network Function Virtualization

(HotMiddlebox), 2015.
[23] G. P. Katsikas, G. Q. Maguire Jr., and D. Kostic. Profiling and Acceler-

ating Commodity NFV Service Chains with SCC. Journal of Systems

and Software, 2017.
[24] S. Kim, J.Han, J.Ha, T. Kim, andD.Han. Enhancing Security andPrivacy

of Tor’s Ecosystem by Using Trusted Execution Environments. In 14th
USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2017.
[25] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A First Step Towards

Leveraging Commodity Trusted Execution Environments for Network
Applications. In Proceedings of the 14th ACMWorkshop on Hot Topics

in Networks (HotNets), 2015.
[26] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM Transactions on Computer Systems (TOCS), 2000.
[27] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and

C. Fetzer. Pesos: Policy Enhanced Secure Object Store. In Proceedings of
the Twelfth European Conference on Computer Systems (EuroSys), 2018.

[28] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,
and C. Fetzer. SGXBounds: Memory Safety for Shielded Execution.
In Proceedings of the Twelfth European Conference on Computer Systems

(EuroSys), 2017.
[29] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu. Embark: Securely

Outsourcing Middleboxes to the Cloud. In 13th USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2016.
[30] R. Laufer, M. Gallo, D. Perino, and A. Nandugudi. CliMB: Enabling

Network Function Compositionwith ClickMiddleboxes. In Proceedings
of the 2016Workshop on Hot Topics in Middleboxes and Network Function

Virtualization (HotMIddlebox), 2016.
[31] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and

E. Chen. ClickNP: Highly Flexible and High Performance Network
Processing with Reconfigurable Hardware. In Proceedings of the 2016
ACM Conference on Special Interest Group on Data Communication

(SIGCOMM), 2016.
[32] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch,

and A. L. Wolf. NetAgg: Using Middleboxes for Application-specific
On-path Aggregation in Data Centres. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and

Technologies (CoNEXT), 2014.
[33] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,

and F. Huici. ClickOS and the Art of Network Function Virtualiza-
tion. In 11th USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2014.
[34] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste. And

then there were more: Secure communication for more than two
parties. In Proceedings of the 13th International Conference on Emerging

Networking EXperiments and Technologies (CoNEXT), 2017.
[35] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel

MPX explained: An empirical study of intel MPX and software-based
bounds checking approaches. CoRR, abs/1702.00719, 2017.

[36] V. A. Olteanu and C. Raiciu. Efficiently Migrating Stateful Middleboxes.
In Proceedings of the ACM SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication

(SIGCOMM), 2012.
[37] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein. Eleos: ExitLess

OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys), 2017.

[38] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker. E2: A Framework for NFV Applications. In Proceedings

of the 25th Symposium on Operating Systems Principles (SOSP), 2015.

https://hub.docker.com/
http://dpdk.org/
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://www.openkinetic.org/
https://lwn.net/Articles/719850/
https://www.snort.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.wolfssl.com/

Conference’17, July 2017, Washington, DC, USA Trach et al.

[39] R. Pires, M. Pasin, P. Felber, and C. Fetzer. Secure Content-Based
Routing Using Intel Software Guard Extensions. InArxiv, 2017.

[40] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. SafeBricks: Shielding
Network Functions in the Cloud. In 15th USENIX Symposium on Net-

worked SystemsDesign and Implementation (NSDI’18), Renton,WA, 2018.
[41] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In 2012

USENIX Annual Technical Conference (USENIX ATC), 2012.
[42] S. Arnautov et al. SCONE: Secure linux containers with Intel

SGX. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2016.
[43] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud

Computing. In Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing (HotCloud), 2009.

[44] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
Data: A New Abstraction for Building Trusted Cloud Services. In
Proceedings of the 21st USENIX Conference on Security Symposium

(USENIX Security), 2012.
[45] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich. VC3: Trustworthy Data Analytics in the
Cloud Using SGX. In Proceedings of the 2015 IEEE Symposium on

Security and Privacy (Oakland), 2015.
[46] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware

Guard Extension: Using SGX to Conceal Cache Attacks. In Arxiv, 2017.
[47] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and

Implementation of a ConsolidatedMiddleboxArchitecture. In In the 9th
USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2012.
[48] J. Seo, B. Lee, S. Kim,M.-W. Shih, I. Shin, D.Han, andT. Kim. SGX-Shield:

Enabling Address Space Layout Randomization for SGX Programs. In
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2017.

[49] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M.Manesh, J. a.Martins, S.Ratnasamy,L.Rizzo, andS.Shenker. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication (SIGCOMM), 2015.
[50] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and

V. Sekar. Making Middleboxes Someone else’s Problem: Network
Processing As a Cloud Service. In Proceedings of the ACM SIGCOMM

2012 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication (SIGCOMM), 2012.
[51] J. Sherry,C. Lan,R.A. Popa, andS.Ratnasamy. BlindBox:DeepPacket In-

spection over Encrypted Traffic. In Proceedings of the 2015 ACM Confer-

ence on Special Interest Group onDataCommunication (SIGCOMM), 2015.
[52] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-TCB Linux

Applications With SGX Enclaves. In Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2017.
[53] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling with

Exception-Less System Calls. In Proceedings of the 9th USENIX Confer-

ence on Operating Systems Design and Implementation (OSDI), 2010.
[54] B. Trach, A. Krohmer, S. Arnautov, F. Gregor, P. Bhatotia, and

C. Fetzer. Slick: Secure middleboxes using shielded execution. CoRR,
abs/1709.04226, 2017.

[55] C.-C. Tsai, D. Porter, and M. Vij. Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2017.

[56] W. Wu, K. He, and A. Akella. PerfSight: Performance Diagnosis for
Software Dataplanes. In Proceedings of the 2015 Internet Measurement

Conference (IMC), 2015.
[57] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Determin-

istic Side Channels for Untrusted Operating Systems. In Proceedings

of the 2015 IEEE Symposium on Security and Privacy (Oakland), 2015.

	Abstract
	1 Introduction
	2 Shielded Execution
	3 Overview
	4 Design Details
	4.1 Configuration and Remote Attestation
	4.2 Secure Elements
	4.3 NFVs Chaining
	4.4 Middlebox State Persistence
	4.5 NIC Time Source
	4.6 Memory Safety for DPDK-Specific Iago Attacks

	5 Implementation
	5.1 Interaction with Scone and Hardware
	5.2 Toolchain
	5.3 Optimizations

	6 Evaluation
	6.1 Experimental Setup
	6.2 Throughput
	6.3 Latency
	6.4 Scalability
	6.5 ToEnclave Overheads
	6.6 Configuration and Attestation
	6.7 NFVs Chaining
	6.8 Packet Sealing Performance
	6.9 Case Studies

	7 Related Work
	8 Conclusion
	References

