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ABSTRACT

A distributed join is a fundamental operation for processing mas-

sive datasets in parallel. Unfortunately, computing an equi-join over

such datasets is very resource-intensive, even when done in parallel.

Given this cost, the equi-join operator becomes a natural candi-

date for optimization using approximation techniques, which allow

users to trade accuracy for latency. Finding the right approximation

technique for joins, however, is a challenging task. Sampling, in par-

ticular, cannot be directly used in joins; naïvely performing a join

over a sample of the dataset will not preserve statistical properties

of the query result.

To address this problem, we introduce ApproxJoin. We inter-

weave Bloom filter sketching and stratified sampling with the join

computation in a new operator that preserves statistical proper-

ties of an aggregation over the join output. ApproxJoin leverages

Bloom filters to avoid shuffling non-joinable data items around the

network, and then applies stratified sampling to obtain a represen-

tative sample of the join output. We implemented ApproxJoin in

Apache Spark, and evaluated it using microbenchmarks and real-

world workloads. Our evaluation shows that ApproxJoin scales

well and significantly reduces data movement, without sacrificing

tight error bounds on the accuracy of the final results. ApproxJoin

achieves a speedup of up to 9× over unmodified Spark-based joins

with the same sampling ratio. Furthermore, the speedup is accom-

panied by a significant reduction in the shuffled data volume, which

is up to 82× less than unmodified Spark-based joins.

KEYWORDS

Approximate join processing, multi-way joins, stratified sampling,

approximate computing and distributed systems.

1 INTRODUCTION

The volume of digital data has grown exponentially over the last

decade. A key contributor to this growth has been loosely-structured

raw data that are perceived to be cost-prohibitive to clean, orga-

nize and store in a database management system (DBMS). These

datasets are frequently stored in data repositories (often called “data

lakes”) for just-in-time querying and analytics. Extracting useful

knowledge from a data lake is a challenge since it requires systems

that adapt to variety in the output of different data sources and

answer ad-hoc queries over vast amounts of data quickly.

To pluck the valuable information from raw data, distributed

data processing frameworks such as Hadoop [2], Apache Spark [3]
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Figure 1: Comparison between different sampling strategies

for distributed join with varying sampling fractions.

and Apache Flink [1] are widely used to perform ad-hoc data ma-

nipulations and then combine data from different input sources

using a join operation. While joins are a critical building block of

any analytics pipeline, they are expensive to perform, especially

with regard to communication costs in distributed settings. It is not

uncommon for a parallel data processing framework to take hours

to process a complex join query [49].

Parallel data processing frameworks are thus embracing approx-
imate computing to answer complex queries over massive datasets

quickly [5, 7, 8, 34]. The approximate computing paradigm is based

on the observation that approximate rather than exact results suffice

if real-world applications can reason about measures of statistical

uncertainty such as confidence intervals [24, 37]. Such applications

sacrifice accuracy for lower latency by processing only a fraction

of massive datasets. What response time and accuracy targets are

acceptable for each particular problem is determined by the user

who has the necessary domain expertise.

However, approximating join results by sampling is an inherently

difficult problem from a correctness perspective, because uniform

random samples of the join inputs cannot construct an unbiased

random sample of the join output [22]. In practice, as shown in

Figure 1, sampling input datasets before the join and then joining

the samples sacrifices up to an order of magnitude in accuracy;

sampling after the join is accurate but also 3 − 7× slower due to

unnecessary data movement to compute the complete join result.

Obtaining a correct and precondition-free sample of the join out-

put in a distributed computing framework is a challenging task.

Previous work has assumed some prior knowledge about the joined

tables, often in the form of an offline sample or a histogram [5, 6, 8].

Continuously maintaining histograms or samples over the entire

dataset (e.g., petabytes of data) is unrealistic as ad-hoc analytical

queries process raw data selectively. Join approximation techniques

for a DBMS, like RippleJoin [26] and WanderJoin [34], have not

considered the intricacies of HDFS-based processing where random

disk accesses are notoriously inefficient and data have not been

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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indexed in advance. In addition, both algorithms are designed for

single-node join processing; parallelizing the optimization proce-

dure for a data processing framework such as Apache Spark is

non-trivial.

In this work, we design a novel approximate distributed join

algorithm that combines a Bloom filter sketching technique with

stratified sampling during the join operation and realize it in a

system called ApproxJoin. As shown in Figure 1, sampling during

the join produces accurate results with fast response times, such

that user-defined latency and quality requirements can be met.

To achieve these goals, ApproxJoin first employs a Bloom filter

to curtail redundant shuffling of tuples that will not participate in

the subsequent join operations, thus reducing communication and

processing overheads. This step in ApproxJoin is general and di-

rectly supports multi-way joins, without having to process datasets

in groups of two and chain their outputs, thus, not introducing any

undesired latency in the multi-way join operations. Afterwards,

ApproxJoin automatically selects and progressively refines the

sampling rate by estimating the cardinality of the join output using

the Bloom filter. Once the sampling rate is determined, ApproxJoin

performs stratified sampling over the remaining tuples to produce

an answer that approximates the result of an aggregation over the

complete join result. ApproxJoin uses the Central Limit Theorem

and the Horvitz-Thompson estimator to remove any bias in the

final result that may have been introduced by sampling without

coordination from concurrent processes, producing a tight bound

of the error for the accuracy of the approximation.

We implemented ApproxJoin in Apache Spark [3, 54] and evalu-

ated its effectiveness viamicrobenchmarks, TPC-H queries, and real-

world workloads. Our evaluation shows that ApproxJoin achieves

a speedup of 6− 9× over Spark-based joins with the same sampling

fraction. ApproxJoin leverages Bloom filtering to reduce the shuf-

fled data volume during the join operation by 5 − 82× compared to

Spark-based systems. Without any sampling, our microbenchmark

evaluation shows that ApproxJoin achieves a speedup of 2 − 10×

over the native Spark RDD join [54] and 1.06−3× over a Spark repar-

tition join. In addition, our evaluation with the TPC-H benchmark

shows that ApproxJoin is 1.2− 1.8× faster than the state-of-the-art

SnappyData system [47]. To summarize, our contributions are:

• A novel mechanism to perform stratified sampling over joins

in parallel data processing frameworks, which preserves the

statistical quality of the join output and reduces shuffled data

size via a Bloom filter sketching technique that is directly

applicable to multi-way joins.

• A progressive refinement procedure that automatically se-

lects a sampling rate to meet user-defined latency and accu-

racy targets for approximate join computation.

• An extensive evaluation of an implementation of Approx-

Join inApache Spark usingmicrobenchmarks, TPC-H queries,

and real-world workloads which shows that ApproxJoin out-

performs native Spark-based joins and the state-of-the-art

SnappyData system by a substantial margin.

2 OVERVIEW

ApproxJoin is designed to mitigate the overhead of distributed join

operations in big data analytics systems, such as Apache Flink and

Apache Spark. We facilitate joins on the input datasets by providing

a simple user interface. The input of ApproxJoin consists of several

datasets to be joined, as well as the join query and its corresponding

query execution budget submitted by the user. The query budget

can be in the form of expected latency guarantees, or the desired

accuracy level. Our system ensures that the input data is processed

within the specified query budget. To achieve this goal, ApproxJoin

applies the approximate computing paradigm by processing only a

subset of input data from the datasets to produce an approximate

output with error bounds. At a high level, ApproxJoin makes use

of a combination of sketching and sampling to select a subset of

input datasets based on the user-specified query budget. Thereafter,

ApproxJoin aggregates over the subset of input data.

ApproxJoin can also provide a subset of the join output without

any aggregation (i.e., join result rows); however, such an output will

not be meaningful in terms of estimating the approximation error.

Hence, we assume that the query contains an algebraic aggregation

function, such as SUM, AVG, COUNT, and STDEV.

Query interface. Consider the case where a user wants to perform

an aggregation query after an equal-join on attribute A for n input

datasets R1 Z R2 Z ... Z Rn , where Ri (i = 1, ...,n) represents
an input dataset. The user sends the query q and supplies a query

budget qbudдet to ApproxJoin. The query budget can be in the

form of desired latency ddesir ed or desired error bound errdesir ed .
For instance, if the user wants to achieve a desired latency (e.g.,

ddesir ed = 120 seconds), or a desired error bound (e.g., errdesir ed =
0.01 with confidence level of 95%), he/she defines the query as

follows:

SELECT SUM(R1 .V + R2 .V + ... + Rn .V )

FROM R1, R2, ..., Rn
WHERE R1 .A = R2 .A = ... = Rn .A
WITHIN 120 SECONDS

OR
ERROR 0.01 CONFIDENCE 95%

ApproxJoin executes the query and returns the most accurate

query result within the desired latency which is 120 seconds, or

returns the query result within the desired error bound ±0.01 at a

95% confidence level.

Design overview. The basic idea of ApproxJoin is to address the

shortcomings of the existing join operations in big data systems by

reducing the number of data items that need to be processed. Our

first intuition is that we can reduce the latency and computation

of a distributed join by removing redundant transfer of data items

that are not going to participate in the join. Our second intuition is

that the exact results of the join operation may be desired, but not

necessarily critical, so that an approximate result with well-defined

error bounds can also suffice for the user.

Figure 2 shows an overview of our approach. There are two

stages in ApproxJoin for the execution of the user’s query:

Stage #1: Filtering redundant items. In the first stage, Approx-

Join determines the data items that are going to participate in the

join operation and filters the non-participating items. This filter-

ing reduces the data transfer that needs to be performed over the
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Figure 2: ApproxJoin system overview (shaded boxes depict

our implemented modules in Apache Spark).

network for the join operation. It also ensures that the join oper-

ation will not include ‘null’ results in the output that will require

special handling, as in WanderJoin [34]. ApproxJoin employs a

well-known data structure, Bloom filter [19]. Our filtering algorithm
executes in parallel at each node that stores partitions of the input

and handles multiple input tables simultaneously, making Approx-

Join suitable for multi-way joins without introducing undesired

latency.

Stage #2: Approximation in distributed joins. In the second

stage, ApproxJoin uses a sampling mechanism that is executed

during the join process: we sample the input datasets while the

cross product is being computed. This mechanism overcomes the

limitations of the previous approaches and enables us to achieve low

latency as well as preserve the quality of the output as highlighted

in Figure 1. Our sampling mechanism is executed during the join

operation and preserves the statistical properties of the output.

In addition, we combine our mechanism with stratified sam-
pling [9], where tuples with distinct join keys are sampled inde-

pendently with simple random sampling. As a result, data items

with different join keys are selected fairly to represent the sample,

and no join key will be overlooked. The final sample will contain

all join keys — even the ones with few data items — so that the

statistical properties of the sample are preserved.

More specifically, ApproxJoin executes the following steps for

approximation in distributed joins:

Step #2.1: Determine sampling parameters. ApproxJoin em-

ploys a cost function to compute an optimal sample rate according

to the corresponding query budget. This computation ensures that

the query is executed within the desired latency and error bound

parameters of the user.

Step #2.2: Sample and execute query. Using this sampling rate

parameter, ApproxJoin samples during the join and then executes

the aggregation query q using the obtained sample.

Step #2.3: Estimate error.After executing the query, ApproxJoin

provides an approximate result together with a corresponding error

bound in the form of result ± error_bound to the user.

Note that our sampling parameter estimation provides an adap-

tive interface for selecting the sampling rate based on the user-

defined accuracy and latency requirements. ApproxJoin adapts by

activating a feedback mechanism to refine the sampling rate after

learning the data distribution of the input datasets (shown by the

dashed line in Figure 2).

3 DESIGN

In this section, we explain the design details of ApproxJoin.We first

describe how we filter redundant data items for multiple datasets to

support multi-way joins (§3.1). Then, we describe how we perform

approximation in distributed joins using three main steps: (1) how

we determine the sampling parameter to satisfy the user-specified

query budget (§3.2), (2) how our novel sampling mechanism ex-

ecutes during the join operation (§3.3), and finally (3) how we

estimate the error for the approximation (§3.4).

3.1 Filtering Redundant Items

In a distributed setting, join operations can be expensive due to

communication cost of the data items. This cost can be especially

high in multi-way joins, where several datasets are involved in

the join operation. One reason for this high cost is that data items

not participating in the join are still shuffled through the network

during the join operation.

To reduce this communication cost, we need to distinguish such

redundant items and avoid transferring them over the network. In

ApproxJoin, we use Bloom filters for this purpose. The basic idea

is to utilize Bloom filters as a compressed set of all items present at

each node and combine them to find the intersection of the datasets

used in the join. This intersection will represent the set of data

items that are going to participate in the join.

A Bloom filter is a data structure designed to query the presence

of an element in a dataset in a rapid and memory-efficient way [19].

There are three advantages why we choose Bloom filters for our

purpose. First, querying the membership of an element is efficient:

it hasO (h) complexity, where h denotes a constant number of hash

functions used in a Bloom filter. Second, the size of the filter is

linearly correlated with the size of the input, but it is significantly

smaller than the original input size. Lastly, constructing a Bloom

filter is fast and requires only a single pass.

Bloom filters have been employed to improve distributed joins

in the past [12, 33, 50, 51]. However, these proposals support only

two-way joins. Although one can support joins with multiple input

datasets by chaining the outputs of two-way joins, this approach

would add to the latency of the join results. ApproxJoin handles

multiple datasets at the same time and supports multi-way joins

without introducing additional latency. Next, we explain in detail

how our algorithm finds the intersection of multiple datasets simul-

taneously.

Multi-way Bloom filter. Consider the case where we want to

perform a join operation between multiple input datasets Ri , where
i = 1, · · · ,n: R1 Z R2 Z ... Z Rn . Algorithm 1 presents the two

main steps to construct the multi-way join filter. In the first step, we

create a Bloom filter BFi for each input Ri , where i = 1, ...,n (lines

4-6), which is executed in parallel at all worker nodes that have the

input datasets. In the second step, we combine the n dataset filters

into the join filter by simply applying the logical AND operation

between the dataset filters (lines 7-9). This operation adds virtually

no additional overhead to build the join filter, because the logical
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Algorithm 1: Filtering using multi-way Bloom filter

Input:

n: number of input datasets

|BF |: size of the Bloom filter

f p : false positive rate of the Bloom filter

R: input datasets

1 // Build a Bloom filter for the join input datasets R
2 buildJoinFilter(R , |BF |, f p)
3 begin

4 // Build a Bloom filter for each input Ri
5 // Executed in parallel at worker nodes
6 ∀i ∈ {1...n }: BFi ← buildInputFilter(Ri , |BF |, f p);
7 // Merge input filters BFi for the overlap between inputs
8 // Executed sequentially at master node
9 BF← ∩ni=1BFi ;

10 return BF
11 // Build a Bloom filter for input Ri
12 // Executed in parallel at worker nodes
13 buildInputFilter(Ri , |BF |, f p)
14 begin

15 |pi | := number of partitions of input dataset Ri
16 pi := {pi, j }, where j = 1, ..., |pi |
17 //MAP PHASE
18 //Initialize a filter for each partition
19 forall j in {1... |pi | } do
20 p-BFi, j ← BloomFilter( |BF |, f p);
21 ∀r j ∈ pi, j : p-BFi, j .add(r j .key);
22 //REDUCE PHASE
23 // Merge partition filters to the dataset filter

24 BFi ← ∪
|pi |
j=1p-BFi, j ;

25 return BFi

AND operation with Bloom filters is fast, even though the number

of dataset filters being combined is n instead of two.

Note that an input dataset may consist of several partitions

hosted on different nodes. To build the dataset filter for these par-

titioned inputs, we perform a simple MapReduce job that can be

executed in distributed fashion: We first build the partition filters
p-BFi, j , where j = 1, · · · , |pi |, and |pi | is the number of partitions

for input dataset Ri during the Map phase, which is executed at

the nodes that are hosting the partitions of each input (lines 15-21).

Then, we combine the partition filters to obtain the dataset filter BFi
in the Reduce phase by merging the partition filters via the logical

OR operation into the corresponding dataset filter BFi (lines 22-24).

This process is executed for each input dataset and in parallel (see

buildInputFilter()).

3.1.1 Is Filtering Sufficient? After constructing the join filter

and broadcasting it to the nodes, one straightforward approach

would be to complete the join operation by performing the cross

product with the data items present in the intersection. Figure 3

(a) shows the advantage of performing such a join operation with

multiple input datasets based on a simulation (see Appendix A.1 of

the technical report [42]). With the broadcast join and repartition

join mechanisms, the transferred data size gradually increases with

the increasing number of input datasets. On the other hand, with

the Bloom filter based join approach, the transferred data size is

significantly reduced even when the number of datasets in the join

operation increases.
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Figure 3: Shuffled size comparison between join mecha-

nisms: (a) Varying numbers of input datasets with the over-

lap fraction of 1%; (b) Varying overlap fractions with three

input datasets.

This reduction, however, may not always be possible. Figure 3

(b) shows that even with a modest overlap fraction between three

input datasets (i.e., 40%), the amount of transferred data becomes

comparable with the repartition join mechanism. (In this paper,

the overlap fraction is defined as the total number of data items

participating in the join operation divided by the total number of

unique data items of all inputs). Furthermore, the cross product

operationwill involve a significant number of data items, potentially

becoming the bottleneck.

In ApproxJoin, we first filter redundant data items as aforemen-

tioned in this section. Afterwards, we check whether the overlap

fraction between the datasets is small enough, such that we can

meet the latency requirements of the user. If so, we perform the

cross product of the data items participating in the join. In other

words, we do not need approximation in this case (i.e., we compute

the exact join result). If the overlap fraction is large, we continue

with our approximation technique, which we describe next.

3.2 Approximation: Cost Function

ApproxJoin supports the query budget interface for users to define

a desired latency (ddesir ed ) or a desired error bound (errdesir ed )
as described in §2. ApproxJoin ensures the join operation executed

within the specified query budget by tuning the sampling parameter

accordingly. In this section, we describe how ApproxJoin converts

the join requirements given by a user (i.e.,ddesir ed , errdesir ed ) into
an optimal sampling parameter. To meet the budget, ApproxJoin

makes use of two types of cost functions to determine the sample

size: (i) latency cost function, (ii) error bound cost function.

I: Latency cost function. In ApproxJoin, we consider the latency

for the join operation being dominated by two factors: 1) the time to

filter and transfer participating join data items, ddt , and 2) the time

to compute the cross product, dcp . To execute the join operation

within the delay requirements of the user, we need to estimate each

contributing factor.

The latency for filtering and transferring the join data items, ddt ,
is measured during the filtering stage (described in §3.1). We then

compute the remaining allowed time to perform the join operation:

dr em = ddesir ed − ddt (1)

To satisfy the latency requirements, the following must hold:

dcp ≤ dr em (2)
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In order to estimate the latency of the cross product phase, we

need to estimate how many cross products we have to perform.

Imagine that the output of the filtering stage consists of data items

withm distinct keys C1, C2 · · · , Cm . To fairly select data items, we

perform sampling for each join key independently (explained in

§3.3). In other words, we will perform stratified sampling, such that

each key Ci corresponds to a stratum and has Bi data items. Let bi
represent the sample size forCi . The total number of cross products

is given by:

CPtotal =
m∑
1

bi (3)

The latency for the cross product phase would be then:

dcp = βcompute ∗CPtotal (4)

where βcompute denotes the scale factor that depends on the com-

putation capacity of the cluster (e.g., #cores, total memory).

We determine βcompute empirically via a microbenchmark by

profiling the compute cluster in an offline stage. In particular, we

measure the latency to perform cross products with varying input

sizes. Figure 4 shows that the latency is linearly correlated with the

input size, which is consistent with plenty of I/O bound queries in

parallel distributed settings [8, 10, 55]. Based on this observation,

we estimate the latency of the cross product phase as follows:

dcp = βcompute ∗CPtotal + ε (5)

where ε is a noise parameter. Note that ApproxJoin computes

βcompute only once when the compute cluster is first deployed,

whereas other systems perform the preprocessing steps multiple

times over input data whenever it changes.

Given a desired latency ddesir ed , the sampling fraction s =
CPtotal
m∑
1

Bi
can be computed as:

s = (
dr em − ε

βcompute
) ∗

1

m∑
1

Bi

= (
ddesir ed − ddt − ε

βcompute
) ∗

1

m∑
1

Bi

(6)

Then, the sample size bi of stratum Ci can be then selected as

follows:

bi ≤ s ∗ Bi (7)

According to this estimation, ApproxJoin checks whether the

query can be executed within the latency requirement of the user.

If not, the user is informed accordingly.

II: Error bound cost function. If the user specified a requirement

for the error bound, we have to execute our sampling mechanism,

such that we satisfy this requirement. Our sampling mechanism

utilizes simple random sampling for each stratum (see §3.3). As a

result, the error erri can be computed as follows [35]:

erri = z α
2

∗
σi
√
bi

(8)

where bi represents the sample size of Ci and σi represents the
standard deviation.

Unfortunately, the standard deviation σi of stratum Ci cannot
be determined without knowing the data distribution. To overcome

this problem, we design a feedback mechanism to refine the sample

size (the implementation details are in §4): For the first execution

of a query, the standard deviation of σi of stratum Ci is computed
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and stored. For all subsequent executions of the query, we utilize

these stored values to calculate the optimal sample size using Equa-

tion 10. Alternatively, one can estimate the standard deviation using

a bootstrapping method [8, 35]. Using this method, however, would

require performing offline profiling of the data.

With the knowledge of σi and solving for bi gives:

bi = (z α
2

∗
σi
erri

)2 (9)

With 95% confidence level, we have z α
2

= 1.96; thus, bi = 3.84 ∗

( σi
erri )

2
. erri should be less or equal to errdesir ed , so we have:

bi ≥ 3.84 ∗ (
σi

errdesir ed
)2 (10)

Equation 10 allows us to calculate the optimal sample size given a

desired error bound errdesir ed .

III: Combining latency and error bound. From Equations 7 and

10, we have a trade-off function between the latency and the error

bound with confidence level of 95%:

ddesir ed ≈ 3.84∗(
σi

errdesir ed
)2∗

βcompute

Bi
∗(

m∑
1

Bi )+ddt+ε (11)

3.3 Approximation: Sampling and Execution

In this section, we describe our sampling mechanism that executes

during the cross product phase of the join operation. Executing ap-

proximation during the cross product enables ApproxJoin to have

highly accurate results compared to pre-join sampling. To preserve

the statistical properties of the exact join output, we combine our

technique with stratified sampling. Stratified sampling ensures that

no join key is overlooked: for each join key, we perform simple ran-

dom sampling over data items independently. This method selects

data items fairly from different join keys. The filtering stage (§3.1)

guarantees that this selection is executed only from the data items

participating in the join.

For simplicity, we first describe how we perform stratified sam-

pling during the cross product on a single node. We then describe

how the sampling can be performed on multiple nodes in parallel.

I: Single node stratified sampling. Consider an inner join exam-

ple of J = R1 Z R2 with a pair of keys and values, ((k1,v1), (k2,v2)),
where (k1,v1) ∈ R1 and (k2,v2) ∈ R2. This join operation produces

an item (k1, (v1,v2)) ∈ J if and only if k1 = k2.
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Figure 5: Cross-product the bipartite graphof join data items

for key C0. Bold lines represent sampled edges.

Consider that R1 contains (C0,v1), (C0,v2) and (C0,v3), and
that R2 contains (C0,v4), (C0,v5), (C0,v6) and (C0,v7). The join
operation based on key C0 can be modeled as a complete bipartite

graph (shown in Figure 5). To execute stratified sampling over the

join, we perform random sampling on data items having the same

join key (i.e., keyC0). As a result, this process is equal to performing

edge sampling on the complete bipartite graph.

Sampling edges from the complete bipartite graph would require

building the graph, which would correspond to computing the full

cross product. To avoid this cost, we propose a mechanism to ran-

domly select edges from the graph without building the complete

graph. The function sampleAndExecute() in Algorithm 2 describes

the algorithm to sample edges from the complete bipartite graph.

To include an edge in the sample, we randomly select one endpoint

vertex from each side and then yield the edge connecting these

vertices (lines 19-23). To obtain a sample of size bi , we repeat this
selection bi times (lines 17-18 and 24). This process is repeated for

each join key Ci (lines 15-24).

II: Distributed stratified sampling. The sampling mechanism

can naturally be adapted to execute in a distributed setting. Al-

gorithm 2 describes how this adaptation can be achieved. In the

distributed setting, the data items participating in the join are dis-

tributed to worker nodes based on the join keys using a partitioner

(e.g., hash-based partitioner). A master node facilitates this distri-

bution and directs each worker to start sampling (lines 4-5). Each

worker then performs the function sampleAndExecute() in parallel

to sample the join output and execute the query (lines 12-26).

III: Query execution. After the sampling, each node executes

the input query on the sample to produce a partial query result,

resulti , and returns it to the master node (lines 25-26). The master

node collects these partial results and merges them to produce a

query result (lines 6-8). The master node also performs the error

bound estimation (lines 9-10), which we describe in the following

subsection (§3.4) . Afterwards, the approximate query result and

its error bounds are returned to the user (line 11).

3.4 Approximation: Error Estimation

As the final step, ApproxJoin computes an error bound for the

approximate result. The approximate result is then provided to

the user as approxresult ± error_bound . Our sampling algorithm

(i.e., sampleAndExecute() in Algorithm 2) described in the previous

section can produce an output with duplicate edges. For such cases,

we use the Central Limit Theorem to estimate the error bounds for

the output. This error estimation is possible because the sampling

mechanism works as a random sampling with replacement.

Algorithm 2: : Stratified sampling over join

Input:

bi : sample size of join key Ci
N1i & N2i : set of vertices (items) in two sides of complete bipartite

graph of join key Ci
m: number of join keys

C : set of all join keys (i.e., {∀i ∈ {1, ...,m } : Ci })
1 // Executed sequentially at master node
2 sampleDuringJoin()

3 begin

4 foreach workeri in workerList do
5 r esulti ← workeri .sampleAndExecute();// Direct workers to

sample and execute the query

6 r esult ← ∅; // Initialize empty query result
7 foreach Ci in C do

8 r esult ← merge(r esulti );// Merge query results from workers

9 // Estimate error for the result
10 r esult ± error_bound ← errorEstimation(r esult );
11 return r esult ± error_bound ;
12 // Executed in parallel at worker nodes
13 sampleAndExecute()

14 begin

15 foreach Ci in C do

16 samplei ← ∅; // Sample of join key Ci
17 counti ← 0;// Initialize a count to keep track # selected items
18 while counti < bi do
19 // Select two random vertices
20 v ← random(N1i );

21 v ′ ← random(N2i );
22 // Add an edge between the selected vertices and update the sample
23 samplei .add(< v, v ′ >);
24 counti ← counti + 1; // Update counting

25 r esulti ← query(samplei ); // Execute query over sample
26 return r esulti ;

It is also possible to remove the duplicate edges during the sam-

pling process by using a hash table, and repeat the algorithm steps

until we reach the desired number of data items in the sample. This

approach might worsen the randomness of the sampling mecha-

nism and could introduce bias into the sample data. In this case, we

use the Horvitz-Thompson [28] estimator to remove this bias. We

next explain the details of these two error estimation mechanisms.

I: Error estimation using the Central Limit Theorem. Sup-

pose we want to compute the approximate sum of data items after

the join operation. The output of the join operation contains data

items with m different keys C1, C2, · · · , Cm , each key (stratum)

Ci has Bi data items and each such data item j has an associated

value vi, j . To compute the approximate sum of the join output, we

sample bi items from each join key Ci according to the parameter

we computed (described in §3.2). Afterwards, we estimate the sum

from this sample as τ̂ =
∑m
i=1 (

Bi
bi
∑bi
j=1vi j ) ± ϵ , where the error

bound ϵ is defined as:

ϵ = tf ,1− α
2

√
V̂ ar (τ̂ ) (12)

Here, tf ,1− α
2

is the value of the t-distribution (i.e., t-score) with
f degrees of freedom and α = 1 − conf idencelevel . The degree of
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freedom f is calculated as:

f =
m∑
i=1

bi −m (13)

The estimated variance for the sum, V̂ ar (τ̂ ), can be expressed as:

V̂ ar (τ̂ ) =
m∑
i=1

Bi ∗ (Bi − bi )
r2i
bi

(14)

Here, r2i is the population variance in the i-th stratum. We use the

statistical theories for stratified sampling [48] to compute the error

bound.

II: Error estimation using the Horvitz-Thompson estimator.

Consider the second case, where we remove the duplicate edges

and resample the endpoint nodes until another edge is yielded. The

bias introduced by this process can be estimated using the Horvitz-

Thomson estimator. Horvitz-Thompson is an unbiased estimator

for the population sum and mean, regardless of whether sampling

is with or without replacement.

Let πi be a positive number representing the probability that

data item having key Ci is included in the sample under a given

sampling scheme. Let yi be the sample sum of items having key

Ci : yi =
∑bi
j=1vi j . The Horvitz-Thompson estimation of the total is

then computed as [48]:

ˆτπ =
m∑
i=1

(
yi
πi

) ± ϵht (15)

where the error bound ϵht is given by:

ϵht = t α
2

√
V̂ ar ( ˆτπ ) (16)

where t has n − 1 degrees freedom. The estimated variance of the

Horvitz-Thompson estimation is computed as:

V̂ ar ( ˆτπ ) =
m∑
i=1

(
1 − πi

π 2

i
) ∗ y2i +

m∑
i=1

∑
j,i

(
πi j − πiπj

πiπj
) ∗

yiyj

πi j
(17)

where πi j is the probability that both data items having keyCi and
Cj are included.

Note that the Horvitz-Thompson estimator does not depend on

how many times a data item may be selected. Each distinct item of

the sample is used only once [48].

4 IMPLEMENTATION

In this section, we describe the implementation details of Approx-

Join. At a high level, ApproxJoin is composed of twomain modules:

(i) filtering and (ii) approximation. The filtering module constructs

the join filter to determine the data items participating in the join.

These data items are fed to the approximation module to perform

the join query within the query budget specified by the user.

We implemented our design by modifying Apache Spark [3].

Spark uses Resilient Distributed Datasets (RDDs) [54] for scalable

and fault-tolerant distributed data-parallel computing. An RDD

is an immutable collection of objects distributed across a set of

machines. To support existing programs, we provide a simple pro-

gramming interface that is also based on the RDDs. In other words,

all operations in ApproxJoin, including filtering and approxima-

tion, are transparent to the user. To this end, we have implemented a
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Figure 6: System implementation which shows in detail the

directed acyclic graph (DAG) execution of ApproxJoin.

PairRDD for approxjoin() function to perform the join query within

the query budget over inputs in the form of RDDs. Figure 6 shows

in detail the directed acyclic graph (DAG) execution of ApproxJoin.

I: Filtering module. The join Bloom filter module implements the

filtering stage described in §3.1 to eliminate the non-participating

data items. A straightforward way to implement buildJoinFilter() in
Algorithm 1 is to build Bloom filters for all partitions (p-BFs) of each

input and merge them in the driver of Spark in the Reduce phase.

However, in this approach, the driver quickly becomes a bottleneck

when there are multiple data partitions located on many workers

in the cluster. To solve this problem, we leverage the treeReduce
scheme [14, 17, 18]. In this model, we combine the Bloom filters

in a hierarchical fashion, where the reducers are arranged in a

tree with the root performing the final merge (Figure 6). If the

number of workers increases (i.e., ApproxJoin deployed in a bigger

cluster), more layers are added to the tree to ensure that the load

on the driver remains unchanged. After building the join filter,

ApproxJoin broadcasts it to determine participating join items in

all inputs and feed them to the approximation module.

The approximation module consists of three submodules includ-

ing the cost function, sampling, and error estimation. The cost

function submodule implements the mechanism in §3.2 to deter-

mine the sampling parameter according to the requirements in

the query budget. The sampling submodule performs the proposed

sampling mechanism (described in §3.3) and executes the join query

over the filtered data items with the sampling parameter. The error

estimation submodule computes the error-bound (i.e., confidence

interval) for the query result from the sampling module (described

in §3.4). This error estimation submodule also performs fine-tuning

of the sample size used by the sampling submodule to meet the

accuracy requirement in subsequent runs.

II: Approximation: Cost function submodule. The cost func-

tion submodule converts the query budget requirements provided

by the user into the sampling parameter used in the sampling
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Figure 7: Benefits of filtering in two-way joins. We show the total latency and the breakdown latency of (a) ApproxJoin, (b)

Spark repartition join, and (c) native Spark join.

submodule. We implemented a simple cost function by building a

model to convert the desired latency into the sampling parameter.

To build the model, we perform offline profiling of the compute

cluster. This model empirically establishes the relationship between

the input size and the latency of cross product phase by computing

the βcompute parameter from the microbenchmarks. Afterwards,

we utilize Equation 7 to compute the sample sizes.

III: Approximation: Sampling submodule. After receiving the

intersection of the inputs from the filtering module and the sam-

pling parameter from the cost function submodule, the sampling

submodule performs the sampling during the join as described in

§3.3. We implemented the proposed sampling mechanism in this

submodule by creating a new Spark PairRDD function sampleDur-
ingJoin() that executes stratified sampling during the join.

The original join() function in Spark uses two operations: 1)

cogroup() shuffles the data in the cluster, and 2) cross-product per-
forms the final phase in join. In our approxjoin() function, we replace
the second operation with sampleDuringJoin() that implements our

mechanism described in §3.3 and Algorithm 2. Note that the data

shuffled by the cogroup() function is the output of the filtering stage.

As a result, the amount of shuffled data can be significantly reduced

if the overlap fraction between datasets is small. Note also that

sampleDuringJoin() also performs the query execution as described

in Algorithm 2.

IV: Approximation: Error estimation submodule. After the

query execution is performed in sampleDuringJoin(), the error es-
timation submodule implements the function errorEstimation() to
compute the error bounds of the query result. The submodule also

activates a feedback mechanism to re-tune the sample sizes in the

sampling submodule to achieve the specified accuracy target as

described in §3.2. We use the Apache Common Math library to

implement the error estimation mechanism described in §3.4.

5 EVALUATION: MICROBENCHMARKS

In this section, we present the evaluation results of ApproxJoin

based on microbenchmarks and the TPC-H benchmark. In the next

section, we will report evaluation based on real-world case studies.

5.1 Experimental Setup

Cluster setup. Our cluster consists of 10 nodes, each equipped

with two Intel Xeon E5405 quad-core CPUs, 8GB memory and a

SATA-2 hard disk, running Ubuntu 14.04.1.

Synthetic datasets. We analyze the performance of ApproxJoin

using synthetic datasets following Poisson distributions with λ
in the range of [10, 10000]. For the load balancing, the number of

distinct join keys is set to be proportional to the number of workers.

Metrics. We evaluate ApproxJoin using three metrics: latency,

shuffled data size, and accuracy loss. Specifically, the latency is

defined as the total time consumed to process the join operation

(including the Bloom filter building and the cross product opera-

tion); the shuffled data size is defined as the total size of the data

shuffled across nodes during the join operation; the accuracy loss

is defined as (approx − exact )/exact , where approx and exact de-
note the results from the executions with and without sampling,

respectively.

5.2 Benefits of Filtering

The join operation in ApproxJoin consists of two main stages: (i)
filtering stage for reducing shuffled data size, and (ii) sampling

stage for approximate computing. In this section, we activate only

the filtering stage (without the sampling stage) in ApproxJoin, and

evaluate the benefits of the filtering stage.

I: Two-way joins. First, we report the evaluation results with

two-way joins. Figure 7(a)(b)(c) show the latency breakdowns of

ApproxJoin, Spark repartition join, and native Spark join, respec-

tively. Unsurprisingly, the results show that building bloom filters

in ApproxJoin is quite efficient (only around 42 seconds) compared

with the cross-product-based join execution (around 43× longer

than building bloom filters, for example, when the overlap frac-

tion is 6%). The results also show that the cross-product-based join

execution is fairly expensive across all three systems.

When the overlap fraction is less than 4%, ApproxJoin achieves

2× and 3× shorter latencies than Spark repartition join and native

Spark join, respectively. However, with the increase of the overlap

fraction, there is an increasingly large amount of data that has

to be shuffled and the expensive cross-product operation cannot

be eliminated in the filtering stage; therefore, the benefit of the
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Figure 8: Benefits of filtering in multi-way joins, with different overlap fractions and different numbers of input datasets.

filtering stage in ApproxJoin gets smaller. For example, when the

overlap fraction is 10%, ApproxJoin speeds up only 1.06× and 8.2×

compared with Spark repartition join and Spark native join, respec-

tively. When the overlap fraction increases to 20%, ApproxJoin’s

latency does not improve (or may even perform worse) compared

with the Spark repartition join. At this point, we need to activate

the sampling stage of ApproxJoin to reduce the latency of the join

operation, which we will evaluate in §5.3.

II: Multi-way joins. First, we present the evaluation results with

multi-way joins. Specifically, we first conduct the experiment with

three-way joins wherebywe create three synthetic datasets with the

same aforementioned Poisson distribution. We measure the latency

and the shuffled data size during the join operations in ApproxJoin,

Spark repartition join and native Spark join, with varying overlap

fractions. Figure 8(a) shows that, with the overlap fraction of 1%,

ApproxJoin is 2.6× and 8× faster than Spark repartition join and

native Spark join, respectively. However, with the overlap fraction

larger than 8%, ApproxJoin does not achieve much latency gain

(or may even perform worse) compared with Spark repartition join.

This is because, similar to the two-way joins, the increase of the

overlap fraction prohibitively leads to a larger amount of data that

needs to be shuffled and cross-producted. Note also that, we do not

have the evaluation results for native Spark join with the overlap

fractions of 8% and 10%, simply because that system runs out of

memory. Figure 8(b) shows that ApproxJoin significantly reduces

the shuffled data size. With the overlap fraction of 6%, ApproxJoin

reduces the shuffled data size by 16.7× and 14.5× compared with

Spark repartition join and native Spark join, respectively.

Next, we conduct experiments with two-way, three-way and

four-way joins. In two-way joins, we use two synthetic datasets

A and B that have an overlap fraction of 1%; in three-way joins,

the three synthetic datasets A, B, and C have an overlap fraction

of 0.33%, and the overlap fraction between any two of them is also

0.33%; in four-way joins, the four synthetic datasets have an overlap

fraction of 0.25%, and the overlap fraction between any two of these

datasets is also 0.25%.

Figure 8(c) presents the latency and the shuffled data size during

the join operation with different numbers of input datasets. With

two-way joins, ApproxJoin speeds up by 2.2× and 6.1×, and re-

duces the shuffled data size by 45× and 12×, compared with Spark

repartition join and native Spark join, respectively. In addition, with

three-way and four-way joins, ApproxJoin achieves even larger

performance gain. This is because, with the increase of the number

of input datasets, the number of non-join data items also increases;

therefore, ApproxJoin gains more benefits from the filtering stage.

III: Scalability. Finally, we keep the overlap fraction of 1% and

evaluate the scalability of ApproxJoin with different numbers of

compute nodes. Figure 9(a) shows that ApproxJoin achieves a lower

latency than Spark based systems. With two nodes, ApproxJoin

achieves a speedup of 1.8× and 10× over Spark repartition join and

native Spark join, respectively. Meanwhile, with 8 nodes, Approx-

Join achieves a speedup of 1.7× and 6× over Spark repartition join

and native Spark join.

5.3 Benefits of Sampling

As shown in previous experiments, ApproxJoin does not gain much

latency benefit from the filtering stage when the overlap fraction is

large. To reduce the latency of the join operation in this case, we ac-

tivate the second stage of ApproxJoin, i.e., the sampling stage. For a

fair comparison, we re-purpose Spark’s built-in sampling algorithm

(i.e., stratified sampling via sampleByKey) to build a “sampling over

join” mechanism for the Spark repartition join system. Specifically,

we perform the stratified sampling over the join results after the

join operation has finished in the Spark repartition join system. We

then evaluate the performance of ApproxJoin, and compare it with

this extended Spark repartition join system.

I: Latency. We measure the latency of ApproxJoin and the ex-

tended Spark repartition join with varying sampling fractions. Fig-

ure 9(b) shows that the Spark repartition join system scales poorly

with a significantly higher latency as it could perform stratified

sampling only after finishing the join operation.

II: Accuracy. Next, we measure the accuracy of ApproxJoin and

the extended Spark repartition join. Figure 9(c) shows that the accu-

racy losses in both systems decrease with the increase of sampling

fractions, although ApproxJoin’s accuracy is slightly worse than

the Spark repartition join system. Note however that, as shown in

Figure 9(b), ApproxJoin achieves an order of magnitude speedup

compared with the Spark repartition join system since ApproxJoin

performs sampling during joins.

5.4 Effectiveness of the Cost Function

ApproxJoin provides users with a query budget interface, and

uses a cost function to convert the query budget into a sample
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Figure 10: Effectiveness of the cost function.

size (see §3.2). In this experiment, a user sends ApproxJoin a join

query along with a latency budget (i.e., the desired latency the

user wants to achieve). ApproxJoin uses the cost function, whose

parameter is set according to the microbenchmarks (β = 4.16 ∗

10
−9

in our cluster), to convert the desired latency to the sample

size. We measure the latency of ApproxJoin and the extended

Spark repartition join in performing the join operations with the

identified sample size. Figure 10(a) shows that ApproxJoin can

rely on the cost function to achieve the desired latency quite well

(with the maximum error being less than 12 seconds). Note also

that, the Spark repartition join incurs a much higher latency than

ApproxJoin since it performs the sampling after the join operation

has finished. In addition, Figure 10(b) shows that ApproxJoin can

achieve a very similar accuracy to the Spark repartition join system.

5.5 Comparison with SnappyData using TPC-H

In this section, we evaluate ApproxJoin using TPC-H benchmark.

TPC-H benchmark consists of 22 queries, and has been widely used

to evaluate various database systems. We compare ApproxJoin

with the state-of-the-art system — SnappyData [47].

SnappyData is a hybrid distributed data analytics framework

which supports a unified programming model for transactions,

OLAP and data stream analytics. It integrates GemFine, an in-

memory transactional store, with Apache Spark. SnappyData in-

herits approximate computing techniques from BlinkDB [8] (offline

sampling techniques) and the data synopses to provide interactive

analytics. SnappyData does not support sampling over joins. In

particular, we compare ApproxJoin with SnappyData using the

TPC-H queries Q3, Q4, and Q10 which contain join operations.

These queries are dominated by joins rather than other operations.

To make a fair comparison, we only keep the join operations and

remove other operations in these queries. This is to focus on the

performance comparison of joins without being affected by the

performance of other parts in the evaluated systems. We run the

benchmark with a scale factor of 10×, i.e., 10GB datasets. If we set

the scale factor even larger to 100×, the evaluated systems take

many hours to process the queries and run out of memory due to

the limited capacity of our cluster.

First, we use the TPC-H benchmark to analyze the performance

of ApproxJoin with the filtering stage but without the sampling

stage. Figure 11(a) shows the end-to-end latencies of ApproxJoin

and SnappyData in processing the three queries. ApproxJoin is

1.34× faster than SnappyData in processingQ4 which contains only

one join operation. In addition, for the query Q3 which consists

of two join operations, ApproxJoin achieves a 1.3× speedup than

SnappyData. Meanwhile, ApproxJoin speeds up by 1.2× compared

with SnappyData for the query Q10.
Next, we evaluate ApproxJoin with both filtering and sampling

stages activated. In this experiment, we perform a query to answer

the question “what is the total amount of money the customers had
before ordering?”. To process this query, we need to join the two

tables CUSTOMER and ORDERS in the TPC-H benchmark, and

then sum up the two fields o_totlaprice and c_acctbal . Since Snap-
pyData does not support sampling over the join operation, in this

experiment it first executes the join operation between the two

tablesCUSTOMER andORDERS , then performs the sampling over

the join output, and finally calculates the sum of the two fields

o_totalprice and c_acctbal .
Figure 11(b) presents the latencies of ApproxJoin and Snappy-

Data in processing the aforementioned query with varying sam-

pling fractions. SnappyData has a significantly higher latency than

ApproxJoin, simply because it performs sampling only after the

join operation finishes. For example, with a sampling fraction of

60%, SnappyData achieves a 1.77× higher latency than ApproxJoin,

even though it is faster when both systems do not perform sampling

(i.e., sampling fraction is 100%). Note however that, sampling is

inherently needed when one handles joins with large-scale inputs

that require a significant number of cross-product operations. Fig-

ure 11(c) shows the accuracy losses of ApproxJoin and SnappyData.

ApproxJoin achieves an accuracy level similar to SnappyData.With
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Figure 11: Comparison between ApproxJoin and the state-of-the-art SnappyData system in terms of (a) latency with different

TPC-H queries, (b) latency, and (c) accuracy with different sampling fractions.

a sampling fraction of 60%, ApproxJoin achieves an accuracy loss

of 0.021%, while SnappyData achieves an accuracy loss of 0.016%.

6 EVALUATION: REAL-WORLD DATASETS

We evaluate ApproxJoin using two real-world datasets: (a) network

traffic monitoring, and (b) Netflix Prize.

6.1 Network Traffic Monitoring Dataset

Dataset.We use the CAIDA network traces [20] which were col-

lected on the Internet backbone links in Chicago in 2015. In total,

this dataset contains 115, 472, 322 TCP flows, 67, 098, 852 UDP flows,

and 2, 801, 002 ICMP flows. Here, a flow denotes a two-tuple net-

work flow that has the same source and destination IP addresses.

Query. We use ApproxJoin to process the query: What is the total
size of the flows that appeared in all TCP, UDP and ICMP traffic? To
answer this query, we need to perform a join operation across TCP,

UDP and ICMP flows.

Results. Figure 12(a) first shows the latency comparison between

ApproxJoin (with filtering but without sampling), Spark reparti-

tion join, and native Spark join. ApproxJoin achieves a latency

1.72× and 1.57× lower than Spark repartition join and native Spark

join, respectively. Interestingly, native Spark join achieves a lower

latency than Spark repartition join. This is because the dataset is

distributed quite uniformly across worker nodes in terms of the join-

participating flow items, i.e., there is little data skew. Figure 12(a)

also shows that ApproxJoin significantly reduces the shuffled data

size by a factor of 300× compared with the two Spark join systems.

Next, different from the experiments in §5, we extend Spark

repartition join by enabling it to sample the dataset before the actual

join operation. This leads to the lowest latency it could achieve.

Figure 12(b) shows that ApproxJoin achieves a similar latency even

to this extended Spark repartition join. In addition, Figure 12(c)

shows the accuracy loss comparison between ApproxJoin and

Spark repartition join with different sampling fractions. As the

sampling fraction increases, the accuracy losses of ApproxJoin

and Spark repartition join decrease, but not linearly. ApproxJoin

produces around 42× more accurate query results than the Spark

repartition join with the same sampling fraction.

6.2 Netflix Prize Dataset

Dataset.We also evaluate ApproxJoin based on the Netflix Prize

dataset which includes around 100M ratings of 17, 770 movies

by 480, 189 users. Specifically, this dataset contains 17, 770 files,

one per movie, in the traininд_set folder. The first line of each

such file contains MovieID, and each subsequent line in the file

corresponds to a rating from a user and the date, in the form of

⟨UserID,Ratinд,Date⟩. There is another file quali f yinд.txt which
contains lines indicatingMovieID,UserIDs , and the rating Dates .

Query. We perform the join operation between the dataset in

traininд_set and the dataset in quali f yinд.txt to evaluate Approx-
Join in terms of latency. Note that, we cannot find a meaningful

aggregation query for this dataset; therefore, we focus on only the

latency but not the accuracy of the join operation.

Results. Figure 12(a) shows the latency and the shuffled data size of

ApproxJoin (with filtering but without sampling), Spark repartition

join, and native Spark join. ApproxJoin is 1.27× and 2× faster than

Spark repartition join and native Spark join, respectively. The result

in Figure 12(a) also shows that ApproxJoin reduces the shuffled

data size by 3× and 1.7× compared with Spark repartition join and

native Spark join, respectively. In addition, Figure 12(b) presents the

latency comparison between these systems with different sampling

fractions. For example, with the sampling fraction of 10%, Approx-

Join is 6× and 9× faster than Spark repartition join and native Spark

join, respectively. Even without sampling (i.e., sampling fraction is

100%), ApproxJoin is still 1.3× and 2× faster than Spark repartition

join and native Spark join, respectively.

7 RELATEDWORK

Over the last decade, approximate computing has been widely

applied in data analytics systems [5, 6, 8, 29, 30, 32, 40, 41, 43–46, 52,

53]. Various approximation techniques have been proposed to make

trade-offs between required resources and output quality, including

sampling [9, 25], sketches [23], and online aggregation [27, 38].

Chaudhari et al. provide a sampling over join mechanism by

taking a sample of an input and considering all statistical charac-

teristics and indices of other inputs [22]. AQUA [6] system makes

use of simple random sampling to take a sample of joins of in-

puts that have primary key-foreign key relations. BlinkDB [8] pro-

poses an approximate distributed query processing engine that uses
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Figure 12: Comparison between ApproxJoin, Spark repartition join, and native Spark join based on two real-world datasets:

(1) Network traffic monitoring dataset (denoted as [Network]), and (2) Netflix Prize dataset (denoted as [Netflix]).

stratified sampling [9] to support ad-hoc queries with error and

response time constraints. VerdictDB [39], SnappyData [47], and

SparkSQL [11] adopt the approximation techniques from BlinkDB

to support approximate queries. Quickr [5] deploys distributed sam-

pling operators to reduce execution costs of parallel, ad-hoc queries

that may contain multiple join operations. Quickr first injects sam-

pling operators into the query plan and searches for an optimal

query plan among sampled query plans to execute input queries.

Unfortunately, all of these systems require a priori knowledge of

the inputs. For example, AQUA [6] requires join inputs to have pri-

mary key-foreign key relations. For another example, the sampling

over join mechanism in [22] needs the statistical characteristics and

indices of inputs. Finally, BlinkDB [8] utilizes the most frequently

used column sets to perform offline stratified sampling over them.

Afterwards, the samples are cached, such that queries can be served

by selecting the relevant samples and executing the queries over

them. While useful in many applications, BlinkDB and these other

systems cannot process queries over new inputs, where queries or

inputs are typically not known in advance.

Ripple Join [26] implements online aggregation for joins. Ripple

Join repeatedly takes a sample from each input. For every item

selected, it is joined with all items selected in other inputs so far.

Recently, Wander Join [34] improves over Ripple Join by perform-

ing random walks over the join data graph of a multi-way join.

However, their approach crucially depends on the availability of

indices, which are not readily available in “big data” systems like

Apache Spark. In addition, the current Wander Join implementa-

tion is single-threaded, and parallelizing the walk plan optimization

procedure is non-trivial. In this work, we proposed a simple but

efficient sampling mechanism over joins which works not only on

a single node but also in a distributed setting.

Our work builds on recent advancements in approximate com-

puting for stream analytics [32, 41, 44, 46, 52]. More specifically,

IncApprox [32] is a stream analytics system that combines approxi-

mate computing and incremental computing [13, 15, 16]. StreamAp-

prox [45, 46] designs a distributed sampling algorithm to take “on-

the-fly” samples of the input data stream. ApproxIoT [52] extends

StreamApprox to supports approximate stream data analytics in

the IoT infrastructure. Finally, PrivApprox [43, 44] makes use of a

combination of randomized response and approximate computing

to support privacy-preserving stream analytics. However, all of

these systems currently do not support approximate joins.

8 CONCLUSION

In spite of decades of research interest in approximate query pro-

cessing, the problem of approximating statistical properties of the

join output remains challenging [4, 21, 31, 36]. In this work, we

address some of the challenges associated with performing approx-

imate joins for distributed data analytics systems. By performing

sampling during the join operation, we achieve low latency as well

as high accuracy. In particular, we employ a sketching technique

(i.e., Bloom filters) to reduce the size of the shuffled data during

a join and we construct a stratified sample during the join in a

distributed setting. We implemented our techniques in a system

called ApproxJoin using Apache Spark and evaluated its effective-

ness using a series of microbenchmarks and real-world workloads.

Our evaluation shows that ApproxJoin significantly reduces query

response time as well as the data shuffled through the network,

without losing the accuracy of the query results compared with the

state-of-the-art systems.

Supplementary material. We provide the analysis of Approx-

Join covering both communication and computation complexities;

and also discuss three alternative design choices for Bloom filters

in the technical report [42].

Software availability. The source code of ApproxJoin is publicly

available: https://ApproxJoin.github.io/
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