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The prognostic value of dynamic
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transfer constant Ktrans in cervical cancer is
explained by plasma flow rather than vessel
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Background: The microvascular contrast agent transfer constant Ktrans has shown prognostic value in cervical cancer patients
treated with chemoradiotherapy. This study aims to determine whether this is explained by the contribution to Ktrans of plasma
flow (Fp), vessel permeability surface-area product (PS), or a combination of both.

Methods: Pre-treatment dynamic contrast-enhanced MRI (DCE-MRI) data from 36 patients were analysed using the two-
compartment exchange model. Estimates of Fp, PS, Ktrans, and fractional plasma and interstitial volumes (vp and ve) were made and
used in univariate and multivariate survival analyses adjusting for clinicopathologic variables tumour stage, nodal status,
histological subtype, patient age, tumour volume, and treatment type (chemoradiotherapy vs radiotherapy alone).

Results: In univariate analyses, Fp (HR¼ 0.25, P¼ 0.0095) and Ktrans (HR¼ 0.20, P¼ 0.032) were significantly associated with disease-
free survival while PS, vp and ve were not. In multivariate analyses adjusting for clinicopathologic variables, Fp and Ktrans

significantly increased the accuracy of survival predictions (P¼ 0.0089).

Conclusions: The prognostic value of Ktrans in cervical cancer patients treated with chemoradiotherapy is explained by
microvascular plasma flow (Fp) rather than vessel permeability surface-area product (PS).

Dynamic contrast-enhanced MRI (DCE-MRI) has been extensively
used to study the relationship between pre-treatment microvas-
cular function and treatment outcome in locally advanced cervix

cancer (Mayr et al, 1996, 2010; Semple et al, 2009; Yuh et al, 2009;
Zahra et al, 2009; Andersen et al, 2013). Greater uptake of contrast
agent by tumour tissue measured using MRI signal enhancement
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or quantitative model-based parameters such as Ktrans (Tofts et al,
1999), has been shown to be a positive prognostic factor (Mayr
et al, 1996, 2010; Semple et al, 2009; Yuh et al, 2009; Zahra et al,
2009; Andersen et al, 2013). Increased uptake of contrast agent
before treatment may reflect a tumour that is better oxygenated
(improving radio-sensitivity) and more easily infiltrated with
chemotherapy agents via the vasculature, thus improving the
chances of treatment success and reducing the risk of recurrence.

Uptake of contrast agent into tumour tissue depends on a
number of microvascular factors. For example, a measurement of
Ktrans depends on the delivery of contrast agent to the capillary bed
(plasma flow; Fp) and exchange flow of contrast agent across the
vessel wall (as measured by the permeability surface-area product;
PS) (Tofts et al, 1999; Sourbron and Buckley, 2011). It is therefore
currently unknown whether perfusion, or vessel permeability
surface area product, or both are responsible for the observed
relationship between Ktrans and the survival of cervical cancer
patients treated with chemoradiotherapy. Knowledge of this may
open new avenues for targeted treatments and allow better
stratification of patients into distinct prognostic groups.

Improvements in the temporal resolution of DCE-MRI
sequences (Stollberger and Fazekas, 2004) have facilitated inde-
pendent measurement of plasma flow (Fp) and permeability
surface area product (PS) using the two-compartment exchange
(2CXM; Brix et al, 2004) and adiabatic approximation to the tissue
homogeneity models (St Lawrence and Lee, 1998). This paper
describes a prospective study in which the two-compartment
exchange model is used to independently measure Fp and PS in 36
patients with locally advanced cervix cancer treated with
chemoradiotherapy. It was hypothesised that survival is limited
by the delivery of oxygen and chemotherapy via plasma flow rather
than vessel permeability surface area product, and that plasma flow
is therefore a more accurate prognostic factor than PS and Ktrans.
Data and software for performing all analyses described in this
paper are available at https://github.com/MRdep/Predicting-Survi-
val-In-Cervical-Cancer-using-DCE-MRI (Dickie, 2017).

MATERIALS AND METHODS

Study outline. The study was prospective and received local
research ethics committee approval from the South Manchester
Research Ethics Committee (Ref: 05/Q1403/28). Eligible patients
had biopsy proven locally advanced carcinoma of the cervix and
planned treatment with radical concurrent chemoradiotherapy,
followed by either a low-dose rate brachytherapy or external beam
radiotherapy boost. Exclusion criteria were age o18 years and
contraindication for MRI.

A total of 40 patients were recruited at a single centre between
July 2005 and March 2010. All patients gave written informed
consent before involvement in the study. Patients received DCE-
MRI B1 week before the first fraction of radiotherapy and received
standard follow-up for detection of recurrence. Survival analysis
was undertaken to infer the prognostic effect and predictive value
of DCE-MRI and clinicopathologic variables. DCE-MRI data from
four patients could not be analysed, leaving a total of 36 patients
for inclusion in survival analyses. Supplementary Figure 1 shows a
CONSORT diagram for the study (Moher et al, 2001).

Treatment. Each patient received external beam radiotherapy
(EBRT) to the whole pelvis (up to L4) with a dose of 40–45 Gy in
20 fractions. Cisplatin chemotherapy was administered concurrently
in 2–4 cycles where tolerated. Brachytherapy boosts were adminis-
tered in one fraction following EBRT (20–32 Gy). External beam
radiotherapy boosts were delivered in 8–10 fractions (20–32 Gy).

MRI protocol. MRI was performed on a 1.5 T Siemens Magnetom
Avanto scanner (Siemens Medical Solutions, Erlangen, Germany).

MRI acquisition parameters have been described in detail
previously (Donaldson et al, 2010). Briefly, a high spatial resolution
2D T2-weighted turbo spin echo scan (FOV¼ 240� 320 mm2,
16� 5 mm slices, voxel size¼ 0.63� 0.63 mm2, TR¼ 5390 ms,
TE¼ 118 ms, NSA¼ 2) was acquired for defining tumour regions
of interest (ROIs). A 3D T1-weighted spoiled gradient-recalled
echo (SPGR) volumetric interpolated breath-hold examination
sequence, with the same field of view as T2-weighted scans but
lower spatial resolution (voxel size¼ 2.5� 2.5� 5 mm3, TR/
TE¼ 5.6/1.08 ms, SENSE factor¼ 2), was used for pre-contrast
T1 mapping (flip angles: 5, 10, and 351, NSA¼ 10) and dynamic
imaging (flip angle: 251, NSA¼ 1). Pre-contrast T1 was used to
convert dynamic signal intensity into contrast agent concentration
for tracer kinetic modelling. Dynamic imaging was performed with
a temporal resolution of 3 s to facilitate measurement of plasma
flow (Fp) and permeability surface-area product (PS) using the
2CXM. A total of 80 dynamic volumes were acquired for a total
DCE-MRI acquisition time of 4 min. A bolus of 0.1 mmol kg� 1

gadopentetate dimeglumine (Gd-DTPA; Magnevist, Bayer-Scher-
ing Pharma AG, Berlin, Germany) was administered 15 s into the
dynamic scan at 4 ml s� 1 using a power injector through a cannula
placed in the antecubital vein, followed by a 20 ml saline flush.
Imaging was performed in the sagittal plane with the read
encoding direction aligned along the superior–inferior direction to
minimise inflow enhancement effects (Donaldson et al, 2010).

DCE-MRI analysis. Tumour ROIs were delineated on the high
spatial resolution T2-weighted images by a radiologist (G.H., 7
years of experience) blinded to patient outcome and DCE-MRI
data. To convert ROIs to the spatial resolution of T1 mapping and
dynamic images, ROI masks were downsampled using
MRIcro (Version 1.4, Chris Rorden, Columbia, SC, USA;
www.mricro.com).

Patient specific arterial input functions were measured from the
DCE-MRI images by manually drawing an arterial ROI in the
descending aorta. Each arterial ROI was drawn in the dynamic
frame showing maximal enhancement, and in a slice distal to
inflowing spins to minimise inflow enhancement effects (Roberts
et al, 2011). Slices near the edge of the field of view were
discounted to minimise the influence of transmit B1 field
inhomogeneity. Arterial signal intensity was converted to contrast
agent concentration using an assumed pre-contrast T1 value for
blood of 1.2 s (Stark et al, 1999) and the SPGR signal
equation (Frahm et al, 1986). Blood contrast agent concentrations
were converted to plasma concentrations using a literature value
for haematocrit of 0.42 (Sharma and Kaushal, 2006).

DCE-MRI images were co-registered using a rigid-body model-
based approach (Buonaccorsi et al, 2007). The 2CXM parameters
(plasma flow, Fp (ml min� 1 ml� 1); permeability surface-area
product, PS (ml min� 1 ml� 1); fractional interstitial volume, ve

(ml ml� 1); and fractional plasma volume, vp (ml ml� 1) were
estimated at each voxel by jointly fitting T1 mapping and dynamic
signal models (Dickie et al, 2015) using the Levenberg-Marquardt
least squares algorithm (Marquardt, 1963) in IDL 8.2.2 (Exelis
Visual Information Solutions, Boulder, Colorado, USA). The
contrast agent volume transfer constant, Ktrans (min� 1), was
computed from estimates of Fp and PS using the compartment
model extraction fraction equation: Ktrans¼ EFp, where the first-
pass extraction fraction E¼ PS/(Fpþ PS) (Sourbron and Buckley,
2013). For input into survival modelling, voxel-wise 2CXM
parameter estimates were summarised using the median.

Clinicopathologic variables. Clinicopathologic characteristics of
the cohort are shown in Supplementary Table 1. The following
variables were obtained for each patient: primary tumour (T) stage,
nodal status, histological subtype, tumour volume, and patient age.
Primary tumour stage was assessed using routine T1 and T2-
weighted MRI scans against the American Joint Committee on
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Cancer staging criteria (Greene et al, 2002). Involvement of pelvic
and/or para-aortic lymph nodes was assessed on large field of view
coronal and transverse T1-weighted and sagittal T2-weighted
imaging. Tumour volumes were computed from the T2-weighted
images by multiplying the number of voxels in the tumour ROI by
the voxel volume.

Patient follow-up. Following treatment, patients attended clinic
every 3 months in years one and two, and twice per year thereafter,
unless symptomatic. Patients underwent clinical examination at
each visit. MRI scans (sagittal, transverse, and coronal T2-weighted
turbo spin echo sequences) were used to confirm suspected
recurrent disease. If disease was central and amenable to salvage
surgery, biopsies were also taken as a definitive marker of
recurrence. Treating physicians were blinded to DCE-MRI data.

Survival analysis. The primary endpoint was disease-free survival
(DFS). Events were classed as primary, local, or distant disease
recurrence or death by any cause. Time to event was calculated
from the first fraction of radiotherapy. If an event was not observed
before the last recorded follow-up date, the observation was right
censored.

Receiver operator characteristic (ROC) analysis was performed
to determine the most appropriate cut-off value to dichotomise
continuous variables (median DCE-MRI parameters, patient age,
and tumour volume). Cut-off values were chosen using the Youden
J index (Fluss et al, 2005) which identifies the cut-off that satisfies
max(sensitivity–specificity). Cut-offs were limited to the thirtieth
to seventieth percentile range to ensure each risk group contained
at least 10 patients. If the J index lay outside this range the closest
percentile within the allowed range was used. T stage was
dichotomised as early (T1/T2a) vs advanced stage (T2b/T4);
histological subtype as squamous cell carcinoma (SCC) vs all other
subtypes; treatment as chemoradiotherapy vs radiotherapy alone;
and nodal status as zero vs at least one involved node.

For each variable, univariate Cox regression was used to
estimate DFS hazard ratios (HRs). P-values and 95% confidence
intervals (CI) for HRs were computed using a two-tailed Wald test.
P-valueso0.05 were considered statistically significant. Kaplan–
Meier survival curves were estimated to allow visual comparison of
DFS between risk groups.

The utility of clinicopathologic and DCE-MRI variables for
predicting DFS was assessed in a multivariate setting using the
random survival forest (RSF) algorithm (Ishwaran et al, 2008). The
RSF is a non-parametric ensemble tree algorithm that models the
effect of multiple (possibly highly correlated) variables on the risk
of recurrence/death with minimal assumptions (Ishwaran et al,
2008). To determine the relative prognostic value of each variable,
accounting for possible confounding and variable interactions, an
RSF model was trained using all clinicopathologic and 2CXM

variables and the variable importance (VIMP) statistic computed
(Ishwaran et al, 2008). Broadly speaking, this statistic evaluates
how the removal of each variable affects the model prediction error
on test data. A high VIMP is associated with a large detrimental
effect on model predictions, reflecting high prognostic importance.
Bootstrapping was used to calculate point estimates and Bonfer-
roni-corrected 95% CIs on VIMP for each variable.

Two further RSF models were built. A null model containing the
six clinicopathologic variables and an alternative model containing
the top six clinicopathologic and DCE-MRI variables ranked by
median VIMP. Six variables were chosen such that the null and
alternative model had the same number of independent variables,
facilitating a like-for-like comparison. Predictions of recurrence
risk were generated for both null and alternative models in a leave-
one-out analysis. The discriminatory accuracy of each model was
assessed using Harrell’s concordance index (c-index) (Harrell et al,
1982) and the null hypothesis of no difference in c-indices was
tested using a one-sided paired t-test with significance threshold
Po0.05. The ability of each model to separate left-out patients into
distinct risk groupings was evaluated using Cox regression and
Kaplan–Meier curve analysis.

Partial plots showing the effect of each variable in the alternative
model towards risk of recurrence, adjusted for the effect of all other
variables, were generated. All survival analyses were performed in
R (Version 3.1, R Foundation for Statistical Computing, Vienna,
Austria) using the ‘survival’, ‘survcomp’, and ‘randomForestSRC’
packages.

RESULTS

Median follow-up time in surviving patients was 7.2 years (range
3.2–10.4 years). No patients were lost to follow-up. Table 1 shows
results from the ROC analysis including the Youden cut-off values
for each continuous variable. Supplementary Figure 2 shows the
ROC curves for each continuous variable.

Supplementary Table 2 shows univariate Cox model hazard
ratios (HRs) and P-values for all variables. Figure 1 shows Kaplan–
Meier (KM) DFS curve estimates for variables with hazard ratios
that differed significantly from 1 (Po0.05). Significant variables
were treatment type (HR¼ 3.9, P¼ 0.0049), nodal status
(HR¼ 2.9, P¼ 0.037), patient age (HR¼ 3.9, P¼ 0.019), tumour
volume (HR¼ 2.6, P¼ 0.047), plasma flow (Fp; HR¼ 0.25,
P¼ 0.0095), and contrast agent transfer constant (Ktrans;
HR¼ 0.20, P¼ 0.032). Kaplan–Meier curves for all other variables
are shown in Supplementary Figure 3. While non-significant, high
PS, high ve, and high vp were associated with increased DFS.
Figure 2 highlights the differences in plasma flow maps for patients
with short (0.78–1.1 years) and long (8.4–9.7 years) disease-free

Table 1. Results from ROC analysis applied to continuous variables

Area under
ROC curve Youden threshold

Threshold
percentile

True
positives

False
positives

True
negatives

False
negatives Sensitivity Specificity

Clinicopathologic
Patient age 0.74 X48 years X47th 14 6 12 4 0.76 0.69
Tumour
volume

0.72 X99 cm3
X69th 12 8 10 6 0.69 0.64

2CXM
Fp 0.72 X0.32 ml min� 1 ml�1

X50th 13 5 13 5 0.74 0.71
PS 0.65 X0.25 ml min� 1 ml�1

X64th 11 7 10 7 0.63 0.59
Ktrans 0.70 X0.12 min� 1

X69th 11 7 11 7 0.70 0.59
vp 0.65 X0.15 ml ml� 1

X58th 11 7 11 7 0.63 0.59
ve 0.61 X0.21 ml ml� 1

X47th 12 6 12 6 0.68 0.65

Abbreviations: Fp¼plasma flow; 2CXM¼ two-compartment exchange model; Ktrans¼ contrast agent transfer constant; PS¼permeability surface-area product; vp¼ fractional plasma volume;
ve¼ fractional interstitial volume; ROC¼ receiver operator characteristic.

BRITISH JOURNAL OF CANCER Microvascular plasma flow predicts survival in cervical cancer

1438 www.bjcancer.com | DOI:10.1038/bjc.2017.121

http://www.bjcancer.com


survival. Differences in Ktrans maps were not as pronounced as for
Fp maps, reflecting a reduction in prognostic ability. PS maps
appear very similar between short and long DFS groups reflecting
low prognostic value.

Results from multivariate random survival forest analyses are
shown in Table 2, Figure 3 and 4. Table 2 shows point estimates
and 95% confidence intervals on median VIMP. The six most
important prognostic variables in order of decreasing VIMP (and
those selected for the alternative model) were: plasma flow (Fp),
treatment, histological subtype, nodal status, patient age, and the

transfer constant Ktrans. In leave-one-out analysis, the alternative
model made statistically significantly more accurate predictions
than the null model (c-indices of 0.70 vs 0.61, P¼ 0.0089). The
alternative model was also better at assigning left-out patients into
distinct risk groups (P¼ 0.029 vs P¼ 0.056).

Figure 4 shows the prognostic effect of each variable in the
alternative model after adjusting for the effect of all other variables
in the model. Predicted risks differed significantly between the
levels of all variables except for patient age and nodal status (see
figure for P-values).
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Figure 1. Kaplan–Meier disease-free survival curve estimates for significant variables (Po0.05). For the treatment variable, patients were stratified
into risk groups based on whether they received radiotherapy alone (RT) or concurrent chemoradiotherapy (CRT). For nodal status, patients were
grouped into those with no involved nodes (� ve) or those with at least one involved node (+ve). For patient age, tumour volume, plasma flow, and
Ktrans, patients were stratified into risk groups based on ROC analysis cut-off values.
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DISCUSSION

Plasma flow (Fp) and the contrast agent transfer constant (Ktrans)
were the only microvascular parameters statistically significantly
associated with survival. All other microvascular parameters,
including PS, showed non-significant ability to stratify patients
into distinct risk groupings. In both univariate and multivariate
analyses, Fp was shown to be a better predictor of DFS than Ktrans.
These results support the hypothesis that Ktrans derives its
prognostic value from its dependence on Fp but is less useful as
a prognostic biomarker, due to its dependence on PS.

Other work evaluating the prognostic value of plasma or blood
flow in tumours has found confirmatory results. Using DCE-
computed tomography in 108 head and neck cancer patients
treated with radiotherapy, Hermans et al showed high blood flow
was associated with reduced risk of local recurrence (Hermans
et al, 2003). Haldorsen et al investigated the prognostic value of

DCE-MRI blood flow measurements in patients with endometrial
cancer treated with surgery. While not related to response of
tumours to chemoradiotherapy, low blood flow was associated with
increased expression of microvascular proliferation markers and
shorter survival times (Haldorsen et al, 2014).

All clinicopathologic factors displayed the expected prognostic
trend (Rose et al, 1999; Kang et al, 2012; Chen et al, 2015).
Treatment type was one of the strongest prognostic factors in both
univariate and multivariate analyses, possibly reflecting the added
cytotoxic effect of combined chemoradiotherapy (Rose et al, 1999),
or a relationship between a patient’s ability to tolerate chemother-
apy and their subsequent survival. Nodal status and patient age
were significant factors in univariate analyses but lost significance
when adjusting for other factors (alternative model, Figure 4).
Stratification of patients by T stage was not a significant prognostic
factor in either univariate or multivariate methods. This was
probably due to the small number of patients in the early stage
group (T1–T2a) leading to low precision in the estimated hazard
ratio.

Biological interpretation. Previous studies across a range of
tumour types have shown uptake of MRI contrast agent is
associated with the degree of tumour hypoxia. In a melanoma
xenograft model, Egeland et al showed a strong relationship
between pimonidazole stain fraction and Ktrans (Egeland et al,
2012). Halle et al observed a negative correlation between
maximum amplitude of signal enhancement and HIF-a expression
in cervix tumours (Halle et al, 2012). Similarly, three cervix cancer
studies have shown a strong correlation between tumour oxygen
pressure measurements made using polarographic electrodes and
maximum relative signal enhancement (Cooper et al, 2000; Lyng
et al, 2001; Loncaster et al, 2002). These relationships have
subsequently been upheld for more recent measurements of blood
flow in cervix and head and neck cancers (Haider et al, 2005;
Donaldson et al, 2011).

Since vessel walls pose little barrier to oxygen (Michel, 1996), PS
of vessels measured using Gd-DTPA is unlikely to be a good
biomarker of tissue oxygenation, unless large differences in vessel
surface area are present between tumours. The degree of tissue
hypoxia is likely to be more dependent on the supply of oxygen to
the capillary bed (i.e., via plasma flow). This may explain why
reported correlations between PS and tissue oxygenation/hypoxia
are weaker than those for Fp (Haider et al, 2005; Donaldson et al,
2011). Survival analyses presented in this study support the
hypothesis that plasma flow could be a more sensitive measure of
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Figure 2. Maps of plasma flow (Fp), permeability surface area product (PS), and contrast agent transfer constant (Ktrans) for representative
patients with short (left, DFS¼0.78–1.1 years) and long (right, DFS¼8.4–9.7 years) disease-free survival. A single representative slice is shown
for each tumour.

Table 2. Bootstrapped point estimates and Bonferroni-
corrected 95% confidence intervals for median variable
importance (VIMP)

Median VIMP (95% CIs) Rank

Clinicopathologic
T stagea 0.0046 (0.0030, 0.0087) 11
Treatmentb 0.044 (0.035, 0.057) 2
Nodal Statusc 0.026 (0.018, 0.037) 4
Histological subtyped 0.034 (0.021, 0.049) 3
Patient age 0.023 (0.018, 0.029) 5
Tumour volume 0.0093 (0.0068, 0.013) 8

2CXM
Fp 0.050 (0.039, 0.061) 1
PS 0.0084 (0.0064, 0.011) 9
Ktrans 0.019 (0.014, 0.025) 6
vp 0.018 (0.016, 0.023) 7
ve 0.0077 (0.0061, 0.0096) 10

Abbreviations: CIs¼ confidence intervals; 2CXM¼ two-compartment exchange model;
Ktrans¼ contrast agent transfer constant; Fp¼plasma flow; PS¼permeability surface-area
product; vp¼ fractional plasma volume; ve¼ fractional interstitial volume. Higher VIMP
indicates greater prognostic importance (lower rank). The top 6 variables (boldface) were
used to build the alternative model.
aT2b/T4 vs T1/T2a.
bRadiotherapy vs chemoradiotherapy.
cAt least one involved node vs no involved nodes.
dOther subtypes vs squamous cell.
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tissue oxygenation compared with Ktrans and PS, however further
work is needed to definitively test this hypothesis.

In this study, measurements of PS represent the leakiness of
vessels to Gd-DTPA and will approximate the permeability of
vessels to molecules of similar size (i.e., such as cisplatin). The
prognostic trend of PS observed could reflect sensitivity to
differences in chemotherapy drug delivery for those patients
treated with chemoradiotherapy. Under this reasoning, the
observed lack of statistical significance for PS could be due to
inclusion of nine patients in the sample who received only
radiotherapy and would therefore not be affected by PS.
Alternatively, the difference in PS between patients may not be
sufficient to cause a meaningful difference in the delivery rate of
chemotherapy to tumour cells. Delivery of chemotherapy may be
rate limited by other factors such as the metabolism rate of the
chemotherapy agent or diffusion rate across the extravascular space
(Minchinton and Tannock, 2006).

The weak relationship between ve and DFS could reflect reduced
tumour cell density (vcellB1–vb–ve, where vcell is the volume
fraction of tumour cells). Plasma volume fraction was not
prognostic despite a positive correlation with Fp (Pearson r¼ 0.6,
data not shown). Simulation data from Luypaert et al (2010)
suggests 2CXM estimates of vp are less precise than Fp, which
would explain reduced prognostic ability if effects of Fp and vp on
survival are similar.

Study limitations. While prospective, the number of patients
analysed (n¼ 36) relative to the number of independent variables
(p¼ 11) was small. Classical multivariate statistical methods such
as Cox proportional hazards modelling are unsuitable for such
analyses. Low n/p gives rise to high variance in estimated model
coefficients, leading to high-generalisation error (Harrell et al,
1996). An obvious solution is to recruit more patients, but that
approach has strong ethical, economic, and practical disincentives.
To address this issue, we used a state-of-the-art survival model
called the random survival forest (RSF). The RSF is an ensemble
model that develops on bootstrap aggregation (Breiman, 1996,
2001) and random variable selection (Ho, 1998) to model right-
censored survival data. The model makes very few assumptions
about the data (notably it does not depend on the proportional
hazards assumption of the Cox model). It also facilitates reliable
and objective automatic variable selection in the p E n regime, as
demonstrated by (Ishwaran et al, 2008).

There was heterogeneity in the treatment patients received. To
control for possible confounding (Rose et al, 1999; Nag et al, 2000),
a treatment variable was included in the multivariate models to
adjust for the presence or absence of chemotherapy amongst
patients. Given the small sample size, adjustment for the presence
or absence of brachytherapy or external beam boosts was not
made.

Future work. The results of this study should be validated in an
independent cohort and test-retest reproducibility of DCE-MRI Fp

measurements assessed (O’Connor et al, 2016). Further work
should also aim to correlate DCE-MRI Fp measurements with in-
vivo Eppendorf electrode pO2 measurements and determine the
extent to which Fp can be used as a biomarker of tumour
oxygenation. Alternatively, development and validation of perfu-
sion measurements using more readily available technologies such
as contrast-enhanced (microbubble) transvaginal ultrasound may
lead to cheaper and faster translation to the clinic.

Ultimately, pre-treatment blood flow measurements may be
useful to identify patients suitable for treatment modifications such
as dose escalation, use of hypoxia-modifying treatments such
as accelerated radiotherapy with carbogen and nicotinimide
(ARCON (Bernier et al, 2000)), or pre-radiotherapy vascular
normalisation using anti-angiogenic agents such as bevacizumab
(Tewari et al, 2014).

CONCLUSIONS

The prognostic value of contrast agent uptake observed in cervical
cancer patients treated with chemoradiotherapy can be attributed
mainly to contributions from plasma flow (Fp) rather than
permeability surface-area product (PS). Plasma flow may better
reflect tumour oxygenation and thus provide more specific
information on radiotherapy efficacy. Future work should focus
on the qualification and validation of Fp as a prognostic biomarker
in cervical cancer, in particular the development and validation of
low cost methods to facilitate rapid translation into the clinic.
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Figure 3. Kaplan–Meier disease-free survival curve estimates for low
and high-risk patients as predicted by the null (top) and alternative
(bottom) models. Predictions of recurrence risk were estimated for
each patient using the random survival forest algorithm in a leave-one-
patient-out analysis. Patients were then grouped into low and high risk
groups based on the median predicted recurrence/death risk. P-values
show the result of testing the null hypothesis that HR¼1.
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