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Erosion rates offer insight on landscape development and the relative importance of chemical and 
physical processes of weathering. Minimal chemical weathering makes Antarctica an ideal location in 
which to compare the physical weathering of carbonate rocks to other lithologies. Here we report the first 
cosmogenic nuclide-derived erosion rates for carbonate rocks in Antarctica. Carbonate samples collected 
in the southernmost Ellsworth Mountains reflect a 36Cl erosion rate of 0.22 ± 0.02 mm/ka. This erosion 
rate is consistent with other reported Antarctic erosion rates, but is lower than 36Cl erosion rates derived 
from other arid regions in the world. These results are integrated with a continent-wide reanalysis 
of 28 cosmogenic nuclide erosion rate studies (>200 measurements), which comprise numerous rock 
types and multiple cosmogenic nuclides. By combining cosmogenic nuclide-derived erosion rates across 
studies, the larger trends provide insight into factors (e.g. lithology, glacial history, and availability of 
abrasive material) affecting subaerial erosion rates in Antarctica. Statistical analysis of the compiled data 
set shows differences based on lithology, with sandstone having the largest range of erosion rates. The 
compiled data also reveals higher erosion rates in areas with a large potential sediment supply, like the 
Dry Valleys. Samples collected from boulders yield lower erosion rates than those collected from bedrock, 
likely due to a combination of physical processes that affect boulders and bedrock differently, and glacial 
history, which can affect the apparent cosmogenic-nuclide derived erosion rate.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Quantification of erosion rates has been crucial in developing 
our understanding of how landscapes evolve. Erosion rate data al-
low the reconstruction of the time evolution of landscapes on a 
range of scales. Data has been used to test models of landscape 
evolution and river erosion at the basin scale (e.g., Tomkin et al., 
2003; van der Beek and Bishop, 2003) and on a global scale – to 
establish the relationships and feedbacks between climate, tecton-
ics, lithology and erosion (Harel et al., 2016; Molnar and England, 
1990; Peizhen et al., 2001; Portenga and Bierman, 2011). Effects 
on reported erosion rates include precipitation (Bierman and Caf-
fee, 2002), temperature, climate (Bookhagen and Strecker, 2012), 
altitude, vegetative state, presence/absence of soil (Heimsath et al., 
1999; Stephenson and Finlayson, 2009), and the time period of 
measurement (Hewawasam et al., 2003). Although lithology clearly 

* Corresponding author.
E-mail address: shasta.marrero@ed.ac.uk (S.M. Marrero).
https://doi.org/10.1016/j.epsl.2018.08.018
0012-821X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article
influences erosion rates, quantitative assessment of changes across 
different rock types have been hindered by these variables (Ryb et 
al., 2014), with carbonate rocks posing a particular challenge due 
to the contribution of chemical dissolution.

Cosmogenic nuclides, which accumulate in rocks exposed at the 
Earth’s surface, enable the determination of exposure ages over 
a range of time and space scales, from thousands to millions of 
years, and erosion rates from outcrop to basin-wide scale (e.g., 
Bierman and Steig, 1996; Granger et al., 1996; Niedermann, 2002). 
The calculation of cosmogenic nuclide-derived exposure ages is 
highly sensitive to the rock surface erosion rate because the expo-
sure age behaves non-linearly with erosion rate (Lal, 1991); thus 
even low erosion rates can dramatically increase the calculated 
ages of old surfaces, such as those present in Antarctica (e.g., Fink 
et al., 2006; Margerison et al., 2005). Improved erosion rate deter-
minations are therefore a critical step to improve the reliability of 
exposure ages.

Minimal chemical weathering makes Antarctica an ideal loca-
tion in which to compare the physical weathering of carbonate
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Locations of all Antarctic erosion rate studies compiled for this paper. Full references are: Ackert (1999), Ackert and Kurz (2004), Altmaier et al. (2010), Balco and 
Shuster (2009), Balco et al. (2014), Bromley et al. (2010), Brook et al. (1995), Brown et al. (1991), Bruno et al. (1997), Di Nicola et al. (2012), Fink et al. (2006), Fogwill et al.
(2004), Hodgson et al. (2012), Huang et al. (2010), Ivy-Ochs et al. (1995), Kiernan et al. (2009), Lilly et al. (2010), Margerison et al. (2005), Matsuoka et al. (2006), Middleton 
et al. (2012), Mukhopadhyay et al. (2012), Nishiizumi et al. (1991), Oberholzer et al. (2008), Oberholzer et al. (2003), Schaefer et al. (1999), Staiger et al. (2006), Summerfield 
et al. (1999), Swanger et al. (2011), White et al. (2009). Background image: Landsat Image Mosaic of Antarctica. Lithology is indicated by different colours. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)
rocks to other lithologies. Published Antarctic erosion rate data 
have been derived from a range of rock types exposed in ice-
free areas across the continent. These data provide an opportunity 
to investigate the systematic controls on physical erosion rates 
and processes in a unique environment that is comparatively free 
from complicating variables that typically affect similar studies in 
temperate regions of the world. As a result erosion rates mea-
sured in Antarctica are amongst the lowest documented on Earth 
(Nishiizumi et al., 1991; Portenga and Bierman, 2011). The po-
lar climate limits chemical weathering and freeze-thaw processes 
since samples are exposed to liquid water less frequently than 
in temperate climates. Soil and vegetation, which can complicate 
measurements and increase erosion rates, are virtually nonexis-
tent in many locations in Antarctica (Weyant, 1966). Finally, due 
to a comparatively reduced presence of liquid water in Antarc-
tica, solutional erosion of carbonate rocks are minimised, making 
Antarctica an ideal location to examine the physical erosion of car-
bonate bedrock.

Here we compile and reanalyse 28 studies reporting 283 inde-
pendent analyses, representing Antarctic cosmogenic studies pub-
lished prior to 2015. We review cosmogenic nuclide-derived sub-
aerial erosion rates from the continent and investigate the vari-
ables influencing erosion rates and the physical processes at work. 
Of the sampled Antarctic nunataks and other ice-free areas (Fig. 1), 
>55% of the samples derive from the Dry Valleys. These anal-
yses are made up of 10Be (32%), 26Al (24%), 21Ne (26%), 3He 
(15%), and 36Cl (3%, basalts only), where many studies have in-
corporated more than one nuclide to measure erosion rates on 
bedrock outcrops and/or boulders. These studies have focused on 
either quartz-bearing lithologies (e.g. sandstone, granite) using cos-
mogenic 10Be, 26Al and 21Ne, or dolerite using 21Ne and 3He in 
olivines. Carbonate rocks have never been analysed. In this paper, 
we present the first cosmogenic 36Cl erosion rates on Antarctic car-
bonate rocks.
2. Methods

2.1. Carbonate erosion rate methods and field site

Erosion rates were derived from carbonate bedrock in the 
southern Heritage Range, Ellsworth Mountains, in the Weddell Sea 
sector of the West Antarctic Ice Sheet (Fig. 2). The Marble Hills 
field site is located ∼50 km from Hercules Inlet, where continental 
ice drains into the floating Filchner-Ronne Ice Shelf (Fig. 2b). The 
massif includes high peaks with steep slopes that contrast with the 
lower flank of the massif, which is characterised by low-angled, 
ice-moulded bedrock, draped with glacial erratics and till.

Carbonate samples were collected from ice-moulded, smooth 
bedrock surfaces at three sites in the Marble Hills. At the first 
site, four samples (MH12-30, 31, 32, and the top sample from 
a 1.5 m vertical bedrock core) were collected from the top of 
a high (1380 m), ice-moulded bedrock dome (informally named 
Marble Dome) situated on the northern side of the Marble Hills 
massif (Fig. 2a/2c). The site sits above the upper-limit of ice 
cover during the Last Glacial Maximum (Bentley et al., 2010;
Hein et al., 2016a), where cosmogenic 26Al/10Be and 21Ne/10Be ra-
tios in glacial erratics indicate that the dome summit has been 
largely exposed for 600–700 ka (Hein et al., 2016b). At the second 
site, three samples (MH12-68, 69, 70) were collected from a nar-
row ridge on the summit of the highest peak in Marble Hills mas-
sif, Mt. Fordell, which stands 1680 m above sea level (Fig. 2a/2d). 
Cosmogenic 26Al/10Be and 21Ne/10Be ratios in glacial erratics on a 
depositional trimline (situated ∼300 m below the summit, Sugden 
et al., 2017) indicate that the upper slopes of Marble Hills have 
been exposed for at least ∼1.4 Ma (Hein et al., 2016b). The final 
‘site’ represents a group of seven samples (MH12-75 and all six 
MH14 samples) collected from glacial drift-covered bedrock ex-
posed at lower elevations, ranging from c. 1340–1160 m down 
to the modern ice elevation. In this area, geomorphological evi-
dence implies repeated episodes of ice cover (Hein et al., 2016b), 
although the specific chronology of each location is unknown. We 
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Fig. 2. (A) Location map for carbonate bedrock samples in the Marble Hills, Ellsworth Mountains, Antarctica. Sample locations are shown individually for all samples not 
located at either Marble Dome or Mt. Fordell. (B) Map of region surrounding Marble Hills. (C) View from Marble Dome (smooth, ice-moulded surface in the foreground) 
towards Mt. Fordell (highest peak in the background). (D) Photo of sample collection on Mt. Fordell.
note that cover by ice serves only to increase the apparent maxi-
mum erosion rate, thus, while this site can still provide valuable 
maximum limiting erosion rates in an area with no other con-
straints, it does not accurately represent the best estimate of sub-
aerial erosion rates in the region.

Approximately 1–2 kg of calcite vein or marbleised limestone 
bedrock was removed from the top 2–5 cm of the bedrock sur-
face by hammer and chisel. Topographic shielding was measured 
with a clinometer and locational information was obtained with a 
hand-held GPS unit. Field photos of samples and sample sites are 
shown in Fig. 2 and Supplementary Figs. S1–S12.

The cosmogenic 36Cl samples were processed at the University 
of Edinburgh using procedures fully described in the Supplemen-
tary Information. Sample location and composition information are 
provided in Table 1, with additional information including the ac-
celerator mass spectrometry (AMS) results available in the Sup-
plementary Spreadsheet. All samples contain low native Cl con-
centrations (Table 1), so production is dominated by Ca spallation 
(>93%). Blank subtractions for native Cl were sometimes a large 
portion (40%) of the total Cl concentration due to low concentra-
tions in the original rock. Blank subtractions for 36Cl were gen-
erally small (<5%) and applied to the samples based on process 
blanks from each sample batch (see Supplementary Spreadsheet). 
The first batch of samples did not include sufficient carrier, which 
caused them to be out of the calibrated measurement range for 
the AMS. These samples are excluded from all analyses although 
they are included in the Supplementary Spreadsheet.

Erosion rates were calculated using CRONUScalc (Marrero et 
al., 2016a), which uses CRONUS-Earth production rates (Borchers 
et al., 2016; Marrero et al., 2016b; Phillips et al., 2016) to nu-
merically model the nuclide concentration with different erosion 
rates until CRONUScalc matches the measured sample concentra-
tion.

We calculate erosion rates for both ‘infinite exposure’ and ‘min-
imum exposure’ scenarios. The infinite exposure method assumes 
that each sample has been exposed for many half-lives beyond 
what is necessary to reach erosional equilibrium, which yields the 
maximum limiting erosion rate for the sample. The second method 
uses information on the minimum exposure duration of the sam-
ple site; this scenario generally yields a lower bound on the ero-
sion rate because the measured nuclide concentration is achieved 
in a shorter exposure time. The true erosion rate likely falls be-
tween the ‘infinite’ and ‘minimum exposure’ scenario estimates 
due to the potential effects of burial by cold-based ice and in-
heritance (applies to minimum-exposure only). Minimum exposure 
ages for Mt. Fordell (1350 ka; sample MH12-68) and Marble Dome 
(660 ka; samples MH12-30, 31, 32, C1-TO) were derived from cos-
mogenic nuclide-dated (10Be and 26Al) erratics (Lal (1991)/Stone
(2000) scaling assuming zero erosion) (Hein et al., 2016a, 2016b). 
Given the long half-lives of 10Be and 26Al, we cannot rule out pe-
riods of burial during the exposure history, but this is unimportant 
given that these parameters are only used as limiting bounds on 
the erosion rate. The minimum-exposure scenario yields some re-
sults where samples are oversaturated with respect to zero erosion, 
indicating that zero is the minimum erosion bound for these sam-
ples. For this reason and consistency with other publications, the 
maximum erosion rate (assuming infinite exposure) is used for the 
interpretation of all results.
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Table 1
Location, composition, and other relevant parameters for the calculation of 36Cl erosion rates.

Name Units Uncerts MH12-68 MH12-30A MH12-30B MH12-31 MH12-32 MH12-C1-TO

Sample type marbleised LS calcite vein calcite vein marbleised LS calcite vein marbleised LS
Latitude dd 0 −80.30576 −80.26309 −80.26309 −80.26309 −80.26309 −80.26334
Longitude dd 0 −82.11405 −82.18705 −82.18705 −82.18705 −82.18705 −82.18677
Elevation m 5 1681 1381 1381 1381 1381 1393
Pressure hPa 10 793 826 826 826 826 825
Thickness cm 0.5 1.5 1 1 4.5 1 5
Bulk density g/cm3 0.1 2.55 2.71 2.71 2.55 2.71 2.55
Shielding unitless 0 1.000 1.000 1.000 1.000 1.000 1.000
Conc. 36Cl at 36Cl/g (x1E6) 42.3 ± 1.2 39.8 ± 1.2 37.1 ± 1.0 33.88 ± 0.97 38.3 ± 1.1 34.6 ± 1.5
SiO2 bulk wt% 1.67 0.28 ± 0.2 0.51 0.51 0.55 ± 0.2 0.39 ± 0.2 0.41
TiO2 bulk wt% 0.04 0 ± 0.02 0 0 0.01 ± 0.02 0 ± 0.02 0.01
Al2O3 bulk wt% 0.03 0.02 ± 0.03 0.02 0.02 0.11 ± 0.03 0.04 ± 0.03 0.06
Fe2O3 bulk wt% 0.17 0.06 ± 0.03 0.19 0.19 0.29 ± 0.03 0.11 ± 0.03 0.17
MnO bulk wt% 0.02 0.02 ± 0.01 0.05 0.05 0.02 ± 0.01 0.06 ± 0.01 0.02
MgO bulk wt% 3.93 0.44 ± 0.4 0.24 0.24 0.25 ± 0.4 0.1 ± 0.4 0.34
CaO bulk wt% 6.3 56.6 ± 0.8 55.56 55.56 55.69 ± 0.8 54.53 ± 0.8 56.15
Na2O bulk wt% 0.04 0.07 ± 0.03 0.01 0.01 0.02 ± 0.03 0 ± 0.03 0.04
K2O bulk wt% 0.18 0.01 ± 0.01 0.01 0.01 0.02 ± 0.01 0 ± 0.01 0.02
P2O5 bulk wt% 0.04 0.03 ± 0.04 0.01 0.01 0.09 ± 0.04 0 ± 0.04 0.06
CO2 bulk wt% 0.61 43.4 ± 0.4 44.11 44.11 43.39 ± 0.4 44.71 ± 0.4 43.4
Sm bulk ppm 0.5 0.1 ± 0.1 0.42 0.42 0.42 0.42 0.42
Gd bulk ppm 0.57 0.13 ± 0.05 0.41 0.41 0.41 0.41 0.41
U bulk ppm 2.53 2.72 ± 0.05 1.16 1.16 1.16 1.16 1.16
Th bulk ppm 2.1 0 ± 0.1 0.58 0.58 0.58 0.58 0.58
Cr bulk ppm 23 0 ± 5 7.4 7.4 7.4 7.4 7.4
Li bulk ppm 7 0 ± 5 1.4 1.4 1.4 1.4 1.4
Target K2O tar wt% 0.01 5.0E−04 4.4E−04 1.1E−03 1.1E−03 7.8E−04 3.1E−03
Target CaO tar wt% 2 53.7 55.0 57.4 52.3 52.2 54
Target TiO2 tar wt% 0.02 1.7E−05 0.0E+00 7.7E−07 2.0E−05 3.3E−05 2.0E−05
Target Fe2O3 tar wt% 0.2 8.8E−03 2.3E−03 3.3E−03 2.0E−02 4.3E−02 1.6E−02
Target Cl tar ppm 5.0 ± 4.3 20.9 ± 1.4 17.6 ± 1.1 15.6 ± 1.4 36.5 ± 1.4 14.7 ± 9.3
Covariance unitless 909 2133 1525 1422 4571 1118

Name MH14-13 MH14-31 MH12-75 MH14-15 MH14-38 MH14-21 MH14-37

Sample type marbleised LS marbleised LS marbleised LS marbleised LS marbleised LS str marbleised LS str marbleised LS
Latitude −80.2642 −80.26735 −80.27371 −80.26105 −80.29905 −80.28305 −80.2794
Longitude −82.18933 −82.21628 −82.10712 −82.10672 −82.00345 −82.097926 −82.02958
Elevation 1343 1273 1163 1102 826 746 809
Pressure 830 838 851 858 890 901 893
Thickness 2.5 1.75 2 2 3.5 1 3
Bulk density 2.55 2.55 2.55 2.55 2.55 2.55 2.55
Shielding 0.994 0.994 1.000 0.998 0.991 0.979 0.975
Conc. 36Cl 31.6 ± 1.3 29.2 ± 1.2 24.58 ± 0.69 13.05 ± 0.54 3.72 ± 0.15 2.94 ± 0.13 0.438 ± 0.023
SiO2 1.1 1.1 0.41 1.1 1.1 ± 0.2 2.35 1.89
TiO2 0.01 0.01 0.01 0.01 0.01 ± 0.02 0.04 0.04
Al2O3 0.28 0.28 0.06 0.28 0.28 0.79 0.55
Fe2O3 0.1 0.1 0.17 0.1 0.1 ± 0.03 0.31 0.28
MnO 0.02 0.02 0.02 0.02 0.02 ± 0.01 0.01 0.01
MgO 0.7 0.7 0.34 0.7 0.7 ± 0.4 4.34 3.14
CaO 54.4 54.4 56.15 54.4 54.4 ± 0.03 49.26 51.24
Na2O 0 0 0.04 0 0 ± 0.01 0.04 0.05
K2O 0.05 0.05 0.02 0.05 0.05 ± 0.01 0.21 0.17
P2O5 0.03 0.03 0.06 0.03 0.03 ± 0.04 0.03 0.03
CO2 43.25 43.25 43.4 43.25 43.25 ± 0.4 42.98 43.04
Sm 0.42 0.42 0.42 0.42 0.42 0.42 0.42
Gd 0.41 0.41 0.41 0.41 0.41 0.41 0.41
U 1.16 1.16 1.16 1.16 1.16 1.16 1.16
Th 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Cr 7.4 7.4 7.4 7.4 7.4 7.4 7.4
Li 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Target K2O 4.3E−03 2.6E−03 1.6E−03 5.1E−03 2.8E−03 2.7E−03 7.6E−03
Target CaO 59.3 53.9 52.7 53.6 53.5 56.0 53.5
Target TiO2 3.0E−05 1.1E−05 9.6E−06 2.5E−05 1.8E−05 7.9E−05 8.6E−05
Target Fe2O3 2.8E−02 2.1E−02 1.8E−02 6.6E−02 3.3E−02 4.2E−02 3.5E−02
Target Cl 8.7 ± 2.8 9.4 ± 2.8 20.0 ± 1.4 7.5 ± 2.4 5.9 ± 2.2 7.0 ± 2.0 20.9 ± 2.3
Covariance 596 566 3568 212 51 48 22

Raw data for the Accelerator Mass Spectrometry values, blank subtraction, and carrier information are included in the Supplementary Spreadsheet. Samples are all surface 
samples and were collected in 2012 or 2014 according to sample name. Pore water, analytical water, and boron concentrations are all zero. Pressure and attenuation length 
(153 g/cm2) are calculated according to CRONUScalc (Marrero et al., 2016a). Sample type includes specific descriptions of the sample including whether it was a calcite vein, 
marbleised limestone (LS), or striated (str). Bulk density is estimated from lithology: calcite as 2.71 g/cm3 and marbleised limestone as 2.55 g/cm3. Bulk rock major elements 
were measured via XRF at the University of Edinburgh, School of GeoSciences. Bulk rock trace elements were measured via ICP-OES at SGS Mineral Services, Inc. (Canada). 
Target concentrations were measured via ICP-OES at the University of Edinburgh, School of Chemistry. AMS measurements were performed at SUERC. This provides the data 
to calculate 36Cl and Cl concentrations according to the procedure described in the Supplemental Information. Bulk and target Cl concentrations are assumed to be equal. 
Uncertainty is given for all unique values; otherwise, uncertainties are provided in the ‘Uncerts’ column of the table.
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Fig. 3. Comparison of originally reported values to the recalculated erosion rates from CRONUScalc. Nuclides are indicated by different symbols. Dashed line indicates the 1:1 
line. (A) Full set of erosion rates and (B) detail in the range up to 1 mm/ka.
2.2. Erosion rate compilation methods

Specific selection criteria were adopted to produce the compila-
tion of Antarctic-wide erosion rate data. Only samples determined 
by the original studies as representative of erosion rates were in-
cluded (i.e., outliers excluded in the original studies were also 
excluded here). Sample information used in the compilation was 
taken from the ICE-D database (http://antarctica .ice -d .org/) or from 
the original publication. Authors were contacted to provide any 
missing information and excluded if this was not successful. Any 
samples identified as ‘complex exposure’ samples by the authors, 
as determined from disagreement between 10Be and 26Al results, 
were also removed. 26Al results are not reported here because 
authors tended to exclude all samples with differences between 
results from 10Be and 26Al as complex exposure samples, so they 
present no unique data. The complete list of publications, calcu-
lator inputs, included/excluded samples, reproducibility study, and 
a detailed discussion of multi-nuclide calculation methods are in-
cluded in the Supplemental Information.

The erosion rates have been recalculated to be internally con-
sistent using the CRONUScalc program (Marrero et al., 2016a) and 
CRONUS-Earth production rates (Borchers et al., 2016; Marrero et 
al., 2016b; Phillips et al., 2016). We exclude 3He measured in 
quartz because of known problems with 3He retention in quartz 
(Bruno et al., 1997; Graf et al., 1991) and 21Ne measured in py-
roxenes because 21Ne in pyroxene is not supported by the current 
version of CRONUScalc (Marrero et al., 2016a). The production rate 
used for 21Ne in quartz is based on the 21Ne/10Be ratio presented 
in Balco and Shuster (2009). Fig. 3 shows a comparison between 
the recalculated and originally reported erosion rates for all nu-
clides. The apparent systematic differences primarily stem from 
changes in the common production rates used to calculate ero-
sion rates, which manifests as a change in slope between a vi-
sual trend in the data and the dashed 1:1 line on the plot in 
Fig. 3 (Balco et al., 2008; Borchers et al., 2016; Heyman, 2014;
Phillips et al., 2016).

In this study, results from different nuclides are compared, 
which may add uncertainty due to differences in both the pro-
duction rates and half-life, the latter affecting the time periods 
over which erosion rates are applicable. We note that each nu-
clide will integrate erosion rates over different time periods, but 
suggest any temporal variations in erosion rates over the averaging 
timescale of the nuclides are likely to be small in the polar climate 
of Antarctica. The calculator, CRONUScalc, was originally calibrated 
across multiple nuclides (10Be, 26Al, 3He, and 36Cl) measured at a 
range of sites where at least two nuclides had been used, meaning 
that comparisons across nuclides should be reliable. 21Ne, which 
was not included in the original CRONUScalc calibration, produces 
very similar rates compared to 10Be, although sometimes these 
are slightly higher (Fig. 3). In studies where replicates were run 
for the same nuclide, the final recalculated erosion rates were av-
eraged and those average values (with propagated uncertainties) 
were used in the final statistical analyses. Statistical analyses were 
performed using R (R Core Team, 2018).

Cosmogenic nuclide erosion rates are comparable across stud-
ies due to common collection criteria whereby ideal samples come 
from exposed, flat areas with no horizon obstructions and areas 
which have minimal chance of being covered by glacial drift in the 
past. The erosion rates from different studies on the same land-
form compare favourably (e.g. Fig. 4 showing Wright Valley and 
Mt. Fleming), indicating confidence in the reproducibility of these 
results. While the results of individual studies should be compara-
ble to one another, preference of samples from stable, flat, topo-
graphic highs leads to the selection of preferentially more resistant 
parts of the landscape, meaning that these erosion rates are not 
directly comparable to, and are systematically lower than, those 
measured using other techniques or those collected at the basin 
scale (Bierman, 1994; Portenga and Bierman, 2011).

Limitations of this analysis stem from the availability of data, 
primarily the unequal number of data points in different geo-
graphic locations and the fact that few studies reported all the 
factors that may affect erosion rate (e.g. joint spacing or rock 
strength; Portenga and Bierman, 2011). Joint spacing is mainly rel-
evant in temperate areas due to its potential to influence erosion 
through chemical dissolution and freeze-thaw processes. Secondly, 
these results have the potential to be geographically specific. For 

http://antarctica.ice-d.org/
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Fig. 4. Sample reproducibility comparison: location and results. (a) Location map 
showing the site in the Dry Valleys, East Antarctica (inset). (b) Erosion rates of two 
distinct groups of samples. The Wright Valley samples are from three studies: Balco 
et al. (2014), Nishiizumi et al. (1991), Middleton et al. (2012). The Mt. Fleming sam-
ples are from three studies: Schaefer et al. (1999), Summerfield et al. (1999), and 
Brook et al. (1995). (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

example, the Beacon Sandstone is likely to be over-represented 
compared to other sandstone formations due to its prevalence in 
the Dry Valleys, where many studies have been conducted. The po-
tential effect is explored in the Supplemental Material, but none of 
the main conclusions of this paper are affected by the removal of 
any one study.

The potential effects of precipitation were not assessed in this 
study due to a lack of sufficiently accurate precipitation data. Pre-
cipitation values from accumulation models (effective resolution of 
∼100 km; Arthern et al., 2006) are not available with a resolution 
good enough to resolve differences between Dry Valleys locations 
at the coast and those 60 km inland at high elevation (which rep-
resent a range of precipitation values from 100+ mm/yr water 
equivalent down to <10 mm/yr (Summerfield et al., 1999)). Based 
on the aridity and low air temperatures of the study areas, we 
believe that precipitation (almost completely in solid form) is un-
likely to have a significant effect on the erosion rates in this study, 
although this was not specifically tested. For example, almost all of 
the Dry Valleys samples in this compilation are located in Zone 3 
of Marchant and Denton (1996), which suggests that liquid water 
is rare and that this area has remained a cold, desert environment 
for at least 10–15 Ma (Denton et al., 1993).

Although some lithologies are only represented by a small 
number of studies, sandstone, dolerite, and granite have large 
enough sample sizes to permit additional statistical evaluation 
within the populations. Granulite, quartzite, gneiss, and diorite are 
each only represented by a single study and are therefore not con-
sidered in detail.

Finally, not all studies reported lithology. Samples with unspec-
ified lithology were compared to the ranges of erosion samples 
with reported lithologies; however, the unspecified samples do not 
appear to represent any distinct group that is different from those 
already represented in the compiled data set. The unspecified sam-
ples were therefore excluded from lithologic comparison but were 
included in other statistical analyses.

3. Carbonate erosion rate results & discussion

Individual erosion rate results for each sample are presented in 
Table 2, calculated using both the Lal (1991)/Stone (2000) scaling 
method (denoted ST) and the physics-based, nuclide-dependent 
scaling method from Lifton et al. (2014) (denoted LSDn). LSDn 
results are systematically 22–30% higher than those from ST scal-
ing. All previous Antarctic erosion rate papers report results using 
Lal/Stone scaling, so we continue the analysis using only results 
calculated with that method for consistency. The statistical con-
clusions in this paper are based on relative differences between 
populations and do not change significantly with a different scal-
ing model. In order to use these values to adjust exposure ages, 
the same scaling method should be used for both erosion rate and 
exposure calculations.

The minimum exposure erosion rate result from Mt. Fordell 
(0.23 ± 0.20 mm/ka) is almost identical to that of the infinite 
age scenario (0.27 ± 0.18 mm/ka) because the 36Cl samples are 
essentially saturated after constant exposure for 1.4 Ma (Hein et 
al., 2016b). At Marble Dome, the minimum-exposure scenario re-
sults in 36Cl samples that are saturated at zero erosion, mean-
ing that zero erosion is the minimum boundary at this location. 
The average maximum erosion rate for Marble Dome is 0.20 ±
0.02 mm/ka. The erosion rates at the Mt. Fordell and Marble Dome 
sites are within uncertainty of each other, suggesting that the sam-
ples are likely saturated with respect to the erosion rate and that 
they provide a good estimate of the carbonate erosion rate in this 
region. Given the closeness to saturation, small changes in concen-
trations can result in significant changes in resulting erosion rates, 
as seen with the MH12-30 replicates. Combining the Mt. Fordell 
and Marble Dome samples yields minimum and maximum bounds 
of 0 mm/ka and 0.22 ± 0.02 mm/ka (ST scaling), and 0 mm/ka and 
0.42 ± 0.02 mm/ka (LSDn scaling).

It is not possible to determine a well-defined exposure his-
tory for the other bedrock samples, so these are calculated for the 
infinite exposure assumption only in Table 2. The striated and pol-
ished bedrock samples collected at the ice margin yields an appar-
ent, infinite-exposure erosion rate of ∼100 mm/ka, with apparent 
erosion rates decreasing with increasing elevation (Fig. 5) until the 
limiting subaerial erosion rate is reached at high elevations. This 
trend reflects field evidence that apparent erosion rates close to 
the current ice elevation are higher due to increased erosion at the 
margin and/or repeated burial during glacial cycles, both of which 
would have a similar effect of lowering cosmogenic 36Cl concen-
trations. This supports our approach of defining ‘simple’ exposure 
regions (Marble Dome and Mt. Fordell) based on 10Be and 26Al-
dated erratics and relying only on 36Cl erosion rate samples located 
in those regions to provide the best estimate of the carbonate ero-
sion rate in the Marble Hills.

3.1. Carbonate erosion rate comparison

The limited number of previous 36Cl carbonate bedrock stud-
ies report denudation rates at sites around the world ranging from 
1–185 mm/ka (Evans, 2001; Fig. 1 references in Levenson et al., 
2017). The large range of variability shown by these studies is at-
tributed to climate trends in temperature and precipitation. Given 
the relative lack of liquid water in Antarctica, perhaps the most 
comparable sites to our results come from desert environments. 
For example, denudation rates from hyper-arid environments in 
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Table 2
Maximum erosion rates and uncertainties (mm/ka) for sites in the Marble Hills presented for two scaling schemes: Lal (1991)/Stone
(2000) (ST) and the nuclide-dependent Lifton et al. (2014) (LSDn). Marble Dome and Mt. Fordell sites are presented for both infinite 
exposure and minimum exposure assumptions. Minimum exposure uses exposure ages from 10Be and 26Al (Marble Dome is 630 ka 
(LSDn)/660 ka (ST); Mt. Fordell is 1300 ka (LSDn)/1350 ka (ST)) in the calculation of the erosion rate for the 36Cl samples. Uncertain-
ties account for only the 36Cl concentration, stable Cl concentration, and the production rate uncertainties, and full uncertainties, 
as detailed in Marrero et al. (2016b), are approximately 20–40% higher than those presented here (Supplementary Spreadsheet). 
The mean (replicates weighted at 0.5) and error of the mean is given for the Marble Dome site as well as all the simple exposure 
samples (Marble Dome and Mt. Fordell). MH12-30A and B are replicates processed with different ratios of carrier to sample.

Elev above ice 
(m)

ST scaling LSDn scaling

Inf. exposure Known 
exposure

Inf. exposure Known 
exposure

MH12-68 1005 0.27 ± 0.18 0.23 ± 0.20 0.48 ± 0.16 0.45 ± 0.16

MH12-30A 572 0.08 ± 0.19 0.27 ± 0.14
MH12-30B 572 0.26 ± 0.18 0.45 ± 0.15
MH12-31 572 0.23 ± 0.19 0.57 ± 0.17
MH12-32 572 0.16 ± 0.22 0.38 ± 0.17
MH12-C1-TO 584 0.25 ± 0.21 0.44 ± 0.18
Marble Dome Mean 0.20 ± 0.02 0.40 ± 0.02
Simple Exposure Mean 0.22 ± 0.02 0.42 ± 0.02

MH14-13 534 0.50 ± 0.21 0.71 ± 0.18
MH14-31 464 0.38 ± 0.20 0.57 ± 0.17
MH12-75 400 0.59 ± 0.21 0.81 ± 0.18
MH14-15 260 2.08 ± 0.37 2.43 ± 0.32
MH14-38 151 8.4 ± 1.0 9.33 ± 0.88
MH14-21 134 10.9 ± 1.3 12.1 ± 1.1
MH14-37 43 99 ± 10 108.9 ± 9.1
Fig. 5. Erosion rates for the Marble Hills carbonate bedrock samples derived from 
cosmogenic 36Cl. Simple and complex exposure determined from 10Be/26Al erratic 
analyses in previous studies (Hein et al., 2016a, 2016b). All data taken from Table 2
and the Supplementary Spreadsheet.

Israel ranged from 1–3 mm/ka (Ryb et al., 2014) while reported 
denudation rates from arid Australia were 4.5 mm/ka (Stone et al., 
1994). The erosion rates from Marble Hills are an order of magni-
tude lower than these values. While the difference between these 
rates may be minimal for some purposes, for a sample exposed for 
approximately 100 ka, the difference between an erosion rate of 
0.2 mm/ka and erosion rates of 1 and 4 mm/ka can lead to a 6% 
and 68% change in calculated age, respectively. The new 36Cl ero-
sion rates reported in this study follow the global trend, where the 
erosion rates reported in Antarctica are among the lowest reported 
in the world for a given lithology (Portenga and Bierman, 2011).

4. Erosion rate compilation results and discussion

As expected, Antarctic erosion rates are low, with 87% of re-
ported values lower than 1 mm/ka and 97% lower than 2 mm/ka. 
Because these values are maximum boundaries, true erosion rates 
may be even lower than those reported here. Beyond this, the sta-
tistical analysis of the data is used to investigate potential erosion 
rate differences due to lithology, boulder samples as opposed to 
Fig. 6. Comparison of erosion rates by lithology. Number of samples for each cate-
gory (n) has been listed along with the median, first quartile, and third quartiles (as 
shown in the box plot). Bold values indicate statistically significant sample popula-
tions. Mean and standard deviation provided in the Supplementary Spreadsheet.

bedrock, and sediment supply. Other parameters (elevation, tem-
perature, latitude, publication year, coastal location, effect of re-
moving individual studies) were investigated, but were not found 
to be significant (results and discussion in the Supplemental Infor-
mation).

4.1. Lithology dependence

The compiled Antarctic erosion rates show a statistically signifi-
cant dependence on lithology (Fig. 6). Sandstone shows the largest 
spread of erosion rates (0–3.5 mm/ka), while most other litholo-
gies have tighter groupings within each lithology. The sandstone 
group (mean: 0.67 mm/ka) is distinguishable from all three other 
groups (Games-Howell, p-value = 0; Games-Howell does not re-
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quire equal samples sizes or variances). Granite and dolerite popu-
lations have slightly different means (0.13 mm/ka and 0.19 mm/ka, 
respectively), but are not statistically distinguishable from one 
another (Games-Howell p-value of 0.16). The carbonate erosion 
rate is statistically distinguishable from the granite (Games-Howell, 
p-value = 0.04) and sandstone populations but not from dolerite. 
The mean carbonate erosion rate is slightly higher than that of 
granite or dolerite, but falls within the spread of the sandstone 
erosion rates.

The degree of cementation in individual samples could con-
tribute to the large spread of sandstone erosion rates. Variable 
cementation in sandstone has been shown to result in a large 
range of abrasion rates in flume experiments (Attal and Lavé, 2009;
Sklar and Dietrich, 2001). Ivy-Ochs et al. (1995) specifically note 
that they sampled ‘silicified sandstone’ from the Beacon Sandstone 
formation, while other authors listed the lithology from the same 
formation as simply ‘sandstone’. This difference potentially indi-
cates a range of cementation present in this lithology and may 
explain some of the variability in sandstone erosion rates. The 
three samples listed as ‘silicified sandstone’ yield results at the 
lower range of the sandstone values, but these are not separated 
out as a distinct lithology. Flume experiments of pebble abrasion 
also appear to be consistent with the results from this study: 
in the flume experiments, average limestone abrasion rates were 
slightly higher than average granite or volcanic abrasion rates and 
the limestone rates fell within the range of sandstone pebble abra-
sion rates, which had the largest range of abrasion rates in the 
study (Attal and Lavé, 2009). These results are also consistent with 
flume experiments of bedrock abrasion by sediment by Sklar and 
Dietrich (2001), and with Portenga and Bierman’s (2011) compila-
tion of worldwide 10Be erosion rates, which showed higher global 
average erosion rates in outcrops made of sedimentary rocks, com-
pared to igneous or metamorphic rocks.

The compiled cosmogenic nuclide data set can also be com-
pared to two sets of Antarctic studies performed using micro-
erosion meters (MEM) and mass loss calculations. MEM measure-
ments over four years in the Larsemann and Vestfold Hills (Eastern 
Antarctica) revealed high erosion rates of 15 and 22 mm/ka (Spate 
et al., 1995). Lithologic differences were evident in samples ex-
posed in the Allan Hills and the Dry Valleys, with a non-welded 
tuff eroding an order of magnitude faster than a dolerite sam-
ple (Malin, 1992). However, the five-year average erosion rates on 
the dolerite samples (3.3 mm/ka) are also significantly higher than 
those found using cosmogenic nuclides (0.20 mm/ka). The higher 
erosion rates recorded by the erosion meters could be due to the 
time scale of measurements, which may result in the erosion me-
ter recording effects from individual large storms or other major 
events. Another possibility, particularly relevant in Antarctica, is 
that endolithic organisms or other processes may be acting over 
very long time scales to help create a resistant/armored surface or 
varnish that reduces erosion after an initial high-erosion period (de 
la Rosa et al., 2012). Finally, fundamental differences between the 
two techniques (e.g., sample selection/location) may lead to dif-
ferences between the resulting rates. There are significant spatial 
differences in erosion rate in the Antarctic landscape (Matsuoka et 
al., 2006) and due to the choice of resistant outcrops for cosmo-
genic nuclide sampling, a comparatively lower erosion rate is ex-
pected for these surfaces when compared to other methods and/or 
erosion rates at the basin scale (e.g., Portenga and Bierman, 2011).

4.2. Boulder vs bedrock erosion rates

When subdivided by lithology, further examination into sam-
ple type indicates that there is a significant difference between 
bedrock and boulder samples, with boulder samples yielding sys-
tematically lower erosion rates (see Fig. 7 where the median of 
Fig. 7. Comparison between bedrock and boulders for two lithologies: sandstone (A) 
and dolerite (B). Boxplots show first quartile/median/third quartile. Note change of 
scale on x-axis between (A) and (B). (C) Two comparisons of boulder vs bedrock 
erosion rates in individual studies.

each population lies beyond the interquartile range of the other). 
For the purpose of this discussion, ‘boulder’ is considered to be 
any sample that was not attached to the bedrock. For sand-
stone, the median (0.12 mm/ka) and variance of boulder erosion 
rates lies within the lower range of the bedrock samples (be-
low 1st quartile of 0.29 mm/ka). A similar difference is seen in 
dolerite boulder and bedrock populations, despite generally be-
ing an order of magnitude lower than the sandstone values. The 
difference in means is supported by statistically significant re-
sults (p = 5.4 × 10−11 for sandstone; p = 0.0035 for dolerite) 
from the Welch’s two sample t-test, which accounts for differ-
ences in sample size. These differences are seen in the aggre-
gated data, but can also be seen within individual studies, two of 
which are plotted individually in Fig. 7c (Margerison et al., 2005;
Schaefer et al., 1999).

There are at least two plausible explanations for the gener-
ally higher values and larger spread for bedrock erosion rates as 
compared to those from boulders. First, repeated loading and un-
loading of rock due to glacial cycles may increase stress and cre-
ate fractures in the rock, leading to increased erosion (Ziegler et 
al., 2013). In Antarctica, a preference for sampling small, glacially 
shaped boulders means that the samples have had weak areas 
eroded, leaving only the coherent (e.g. more resistant) boulder. In 
this scenario, bedrock would be less resistant to erosion than boul-
ders. For similar reasons, bedrock surfaces are also more likely 
than boulders to retain the small amounts of liquid water that 
are present in the environment in the outcrop’s more numerous 
joints and other discontinuities. This difference in moisture condi-
tions was observed by Weed and Norton (1991), who differentiated 
between moisture regimes for Antarctic Beacon Supergroup sand-
stone bedrock and boulders, finding that increased water retention 
would lead to higher observed erosion rates in bedrock as com-
pared to boulders.

A second potential explanation for the differences in bedrock/
boulder erosion rates is ice coverage. If surfaces are covered by ice 
for extended periods of time (e.g. by cold-based (non-erosive) ice), 



64 S.M. Marrero et al. / Earth and Planetary Science Letters 501 (2018) 56–66
the maximum apparent erosion rate will increase due to shield-
ing and lack of production during periods of burial, even though 
the subaerial erosion rate during exposure periods remains low. 
As a result, boulders may have significantly different exposure his-
tories compared to bedrock, with boulders being more likely to 
have been eroded, transported, then exposed at the end of a glacial 
cycle. Bedrock on the other hand, may have survived several peri-
ods of glaciation, which could increase the variability in apparent 
cosmogenic nuclide erosion rates. We consider it likely that both 
physical processes and glacial history effects combine to yield the 
consistently lower erosion rates observed in boulders when com-
pared to those from bedrock samples.

4.3. Erosion processes in Antarctica

Erosion rates from the Dry Valleys are generally higher than 
those from other locations on the continent, particularly for sand-
stone (Fig. 8). A similar trend is seen for dolerite, although it is 
less significant due to the smaller initial spread in erosion rates 
and smaller sample size. The Dry Valleys region is a unique site 
in Antarctica, where there is an abundant ice-free sediment sup-
ply. Erosion through wind-driven abrasion with sediment particles 
could therefore explain the higher erosion rates in the Dry Valleys 
compared to other areas in Antarctica, which are primarily abraded 
by ice crystals (rather than sediment). Plentiful ventifacts in and 
around the Dry Valleys (Marchant and Denton, 1996) suggest long-
term erosion by wind-driven particles, whilst modern observations 
of ‘wind-blown sand’ (Marchant and Head, 2007) in the region 
point to the importance of sediment supply. Observations of iden-
tical rock samples placed in different Antarctic locations support 
this hypothesis (Malin, 1988, 1992). Samples placed in areas where 
loose and mobile sediment was available on neighbouring hillsides 
(as in the Dry Valleys) were abraded at higher rates than samples 
placed on a blue ice area in the Allan Hills, where it was suspected 
that only ice crystals were available to abrade the surface samples.

Our data suggest that granular or mineral-scale processes are 
dominant for these sample types based on the similarity between 
erosion rates of limestone, granite, and dolerite populations. Ero-
sion processes likely include mechanical processes such as abrasion 
and granular disintegration (Stone et al., 1994). The effect of larger-
scale freeze-thaw for this type of landform in Antarctica is small 
compared to alpine locations, based on the very low and consis-
tent erosion rates. Freeze-thaw operates on the scale of natural 
joint spacing in the rock, which typically results in large erosion 
rate variability. Indeed, if a large piece of rock was recently re-
moved due to freeze-thaw or other similar process (e.g. thermal 
shock), a significantly higher erosion rate should be recorded in 
at least some samples due to the lowered nuclide concentration. 
This seems unlikely, especially for granite and dolerite lithologies, 
which show tight groupings of erosion rates.

5. Global comparisons

On a global scale, only cosmogenic nuclide-derived erosion 
rates from the driest part of the Atacama Desert (0.2–0.4 mm/ka; 
Placzek et al., 2010) and South Africa (1–6 mm/ka, depending on 
lithology and climate; Fleming et al., 1999; Kounov et al., 2007) 
have yielded results similar to the extremely low rates in Antarc-
tica. The similarly low rates across lithologies in arid environments 
support our interpretation that weathering in these environments 
is almost exclusively by mechanical processes, even for carbonates.

Results from this study are compared to trends found during 
the compilation of global 10Be erosion rate data by Portenga and 
Bierman (2011), who analysed bedrock outcrop data from a vari-
ety of regions across the world (although the proportion of polar 
data in the study was small, at just 7%). Over global data sets, 
Fig. 8. Erosion rates by location, comparing samples from the Dry Valleys and else-
where on the continent. All samples are shown in panel (a), with individual rock 
types shown in panels (b) sandstone and (c) dolerite.

outcrop erosion rates differed by climate and rock type (i.e. sedi-
mentary, igneous, metamorphic), with rates also weakly correlated 
with relief and annual precipitation. Polar outcrops were the slow-
est eroding and (when combined with arid and cold outcrops) only 
a few weakly correlated parameters showed any influence on ero-
sion rate in these regions. These included elevation, mean annual 
precipitation, and latitude. In addition to these variables (exclud-
ing precipitation), we also tested the influence of other potentially 
relevant variables – including distance to the coast, (potentially 
a proxy for change in precipitation, wind speed, or temperature 
as is seen in other climate regimes), and publication year (poten-
tially reflecting technical advancements that produced a systematic 
change in reported erosion rates). However, we found no consis-
tent trends in erosion rate with respect to elevation (Fig. S15), 
publication year (Fig. S16), coastal location (Fig. S17), temperature 
(Fig. S21), or latitude (Fig. S22).

6. Conclusion

The new 36Cl carbonate bedrock erosion rate determined from 
Marble Hills, of 0.22 ± 0.02 mm/ka (infinite exposure, maxi-
mum limit, ST scaling), is lower than previous cosmogenic nuclide-
derived carbonate erosion rates determined in desert environments 
elsewhere in the world. Our carbonate erosion rate is placed 
in context through a compilation and reanalysis of 28 Antarctic 
studies that produced cosmogenic nuclide-derived erosion rates 
from other nuclides. The mean and spread of erosion rates from 
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other lithologies (limited to those with a statistically significant 
number of measurements) are also provided, with means and 
1st/3rd quartiles of 0.11 +0.03/−0.06 mm/ka for granite, 0.17 
+0.07/−0.05 mm/ka for dolerite, and 0.52 +0.36/−0.35 mm/ka 
for sandstone. Our new carbonate value is similar to the range of 
erosion rates from these other lithologies, which suggests that the 
inefficiency of chemical weathering in cold, dry environments can 
help to explain consistently low erosion rates across lithologies in 
Antarctica.

Based on analysis of the erosion rate compilation, this study 
finds that rock type (to some degree) and sample type (boul-
der vs bedrock) control reported cosmogenic nuclide-derived ero-
sion rates in Antarctica. This finding helps to explain erosion rate 
variability in outcrops across the continent. Our results also sug-
gest that sediment availability can influence erosion rates through 
wind-driven abrasion.
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