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A B S T R A C T

Woodland expansion is internationally accepted as a strategy to reduce biodiversity loss, climate change and flood risk, but there has been limited assessment of the
evidence for these benefits. In addition, despite UK targets for woodland creation, planting levels remain low. Furthermore, following the UK’s decision to leave the
European Union, a number of important decisions will be made about support mechanisms for different land uses, making evidence for the effect of woodland
creation in different contexts essential. Following established guidelines, we undertook a systematic review of 160 articles to assess the evidence base for the effects of
woodland expansion on ecosystem services in a UK context. We aimed to characterise the evidence base on the effects of such woodland expansion on biodiversity
and ES and highlight where further research might be required. We found that the evidence base is dominated by research studying conifer plantations, and outcomes
relating to biodiversity and regulating ecosystem services. By contrast, evidence for the effect of afforestation on multiple ecosystem services, cultural, and provi-
sioning services is severely lacking. We argue that this weighting of evidence towards ‘public goods’ may contribute to the observed lack of planting, and that
evidence for more tangible effects of woodland creation in relation other land uses is lacking. Implementation of woodland expansion could benefit from developing
new incentives for planting woodlands, based on ‘public money for public goods’. Future research should focus on the evidence gaps identified here, making use of
context-specific, transdisciplinary, participatory methodologies which take into account plural values held in relation to the landscape.

1. Introduction

Woodland cover in the United Kingdom (UK) is currently 13%
(Forestry Commission, 2017), less than half the European and global
averages of 37% and 30% respectively (FAO, 2015). This relative lack
of woodland is attributed to a complex history of exploitation by society
and natural climate changes throughout the Holocene (Holl and Smith,
2007; Tipping et al., 2008). Since the end of WW1, woodland cover in
the UK increased via the expansion of the public Forestry Commission
estate, and a succession of grant schemes supporting private woodland
planting. This increase was characterised by an initial dominance of
conifer investment forestry planted mainly for timber, shifting towards
increasing emphasis on broadleaved woodlands for multiple, pre-
dominantly environmental and recreational, purposes (Wong et al.,
2015). Woodland types favoured for woodland expansion vary geo-
graphically across the UK. Welsh and Scottish forests are predominantly
coniferous, while almost 90% of private and other woodlands in Eng-
land comprises broadleaved species (Wong et al., 2015). In the UK and
elsewhere, aims for afforestation are complicated by the fact that forest
planting takes place on different lands, owned by different people with
a diverse range of objectives and values (Thomas et al., 2015; Burton

et al., 2018).
Globally, forest loss and degradation have led to dramatic losses of

biodiversity, carbon stores and ecosystem services (ES) (Ciccarese,
Mattsson and Pettenella, 2012). As a result, numerous national and
international policies aim for afforestation and reforestation, including
the European Biodiversity Strategy for 2020 and the Water Framework
Directive. Afforestation is an important strategy for climate change
mitigation under the Paris Agreement, as well as wider targets for
ecological restoration including the Aichi Targets, Bonn Challenge, and
New York Declaration on Forests. In the UK, these high-level goals are
incorporated into specific targets for woodland creation (Forestry
Commission, 2009; Forestry Commission Wales, 2009; DEFRA, 2013;
Scottish Government, 2017). It is internationally recognised that pro-
gress towards achieving these goals is uncertain, and that multiple
challenges and barriers remain (Chazdon et al., 2017). Woodland ex-
pansion aims sit within wider land use challenges, including the need to
ensure sufficiency and security of food supplies and the desire for ES
multifunctionality, and there remains a lack of synergies between po-
licies in these areas. Thus, at the UK level, there is a consistent gap
between policy aspirations and actual levels of woodland planting, with
reports showing that woodland planting in 2016 was at its lowest level
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for more than five years (Priestley and Sutherland, 2016). These per-
sistent challenges are reflected in the identification of woodland ex-
pansion, in particular in relation to climate change mitigation, as a
‘wicked problem’ beset by conflicting goals, values and perspectives
(Rittel and Webber, 1973; Shindler and Cramer, 1999; Duckett et al.,
2016). This is due to the difficulty of implementing woodland expan-
sion in the face of conflicting food and climate change policy goals, low
acceptability of woodland planting among farmers, volatile stakeholder
perceptions, and, in Scotland, grazing pressure from high deer popu-
lations (Duckett et al., 2016; Environment Climate Change and Land
Reform Committee, 2017; Burton et al., 2018).

A review of evidence in a Scottish context has suggested that we
need a clearer articulation of woodland benefits, improved evaluation
of woodland creation schemes, and improved understanding of trade-
offs with other land uses (Thomas et al., 2015). Research has also
shown that there is a lack of synergies between the many policies and
plans promoting woodland networks and corridors (Muñoz-Rojas et al.,
2015). More generally, further research is required to elucidate the
relationships between different (forest and non-forest) land use ES
provision levels, whether these be synergies, trade-offs, or groupings in
multifunctional ‘bundles’ (Cord et al., 2017). Therefore, research needs
to make clear the effect of woodland expansion in different contexts, in
order to provide robust, context-specific evidence. This is especially
pertinent given the urgency of initiatives concerned with carbon se-
questration and biodiversity protection, and the risk of rapid, poorly-
informed actions leading to suboptimal or counterproductive outcomes.
Assessment of the extent of current knowledge about the effects of
woodland expansion in the UK is therefore necessary not only for na-
tional-level policy making but also as a case study of internationally-
relevant challenges in land system planning and management.

We undertook a systematic review to assess the evidence base for
the effects of woodland expansion on biodiversity and ES in the UK. The
review had two main objectives: (1) To systematically collate and
synthesise both academic and grey literature studying woodland

expansion in a UK context; and (2) To characterise the evidence base on
the effects of such woodland expansion on biodiversity and ES and
highlight where further research might be required. To achieve these
objectives, we aimed to answer three research questions: (1) What
knowledge do we currently have about the effects of woodland ex-
pansion on biodiversity and ES provision?; (2) What are the main gaps
in this knowledge?; and therefore (3) What does this mean for devel-
oping strategies for woodland expansion that maximise biodiversity and
ES provision? The first two questions directly address results from the
review, while the third forms the basis for the discussion.

1.1. A note on the terms and definitions used

Many different terms are used to describe different approaches to
woodland creation, and this can result in some confusion or mis-
conceptions (Mansourian, Vallauri and Dudley, 2005). ‘Woodland ex-
pansion’ is used throughout this paper to encompass afforestation, re-
forestation, woodland creation, and forest landscape restoration.
Afforestation and reforestation both involve the artificial establishment
of trees, in the former case where no trees existed before (for at least
50 years), while the latter refers to planting or seeding on land that was
recently forested but that has been converted to non-forested land
(Mansourian, Vallauri and Dudley, 2005). Natural regeneration is
considered a process of woodland expansion and can either be assisted
(Chazdon, 2008) or can occur unaided if there are seed sources and
browsing pressure is low (Forestry Commission, 2009). Ecological re-
storation is defined as ‘the process of assisting the recovery of an eco-
system that has been degraded, damaged or destroyed’ (SER, 2004).
Increasingly, Forest Landscape Restoration (FLR) is advocated on the
basis that restoration has to address multiple and sometimes competing
needs. It is defined as ‘a planned process that aims to regain ecological
functionality and enhance human well-being across deforested or de-
graded landscapes’ (Lamb, 2014). Although every effort is made to use
woodland expansion as a catch-all, these terms are occasionally used

Fig. 1. The Level of Evidence (LoE) hierarchy ranking as produced by Mupepele et al. (2016). The pyramid ranks study designs according to the strength of the
evidence they produce. Within this hierarchy, systematic reviews (LoE1a) are regarded as providing the highest evidence level, with studies based on mechanistic
reasoning providing the lowest. In this case, the ‘strong evidence’ level 2a included either studies that took measurements prior to afforestation as well as during or
after, or studies which considered a different (usually open) habitat in comparison to an afforested or woodland habitat. Modelling studies require a slightly different
interpretation in terms of their LoE. Models which represent theories, without underlying data, are given the lowest level (LoE4). If they have data input to determine
their parameters they achieve LoE3b, and if this data is tested and validated then this increases to LoE3a. To reach LoE2b or LoE2a, modelling studies must confirm
their predictions on several unrelated datasets, or be built on data from controlled studies.
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interchangeably.

2. Methods

We undertook a systematic review (SR) of both academic literature
and unpublished ‘grey’ literature, following established guidelines
(Collaboration for Environmental Evidence, 2013).

2.1. Data collection

Online searches were carried out on electronic databases, organi-
sational websites and internet meta-search engines. Search terms were
developed around the Population, Intervention, Comparator, Outcome
(PICO) framework (Collaboration for Environmental Evidence, 2013).
As ‘ecosystem services’ is a relatively new term, keywords that related
to each ES category were included, to capture all relevant research prior
to and since the emergence of ES research. A full list of search terms
used for all databases and websites can be found in Supplementary
Material 1. The academic electronic databases Web of Science and
Scopus were searched, and the first 50 Microsoft Word document and
PDF hits from Google Scholar and Google were examined for appro-
priate literature. Several organisational websites were also searched for
relevant information. All literature returned by the searches underwent
a three-stage filtering process, using pre-defined inclusion and exclu-
sion criteria. All articles were initially filtered by title and then abstract.
Following the abstract filter, full texts were assessed and either ac-
cepted or rejected from the final review. The SR identified studies
conducted in the England, Scotland, Wales, Northern Ireland and Ire-
land, as well as the UK as a whole. Duplicates were removed. Some
documents (26 in total) could not be accessed due to restrictions, or
were book chapters that could not be sourced online or in available
libraries, and these were also excluded. The entire filtering process was
carried out by one reviewer. However, all progress and decisions made
were discussed regularly with co-authors and the entire inclusion/ex-
clusion process was recorded in a spreadsheet for transparency (Sup-
plementary Material 1).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.foreco.2018.08.003.

2.2. Data analysis

The final set of articles underwent an iterative process of char-
acterisation, data extraction and critical appraisal in terms of study
quality. We categorised each study by a range of attributes including
location, ES category, unit of study, woodland type, comparator/con-
trol habitat, and outcome measure. Papers were assigned to an ES ca-
tegory based on the Common International Classification of Ecosystem
Services (CICES). Biodiversity was considered as a separate category.
The quality of study design was further assessed using a tool developed
to assess the strength of evidence of ES and conservation studies
(Mupepele et al., 2016). This tool (Fig. 1) uses a hierarchy of evidence
to rank studies based on their experimental design, and thus lent itself
well to assessing a wide range of studies with different units of study
and types of data. The entire study database, with references, can be
accessed in Supplementary Material 2. The scope of the review was
intentionally broad throughout, in order to show the spread (and any
bias) of evidence available, resulting in a diverse set of studies with
very different methodological designs and resulting types of data. This
precluded the use of formal quantitative techniques or meta-analysis,
and therefore we focus on a narrative synthesis of the evidence.

3. Results

3.1. Summarising the evidence base

An initial search was carried out on the 2nd February 2016. The

search was updated on the 7th April 2017 using the main databases
(Web of Science and Scopus) from the first search. Table 1 shows the
number of papers returned at each stage in the SR process.

Most evidence relates to the regulating and maintenance ES cate-
gory (82 studies) and biodiversity (54 studies) (Fig. 2). Within both
categories, there is a bias towards studies of conifer plantations (74
studies). There is very little evidence relating solely to provisioning (1
study) and cultural categories (2 studies). However, it is important to
note that some studies which consider multiple topics include aspects
which fit in those categories (21 studies). Given the weighting of the
evidence, we focus on summarising findings from papers within the
biodiversity and regulating and maintenance categories, before going
on to assess evidence for ecosystem disservices, and papers which
consider multiple ES. The guidelines followed by the review emphasise
that SR methodologies should collate and synthesise data without
adding interpretation (Collaboration for Environmental Evidence,
2013).

3.2. Biodiversity

Most studies of biodiversity focus on birds (22 studies), in-
vertebrates (16 studies) and ground flora (5 studies), highlighting evi-
dence gaps for the effects of new woodland on other taxa (e.g. mam-
mals). For studies of conifer plantations (30/54 studies), several broad
findings based on the evidence can be identified. In the early stages of
Sitka spruce plantations studies have recorded a shift in ground vege-
tation from small stature herbs to more competitive grasses as planta-
tions grow (Oxbrough et al., 2006; Buscardo et al., 2008). The shading
effect of dense non-native coniferous plantations at later stages has
been found to significantly reduce ground vegetation cover, but this is
noted to reflect the density of the tree canopy more than the species
planted (Wallace et al., 1992). A more diverse woodland flora has been
found to develop in some conifer stands over time particularly where
lower stocking densities allow a greater amount of light through to the
forest floor (Essex and Williams, 1992; Wallace et al., 1992; Wallace
and Good, 1995). A comparison of plantations with different species
mixes and stand ages across Ireland illustrates differing effects on ve-
getation communities (French et al., 2008). In line with previously
outlined findings, closed canopy sites dominated by Sitka spruce (Picea
sitchensis) had very low numbers of ground flora, and were found to be
striking in their lack of diversity. By contrast, Japanese larch (Larix
kaempferi) stands at all ages supported an abundant and species rich
community of bryophytes, but these were mainly fast-colonising gen-
eralists, essentially meaning that the vegetation community beneath
larch represented ‘moorland-with-trees’ (a function of the previous land
use) as opposed to a true woodland flora. A mature Ash (Fraxinus ex-
celsior) stand was found to support a vegetation community closest to
native woodland, aided by a location on base rich free-draining soils
and proximity to mature native woodland. This aligns with the asser-
tion that it is likely that the biodiversity of newly established stands
depends on the availability and colonisation ability of native woodland
species (Thomas et al., 2015)

There is widespread evidence for carabid species (Carabidae) turn-
over following the establishment of conifer plantations, with open

Table 1
A summary of the number of papers returned from the initial searches, and at
each subsequent filtering stage.

Systematic review stage No. of papers

Studies captured using search terms in electronic databases
(including duplicates)

1552

Studies captured using search terms in electronic databases
(excluding duplicates)

1347

Studies remaining after title and abstract filter 474
Studies remaining after full text filter 160
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ground species becoming less common, and generalist and forest spe-
cialists becoming more so (Day and Carthy, 1988; Buse and Good, 1993;
Lin, James and Dolman, 2007; Karen et al., 2008). There are differing
conclusions as to whether this turnover significantly changes overall

carabid diversity compared to previous or comparative land uses. Day &
Carthy (1988) found that although species richness and alpha diversity
were lower in forested compared to moorland plots, this was not sta-
tistically significant. By contrast, Buse & Good (1993) found the

Fig. 2. The biodiversity metrics and CICES ecosystem service categories considered by the 160 papers. Each paper is represented by a symbol relating to the type(s) of
woodland it studies, and is assigned a Level of Evidence (LoE) based on its study design (see Fig. 1).
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greatest abundance, species richness and diversity occurred in non-af-
forested sites. Nonetheless, there is strong agreement between studies
that fostering and maintaining diversity in forest structure and species
is essential for maintaining overall carabid diversity, with rides, clear-
fell areas and early successional habitats allowing open ground spe-
cialists to continue to thrive (Buse and Good, 1993; Lin, James and
Dolman, 2007; Karen et al., 2008; Spake et al., 2016). When taking into
account all the stages of the forest cycle, as well as the effect of locality,
it has been concluded that on the whole forests can be as species rich (in
terms of carabids) as surrounding open habitats (Coll and Bolger,
2007). A recent study of carabid functional diversity finds that, as in-
creasing canopy cover generally drives down functional diversity,
management which emulates natural disturbance regimes through gap
creation and close-to-nature forestry will be beneficial to carabids
(Spake et al., 2016).

Spider and bird species also demonstrate turnover with afforesta-
tion. Pre-afforestation land use has an influence on both these com-
munities, with evidence suggesting that improved grasslands are most
likely to benefit from afforestation, showing increased species diversity
and richness, whereas wet grasslands and peatlands are more sensitive
due to their more distinct species assemblages (Oxbrough et al., 2006;
Wilson et al., 2012). Peatlands, although low in overall bird diversity,
are home to rarer habitat specialists, and are found to be most sensitive
to afforestation (Wilson et al., 2012). There is strong evidence that edge
effects generated by conifer plantations negatively affect a number of
open ground bird specialists, particularly in upland contexts (Lavers
and HainesYoung, 1997; Buchanan et al., 2003; Douglas et al., 2014;
Graham et al., 2015). However, similar to findings from studies of
carabids, diversity in stand age and forest structure can have positive
effects, with most bird species abundances being positively related to
the extent of shrub cover at the edge of plantations (Calladine, Bielinski
and Shaw, 2013), and black grouse (Tetrao tetrix L.) abundance being
positively associated with younger pre-thicket forest (Pearce-Higgins
et al., 2007). One long-term study carried out over a 12-year period of
coniferous afforestation on an upland grassland showed significant
turnover of both vegetation and bird species, with a significant increase
in the overall number of breeding bird pairs (Sykes, Lowe and Briggs,
1989).

Several studies consider the effect of coniferous afforestation within
the wider landscape, and once again, the effects differ depending on the
context and species considered. In lowland farmland, no detectable
differences in total farmland bird species richness or abundance were
found between farmland sites with very little forest cover and those
approximately one-third afforested (Pithon, Moles and O’Halloran,
2005). By contrast, conifer plantations have been associated with de-
clines in presence and breeding performance of both ravens (Corvus
corax) (Marquiss, Newton and Ratcliffe, 1978) and golden eagles
(Aquila chrysaetos) (Marquiss, Ratcliffe and Roxburgh, 1985; Watson,
1992; Whitfield et al., 2001). Similar studies of red kites (Milvus milvus)
in Wales found no firm evidence for an effect of afforestation on species
occurrence (Newton et al., 1981). Still, it is important to note that many
of these studies are based on the effect of plantations planted in the
1970s, which were often densely planted and heavily dominated by
non-native conifers. Modern plantations are encouraged to have more
sympathetic designs, such as areas of open ground, riparian buffers and
areas of broadleaf woodland, and thus may not have the same effect.

The effect of growth stage has been found to have a more significant
effect of bird assemblages than species mix, with species associated
with younger woodland stages being typical of open, un-forested ha-
bitats, which were turn strongly influenced by the pre-afforestation
habitat (Wilson et al., 2006). In older stages, assemblages were char-
acterised by woodland generalist species such as the Chaffinch (Fringilla
coelebs), Coal tit (Periparus ater), Robin (Erithacus rubecula) and Wren
(Troglodytidae). Other studies indicate that availability of young
woodland is particularly important for several bird species. A national
comparison of Tree pipit (Anthus trivialis) and Lesser redpoll (Acanthis

cabaret) abundance with changing woodland cover over time shows
that abundance declines with a decrease in the availability of young
woodland (Burgess et al., 2015). Studies of Black grouse (Tetrao tetrix)
also indicate distributional shifts in populations, with population de-
clines where pre-thicket forest matures, and establishment of new po-
pulations near to new native pinewoods (White, Warren and Baines,
2013). Populations were found to be greatest where new native
woodland comprised approximately 30% of the land area and averaged
5 years old (Scridel, Groom and Douglas, 2017).

A greater number of studies have begun to consider biodiversity in
relation to other types of woodland in recent years, but there is a lack of
controlled, field-based evidence for the effect of native woodland ex-
pansion on biodiversity. Studies suggests that earthworm (Lumbricus
terrestris) communities are larger under re-established native woodland
than surrounding moorland (Butt and Lowe, 2004) whereas studies of
moths in Woodland Grant Scheme sites found lower species abundance
and richness compared to mature woodland (Fuentes-Montemayor
et al., 2015). A collation of vegetation surveys from over 100 years of
broadleaf woodland colonisation in two abandoned fields in lowland
farmland also found substantial turnover of individual species, with
total flora estimated to be richest just before canopy closure, but it is
noted that the methodology is limited by a patchy record and different
survey methods used throughout the study period (Harmer et al.,
2001). Most evidence for native woodland is derived from reviews,
landscape scale GIS or modelling methodologies, primarily focusing on
the potential for increasing woodland connectivity to enhance biodi-
versity at the landscape scale. Reviews state that regenerating native
woodland allows natural colonisation by plants and fungi, with anec-
dotal evidence stating that regenerating woodland in a Scottish national
nature reserve supports species such as blaeberry (Vaccinium myrtillus
L.) and bog myrtle (Myrica gale L.) that replace dominant grassland
species (Bunce et al., 2014; Armstrong, 2015). Earlier GIS-based work
focused on functional connectivity suggested that targeting new native
woodland adjacent to ancient woodland patches increases core habitat
area and functional network size, enabling faster colonisation of
woodland species (Bailey, Lee and Thompson, 2006; Hope, Humphrey
and Stone, 2006; Quine and Watts, 2009). In terms of the effect of
planted conifer woodlands in facilitating species movement, wood ant
populations have been found to make use of newly formed non-native
plantations to expand, showing that these plantations can provide a
suitable habitat (Procter et al., 2015). More recent modelling ap-
proaches such as circuit theory and individual based modelling suggest
that using spatially targeted woodland creation to fill regional ‘bottle-
necks’ has potential improve species expansion response to climate
change (Hodgson et al., 2011), but that it is difficult to accommodate
multiple species when targeting woodland creation (Synes et al., 2015).
Some strategies, such as creating small woodland patches next to larger
patches of existing woodland, can provide benefit to the widest range of
species (Synes et al., 2015)

3.3. Regulating and maintenance

Studies relating to the regulation of water are also dominated by
studies of conifer plantations. Previous reviews have concluded that
afforestation can alleviate flooding via three main mechanisms: (1)
greater water use compared to other land uses; (2) greater hydraulic
roughness compared to more open habitats, having a slowing effect on
flood flows; and (3) a soil ‘sponge effect’, with more organic matter and
tree roots, and less soil disturbance, allowing woodland soils to hold
more water (Nisbet and Thomas, 2006; Nisbet et al., 2011). There is a
collection of strong evidence to suggest that conifer plantations have
higher water use when compared to a variety of other land uses, and
that this is associated with reductions in peak flows and reduced ‘fla-
shiness’ in forested catchments (Hornung and Newson, 1986; Johnson,
1998; Heal et al., 2004; Nisbet et al., 2011). A single study looking at
naturally regenerated Scots pine woodland concludes that it is likely to
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have a similar magnitude of water use compared to non-native plan-
tations (Haria and Price, 2000). Fewer studies explicitly consider the
effect of broadleaf plantations or naturally regenerating native broad-
leaf woodland on flood flows, but two reviews conclude that although
these types are expected to have slightly lower water use than con-
iferous woodland, they can still have a dampening effect on flood flows
when compared to other more open land uses (Roberts and Rosier,
2005; Thomas and Nisbet, 2007). Riparian and floodplain woodland is
found to be particularly effective at reducing peak flood magnitude
(Broadmeadow and Nisbet, 2004; Dixon et al., 2016).

Scale is a key issue when thinking about the effect of woodland on
flood control (Nisbet and Thomas, 2006; Nisbet et al., 2011). Given
current evidence, the smaller the area of woodland in a catchment, the
less the effect on reducing flood peak, and there continues to be little
support for a significant effect on extreme flood flows at a wider
landscape level (Nisbet et al., 2011). Nevertheless, there is evidence for
a forest impact on flood flows at a local level, and for smaller flood
events (Nisbet and Thomas, 2006), as well as recent studies suggesting
that small areas of floodplain woodland in the upper and middle
catchment can have a large effect on reducing peak flood magnitude
(Dixon et al., 2016).

The largest number of studies of regulating and maintenance ES
(29) relate to regulation of the chemical composition of the atmosphere
through carbon sequestration and storage. Evidence for the effect of
afforestation on soil organic carbon (SOC) is dominated by chronose-
quence studies of Sitka spruce (Picea sitchensis) plantations. A previous
review of the effect on SOC of converting grassland to forestry found
inconclusive evidence, citing inherent problems of soil heterogeneity
and few relevant UK datasets as an issue (Reynolds, 2007). Overall,
studies suggest an initial loss of SOC due to a combination of site-spe-
cific factors (e.g. site disturbance, drainage, higher root activity/re-
spiration, thicker litter layer), followed by a recovery and/or increase
with stand age, or by the second rotation (Byrne and Farrell, 2005;
Zerva and Mencuccini, 2005; Saiz et al., 2006; Black et al., 2009). A
long-term study of naturally regenerating native woodland found a
significant increase in SOC (Powlson et al., 1998), whereas an Ireland-
wide study found no significant change in SOC between afforested
(either coniferous, mixed, or broadleaf) and non-forested (paired pre-
afforestation habitat) sites (Wellock, LaPerle and Kiely, 2011). Taking
into account C stored in the forest floor has a positive effect, with
conifer stands in particular having significantly larger C stores than
broadleaf or mixed stands (Wellock, LaPerle and Kiely, 2011).

Studies which also consider aboveground biomass in the growing
trees (i.e. total ecosystem carbon) show significant increases in overall
carbon, with woodlands becoming more significant overall sinks as
stands age, (Wellock, LaPerle and Kiely, 2011; Peichl, Leava and Kiely,
2012). Recent analysis of silvopastoral systems suggest that they may
be able to achieve a higher level of overall carbon storage than
equivalent areas of either woodland or pasture (Beckert et al., 2015;
Upson, Burgess and Morison, 2016). A small number of studies consider
non-carbon GHG dynamics. The evidence is limited, site specific, and
hard to generalise. The initial disturbance caused by conversion of a
grassland to broadleaf planation was found to increase nitrous oxide
emissions, but this effect decreased to approximately one third the
previous grassland level of emission with increasing woodland age
(Mishurov and Kiely, 2010). Elsewhere, conversion of grassland to Sitka
spruce (Picea sitchensis) caused an increase in nitrous oxide emissions,
but a decrease in methane emissions, whereas an Ash (Fraxinus ex-
celsior) plantation have no clear effect on either GHG (Benanti et al.,
2014). Another study considering three transitions (bog planted with
pine (Pinus), grassland planted with pine, and birch (Betula) re-
generating on moorland) found that afforestation resulted in a stable
and consistent sink of methane in all cases (Nazaries et al., 2013).

In terms of modelling approaches, various national scale models
predict that afforestation can sequester significant amounts of carbon,
especially fast growing Sitka spruce (Picea sitchensis) (Nijnik et al.,

2013), but also broadleaf or native woodland (Perks et al., 2010;
Sozanska-Stanton et al., 2016). In a comparison of UK climate mitiga-
tion actions, afforestation of acid grasslands with broadleaf woodland is
predicted to sequester carbon at the highest rate compared to a range of
other options (Sozanska-Stanton et al., 2016). The economic value of
sequestration potential depends on choice of discount rate, yield class,
and social value of carbon (Bateman and Lovett, 2000; Brainard,
Bateman and Lovett, 2009). Scenario analysis suggests that increasing
planting on lowland agricultural land would be more beneficial than
the current trend for planting on low quality upland land, but this as-
sumes a loss of carbon from initial site preparation and drainage
(Brown and Castellazzi, 2014).

3.4. Cultural and provisioning ES

The single paper focusing purely on a provisioning service uses a
mathematical model to estimate the effect of an agroforestry system on
sheep yields and timber production. Results suggest that such a system
can be financially viable, but that it is very sensitive to discount rate
and timber prices (Doyle, Evans and Rossiter, 1986). Only two papers
consider purely cultural ES, considering the impact of afforestation in
rural case studies in Ireland (Dhubháin et al., 2009; Carroll et al.,
2011). Perceptions of forestry and afforestation differed significantly
between regions, with one case study with a longer history of forest
cover showing positive values for amenity and recreation, whereas
another had negative perceptions linked to the dominance of Sitka
spruce, which was considered to have negligible amenity value
(Dhubháin et al., 2009). Another case study comparison showed simi-
larly mixed reactions to afforestation, with large, dense blocks of con-
iferous plantations exacerbating feelings of social isolation in one re-
gion, while in the other contributing to greater landscape diversity and
feelings of inspiration (Carroll et al., 2011). A more locally nuanced
approach to forest planting is suggested to achieve greater social ac-
ceptance of future afforestation (Carroll et al., 2011).

3.5. Disservices

Some evidence points towards the potential negative effects of af-
forestation, in particular relating to the regulation of the chemical
condition of freshwaters. There is strong evidence to suggest that con-
iferous woodlands are more effective at scavenging acid pollutants
compared to other land uses, and thus that they can have an acid-
ification effect on soils and freshwater (Jenkins et al., 1990; Waters and
Jenkins, 1992; Rees et al., 1995; Allen and Chapman, 2001). Whether
broadleaf or native woodlands have the same effect is still the focus of
investigation, with the only two field-based studies having contrasting,
location specific results (Gagkas et al., 2011; Ryan et al., 2012). How-
ever, reduced atmospheric deposition, soil buffering capacity, and
sustainable forest management initiatives such as the use of more di-
verse species mixes and riparian buffer strips are expected to reduce
acidification (Ferrier, Whitehead and Miller, 1993; Curtis et al., 2014).

In addition, despite the potentially beneficial effect of flood at-
tenuation, research has highlighted that there could also be a negative
effect of afforestation on water yield during dry weather. There have
been contrasting results relating to groundwater recharge but model-
ling of a range of potential afforestation scenarios (including both
conifer and broadleaf woodland) has predicted a maximum decrease in
groundwater levels of less than 0.3 m, concluding that an increase in
woodland cover may not exacerbate water stress (Zhang and Hiscock,
2010). Allen & Chapman (2001) reviewed the effect of forest cover on
groundwater resources and concluded that generally afforestation
(again considering multiple types of woodland) can reduce ground-
water yield through interception and transpiration, with both potential
positive and negative effects dependent on site specific factors, in-
cluding land cover, rainfall, infiltration, evapotranspiration and spatial
distribution of the water table.
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3.6. Relationships between ES

A small proportion of studies (21) consider more than one ES, and
could not be assigned to just one service or metric (Fig. 2). Within these
studies, there are varied combinations of topics considered, with study
designs dominated by reviews, spatial analyses and mixed-method ap-
proaches. Overall, these findings highlight that there are a limited
number of studies and no consistent method for assessing the effect of
afforestation on more than one ES at a time. This is an important
finding given the need to understand relationships between ES for ef-
fective policy making. Further developing this challenging topic is be-
yond the scope of this review, and is an important area for future re-
search. This should build upon valuable work already carried out to
assess relationships between ES (Lee and Lautenbach, 2016).

3.7. Study design

There has been an increase in the number of papers focusing on
afforestation over time, with field-based methodologies dominating (86
studies), but there has been a diversification in the methodologies
employed over time, with social studies in particular being a relatively
recent occurrence (Fig. 3). Table 2 summarises the methodologies
employed and assesses their applicability to ES research. Given the long
term nature of woodland development, and the likelihood that any
resulting ES provision will vary over time, there is an obvious lack of
long-term monitoring studies, with literature reviews, modelling, and
chronosequence studies which examine the effect of different stand ages
on the species or ES in question, perhaps aiming to fill this gap.

4. Discussion

Given the research questions outlined in the introduction, we con-
clude by considering how the evidence base outlined in the results can
be used and built upon to design strategies for afforestation which

maximise biodiversity and ES provision. First, the evidence base out-
lined by the review is compared and contrasted to wider international
findings, and evidence gaps are highlighted. Following this, considering
the evidence base outlined by the review, this final section aims to
reflect upon how this base might be used to develop effective strategies
for afforestation in the UK.

4.1. Strong evidence for public goods

At a global scale, reforestation has been identified as the land-based
strategy with the greatest potential for climate mitigation (Griscom
et al., 2017), and the UK level evidence reported here supports this.
Despite this, the assumption that faster growing tree species (such as
Sitka spruce (Picea sitchensis (Bong) Carr.) planted extensively in the
UK) will be most beneficial to carbon sequestration has recently been
challenged (Körner, 2017). These productive forests typically serve the
timber industry, and thus any carbon sequestered has shorter residence
times than slower growing species, with wood products only con-
siderably contributing to carbon sequestration if their overall use rises
(Körner, 2017). For the carbon pool to significantly change in the long
term, the maintenance of slower growing old-growth stands, which also
increase and protect soil organic carbon (SOC) stocks, is expected to be
more beneficial (Körner, 2017; Schwartz et al., 2017). Although evi-
dence for carbon sequestration in old-growth stands in the UK (as a
function of woodland/land use history) is limited, international evi-
dence clearly shows the importance of old-growth stands in this and
other contexts (Luyssaert et al., 2008; Körner, 2017). However, in
countries that are net importers of timber, such as the UK, it is im-
portant that strategies for climate mitigation consider the protection
and maintenance of old-growth stands alongside efficient management
of faster growing tree species to meet demands for wood products and
prevent moving issues of carbon sequestration to other countries.
Overall increases in the amount of carbon sequestered are likely to be as
a function of expanding woodland cover, retaining old growth stands

Fig. 3. Changes in the methodologies used to study afforestation over time.
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and greater use of timber products in buildings.
In terms of SOC, our results align well with other reviews. Both

European (Bárcena et al., 2014) and global (Guo and Gifford, 2002;
Laganière, Angers and Paré, 2010) meta-analyses found a strong in-
fluence of former land use, with afforestation having a more positive
impact on SOC on cropland soils than pastures or natural grasslands. A
more recent global meta-analysis taking into account sampling depth
and carbon-nitrogen interactions found a significant increase in stocks
on both cropland and pasture 30–50 years after afforestation, with
stocks before this being either depleted or unchanged (Li, Niu and Luo,
2012). Given these findings, together with established UK guidelines
which prevent afforestation on deep peat soils (a peat layer greater than
50 cm) (Forestry Commission, 1998), it seems likely that woodland
expansion strategies can benefit soil carbon stocks.

The strong evidence we find for woodland expansion’s contribution
to water flow regulation and flood control aligns with international
reviews showing reduced water yield with afforestation (Farley,
Jobbágy and Jackson, 2005; van Dijk and Keenan, 2007). Afforestation
is more likely to regulate local ‘flash’ floods than major events, and
there are a wide variety of factors that are important to take into ac-
count when determining the overall impact on water resources, in-
cluding tree species physiology, plantation design and management, the
benchmark against which changes are assessed, and the water system
(or catchment) configuration (scale of afforestation, timing of impacts,
location in the catchment) (van Dijk and Keenan, 2007). The knowl-
edge gap for the effect of native woodland is found elsewhere, with a
study of the key drivers (e.g. species composition, tree canopy status) of
natural forest water use highlighting gaps in current functional
knowledge regarding water use by many forest tree species (Aranda
et al., 2012). In terms of the potential disservice of acidification of
freshwaters, the evidence presented here suggests that this effect is
location specific, depending on the soil buffering capacity, tree species,
and level of atmospheric acid deposition. Thus, acidification is not an
inevitable consequence of afforestation (Hong et al., 2018), especially
when taking into account guidelines in the European Water Framework
directive to reduce acid pollution, and national guidelines to avoid
planting in acid-sensitive catchments (Forestry Commission, 2014a).

4.2. Biodiversity

Forest biodiversity research presents particular challenges, given
the long timescales and often large spatial scales over which it takes
place, as well as huge variation in study design (Spake and Doncaster,
2017). The results presented here illustrate this, with a variety of
methodologies used, and a lack of long-term monitoring of changes in
biodiversity with afforestation. This review highlights the patchiness of
evidence available for the effect of woodland expansion on biodiversity,
with evidence limited to a small number of bioindicators (e.g. carabids,
birds) and biased towards dominant woodland types in particular areas
of the UK (e.g. non-native conifer plantations in Scotland). New ex-
perimental designs are aiming to address these challenges. For instance,
a large-scale UK-based natural experiment utilising historic woodland
creation sites (Watts et al., 2016) has shown that bird species responses
to woodland creation depend on local and landscape-scale factors that
interact across time and space (Whytock et al., 2017).

There is an obvious bias towards studies of the effect of conifer
plantations on an also limited set of indicator species, with this being
attributed to the history of afforestation in the UK referred to in the
introduction. Globally there has been much debate about the implica-
tions of plantation forests for biodiversity (Brockerhoff et al., 2008),
and it has been suggested that much of the literature reporting lower
biodiversity in plantation forests has been based on inappropriate
comparisons such as with natural or native forest rather than alter-
native human land uses (Stephens and Wagner, 2007). This is not the
case for the UK evidence, with most comparisons being made to pre-
vious or adjacent land use (e.g. either grassland or agriculture). TheTa
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effect of plantations on biodiversity has been found to vary con-
siderably depending on the original land cover, with positive effects
most likely to occur when plantations are established on degraded or
intensively used lands (Bremer and Farley, 2010). This agrees with our
findings that afforestation on improved grasslands has a more positive
effect on species diversity than afforestation on semi-natural grasslands.
Generally, given the evidence presented here, fostering and main-
taining diversity in new woodland species mix, structure, and stand age
over time is expected to be beneficial to a range of taxa. The lack of
strong evidence for the effect of naturally regenerating native woodland
on biodiversity means that no firm conclusions can be made, and this is
an important area for future research.

Given the likely species turnover from open-ground specialists to
generalists and forest-specialists shown by this review, and evidence for
the development of woodland flora over long time-scales, any assess-
ment of overall changes in biodiversity will inevitably involve a sub-
jective choice between species assemblages. A shift in focus of the
biodiversity metrics used could be more informative for land use
change decisions. Most of the evidence here is based on plot-based
samples for single taxa, defined as alpha diversity. It has been suggested
that measures of beta (spatial) and gamma (total) diversity may be
better suited to assessing land use change at the landscape level (von
Wehrden et al., 2014). Long-term studies could also help us to consider
the time over which species groups/assemblages fluctuate after land use
change, with slower response by specialist species compared to more
generalist species. There is also increasing focus on metrics such as
functional diversity, or the roles that groups of species play in an eco-
system (Aerts and Honnay, 2011). Only one paper found by this review
uses functional diversity as a metric (Spake et al., 2016), and we suggest
that future research should focus more on metrics such as this. There
are also increasing numbers of attempts to link biodiversity to eco-
system services, with the majority of relationships being found to be
positive, although many are still poorly understood (Harrison et al.,
2014). This is an important area for further research.

4.3. Evidence gaps

The significant lack of evidence for the effect of afforestation on
provisioning and cultural ES is interesting given that the primary ob-
jective of many woodlands is for fibre (i.e. timber), and that they also
play major cultural and recreational roles in the UK and beyond (Ward
Thompson and Aspinall, 2011). We propose that biomass and timber
are perhaps taken for granted in terms of ES provision, due to their very
tangible outputs, and that yields are most commonly recorded in other
forms (e.g. in national inventories rather than academic research pa-
pers). Recreation is a commonly used indicator for cultural ES from
woodlands (Scarpa et al., 2000; Edwards et al., 2009; Quine et al.,
2011; Moseley et al., 2017). It may not have been picked up by this
review due to the focus of the search strategy on woodland creation, as
it is easier to measure recreation use in established woodlands than to
monitor its development over time. Methodologies to measure other
cultural ES (i.e. aesthetic, heritage, symbolic, existence values) have
only begun to be significantly developed in recent years (Chan et al.,
2016; Kenter, 2016), and the lack of evidence may be compounded by
the fact that people may more easily recognise values for established
woodlands, but less so for newly created ones. This knowledge gap is a
common problem beyond the UK. The social aspects of ecological re-
storation, in particular negative ones such as farmers’ worries about loss
of land, have not been studied as frequently (Bullock et al., 2011), and
cultural ES were not reported on in a global meta-analysis studying the
effect of ecological restoration on biodiversity and ES, as cultural ser-
vices were not measured explicitly by any of the restoration studies
reviewed (Rey Benayas and Bullock, 2012).

4.4. What does this mean for developing strategies for afforestation that
maximise biodiversity and ES provision?

Given the multiple objectives for afforestation in the UK and in-
ternationally, there is a need to develop strategies which promote sy-
nergies and minimise negative trade-offs between ES and with other
land uses. Considering the evidence base outlined by this review, this
final section aims to reflect upon how this base might be used to de-
velop effective strategies for afforestation in the UK.

4.4.1. Incentivise public goods with strong evidence behind them
The results of this review show that evidence for the effects of af-

forestation is mostly biophysical, and can be classified as relating to
‘public goods’, in that it shows substantial but general and largely in-
tangible benefits to society through climate mitigation and flood risk
reduction. It has previously been recognised that the strong desire for
change (e.g. policy aims for afforestation) is driven by public good
values, and that the public good argument may simply not be effec-
tively operationalised, with incentives such as subsidies and grants not
being put behind the evidence to encourage planting (Slee, 2006). To
date, payments as part of the Common Agricultural Policy (CAP) have
had a very strong influence on land use in the UK and Europe more
widely, with agricultural production being prioritised and subsidised
(Van Zanten et al., 2014). CAP reform could create new financial in-
centives for afforestation, drawing on the evidence base for carbon
sequestration and flood regulation benefits in particular. However, re-
form such as this has been noted to present a formidable challenge, with
money for woodland benefits having to compete with other grant sys-
tems (Slee, 2007; Slee et al., 2014). Spatially explicit research on lo-
cating plantation forestry in New Zealand suggests that where net pri-
vate benefits are negative, public support such as Payment for
Ecosystem Services (PES) should be implemented (Barry et al., 2014).
PES would differ from traditional woodland grant schemes by providing
a more continuous stream of income for the ES provided. The recently
published 25 Year Plan for the Environment emphasises that whatever
may follow the CAP post-Brexit will be strongly focused on a natural
capital approaches, with a new Environmental Land Management
System which will pay farmers public money for public goods (HM
Government, 2018). This shows that there is a significant opportunity
for public funds to be put behind the evidence presented here for the
benefits of woodland expansion.

4.4.2. Further develop integrated modelling approaches to assess land
multifunctionality

Policy objectives for afforestation in the UK aim for ‘multiple ben-
efits’, but there is very limited spatially-explicit evidence for the effect
of afforestation on more than one ES at a time. Given the increasing
focus in ES research on developing integrated modelling approaches
(Costanza et al., 2017) and assessing ES relationships (Cord et al.,
2017), this is a clear area for further research. Within woodlands, the
potential for multifunctionality is high. A European-wide study has
shown that there is a high unrealised potential for multifunctionality in
EU forests, with this being dependent on management (van der Plas
et al., 2017), while a UK review has shown that diverse management is
beneficial to ES provision (Sing et al., 2017). Nonetheless, despite the
high potential for multifunctional woodlands, at the landscape scale,
the complexity of trying to achieve multifunctionality is huge. As a
target, it is generally considered at the landscape scale, meaning that
attempts to achieve multifunctionality must tackle complex interactions
among multiple land covers, land uses and stakeholders (Mastrangelo
et al., 2014). Amongst these stakeholders, there are a multitude of
different values, and balancing the wellbeing of diverse stakeholders
often involves different types of trade-offs, some of which may be ‘taboo
trade-offs’ between morally incommensurable values (Daw et al.,
2015). Further complexities relate to methodological shortcomings.
Landscape assessments are usually based on the transference of ES
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values obtained at ecosystem level (Mastrangelo et al., 2014). This issue
is reflected by the results of this review, with most evidence being
collected at the site scale, despite ES assessments requiring information
relevant or applicable to larger scales. The choice of ES assessed is also
often dependent on the availability of data and models, and assessments
rarely incorporate stakeholders visions and preferences meaningfully
(Mastrangelo et al., 2014), meaning that the ES that really matter to
local people are not always evaluated. There is also much debate re-
lating to alternative strategies of land sharing (making farmland more
friendly for biodiversity) and land sparing (making more space for
unfarmed habitat). Discussion in this debate has become polarised
based on misinterpretation of the many definitions and related con-
cepts, and it is argued that insights from use of the model should be
integrated with social and political knowledge, while recognising that
choices made relating to land use change with always be underpinned
by ethics (Phalan, 2018). Cord et al. (2017) highlight the potential for
scenario approaches to further explore the biophysical constraints of
landscapes and potential limitations for multifunctionality, but also
acknowledge that significant challenges remain in terms of integrating
the biophysical focus of many studies with stakeholder preferences.
Given the lack of research on stakeholder preferences illustrated by this
review, we next consider why this may be the case, and how further
research might tackle this.

4.4.3. Social barriers
As previously noted, woodland expansion, in particular in relation

to its potential role in climate change mitigation, has been described as
a ‘wicked problem’ (Duckett et al., 2016). Stakeholders have different
perspectives and goals, both in relation to the successful implementa-
tion of woodland planting, and to climate change in general (Duckett
et al., 2016). Despite significant evidence for public goods arising from
afforestation, barriers to woodland creation have been shown to be
mostly social. Studies have shown that landowners may be reluctant to
plant trees for many reasons. Despite decades of Forestry Commission
grants for new woodland and attempts to create voluntary carbon
markets for woodland (Forestry Commission, 2014b), the desired levels
of planting have not been achieved (Thomas et al., 2015). There is a
wide cultural gap between forestry and farming in the UK (Scambler,
1989; Duesberg et al., 2013; Wynne-Jones, 2013; Slee et al., 2014) and
a bureaucratic application process, as well as a lack of information and
advice, have been further cited as discouraging factors (Lawrence and
Dandy, 2013; Lawrence and Edwards, 2013; Moseley et al., 2014). The
forest ownership structure has had a major role in this divide, with
rights to trees on tenanted land often vested in the landlord, resulting in
alienation of tenants from the farm woodland on their land (Wong
et al., 2015). As a large majority of land and forests in the UK and
Ireland are owned privately, woodland expansion requires the in-
volvement of private landowners, a large number of whom have been
found to have generally negative attitudes to woodland creation
(Lawrence and Dandy, 2013). The public good argument can also not be
assumed to be inherently effective in generating action. The focus on
woodland for carbon sequestration in Wales has been characterised as a
distraction from the development of better governance strategies that
learn from literature on farmer behaviour and uptake of previous en-
vironmental schemes (Wynne-Jones, 2013). Real or perceived trade-
offs of new woodland with the ES or profitability of other land uses may
have a role in holding afforestation back, and disagreements are often
rooted in the core values and behaviours of land managers (Slee et al.,
2014). Research shows that ‘nudge’ type approaches, along with de-
liberation with stakeholders, may help to overcome misconceptions
(Moseley et al., 2014). These can include providing defaults and
prompted choices e.g. adding woodland creation (with an emphasis on
climate change mitigation) to application forms for grants for land
management (Moseley et al., 2014).

4.4.4. Trade-offs and synergies
Taking into account these barriers, elsewhere it has been argued

that the focus of previous research on biophysical potential for multi-
functionality has obscured the importance of social factors, such as
taboo trade-offs, or incommensurable values (Daw et al., 2015; Cord
et al., 2017). The emerging Forest and Landscape Restoration (FLR)
agenda argues that we lack the knowledge needed to operationalise and
implement restoration successfully at different scales whilst also ad-
dressing the needs and aspirations of landholders, and that however
much evidence supports the potential value of afforestation, social ac-
ceptability often lags behind (Chazdon et al., 2017; Ghazoul and
Chazdon, 2017). With very few studies relating to public or land holder
preferences for afforestation and land use change, this review confirms
this knowledge gap. However, the limited number of findings do sug-
gest that a more locally focused approach to afforestation may help to
ensure that strategies take account of public preferences.

Any type of land use change is expected to generate winners and
losers, with conflicts based on stakeholder values, and it is argued that
there is increasing need for deliberative and participatory research
methods to understand these conflicts (Martinez-Harms et al., 2015;
Valluri-Nitsch et al., 2018). Significant challenges remain in terms of
choosing standard values for decision making around ES (Cord et al.,
2017), and attempts to develop these at the national scale have been
criticised, due to the difficulties in reaching consensus developing ap-
propriate indicators for particular settings (Slee, 2007). Trade-offs and
synergies with other land uses, and between ES, are going to be context
specific (Chazdon et al., 2017) and therefore local assessments which
involve active participation of land managers are argued to be neces-
sary to make discussions and decisions around socio-cultural effects of
afforestation clearer (Slee et al., 2014). Recent work advocating the use
of relational and shared values between stakeholders will be particu-
larly beneficial (Chan et al., 2016; Kenter, 2016), as may working with
visions, or ‘positive scenarios of ideal futures’, which can help to
highlight areas of common ground and initiative discussion and colla-
boration between stakeholders (Burton et al., 2018).

4.4.5. Implications
Overall, given the strong evidence for public benefits from affor-

estation, together with social barriers and a lack of evidence for socio-
cultural effects, there is a need for more context specific, participatory
research with multiple stakeholders to better assess trade-offs and sy-
nergies generated by afforestation in different contexts.

Although not a novel idea, an increasing number of different areas
of research, as well as practical landscape scale initiatives, have
emerged in recent years which can guide further research or actions in
this area. In a Scottish context, it has been argued that locally focused
action research and collaborative learning will help to better under-
stand and resolve conflicts (Slee et al., 2014), and the Regional Land
Use Partnerships piloted as part of the Scottish Land Use Strategy have
been an attempt to put this into action (The Scottish Government,
2016). Lessons from these may be applicable to the UK as a whole and
more widely. Many other landscape scale initiatives internationally are
piloting similar ideas, increasingly focused on involving local stake-
holders in dialogue and decision making for sustainable development,
for example Model Forests (Bonnell et al., 2012) and UNESCO Bio-
sphere Reserves (Ishwaran, Persic and Tri, 2008). Globally, the FLR
agenda proposes a framework for integrating agricultural and restora-
tion/environmental policies, conceding that there will be a mixture of
‘muddling through’ with the best available evidence (Sayer, Bull and
Elliott, 2008) whilst also developing cross-level environmental gov-
ernance (Brondizio, Ostrom and Young, 2009; Chazdon et al., 2017).
Overall significant challenges remain in terms of improving under-
standing and coordination at local levels, while also coordinating ac-
tions at a national level to ensure that policy goals for afforestation are
met.
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5. Conclusion

This review has characterised the evidence base for the effect of
woodland expansion, encompassing afforestation, reforestation, wood-
land creation, and forest landscape restoration, on ecosystem services in
the UK. Currently the largest body of evidence exists for the effects of
conifer plantations, and public benefits such as carbon sequestration
and water regulation. Evidence gaps need to be filled in relation to: a
broader consideration of other taxa and metrics for biodiversity; natural
regeneration; native woodland; farm woodlands; cultural and provi-
sioning ES and particularly multiple ES. We recommend that site spe-
cific and, if possible, long-term research should be carried out on
naturally regenerating and new farm and community woodlands in
particular. The public good argument needs to be more effectively
operationalised in order to meet planting targets, perhaps through new
forms of incentives relating to Natural Capital or Payment for
Ecosystem Services (PES) schemes. In addition to this, we argue that
context specific, participatory research and implementation may be the
best way forward in terms of assessing the effect of woodland expan-
sion, and in making the best decisions for land-use in the future.
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