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Sparsity Driven GMTI Processing Framework with
Multi-Channel SAR

Di Wu, Mehrdad Yaghoobi, Member, IEEE, and Mike Davies, Fellow, IEEE

Abstract—This paper presents a processing framework to
separate moving targets from the clutter, under multi-channel
synthetic aperture radar (SAR) scenarios, and addresses the
moving target imaging and velocity estimation problems for
ground moving target indication (GMTI) applications. A prac-
tical implementation is introduced to break the SAR/GMTI
problem into two processing stages, and the sparsity of the
moving targets in the observed scene, is exploited throughout the
stages. The two stage process extracts the moving targets from
the monitored region via a sparsity-based iterative decomposition
algorithm, and subsequently estimates the complete velocity
vectors of moving targets by enforcing sparsity constraints. The
model is sufficiently versatile to incorporate digital elevation map
(DEM) information which further improves the moving target
relocation accuracy. The effectiveness of the presented framework
is demonstrated using Air Force Research Laboratory (AFRL)
Gotcha GMTI challenge data.

Index Terms—Synthetic aperture radar (SAR), Ground moving
target indication (GMTI), sparsity, compressed sensing, digital
elevation map.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) was first introduced
as the remote surveillance instruments to provide high

resolution 2D images of the monitored scene with weather-
independent, day-or-night surveillance capability. Ground
moving target indication (GMTI) techniques can be combined
with SAR to pick up moving targets within the formed images
and estimate their motion parameters including physical posi-
tions and velocities. Since the basic SAR mechanism assumes
a stationary scene, a moving target will be displaced and
blurred in the formed images. Furthermore, reflected signals
from moving targets are buried in the clutter interference
which makes targets detection and velocity estimations chal-
lenging.

A multi-channel SAR system gives additional features to
GMTI applications compared to single-channel methods. For
single-channel approaches, slowly moving targets will result
in detection difficulties since their Doppler frequency shifts
fall into the endo-clutter (mainlobe clutter) spectra. The multi-
channel SAR configuration promotes the detection capabili-
ties, and it has smaller minimum detectable velocity (MDV)
compared to the single-channel mode [1]. Widely used multi-
channel GMTI techniques include image-based subtractive
methods, such as Displaced Phase Center Antenna (DPCA)
and Along Track Interferometry (ATI) [2][3], and raw-data-
based approaches, such as Space-time Adaptive Processing
(STAP) and imaging STAP (ISTAP) [4][5]. In particular,
DPCA suppresses the clutter based on magnitude in the image
domain, and ATI reveals moving targets via the interference

phases between different radar channels. STAP is an adaptive
filtering technique that realises the GMTI tasks by solving a
computational expensive statistical test problem. It is worth
mentioning that these approaches have been proven to work
properly under a homogeneous clutter assumption. However,
for non-homogeneous terrains, such as mountains with large
terrain variations and urban regions with strong building scat-
terers, the aforementioned methods may miss the detections
and advanced techniques are needed to be employed [6].
Recent developments in SAR/GMTI involve the extensions of
DPCA (EDPCA) [7], hybrid techniques that use DPCA and
ATI [1], and sparsity based approaches [8][9].

A. Main Contribution

In this paper we introduce a sparsity based framework for
multi-channel SAR-based GMTI applications. A fundamental
additive model is assumed, (1), such that the SAR image X ∈
CM×L can be decomposed into the background image (static
reflectors) Xs and the dynamic image Xd (moving targets).

X = Xs + Xd (1)

By leveraging the sparsity of Xd, i.e. the moving targets
are sparse in the monitored scene, the GMTI task can be
formulated as a sparsity regularised optimisation problem
to separate Xd from Xs, and estimate the moving target
states, i.e. their locations, reflectivities and velocities. Unlike
conventional clutter suppression methods such as DPCA and
ATI which are mainly based on detecting the moving targets,
the presented framework is capable of decoupling the moving
target signal and the strong background clutter, and it provides
further potential to implement subsequent automatic target
recognition (ATR), or even inverse SAR on the extracted
moving targets. In addition, we show that the framework is
sufficiently versatile to incorporate the DEM which further
improves the moving target relocation accuracy especially
when significant elevation variations exist.

Consider the typical SAR-based GMTI tasks of image
formation, target indication, and state estimation. The pro-
posed sparsity based framework is designed to integrate these
GMTI goals into an optimisation problem regularised by target
sparsities, and it serves as a generic model for tackling these
problems which can also incorporate other SAR imaging
algorithms. However, solving the optimisation problem within
one processing stage is very challenging as the target locations
change as a function of their estimated velocities. Therefore
in this paper, a practical solution is to break the problem into
a two stage process where we first utilise target sparsities
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to separate the blurred and displaced moving targets from
the static background scene and subsequently relocate and
refocus individual moving targets, again exploiting the sparsity
constraint. While the two stage process sacrifices a degree of
sparsity (the blurred targets are less sparse than the correctly
focused ones), it results in a simpler more tractable problem.
Compared to the preliminary work on this topic [8][10], this
paper presents a complete SAR/GMTI processing pipeline and
a more robust implementation for tackling the model. We
also consider the DEM information throughout the pipeline
and provide solid experimental results via the real AFRL
GOTCHA GMTI challenge data [11].

Overall, the contributions of this work are:
1. a novel sparsity-aided framework which integrates the

SAR/GMTI missions, i.e. SAR imaging, moving target
and background decomposition, and target state estima-
tion, into optimisation problems,

2. practical implementation of the proposed framework
with a two stage process and theoretically/experimentally
proven algorithms,

3. incorporation of a DEM model into the SAR-based GMTI
processing. Although the focus here is on enhancing
the proposed sparsity-based SAR/GMTI framework, the
exploitation of the DEM in other SAR/GMTI algorithms
may be of independent interest.

B. Structure of This Paper
The remainder of paper is organized as follows. Section

II describes the signal modeling of a typical multi-channel
SAR system with a specific terrain map. The geometry of the
spotlight airborne SAR system is depicted and the received
SAR data model is introduced. In section III we mainly focus
on the proposed sparsity-driven SAR-based GMTI processing.
We start by discussing the pre-processing methods of SAR raw
data. Then the SAR imaging and GMTI basics are introduced.
We also present the motivation of using sparsity in SAR-
based GMTI and how it differs from existing methods. By
considering the priori information (e.g. sparsity) involved in
the moving target characteristics, we introduce detailed imple-
mentations of the proposed SAR/GMTI framework. A robust
moving targets and background decomposition algorithm is
presented, and the mechanism of the ground moving target
imaging and motion parameter estimation using sparsities is
explained in detail.

We demonstrate the performance of the proposed approach
through real multi-channel airborne SAR data in section IV.
Here the AFRL Gotcha GMTI challenge data which contains a
known moving vehicle in the urban environment is investigated
and the complete processing pipeline is presented. We show
the formed DEM aided images of both the moving targets and
background. We also compare the proposed method with other
GMTI approaches in this section, and report the differences
on the estimated target locations and velocities. Future work
and conclusions are summarized in section V.

GLOSSARY

X the complex SAR image.

Xd the SAR image of the moving targets.
Xs the SAR image of the background.
Yi the 2-D phase history for the i−th channel.
Ỹi the pre-processed phase histories of the i−th channel.
V(x) the x-direction velocities of the image pixels (V(y) and

V(z) likewise).
V the velocity map (V(x),V(y),V(z)) of the whole observed

scene.
P the phase correction matrix on Xd between different chan-

nels.
Gml the discrete grid on which the SAR image is formed.
gi the antenna gain of the i−th channel.
σ the reflectivity of the moving target.
c the velocity of light.
fk the discrete range frequencies.
τn the discrete slow time with pulse number n.
d the channel spacing.
fPRF the system pulse repetition frequency (PRF).
r the instantaneous position vector of the platform.
r(t)i the vector from the i−th antenna to the moving target.
r(o)i the vector from the i−th antenna to the origin.
vt the vector that represents the moving target velocity.
v(r) the vector that represents the radial velocity of the target.
vp the vector that represents the platform velocity.
H the channel balancing matrix in the Doppler and range

frequency domain.
Qi(Ω) the channel-dependent term in Yi with the range

frequency Ω.
Di(ω) the antenna pattern in Yi with the Doppler frequency

ω.
‖‖F the Frobenius norm.
N the element-wise normalisation operator.
� the element-wise product operator.
� the element-wise division operator.
〈·, ·〉 the dot product operator.

II. GEOMETRY AND SIGNAL MODELING

A typical multi-channel SAR system which operates in the
spotlight mode is depicted in Fig. 1, where the observed scene
contains a number of moving targets. A terrain map that
contains elevation information on the z direction is associated
with the illuminated region. An airborne platform carries
multiple radar channels which are equally positioned with a
distance d along the flight path. In the rest of the paper, bold
letters denote vectors and matrices and non-bold ones denote
scalars. Specifically, the non-bold term is the Euclidean norm
of the bold one with the same name. Let vt = (v(x), v(y), v(z))
be the velocity vector of a moving target in the scene, whereas
v(r) and v(az) denote its corresponding radial and azimuth
velocity respectively. τn represents the slow (azimuth) time of
the transmitted pulses where n = {1, 2, ..., N} is the pulse
number. We denote r

(t)
i (τn) (the norm of r(t)i (τn)) as the

distance between this target and the i−th antenna. Similarly
r
(o)
i (τn) is the distance from the scene center to the i−th

channel. The platform velocity vp is assumed to be a constant
within a short enough sub-aperture.
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Fig. 1: The geometry of a typical multi-channel SAR system
in the spotlight mode. A number of moving targets are present
and the observed scene is associated with a digital elevation
map.

We consider the moving target with the reflectivity σ in
Fig. 1 to illustrate the signal model. After the de-chirping
process (the scene origin is calibrated to have zero phase) and
discretization, by defining K as the number of range frequency
samples in the phase history and N as the number of azimuth
samples, the received signal for the i−th antenna from this
target is a K ×N complex matrix which can be modeled as:

Yi(fk, τn) = giσ exp

(
−j4πfkui(τn)

c

)
(2)

where {fk|k = 1, 2, ...,K} denotes the range frequencies and
ui(τn) represents the differential range r

(t)
i (τn) − r

(o)
i (τn).

Given that X ∈ CM×L (the imaging scene is defined on the
M -by-L discrete grid) is the collection of the reflectivities
from all targets (both static and moving) in the scene with
the constant antenna gain, the received phase history can
be assembled by accumulating the reflected signals from all
reflectors:

Yi(fk, τn) =

M∑
m=1

L∑
l=1

X(m, l) exp

(
−j4πfkumli(τn)

c

)
(3)

Here umli(τn) represents the differential range with re-
spect to the reflector at (m, l). The signal model (3) can be
rewritten in the matrix-vector form as Yi = ΦF (X), where
Yi ∈ CK×N is the 2-D phase history for the i−th channel and
ΦF denotes the forward operator that projects the reflectivities
to the phase history. More generally, for small sub-apertures
the distance measure umli(τn) can incorporate velocities. To
avoid ambiguities, we denote ΦV

F and Φ0
F as the forward

operators for all targets with the velocity map described by
V = (V(x),V(y),V(z)) and the static scene respectively. The

ΦV
B and Φ0

B are the inverse operators of ΦV
F and Φ0

F which
project from the received signals to reflectivities (details can
be found in section III).

In fact r(t)i (τn) indicates how the distance from the antenna
to the target varies with time, and it depends on three compo-
nents, i.e. the platform velocity vp, the target velocity vt and
the channel positions.

Let

r
(t1)
i (τn) = −vpcos(α)τn

r
(t2)
i (τn) = vtcos(β)τn

r
(t3)
i (τn) = cos(α)(i− 1)d

(4)

where α defines the angle between the radar-target vector and
the platform velocity vector (cos(α) = 〈vp/vp, r

(t)
i /r

(t)
i 〉), β

denotes the angle between the radar-target vector and the target
velocity vector (cos(β) = 〈vt/vt, r(t)i /r

(t)
i 〉), and r

(t1)
i (τn),

r
(t2)
i (τn) and r(t3)i (τn) account for the variations on r(t)i (τn)

induced by the platform velocity, target velocity and channel
number respectively.

Within a short sub-aperture, the varying range between the
target and platform r

(t)
i (τn) can be approximated with

r
(t)
i (τn) ≈ r(t)1 (0) + r

(t1)
1 (τn) + r

(t2)
1 (τn) + r

(t3)
i (τn) (5)

where the constant r(t)1 (0) corresponds to the distance from
the first channel at the initial position of the sub-aperture to
the target. Similarly we can decompose r

(o)
i (τn) into three

components with an additional constant, and thus implement
an expansion on (2) given that ui(τn) = r

(t)
i (τn) − r(o)i (τn).

It can be seen from (5) that r(t3)i (τn) is the dominating
channel number related term. These formulations offer us
further insight into how different radar channels and the target-
platform relative movement function in the signal model, and
can be exploited to pre-process SAR data.

III. SPARSITY BASED GMTI

This section investigates the sparse modalities in SAR-
based GMTI applications. We develop a novel SAR/GMTI
framework and show that the target sparsities can be exploited
to help decouple moving targets and background, and estimate
moving target states. In addition, the essential pursuit of
GMTI methods and the use of DEM are discussed. The entire
flowchart of the processing pipeline is illustrated in Fig. 2. It
is worth mentioning that the two processing stages are both
exploiting the target sparsities and they can be formulated as
one optimisation problem. Here we break the framework into
a two stage process as a more tractable solution.

A. Data Pre-processing

We first discuss the pre-processing of the received phase his-
tories based on the aforementioned side-looking multi-channel
SAR scenario. The task is to implement a channel calibration
to acquire the same responses for static reflectors among dif-
ferent channels. An adaptive 2-D channel balancing technique
was introduced in [12][13] to tackle this problem. We apply
this method to the SAR pre-processing in the remainder of
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Phase 

histories Pre-processing
Moving targets and 

Background Decomposition

Sparsity

Moving targets

Background

Moving Target Imaging and

Target State Estimation

Target states

Refined moving target image

(refocused and relocated)

DEM

Fig. 2: The flowchart of the sparsity driven SAR/GMTI processing framework. It provides multiple features including the
separation of moving targets and background, the moving target imaging, and the target velocity estimation. The DEM
information is also exploited.

the paper. Consider (2), (4) and (5), the relative movement
between the platform and target will introduce a channel
related calibration term exp(−j4πr(t3)i (ω))/λ) = exp(−j(i−
1)ωd/vp) (by inserting (4)) to the Doppler transformed signal
where λ is the corresponding wavelength and ω is the Doppler
frequency. If we put aside the moving targets, we have two
channel related facets which influence the Doppler frequency
domain signal, i.e. the antenna characteristics gi and the
channel spacing d. In general, the Fourier transformed signals
in the continuous Doppler and range frequency domain (ω,Ω)
have the following form [13]:

Yi(ω,Ω) ∼= A(ω)Qi(Ω)Di(ω)exp(−j (i− 1)d

vp
ω) (6)

where A(ω) is the nominal factor that denotes the complex
Doppler dependencies. This approximation holds when the
observed scene is dominated by the stationary background.

It can be seen from (6) that the Doppler related terms
are approximately independent of the range frequency related
terms (it holds for the SAR mode with small squint angles).
Therefore, the phase histories can be calibrated with two
functions in azimuth and range directions, e.g. the Haz(ω)
and Hrg(Ω) in (7), to acquire the same responses from static
reflectors for a pair of channels. The calibration functions for
the i−th and k−th channels are:

Haz(ω) =
Di(ω)

Dk(ω)
ej(k−i)ωd/vp

Hrg(Ω) =
Qi(Ω)

Qk(Ω)

(7)

We denote Ŷi as the Fourier transformed Yi in the Doppler
and range frequency domain. The phase history for the k−th
channel can then be balanced via Ŷk � H where H(ω,Ω) =
Haz(ω)Hrg(Ω). We therefore have the channel balancing
matrix H as a rank one matrix. The balanced phase histories
can be transformed back to the (fk, τn) domain and we denote
the pre-processed phase histories of the k−th channel as Ỹk.
Therefore, the channel balancing can be performed pair-wise.
The channel balancing step plays a vital role in subtractive
GMTI algorithms such as DPCA and ATI which pick up mov-
ing targets through the coherent differences between channels.
Inaccurate calibrations will lead to imperfect subtractions and

increase the false alarm rates. In practice H can be estimated
via:

min
H

1

2
‖Ŷi − Ŷk �H‖2F (8)

for which a viable solution is presented in [13].
Note that more azimuth samples lead to refined accuracy in

estimating Hrg(Ω). However, high fidelity will be preserved
only for the azimuth samples in low frequencies as Haz(ω) has
significant attenuation in amplitudes with azimuth frequencies.
In this paper we estimate Haz(ω) and Hrg(Ω) over sub-
apertures (8000 pulses), and abandon the high frequency parts
(7200 azimuth frequencies) in Haz(ω).

B. SAR Imaging and GMTI

The SAR image formation algorithms are essentially solving
the following optimisation problem:

min
X

1

2
‖Yi − ΦF (X)‖2F . (9)

Conventional SAR imaging approaches originated from the
attempt to approximate the pseudo inverse of the forward
projection operator Φ0

F . Take the well known matched filter
and back projection algorithms as some examples. They realise
the image formation via X = Φ0

B(Yi), where the backward
projection operator Φ0

B is the Hermitian transpose of Φ0
F in

the sense of matrices:

X(m, l)=

K∑
k=1

N∑
n=1

Yi(fk, τn) exp

(
j4πfk∆Rmln

c

)
(10)

associated with the discrete grid, Gml = (xm, yl, zml), on
which the SAR image is formed, where m = {1, 2, ...,M},
l = {1, 2, ..., L}, zml is the DEM associated with (xm, yl).
The differential ranges ∆Rmln are:

∆Rmln = ‖r(τn)−Gml‖2 − R0(τn) (11)

where R0(τn) = ‖r(τn)− rref‖ denotes the distance as a
function of azimuth time between the platform and a reference
point rref (usually the scene center). For the rest of the
paper, we employ a fast back projection approach [14] for the
SAR imaging operator Φ0

B which is an accurate and efficient
approximation of (10).

In SAR imaging, multiple target detection algorithms have
been proposed to identify the ground moving targets within the
formed images. In particular, DPCA is implemented through
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the subtraction of the formed SAR images between different
channels, ATI is realised by multiplying the formed image
from one channel with the conjugate of the complex image
from another channel, and a recent compressed sensing based
method exploited the pixel-wise sparsity of the moving targets
in the image domain [9].

In general, these GMTI techniques can be taken as the
post-processing of the SAR images. They are capable of
detecting displaced targets in SAR images and estimating
their radial velocities. Since the SAR image formation is
essentially based on minimising an objective function (9),
we are motivated to incorporate the GMTI features into the
SAR imaging optimisation framework and thus implement the
GMTI tasks simultaneously within the imaging step. Com-
pared to the conventional SAR-base GMTI processing chain,
we aim to develop an end-to-end framework from the optimi-
sation perspective. Furthermore, conventional DPCA and ATI
algorithms mainly focus on target detection using subtractive
approaches between channels and are not designed to realise
an exact moving target and background decomposition. We
next introduce the proposed SAR/GMTI framework in detail.

C. Moving Targets and Background Decomposition

The flowchart of the moving targets and background decom-
position stage can be visualised via Fig. 3. We first introduce a
variable splitting approach (1) to the SAR image domain, and
denote Xs ∈ CM×L and Xd ∈ CM×L as the static background
and moving (displaced and blurred targets) target reflectivities
for the first channel, respectively. Motivated by the fact that
the formed images of one moving target with neighbouring
channels have a phase difference (4π/c)f0v

(r)(d/vp) (f0 is the
central frequency of the transmitted signal) which encodes the
target radial velocity, we can then introduce a phase correction
matrix P that enables us to describe the dynamic image in the
other channels. Specifically Xd can be assumed to be sparse
given that there are typically few spatially localized moving
targets in the observed scene (Xd is assumed to have at most
s non-zero entries).

Pre-processed

phase histories

Moving targets and Background 

Decomposition via Algorithm 1

DEM

Dynamic image 

Background image Phase correction matrix

Fig. 3: The moving targets and background decomposition
stage of the proposed framework.

The moving targets and background decoupling model can

be described as:

min
Xs,Xd,P

1

2

∑
i

‖Ỹi − Φ0
F (Xs + Xd � Pi−1)‖2F

s.t. ‖Xd‖0 ≤ s
supp(Xd) = supp(P-1)

|Pml| = 1, m = 1, . . . ,M, l = 1, . . . , L

(12)

where P ∈ CM×L is the phase correction matrix on Xd

which has element-wise magnitude 1 entries (e.g. the station-
ary reflectors off the support of Xd have zero phase shifts
Pml = exp (j0) = 1), the moving target reflectivities in Xd

are assumed to be s−sparse, and supp(Xd) stands for the
support set of Xd indicating the non-zeros in Xd. As shown
above, the radial velocity of the target is encoded in the phase
of P. Xd and P-1 have the same support on the pixels which
form the moving targets, and P-1 is thus s−sparse as well.
We assume that the channel phase centers are equally spaced
and define Pi as:

Pi = P� . . .� P︸ ︷︷ ︸
i

(13)

where i > 0 and P0 = 1.
By leveraging the sparsity of the moving targets and main-

taining the data fitting fidelity, the presented model (12)
retrieves the formed images for both moving targets Xd

and background Xs, and simultaneously estimates a phase
correction matrix P. Practically P leads to the direct estimation
of the radial velocities of the moving targets. Note that Xd cor-
responds to the displaced and blurred moving targets without
considering for the velocity components. A variant of (12) can
be formulated by considering full target velocity vectors, and
the state estimation of moving targets is thus simultaneously
realised in this processing stage. However, the target locations
change as a function of their estimated velocities and there is a
lack of computationally effective forward/backward projection
operators to handle all moving targets simultaneously. This
difficulty drives us to put aside the full target velocity vectors
in (12) and employ the moving target state estimation in the
subsequent step.

Since (12) is a challenging non-convex optimisation prob-
lem, we reformulate it for a more practical implementation. To
simplify tackling this non-convex optimisation, we first intro-
duce the intermediate variables dX1 =Xd�P−Xd =Xd�(P−1)
and X1 = Xs+Xd. These let us to establish good initialisations
with DPCA and ATI algorithms. Particularly dX1 can be taken
as the differences between the SAR images of the 2−nd and
1−st channels, and X1 corresponds to the reconstructed SAR
image based on the first channel. Therefore dX1 and X1 can
be initialised with the DPCA and back-projection algorithms.
Note that we have the bijective mapping from the variable set
{Xs,Xd,P} to {X1,dX1,P}. We then propose an alternating
update mechanism on X1, P and dX1 that alternately updates
one of them at a time, while keeping the others fixed. With I



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, MONTH 2018 6

radar channels (12) can be rewritten as:

min
X1,dX1,P

1

2
‖Ỹ1 − Φ0

F (X1)‖2F +

1

2

I∑
i=2

‖Ỹi − Φ0
F (X1 +

i−1∑
j=1

dX1 � Pj−1)‖2F

s.t. ‖P-1‖0 ≤ s
supp(dX1) = supp(P-1)

|Pml| = 1, m = 1, . . . ,M, l = 1, . . . , L

(14)

Since we have ‖Xd‖0 = ‖P− 1‖0 = ‖dX1‖0 and equal
supports, the sparsity constraint can be introduced to assume
that P-1 has no more then s non-zeros.

The detailed implementation of the proposed decomposition
method can be found in Algorithm 1. Through the iterations,
X1 is updated along the negative gradient direction, the phase
correction matrix P is updated with gradient decent methods
followed by an element-wise projection onto the the unit ball
and thresholding operations [15] on P-1 (the cost function is
non-increasing with appropriate step sizes as shown in [16]),
and dX1 is computed using gradient decent methods while its
support is limited by supp(dX1) = supp(P-1). Throughout
the algorithm, the final support of dX1 and P-1 are achieved by
iteratively thresholding P-1. As the magnitudes of the elements
of P-1 are bounded between 0 and 2, and Xd has no upper
bound for its magnitudes, one advantage of thresholding P-1
is that it prevents the elements of Xd from having excessive
magnitudes, when we estimate Xd based on P-1.

To achieve accurate approximations within a few iterations,
we initialise dX1 with the DPCA algorithm using the first
two channels, X1 using the back-projection algorithm on the
first channel, and P with N

(
Φ0

B(Ỹ3 − Ỹ2)� Φ0
B(Ỹ2 − Ỹ1)

)
respectively, where N is the normalisation operator (N (P) =
P�|P|) to preserve the phases and P indicates the conjugated
P. |k stands for the corresponding variable in the k−th itera-
tion. γ1, Γ2 and γ3 are the step sizes in the gradient descent
directions. A threshold value ψ can be tuned to threshold the
estimated Xd for improved visualisation. If a is an arbitrary
vector, the hard-thresholding operator T (a, ψ) can be defined
so that all the elements in a below ψ (in magnitude) are
set to zero. Practically the value of ψ is driven by the level
of noise in the data to best approximate the SAR image of
moving targets Xd. To eliminate the small values in Xd without
significant signal attenuation, ψ can be 0 or a very small value
for subsequent processing. The value of ψ will depend on the
specific SAR scenario, and instead of assigning a constant
value to ψ, we tune ψ to be proportional to the energy of
Xd, i.e. ‖Xd‖F . In particular, for the real data in this work,
ψ < 0.5%‖Xd‖F has achieved acceptable performance in our
experiments.

For a three-channel SAR system, in this
paper, we approximate the step sizes with γ1 =
‖Ỹ1‖2F /‖Φ0

B(Ỹ1)‖2F , Γ2 = ‖Ỹ1‖2F /‖Φ0
B(Ỹ1)‖2F � |dX1|2

and γ3 = ‖Ỹ1‖2F /‖Φ0
B(Ỹ1)‖2F /2 based on the spectral norm

argument given in [17]. Note that these step sizes play a
crucial role in the performance of gradient descent methods.
Although these step sizes work well in practice to decrease

the objective function, to rigorously guarantee the non-
increasing of the cost function, we can employ the following
backtracking mechanism at the end of each iteration. Let
f(X1,dX1,P) be the objective function in (14). Whenever we
find that f(X1|k+1,dX1|k+1,P|k+1) > f(X1|k,dX1|k,P|k)
at the end of iteration, we restart the k−th iteration with
halved γ1, Γ2 and γ3. Similary we employ the backtracking
mechanism for updating P because of the complicated
constraints on it, i.e. in (15) we estimate P|k+1 with the
weighted combination of the new estimate and previous
estimate P|k, and P|k+1 is re-estimated with halved λ if
f(X1|k+1,dX1|k,P|k+1) > f(X1|k+1,dX1|k,P|k).

The update equations for P and dX1 are defined as follows:

Pml|k+1 =


λ×N

(
Pml|k+0.5

)
+ (1− λ)× Pml|k

|N
(
Pml|k+0.5

)
− 1| > ϕ

1 otherwise

(15)

dX1
ml|k+1 =

{
dX1

ml|k+0.5 Pml|k+1 6= 1

0 otherwise
(16)

where λ (default value is 1) is used for the backtracking
mechanism. ϕ is the constant controlling the sparsity of
moving targets (ϕ is 0.5 in this paper for consistency).

D. Required Number of Channels

It is worth mentioning that at least three channels are
required to complete the task of decoupling moving targets and
the background. With less channels the feasible set (assuming
exact data fidelity) would be the whole space and therefore
there would not be enough constraints to identify the sparse
moving targets. Consider a simple three-channel SAR system
with a single moving target at position (m, l), we denote Xi

(i = {1, 2, 3}) as the reconstructed reflectivities for the i−th
channel. Therefore we have the equations:

X1(m, l) = Xs(m, l) + r

X2(m, l) = Xs(m, l) + rq

X3(m, l) = Xs(m, l) + rq2
(17)

where r ∈ C is the reflectivity of the target, and q ∈ C is the
phase correction of the target between channels which lies on
the unit ball.

Based on the reflectivities Xi, (17) would be enough to
retrieve the three unknowns Xs(m, l), r and q. However, if we
are given only the first two channels (the first two equations in
(17)), we can only estimate r and q as long as r � Xs(m, l)
(this is essentially ATI assumption) via:

r = X1(m, l)

Xs(m, l) = 0

q = X2(m, l)/X1(m, l)

(18)

However, when Xs(m, l) is not negligible, (18) is inaccurate
and we have ambiguities in estimating Xs(m, l), r and q.
Therefore q and the radial velocity of the target cannot be
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Algorithm 1 : Iterative algorithm for approximating the solution of (14).

1: {Initialisation} k ← 1; X1|k ← γ1Φ0
B(Ỹ1); P|k ← N

(
Φ0

B(Ỹ3 − Ỹ2)� Φ0
B(Ỹ2 − Ỹ1)

)
; dX1|k ← γ1Φ0

B(Ỹ2 − Ỹ1);
Xd ← 0

2: while k < K do
3: {Updating X1} X1|k+1 ← X1|k −

γ1
3
×

Φ0
B

(
Φ0

F

(
I × X1|k+

I−1∑
i=1

(i× dX1|k � PI−1−i|k)

)
−

I∑
i=1

Ỹi

)
4: {Updating P} P|k+0.5 ← P|k − Γ2�

I∑
i=3

(
Φ0

B

(
Φ0

F

(
X1|k+1+

i−1∑
j=1

dX1|k � Pj−1|k)

)
− Ỹi

)
�

(
i∑

j=3

(j − 2)dX1|k � Pj−3|k
))

5: P|k+1 from (15)
6: {Updating dX1} dX1|k+0.5 ← dX1|k − γ3×

I∑
i=2

(
Φ0

B

(
Φ0

F

(
X1|k+1+

i−1∑
j=1

dX1|k � Pj−1|k+1)

)
− Ỹi

)
�

(
i∑

j=2

Pj−2|k+1

))
7: dX1|k+1 from (16)
8: k ← k + 1
9: end while

10: {Output} P← P|K ; Xd ← T
(
dX1|K�(P− 1), ψ

)
on supp(dX1|K); Xs ← X1|K − Xd

accurately estimated when the target is mixed with significant
clutter energy. These scenarios are common, especially in
urban environments.

E. Moving Target Imaging and State Estimation

Given the estimated reflectivities of the decoupled moving
targets Xd, in this processing stage we extend the analysis
to the full states of selected targets and enhance the moving
target imaging. The detailed processing pipeline of this stage
is depicted in Fig. 4.

Sparsity based 

target state estimation

Phase correction matrixDynamic image 

Phase history of the 

moving target

Focus on one moving 
target and extract its 
phase history.

Estimation of 

radial velocities.

Radial velocity of the 

moving target

DEM

z-direction velocity of 

the moving target

Moving target states Refocused and relocated 

target image

Fig. 4: The moving target imaging and target state estimation
stage of the proposed framework.

Let us focus on one moving target of interest and extract
its reflectivities Xd1 from Xd using a rectangular window. We
first derive the velocity coded backward projection operator
for moving targets by incorporating the target velocity vector
in the estimation of differential ranges (10). Let the target
velocity vector be vt = (v(x), v(y), v(z)) and the subdata
Yd1 = Φ0

F (Xd1). The image formation of this moving target

with the DEM and known velocities can be organized as:

Xd1(m, l) =

K∑
k=1

N∑
n=1

Yd1(fk, τn)×

exp

(
j4πfk(‖r(τn)−Gml − vtτn‖ − R0(τn))

c

)
(19)

where the enhanced differential ranges ∆R′mln =
‖r(τn)−Gml − vtτn‖ − R0(τn) are used to replace the
∆Rmln in (10). If we only have the estimated radial velocity,
the differential ranges can be approximated with:

∆R′mln
∼= ‖r(τn)−Gml‖+ v(r)τn − R0(τn)

= ‖r(τn)−Gml‖ − R′0(τn)
(20)

where R′0(τn) = R0(τn)−v(r)τn, and v(r) stands for the radial
velocity with which the target moves away from the platform.

In this work the moving target imaging and relocation are
realised with (19) and (20). It can be seen that the full target
states can be naturally embedded in the fast SAR imaging
mechanism [14] by fixing the differential ranges with pre-
calculated constant vectors. Based on (19), we denote the
enhanced imaging operator using target velocities and the
DEM as ΦV

B and its Hermitian transpose as ΦV
F .

Having defined the moving target imaging operators, we
now give an insight into the role of sparsity in estimating
the target states vt. This estimation requires us to consider
the problem in a higher dimensional parameter space in-
stead of the conventional physical coordinates space (x-y-z
space). Let the velocity map of the whole observed scene be
V = (V(x),V(y),V(z)), in which V(x) = {v(x)ml } ∈ RM×L,
V(y) = {v(y)ml } ∈ RM×L and V(z) = {v(z)ml } ∈ RM×L

represent the velocities of the image pixels in three directions.
By combining V with the physical space, we can set up
an extended SAR processing space, and estimate the target
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different V

Fig. 5: The high dimensional space for the moving target
imaging and estimation. The target states correspond with the
sparsified image of this target.

states (positions, velocities, etc.) that correspond to the sparsest
configuration in the space. As illustrated in Fig. 5, the moving
target imaging task is equivalent to a search problem in a
higher dimensional space, and the target can be better focused
when the correct motion parameters are applied. Therefore, in
this stage, the velocity estimation problem can be tackled by
utilising the efficient projection operators and target sparsities:

vt = argmin
v†

‖Θv†(Yd1)‖1

s.t. v† = Υ(v(z), v(r))

supp(Θv†(Yd1)) = κ

(21)

where Θv† is the approximated velocity compensated back-
ward operator for the moving target, Θv†(Yd1) denotes the
refocused and relocated image of the target after velocity
and DEM compensation, κ is the support set (a 10-by-10
window in this paper) of the relocated target centered at the
stongest pixel, and the target velocity obeys the geometrical
constraint, v† = Υ(v(z), v(r)), which represents the spatial
constraint defined by the DEM and platform positions. Here
we employ the L1 norm as the sparsity measure because
L1 is a more tractable convex function compared to the L0
norm with guaranteed performance in sparse approximation
problems [18]. v(r) can be estimated directly from P, and
v(z) can be estimated by differentiating the DEM based on
target positions between neighbouring sub-apertures. Given
the estimated v(r) and v(z), we can have v(x) as a function
of v(y) and this optimisation problem becomes a simple one
dimensional line search problem. To find the reflectivities
that best fit the observed data in the least squares sense, we
calculate Θv† with the LSQR algorithm [19], as direct imaging
operators such as (19) only approximately estimate the formed
images and sacrifice the fidelity. In particular, the LSQR
approximates the pseudo-inverse of the velocity compensated
forward operator by implementing (19) in an iterative manner
to better preserve the data consistency between the data Yd1

and the formed image. For the rest of the paper, the data
consistency stands for the data fitting fidelity that describes
the goodness of fit between the data and formed SAR images.
We form the moving target image Θv†(Yd1) for each target
velocity vector v†, and then select the v† that gives the best

focused target image. Note that the DEM may have limited
accuracy, but the estimated v(z) can still be used as an auxiliary
parameter in (21).

TABLE I: The system parameters of the AFRL GOTCHA
GMTI challenge dataset.

platform start point (m) (6675.4, 2938.8, 7259.4)

platform end point (m) (5716.6, -4435.1, 7240.6)

first pulse number 907249

last pulse number 1061428

observation duration (s) 71

channel number 3

PRF (Hz) 2171.6

central frequency (Hz) 9.6G

bandwidth (Hz) 640M

phase history size (5400, 154180)

range gating 384

moving target GPS start point (m) (7.08, -154.9, 7.8)

moving target GPS end point (m) (-363.7, 201.5, -10.2)

pulses

range
samples

range
bins A delta range 

value for each pulse.

pulses

range
samples

pulses

384 frequency samples 5400 range bins 5400 frequency samples

FFT IFFT

Fig. 6: The 384 frequency samples for each pulse are first
transformed into 5400 range bins based on a delta range
value in the original data (zeroes for unknown bins), and then
transformed back into the 5400 range frequency samples.

IV. REAL DATA PERFORMANCE ANALYSIS

A. Dataset Description

In this section we demonstrate the proposed method through
the AFRL GOTCHA data set [11]. The described data set
comes from an X-band SAR system with three channels and
a number of moving vehicles in a non-homogeneous urban
environment. The ground truth data of one vehicle is provided.
Its path is along a mountainous road which has significant
elevation variations. In particular, the transmitted chirp is
centred at 9.6 GHz, the phase history is collected over a
71 second interval, and the PRF fPRF is 2.1716 kHz. The
key system parameters are listed in Table I. Note that the
original data was range-gated to decrease the required storage
space. A frequency offset was used for each pulse to trim the
frequency samples down to get 5400 frequency samples. To
further decrease the storage and get the moving target centered
within the range samples, a delta range value for each pulse
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Fig. 7: a) and b) The reconstructed SAR image in dB using the range-gated data to show the GMTI scene without and with
the DEM respectively. The red path stands for the target trajectory based on the ground truth data. c) The extracted terrain
map. The black circles show the target trajectory. d) The corresponding Google map of this scene. Here we show a roughly
extracted map and the coordinates may have small inconsistencies with our formed SAR images.

was estimated based on the target GPS to range-gate the data
into 384 range bins. The detailed information of the range
gating is presented in [11]. In this work we employ 5400
frequency samples for each pulse to implement the proposed
SAR/GMTI framework, and the process for extracting this
data is the inverse operation of the range gating which can
be visualised in Fig. 6.

Unfortunately the AFRL data set does not have all informa-
tion required. Firstly, no DEM information is provided in the
dataset. To tackle this issue, we retrieved the coarse DEM data
from the United States Geological Survey (USGS) seamless
data set [20] (roughly 30 meters resolution). We adopted the
method described in [21] to estimate a calibrated elevation
map, and then interpolated the map on our imaging x-y grid
(xm, yl) to get zml. We apply the DEM Gml = (xm, yl, zml)
to all SAR processing in the rest of the paper.

Secondly, the antenna spacings between channels are un-
known in the original data set. Here we estimate the spacings
from the raw data. As shown in (7), the phases of the estimated

correction function Haz(ω) are approximately linear with ω,
and this linear slope Saz is proportional to the channel spacing
d. Consider the discrete signals with normalised frequencies,
we can estimate the distance between two channels via:

d =
SazNDvp
2πfPRF

(22)

where ND denotes the number of azimuth samples. We
implemented pair-wise estimations with (22) on the GOTCHA
data set and got consistent results that the three antennas are
equally spaced by d = 0.238m. This result coincides with the
spacing estimates in [22].

Thirdly, the given ground truth information for the moving
vehicle only covers its velocities in the x and y directions.
Especially with this data set the monitored region has a non-
flat terrain which results in nontrivial velocity components in
the z direction. Based on the positions of the target in the
ground truth, we differentiate its corresponding coordinates to
estimate its velocities in the z direction v(z). We take the given
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Fig. 8: a) The DPCA image between the 1-st and 2-nd channel centered at the target. b) The background image centered at
the target. c) The SAR image of the moving target. d) The SAR image of the moving target after refocusing and relocation.

ground truth v(x), v(y) and the estimated v(z) as the baseline
in this paper.

The monitored scene is shown in Fig. 7 which is synthesized
using range-gated images generated with (10). Here the image
quality can be degraded due to the missing data. The estimated
DEM employed during the imaging process is shown in Fig.
7.b. Based on the ground truth data, the scene is overlaid with
the target trajectory illustrated by the red path. It can be seen
that there can be a displacement of 10 to 20 meters between
the road and the target path along the x direction if we do not
apply the DEM. Also it is shown in Fig. 7.c that the observed
region has significant elevation variations. The corresponding
Google map is shown in Fig. 7.d.

To preprocess the data, we implement the inverse operation
of the the range gating and replace the unknown range gates
with zeroes. The phase history after this process is denoted
as Yi ∈ C5400×200 for the i−th channel. We then apply the
aforementioned 2D channel balancing technique [13] pair-wise
and denote the calibrated phase histories as Ỹi.

B. Moving Targets and Background Separation

In this section, the proposed decomposition framework as
described in Algorithm 1 is implemented to decouple the
moving targets and background. Then we directly estimate
the radial velocities from P for all image pixels within the
nine sub-apertures. As we have estimated the velocity map for
the whole image, the estimated velocities can vary from pixel
to pixel and the accuracies of relocations are very sensitive
to the estimated radial velocities. In this section we focus
on the moving target for which we have the ground truth
with a 15-by-15 window centered on the target in Xd, and
extract its phase history with Yd1 = Φ0

F (Xd1) as presented
in section 3.E. To have a single velocity estimation v(r) for
this target, we need to integrate these pixel-wise velocities.
By assuming that the pixels with large magnitudes in Xd1 are
likely to be our targets, we employ the weighted average within
the window to estimate a single radial velocity, using weights
proportional to the pixel magnitudes. The pixels which have
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Fig. 9: a) and b) The SAR image of the moving target and background respectively. (ψ = 0.12%‖Xd‖F and ϕ = 0.17) c) and
d) The SAR image of the moving target and background respectively (ψ = 0.55%‖Xd‖F and ϕ = 1.5)

significant deviations (larger than 2 m/s) from the estimated
velocities are removed. With the estimated v(r), we apply
the moving target imaging approach (19) to Yd1 to localise
the relocated target. A hybrid DPCA/ATI method (using pair-
wise DPCA and passing the results to ATI) is used as the
baseline which was shown to outperform the pure ATI and
DPCA [23] individually. (Note that, for a fair comparison,
we employed the fast imaging operators [14] instead of the
Doppler processing described in [23].)

A typical decomposition at the 50−th second is shown in
Fig. 8. It can be seen that the proposed method decoupled the
main energy of the target and the background (here we employ
a typical ψ = 0.35%‖Xd‖F in Algorithm 1 by considering the
aforementioned constraints on ψ). We consistently set ϕ = 0.5
in Algorithm 1, regardless of the sparsity of the scenarios
among different snapshots, and this threshold controls how we
retrieve the support of Xd which leads to the balance of the
energy allocation between Xs and Xd. Note that the essence
of the proposed model is exploiting the priori information

(sparsity in Xd) while preserving the data consistency. With
this perspective, s compromises the balance between the data
fidelity and signal sparsity. While a small s in (12) corresponds
to a large ψ and ϕ in Algorithm 1, we can further demonstrate
the crucial role of s in this decomposition via different settings.
The results with different ψ and ϕ are visualised in Fig. 9. It
can be seen from Fig. 9 a) that with a too large s the support of
Xd is very large and the false alarm rate is significantly high.
With a too small s for Fig. 9 c), the objective function in (12)
approximately matches Ỹi in different channels to a single Xs

which significantly corrupts the data consistency. The support
of Xd is thus too small and we miss the detection of targets.

In Fig. 10 we show how the cost function varies with
iterations in the processing of this snapshot, demonstrating
the non-increasing property. It is worth mentioning that the
Algorithm 1 always works without triggering the backtracking
mechanism in our experiments.

We processed nine sub-apertures centered at the 25−th,
30−th, 35−th, 40−th, 45−th, 50−th, 55−th, 60−th and
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Fig. 10: The objective function of (14) with iterations.

65−th second respectively, and compared the estimated radial
velocities to the ground truth in Fig. 11. Here we employed 3
and 15 iterations in Algorithm 1 respectively to compare the
performance. We show the relocated target locations in Fig. 12.
Each sub-aperture contains 400 azimuth samples (roughly 0.18
seconds). In Fig. 11 and Fig. 12 the proposed method is more
accurate in estimating radial velocities and localising moving
targets compared to the hybrid DPCA/ATI. With 15 iterations
we received a better relocation and a smaller error on the radial
velocity estimation. The proposed decomposition method gives
better performance on the target/clutter decomposition with
more iterations. Note that at the 55−th second, the scenario
is challenging for conventional SAR-based GMTI techniques.
Firstly, this sub-aperture corresponds to the moment that the
target is mixed with a strong static clutter (buildings). It
significantly hampered the correct estimation. Secondly, at
this moment the vehicle is moving away from the antenna
with 6.84 m/s. Note that the pixel-wise radial velocities are
estimated based on the phase of P. The phase wrapping leads
to an estimation cycle on the radial velocities (the cycle is
6.6 m/s for this sub-aperture). The ground truth is very close
to the cycle value which means that it is easily confused with
zero velocities and the thresholding operations in (15) is likely
to threshold certain components of the target which increases
the estimation errors.

While the sparsity driven method in [9] is also capable of
estimating the radial velocities, it is worth mentioning that
the proposed method has differences in assumptions, sparse
modalities and data consistency. The method in [9] assumes
that there exist multiple velocity components at each SAR
pixel (both moving ones and static ones), and it is possible
to have a number of moving targets in each SAR pixel. The
proposed method assumes the extracted dynamic image has
no more than one moving target for each pixel. While [9] is
exploiting the sparsities in pixel-wise radial velocity compo-
nents, the proposed method is investigating the sparsities in the
SAR reflectivities. The method in [9] sets up the pixel-wise
sparse reconstruction model after a previous image formation
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Fig. 11: The comparisons of the absolute estimation error
(based on the ground truth) on the target radial velocity with
the proposed approach and hybrid DPCA/ATI.
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Fig. 12: The comparisons of the target relocations with the
proposed approach and hybrid DPCA/ATI.

stage which can be taken as the post-processing the SAR
imaging (similar to the DPCA and ATI algorithms). However,
direct imaging operators sacrifice the data consistency in the
approximation of the pseudo-inverse of the SAR forward
operator. The proposed SAR/GMTI framework is designed
to maximise the data consistency while employing the target
sparsities through the iterative procedures. The improvement
in the data consistency with the proposed framework brings
significant estimation accuracy gain over other SAR/GMTI
methods. We have implemented the method in [9] on the
50−th second for comparison. Specifically we normalised the
projection matrix and measurement vector in [9] column-wise
and employed the BPDN SPGL1 [24][25] with the sparsity
variable sigma = 1. The estimated radial velocity map for
this snapshot can be be found in Fig. 13. The estimated radial
velocity of the target at 50−th second is -0.71 m/s (Fig. 13).
By shifting this estimated velocity with the estimation cycle
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Fig. 13: The estimated radial velocity map at the 50−th
second. Here we only mark the pixels with velocity above 1
m/s for proper visualisation. This velocity map can be further
marked by thresholding on image magnitudes to detect the
moving targets.

(due to the phase wrapping), the estimated radial velocity is
-7.48 m/s. The ground truth radial velocity is -8.16 m/s, and
the estimated radial velocities of other methods are -7.91 m/s
(proposed method with 15 iterations) and -7.5 m/s (hybrid
DPCA/ATI). It can be seen that the estimation accuracy of [9]
is very close to that of the hybrid DPCA/ATI.

C. Velocity Estimation and Target Imaging

We have estimated the radial velocity of the target, and
extracted the phase history of this target Yd1 (we choose
the 15-iteration results from the previous processing stage).
In this section, we estimate its full velocity vector vt and
further image the target based on the estimated vt. The model
(21) is first introduced to estimate the vt. In particular, for
far-field observation, the target velocity components obey the
geometrical restriction Υ which can be transformed into:

v(r) ≈ −〈v(x), r(o)1

r
(o)
1

〉 − 〈v(y), r(o)1

r
(o)
1

〉 − 〈v(z), r(o)1

r
(o)
1

〉 (23)

where negative v(r) means that the target is moving away
from the platform. As v(z) is in general not too large in
most scenarios, we can approximate it by differentiating the
coordinates of the relocated target at different frames. Given
the estimated v(r) and (23), v(x) is a function of v(y). In
(21), we simply traverse v(y) from 0 m/s to line search for
our estimations. The target image Θvt(Yd1) for each velocity
vector vt is formed via two iterations of LSQR to obtain good
data fidelity. By searching for the minimised ‖Θvt(Yd1)‖1,
we find the estimated vt that gives the sparsest image. We
compare the estimated target velocities to the ground truth
in x, y and z directions respectively, and show the absolute
estimation errors in Fig. 14. Furthermore, the target state
estimation methods in state-of-the-art algorithms EDPCA [7]
and ISTAP [5] maximise the generalised likelihood ratio tests

(GLRT) for image pixels. They essentially search for the
motion parameters to best focus the moving targets in the
image domain. We adopt this idea to maximise the GLRT
on the relocated target spot and search for the target state
that gives the maximised energy. The results are presented in
Fig. 14 for comparison. The absolute estimation errors for the
velocity components with different methods are visualised via
error bars. We also show the relocated and refocused target
image of the 50−th second in Fig. 8.d.
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Fig. 14: The comparisons on the absolute estimation errors of
target velocity components.

As the velocity components of the moving target in the z
direction are usually not too large in reality, they are roughly
estimated by differentiating the physical coordinates. We em-
ploy the same v(z) estimation for the proposed method and the
maximised GLRT method. Although direct differentiation has
limited accuracy, it can be seen from Fig. 14 that the estimation
on v(z) matches the ground truth in most scenarios. In addition,
it is shown in Fig. 14 that the proposed sparsity-aided approach
achieves better estimation accuracies on v(x) and v(y) than the
maximised GLRT method (lower error bars). The accuracy
improvement is likely to come from the assumption of the
target pattern and data consistency (the fitting fidelity between
the data and the reconstructed image). Particularly the max-
imised GLRT method considers the estimation problem pixel-
wise and it maximises the response with different velocity
configurations for each pixel. In this work we assume that
the target consists of multiple pixels, and we aim to find
the parameters to best focus the moving targets for each
target pattern. The data consistency is likely to be improved
by matching a target to multiple pixels instead of a single
pixel. The proposed state estimation has further potential to
be combined with the previous processing stage as they are
both exploiting the target sparsities.

V. CONCLUSION

This paper presents a complete SAR/GMTI framework for
separating moving targets from the background, estimating
the states of the targets, and relocating and refocusing the
targets under multi-channel SAR scenarios. The framework
is motivated by integrating SAR/GMTI tasks into a sparsity
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regularised optimisation problem. The proposed methods are
able to implement decompositions of moving targets and the
background instead of simple target detection. The DEM
information can be leveraged to enhance the process. A
two stage process is designed to tackle the framework in
practice considering the difficulties in computational load
and forward/backward operators. Specifically, after the pre-
processing, at the first stage we build up a sparsity based model
with an iterative decomposition algorithm. The SAR images
of the background and moving targets can be formed, and
the radial velocities of the moving targets can be estimated.
In the next stage, we estimate the full states of the targets
by searching the feasible velocity space to best sparsify the
moving target image. Given the estimated states of moving
targets, they can be better imaged and localised.

The performance of the proposed methods is demonstrated
through the AFRL GOTCHA GMTI challenge. By comparing
to the ground truth data, a hybrid ATI/DPCA approach, and
a maximised GLRT method, we show the results in terms of
target localisation and state estimation. While the proposed
methods provide accurate decomposition and state estimation,
they are computationally intensive even though fast operators
have been used. Efficiently approximating our proposed frame-
work, simplifying the processing pipeline, and pursing better
GMTI accuracy, especially with strong clutter, are the open
challenges to be investigated in the future.
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